
Breaking Symmetries in Graphs:
The Nauty Way

Michael Codish1, Graeme Gange2, Avraham Itzhakov1, and Peter J. Stuckey2,3

1 Department of Computer Science, Ben-Gurion University of the Negev, Israel
2 Department of Computing and Information Systems, The University of Melbourne,

Australia
3 Data61 CSIRO, Australia

Abstract. Symmetry breaking is an essential component when solving
graph search problems as it restricts the search space to that of canon-
ical representations. There are an abundance of powerful tools, such as
nauty, which apply to find the canonical representation of a given graph
and to test for isomorphisms given a set of graphs. In contrast, for graph
search problems, current symmetry breaking techniques are partial and
solvers unnecessarily explore an abundance of isomorphic parts of the
search space. This paper is novel in that it introduces complete symme-
try breaking for graph search problems by modeling, in terms of con-
straints, the same ideas underlying the algorithm applied in tools like
nauty. Whereas nauty tests given graphs, symmetry breaks restrict the
search space and apply during generation.

1 Introduction

Many problems, particularly in combinatorics, reduce to asking whether some
graph with a given property exists. Such “graph search” or “graph existence”
problems are notoriously difficult, in no small part due to the extremely large
number of symmetries in graphs. General approaches to graph search problems
involve either explicitly enumerating all (non-isomorphic) graphs and checking
each for the given property, or encoding the problem for some general-purpose
discrete satisfiability solver (i.e. SAT, integer programming, constraint program-
ming), which does the enumeration implicitly. In this paper, we are largely con-
cerned with this second approach.

To avoid symmetries in explicit enumeration approaches, ideally one designs
a procedure which generates exactly one graph in each equivalence class. The
classic “orderly generation” approach, due to Read [1], imposes a lexicographic
order over matrix elements and systematically constructs canonical adjacency
matrices of size n+1 from the canonical matrices of size n. For an example, in [2],
the authors address the problem: does there exist a graph with 11 vertices which
has a total magic labeling (TML)? To provide the negative answer the authors
test each one of the 1,018,997,864 canonical graphs with 11 vertices and report
that this task requires 13,595 days of CPU computation. Given that there are

165,091,172,592 canonical graphs with 12 vertices it clear that canonical graph
enumeration based approaches cannot scale.

In contrast, symmetry breaking in SAT or CP [3–6] is done by adding
additional constraints to eliminate non-canonical graphs.4 Existing symmetry-
breaking predicates are typically based on variants of the lexicographic order-
ing [4]. Incomplete symmetry breaks under this ordering are straightforward
and compact, but leave many non-canonical graphs in each equivalence class.
Complete symmetry breaks, on the other hand, are extremely large. Indeed, as
deciding lexicographic canonicity of an adjacency matrix is NP-hard, the exis-
tence of a compact complete symmetry break seems unlikely.

By looking at vertex degrees and related properties, it is often possible to
very quickly conclude that two graphs are not isomorphic. In fact, most non-
isomorphic graphs may be distinguished in this way. It turns out that exploit-
ing structural properties of graphs is critical in testing equivalence or finding
canonical representations, and gave rise to a family of astonishingly effective
isomorphism and canonical labeling tools. Many graph search problems instead
generate candidate solutions, which are then reduced to canonical form using
canonical label-ling tools such as nauty [9], bliss [10], or saucy [11]. This ap-
proach can be highly effective since these tools are amazingly efficient, but it
can be overwhelmed by generating enormous numbers of copies of isomorphic
graphs. For example there are 36,028,797,018,963,968 adjacency matrices on 11
vertices which is considerably more than the number of canonical graphs.

Ideally we would like to impose constraints defining the properties of the
graph we are searching for together with a compact constraint on the structural
properties of the graph to eliminate all non-canonical solutions. Then we could
exploit state of the art declarative solvers, to solve graphs problems with arbi-
trary constraints and objective functions without being overwhelmed by sym-
metry in the search.

This paper makes two contributions. First, we introduce a polynomial sized
SAT encoding of a partial symmetry-breaking predicate which exploits structural
information in the style of nauty which eliminates many more non-canonical
graphs than standard lex-based approaches. When combined with lexicographic
symmetry breaking this predicate remains polynomial and breaks even more
symmetries. Second, we illustrate how a technique, first presented in [12], can be
generalized to compute complete symmetry-breaking predicates which enhance
the nauty style structural break. While these predicates could be exponential
in size, we show that they are very small in practice. We present experimental
results to demonstrate the impact of both types of nauty style symmetry breaks:
partial and complete.

The computations throughout the paper are performed using the finite-
domain constraint compiler BEE [13] which compiles constraints to CNF, and
solves it applying an underlying SAT solver. We use Glucose 4.0 [14] and Clasp
3.1.3 [15] as the underlying SAT solvers and specify for each computation which

4 We restrict our consideration here to static symmetry breaking, rather than dynamic
approaches such as SBDS [7] or LDSB [8].

solver was used. All computations were performed on a cluster of Intel E8400
cores, each clocked at 2 GHz, able to run a total of 790 parallel threads. Each
of the cores in the cluster has computational power comparable to a core on a
standard desktop computer. Each SAT instance is run on a single thread.

In Section 2 we present preliminaries on graphs, graph isomorphism, on the
nauty approach to graph isomorphism, and on symmetry breaking in graph
search problems. Section 3 describes a symmetry breaking predicate which ex-
ploits structural information, emulating the nauty algorithm. This section also
presents an experimental evaluation comparing the new symmetry breaks with
other existing techniques. Finally, Section 4 concludes.

2 Preliminaries

2.1 Graphs, Permutations, Graph Isomorphism, Canonical Graphs

Throughout this paper we consider finite and simple graphs (undirected with no
self loops). The set of simple graphs on n nodes is denoted Gn. We assume that
the vertex set of a graph, G = (V,E), is V = {1, . . . , n} and represent G by its
n× n adjacency matrix A defined by Ai,j = (1 if (i, j) ∈ E else 0). We write Ai
to denote the ith row of A.

The set of permutations π : {1, . . . , n} → {1, . . . , n} is denoted Sn. For
convenience, we shall use πi,j to denote the permutation swapping i with j that
maps every other element to itself.

For G = (V,E) ∈ Gn and π ∈ Sn, we define π(G) = {V, {(π(u), π(v))|(u, v) ∈
E)}. Permutations act on adjacency matrices in the natural way: If A is the
adjacency matrix of a graph G, then π(A) is the adjacency matrix of π(G)
obtained by simultaneously permuting with π the rows and columns of A.

Two graphs G1, G2 ∈ Gn are isomorphic, denoted G1 ≈ G2, if there exists a
permutation π ∈ Sn such that G1 = π(G2). Sometimes we write G1 ≈π G2 to
emphasize that π is the permutation such that G1 = π(G2). For sets of graphs
H1, H2, we say that H1 ≈ H2 if for every G1 ∈ H1 (likewise in H2) there exists
G2 ∈ H2 (likewise in H1) such that G1 ≈ G2. The equivalence classes of G
modulo ≈ is denoted G≈n .

It is usual to define the canonical representation of (an equivalence class of)
a graph in terms of some total ordering. A classic choice is the lexicographic
ordering on graphs.

Definition 1 (lex ordering graphs). Let G1, G2 ∈ Gn and let s1, s2 be the
strings obtained by concatenating the rows of the upper triangular parts of their
corresponding adjacency matrices A1, A2 respectively. Then, G1 �lex G2 if and
only if s1 �lex s2. We also write A1 �lex A2.

The canonical representation of a graph, with respect to a given total order,
is then the minimal element of its equivalence class.

Definition 2 (canonicity). The canonical representation of a graph G ∈ Gn
with respect to a total ordering � is can�(G) = min�

{
π(G)

∣∣π ∈ Sn }.

The combination of Definitions 1 and 2 provides a simple notion of canon-
icity defined in terms of lexical ordering of graphs which is often attributed to
Read [1]. However, this definition completely ignores all of the structural infor-
mation present in the graphs. A simple example of structural information is to
focus on the degrees of vertices. Definitions that take advantage of structural
properties of graphs simplify the processes of testing for graph isomorphism and
testing for canonicity.

A structural property of a graph G is one which is invariant under permuta-
tion. In particular, if the property holds for a vertex v of G, then for a permuta-
tion π, it will hold also for π(v) of π(G). For simplicity, we will view a structural
property of G as a mapping µG of graph vertices to integers such that for any
permutation π and vertex v, µG(v) = µπ(G)(π(v)). We often omit the subscript
and write µ. For intuition, consider the structural property of vertex degree
µ = deg where degG(v) is the degree of v in G. For a structural property, µG,
on a graph G with vertices V = {1, . . . , n}, we denote µ̄G = 〈µG(1), . . . , µG(n)〉.
Given µ, we introduce a total ordering �µ on graphs defined as follows.

Definition 3 (µ ordering graphs). Let µ be a structural property and G1, G2 ∈
Gn. Then, G1 �µ G2 ⇐⇒ (µ̄G1

�lex µ̄G2
) ∨ ((µ̄G1

= µ̄G2
) ∧ (G1 �lex G2)).

It follows, from Definitions 2 and 3 that the canonical graph G′ = can�µ(G)
has the property that µG′ is sorted in decreasing order. Hence, throughout the
paper, when given a structural property µ, we will focus on graphs G such that
µG is sorted in decreasing order. The reason that we take the reverse lexico-
graphic order on the integer vectors in Definition 3 is to be consistent with the
notion of a degree sequence [16]. When µ = deg and G is canonical, then µG is
the degree sequence of G.

Definition 4 (graph partitioning). A partitioning P of (vertex set) V ={
1, . . . , n

}
is a sequence of k disjoint sets 〈P1, . . . , Pk〉 such that V = P1 ∪ · · · ∪

Pk. We refer to these sets as parts (rather than partitions) to avoid possible
confusion. We also represent P as a sequence of integer values, P = 〈p1, . . . , pn〉
such that 1 ≤ pi ≤ k for 1 ≤ i ≤ n. Here, pi = j means that vertex i is in
part j. So, for 1 ≤ j ≤ k we have Pj =

{
i ∈ V

∣∣pi = j
}

. To remove ambiguity
from this representation, we assume that P is the smallest sequence (in the re-
verse lexicographic order) defining the given partitioning. We shall use P(i) to
denote the part containing vertex i (that is, pi). When referring to a sequence of
partitionings, Pk shall be used to denote the kth element of the sequence.

The following example illustrates how structural information can be applied
to partition the nodes of a graph. In the example, one can view the degree
sequence of the graph as inducing a partitioning.

Example 1. Consider the graph G shown in Figure 1(a). Discriminating vertices
by degree establishes the partitioning 〈{v5}, {v1, v2, v3}, {v4}〉. The canonical
graph candeg(G) will contain these parts in order. Finding the canonical repre-
sentation of G requires finding the permutation of {v1, v2, v3} which minimises

v1

v2 v3

v4 v5

D = 2

D = 3 D = 1 v4
v1
v3
v2
v5


0 0 1 1 1
0 0 1 1 0
1 1 0 0 0
1 1 0 0 0
1 0 0 0 0




3
2
2
2
1


1

0
0
1


(a) (b)

Fig. 1. (a) A graph with partitions induced by degree, and (b) its canonical adjacency
matrix under �deg with its degree sequence and binary partitioning to the right.

the adjacency matrix. The resulting canonical matrix is shown in Figure 1(b)
together with the corresponding degree sequence. On the right is a binary rep-
resentation of the partitioning. A one at row i < n indicates that vertex i + 1
starts a new part, and a zero, that it is in the same part. ut

2.2 The nauty approach

The dominant approach for constructing canonical representations of graphs is
the nauty algorithm, due to McKay [9, 17]. Our approach draws on the design of
this algorithm. The algorithm consists of three phases applied in alternation to
find a canonical representation of a given graph. Taking a very simplified view
of the algorithm, we describe it in terms of two phases. The third phase, called
automorphism detection [9, 17], is not detailed in our presentation. First, nauty
partitions the vertices of the graph based on structural information. Then, it
searches for a canonical representation given the partitioning of the first phase.

Phase One. Structural information in nauty: For a given graph, G =
(V,E), The algorithm extracts structural information derived from vertex de-
grees to incrementally refine a partitioning of the vertices starting from a single
part, P = 〈V 〉. We first introduce the notion of degree by partition.

Definition 5 (degree by partition). Let G = (V,E), V = {1, . . . , n}, P =
〈P1, . . . , Pk〉 be a partitioning of V , and v ∈ V . Then, deg(v,P) = 〈d1, . . . , dk〉
where di =

∣∣{ u ∈ Pi ∣∣ (u, v) ∈ E
}∣∣ counts the degrees of v into the parts of P.

Algorithm 1 is what happens in the first phase of nauty. In the terminology
of [9, 17], the partitioning computed by Algorithm 1 is said to be equitable; and
a partitioning is said to be discrete if every equivalence class is a singleton.

Example 2. Recall the graph described in Example 1. The nauty algorithm,
starting with P0 = 〈{v1, . . . , v5}〉, first distinguishes vertices by degree, obtain-
ing the partitioning P1 = 〈{v1, v2, v3}, {v4}, {v5}〉 as in Example 1. Observe
that deg(v1,P1) = 〈2, 0, 0〉 and deg(v2,P1) = deg(v3,P1) = 〈1, 1, 0〉. Hence, in
P2 = 〈{v1}, {v2, v3}, {v4}, {v5}〉, the vertex v1 is separated from v2 and v3. The
partitioning P2 is equitable – deg(v2,P2) = deg(v3,P2) = 〈1, 0, 1, 0〉. ut

Algorithm 1 nauty phase 1: partitioning

1: procedure partition-refinement(G = (V,E))
2: init P = 〈V 〉
3: while P 6= refine(G,P) do
4: P ← refine(G,P)

5: return P

6: procedure refine(G,P)
7: denote P = 〈P1, P2 . . . Pk〉
8: for Pi ∈ P do
9: replace Pi by its partitioning 〈U1, ...Uk〉 s.t ∀u, v ∈ Pi :

10: u, v ∈ Uj iff degG(u,P) = degG(v,P)

11: return P

v1

v2 v3

v4 v5

v1

v2 v3

v4 v5

(a) (b)

Fig. 2. The graph from Figure 1 with (a) its partitioning P1 of vertices by degree, and
(b) its refined partitioning P2. The partitioning in (b) is equitable.

Note that the order in which possible refinements are applied will not af-
fect the composition of the resulting partitioning, but may change the order
of parts. Any such order is acceptable, but it must be uniquely determined.
In the following, we shall assume that at each step i > 0, listing the vari-
ables in Pi from left to right as 〈vj1 , . . . , vjn〉 then the sequence of vectors,
deg(vj1 ,Pi−1), . . . , deg(vjn ,Pi−1) is sorted in decreasing lexicographic order.

If the partition Pi−1 is derived from a structural property, then the compo-
sition and order of its parts must be invariant under permutation. So then is
each vector deg(vj ,Pi−1), as permuting vertices within a part has no effect on
the degrees – thus Pi is also structural.

Phase Two. Searching for a canonical representation: In the following we
denote by P the equitable partitioning resulting from phase one. If P is discrete,
then a canonical labeling of vertices has been established. However, this is rarely
the case. Indeed, for regular graphs all vertices have the same degree, and are
thus indistinguishable. In search for a canonical representation, nauty artificially
selects some vertex in a non-singleton set P ∈ P to be made distinct from the
other vertices of P . However, as these vertices are thus far indistinguishable, this
cannot be done in a label-invariant fashion. So, each vertex in P is tentatively
selected in turn, and a candidate discrete partitioning recursively constructed

for each. The canonical labeling is then the candidate partitioning which yields
the smallest graph under some total ordering.

We do not elaborate on the details of how this search is made as efficient as
possible in nauty as the encodings introduced in this paper will take an alterna-
tive approach to search for a canonical representation given a partitioning P.

2.3 Graph search problems and breaking symmetry

Graph search problems are about the search for a graph that satisfies certain
properties. We will focus on properties that relate to the structure of the graph
that ignore the particular names of the vertices. So if G is a solution to a graph
search problem, then so is any G′ that is isomorphic to G. More formally, an n-
vertex graph search problem is a predicate, ϕ(A), on an n×nmatrix A of Boolean
variables which is closed under isomorphism. A solution to ϕ(A) is a satisfying
assignment of the conjunction ϕ(A)∧adjn(A) where adjn(A) constrains A to be
an n× n adjacency matrix. In Constraint (1), the left conjuct states that there
are no self loops, and the right conjunct, that the edges are undirected.

adjn(A) =
∧{

¬Ai,i
∣∣1 ≤ i ≤ n } ∧ ∧{

Ai,j ↔ Aj,i
∣∣1 ≤ i < j ≤ n

}
(1)

The set of solutions of graph search problem ϕ is denoted sol(ϕ) and to make
the variables explicit we write sol(ϕ(A)). Viewing sol(ϕ) as a set of graphs, note
that sol(true) = Gn. The set sol(ϕ) may include many isomorphic graphs; we
write sol≈(ϕ) to denote the set of solutions modulo graph isomorphism.

Example 3. The n vertex graph search problem ϕtm(n)(G) is about the search for
a Total Magic (TM) graph with n vertices. A graph G = (V,E), with |V | = n and
|E| = m, is TM if there exist a one-to-one labeling λ : V ∪E →

{
1, . . . , n+m

}
and two integer values h, k which satisfy the constraints below. The graph is
modeled as an n×n adjacency matrix A of Boolean variables. The edges are the
unknown, hence m is unknown. The labeling is modeled as a length n vector λV

of integer variables for the vertices, and an n× n matrix λE of integer variables
for the edges. Note that both A and λE are symmetric. Let M = n(n− 1)/2 be
the maximum number of edges. Values in λV are between 1 and n+M . Values
in λE are between 0 and n+M where 0 is the value for “non-edges”: λEi,j is zero
if and only if Ai,j is false.

Constraint (2) enforces that A is an adjacency matrix, and that m is the
number of edges in the graph. Constraint (3) enforces that node labels are be-
tween 1 and n+M , that edge labels are between 0 and n+M and are non-zero
if the edge exists, and λE is symmetric. Constraint (4) enforces that nodes and
edges are labeled differently (the λEij with label 0 are non-existing edges), and
that the maximum label used is n + m, hence there is a bijection from vertices
and edges to

{
1, . . . , n+m

}
. We use ++ to denote vector concatenation. Con-

straint (5) ensures the sum of the labels of each edge and its endpoints is k and
the sum of the labels of each node and its incident edges is h.

adjn(A)∧m =
∑
i<j

Aij (2)
∧

1≤i<j≤n

(
(1 < λVi ≤ n+M) ∧ (0 ≤ λEij ≤ n+M)
∧ (λEij > 0↔ Aij) ∧ (λEij = λEji)

)
(3)

alldifferent except 0(λV++
[
λEij |i < j

]
) ∧ max(λV++λE) = n+m (4)∧

i<j

Aij → (λVi + λVj + λEij = k)
∧ ∧

i∈V
(λVi +

∑
j∈V

λEij) = h (5)

There are only 6 TM graphs with up to 9 vertices and there exist no 10–11 vertex
TM graphs [2]. The only known TM graphs, with > 11 vertices, are composed
of an odd number of triangles, or of an even number of triangles with a path of
length 2. It is unknown if there exist other TM graphs with > 11 vertices. ut

Example 4. Several interesting relaxations of Total Magic graphs weaken the
TM conditions. A graph is TM modulo p [2] if we replace the magic conditions
with equality modulo p, that is replace Equation (5) by∧
i<j

Aij → (λVi +λVj +λEij) ≡ k mod p
∧ ∧

i∈V
(λVi +

∑
j∈V

λEij) ≡ h mod p (5′)

We are often interested in finding graphs which are TM modulo several radices:
p1, p2, . . . , pk. ut

Solutions of a graph search problem are closed under permutations of the
vertices. When solving graph search problems, it is essential to restrict the search
space to break the symmetry between isomorphic solutions. Ideally, we would
like to restrict the space to canonical representations.

Note however that we face a different problem to the methods described
in Section 2.2. Canonicalization methods such as nauty take a fixed graph G,
and compute some canonical representation can(G). Here, we must find some
unknown graph satisfying ϕ, but wish to restrict our search to canonical repre-
sentatives – that is, we wish to only accept graphs satisfying G = can(G).

A symmetry break is a predicate σ(A) which is satisfied by at least one graph
in each isomorphism class; a complete symmetry break is satisfied by exactly one
graph in each equivalence class. A canonizing predicate, with respect to a total
order � on graphs, is satisfied by exactly the set of minimal representations
under �. We shall use solσϕ(A) to denote the set of solutions to ϕ(A) which
satisfy the symmetry breaking predicate σ(A).

Example 5. The following is a complete symmetry break, and a canonizing pred-
icate with respect to �lex. It constrains A to be minimal with respect to all
permutations of A.

σclex(A) =
∧
π∈Sn

A �lex π(A) (6)

Unfortunately the set Sn is prohibitively large, so this predicate is not at all
practical. ut.

Example 6. The following is a partial symmetry break, introduced in [18]. It is
a relaxation of σclex. It constrains A to be minimal with respect to all those
permutations of A which swap a pair of elements.

σplex(A) =
∧

1≤i<j≤n

A �lex πi,j(A)

In practice this breaks many symmetries, and is of manageable size, and hence
is often practically useful. ut

In the following let P = 〈p1, . . . , pn〉 be an unknown partitioning of the
vertices V = {1, . . . , n} of a graph expressed in terms of integer variables (so,
when pi = pj then vertices i and j are in the same part). We will make use of
the following predicates:

The predicate mono(P) specifies that P, represents a non-increasing sequence
of values.

mono(P) =

n−1∧
i=1

P(i) ≥ P(i+ 1)

The predicate plex(A,P) specifies that an adjacency matrix A is minimal with
respect to permutations that swap pairs of vertices in the same part of P.

plex(A,P) =
∧

1≤i<j≤n

P(i) = P(j)→ A �lex πi,j(A)

The predicate clex(A,P) specifies that an adjacency matrix A is minimal with
respect to permutations that preserve the partitioning P.

clex(A,P) =
∧
π∈Sn

π(P) = P → A �lex π(A) (7)

Note that plex(A,P) and clex(A,P) are not symmetry breaks unless we also
constrain A to have a structural property with the corresponding partitioning
P. We illustrate this in the following example.

Example 7. Consider a structural property µ and a predicate µ(A,P) which
encodes that A is an n × n adjacency matrix (of Boolean variables) and P =
〈p1, . . . , pn〉 is a vector of integer variables such that pi = µA(i). For instance,
when µ = deg we have

deg(A,P) =
∧

1≤i≤n

P(i) = ΣAi

The following are respectively partial and complete symmetry breaks:

σplexµ (A) = ∃P. µ(A,P) ∧mono(P) ∧ plex(A,P)

σclexµ (A) = ∃P. µ(A,P) ∧mono(P) ∧ clex(A,P) ut

3 The Nauty Encoding

In this section we describe a SAT encoding to break symmetries in graph search
problems inspired by the way that nauty is applied to map a given graph to a
canonical representation. We introduce a complete symmetry breaking predicate,
σnauty(k), which similar to the nauty algorithm consists of two “phases” and takes
the form:

σnauty(k)(A) = ∃P. σphase1
nauty(k)(A,P) ∧ σphase2

nauty(k)(A,P)

The predicate σ
phase1
nauty(k)(A,P) accepts pairs consisting of an adjacency matrix

A and a partitioning P such that executing the first phase of the nauty algo-
rithm with k iterations on A results in the partitioning represented by P, and
the vertex order of A respects that partitioning. It further restricts A applying

plex(A,P). The predicate σ
phase2
nauty(k)(A,P) accepts a pair (A,P) if A is minimal in

the class of graphs isomorphic to A which preserve the structural information in
P. The predicate σnauty(k)(A) accepts canonical adjacency matrices with respect
to the structural information derived in the first phase of the nauty algorithm (k
iterations). It is a complete symmetry break.

The essential difference between the encoding, σnauty(k)(A), and the nauty
algorithm presented in Section 2.2 is that the nauty algorithm performs on a given
graph where as the encoding, σnauty(k)(A), specifies constraints on an unknown
graph A, restricting solutions for A to be canonical.

A partitioning P is represented as a vector 〈p1, . . . , pn〉 of integer variables
such that vertices vi and vj are in the same part if and only if pi = pj . When
P is constrained to be monotone (i < j → P(i) ≤ P(j)) it may alternately
be represented as a vector ∆ of n − 1 of Boolean variables, such that ∆i ↔
P(i) < P(i+ 1). Then vi and vj are in the same part if and only if ∆i = ∆i+1 =
. . . = ∆j−1. The Boolean representation is more compact and performs better in
our applications. Therefore, the nauty encoding is presented using the Boolean
representation. Under the Boolean encoding, the predicate plex becomes:

plex(A,∆) =
∧

1≤i<j≤n

(
∧

i≤k<j

∆k)→ A �lex πi,j(A)

3.1 Encoding the first phase of nauty

To encode σ
phase1
nauty(k), we emulate the iterative refinement of partitionings. Let A be

an n×n adjacency matrix and let ∆i be the Boolean representation of the parti-
tioning at step i of the nauty algorithm. We define a predicate refine(∆i, A,∆i+1)
that specifies the partitioning, ∆i+1 at the next step of the algorithm. We then

specify the predicate σ
phase1
nauty(k) as an iteration of this refinement, starting from

the initial partition ∆0 = 〈0, . . . , 0〉.

σ
phase1
nauty(k)(A,∆) = iteratek(∆0, A,∆) ∧ plex(A,∆)

iteratek (∆,A,∆′) =

{
∃∆′′. refine(∆,A,∆′′) ∧ iteratek−1(∆′′, A,∆′) if k > 0

∆ = ∆′ if k ≤ 0

As the graph is a “variable” (not given), we do not know in advance how
many iterations are required to reach a fixpoint with respect to the structural
information. However, as each non-trivial refinement must split some equivalence
class, this process must reach a fixpoint after, at most, n iterations.

To facilitate the formal specification of the predicate refine(∆,A,∆′) we first
introduce several “helper” predicates.

The predicate P≤(∆,L): To compute structural information, it will be useful
to identify those vertices appearing in parts up to the part containing some
vertex v. The Boolean matrix L encodes this information.

P≤(∆,L) =
∧

1≤i,j≤n

{
Li,j if j ≤ i
Li,j ↔ Li,j−1 ∧ ¬∆j otherwise

The predicate lex(∆,M): This predicate specifies that the n rows of matrix
M are non-increasing in the lexicographic order following the length n−1 vector
∆. The intention is that ∆ specifies a partitioning.

lex(∆,M) =
∧

1≤i<n

(¬∆i →Mi �lex Mi+1)

The predicate deg(A,∆,M): This predicate defines a relationship between: an
n×n matrix, A, of Boolean variables (representing an unknown graph), a length
n− 1 vector, ∆, of Boolean variables (representing a partitioning of the vertices
in A), and an n×n matrix, M , of integer variables such that Mi,j represents the
number of edges from vertex i to vertices in or before the part number containing
vertex j. The rows of M are ordered lexicographically within each component
of P. The predicate is specified as:

deg(A,∆,M) =
∧

1≤i,j≤n

(
Mi,j =

n∑
k=1

Ai,k ∧ Lj,k

)
∧ lex(∆,M)

The predicate refine(∆,A,∆′): This predicate states that ∆′ is a refinement
of the partitioning ∆ of graph A obtained from a single iteration of partition
refinement. The matrix M represents structural information of the vertices with
respect to the partitioning ∆. Vertices are distinguished in the refinement ∆′:
either because they were already distinguished in ∆, or else because they are
distinguished by the corresponding structural information in M .

refine(∆,A,∆′) =

(
∃M. deg(A,∆,M) ∧

∧
1≤i<n

(∆′i ↔ ∆i ∨Mi �lex Mi+1)
)

The encoding of predicate σ
phase1
nauty(k) is polynomial in the number of both

clauses and variables. The dominating component of refine is deg, which in-
troduces O(|V |2) order-encoded integer variables whose definitions are sums of
Booleans, which have standard polynomial-size encodings (e.g. [19]).

Table 1. Enumerating graphs using σ
phase1
nauty(k). Column “sat” is Clasp solving time (sec).

σ
phase1
nauty(0) == σplex [18] σ

phase1
nauty(1) σ

phase1
nauty(2)

n |G≈n | cls vars sat sols cls vars sat sols cls vars sat sols

3 4 2 3 0.00 4 76 21 0.00 4 357 91 0.00 4
4 11 20 10 0.00 11 243 56 0.00 11 1142 279 0.00 11
5 34 70 24 0.00 43 551 110 0.01 34 2618 610 0.01 34
6 156 165 48 0.00 276 1048 192 0.01 158 5113 1165 0.06 156
7 1,044 320 85 0.02 3,158 1765 301 0.06 1,141 8870 1969 0.45 1,048
8 12,346 550 138 0.32 66,595 2741 440 0.59 14,745 14196 3067 6.63 12,642
9 274,668 870 210 12.13 2,587,488 4015 612 12.51 355,294 21422 4504 159.40 284,041

10 12,005,168 1295 304 1035.51 184,192,329 5646 830 819.93 16,255,967 31123 6435 6511.07 12,442,095

Table 2. TM (modulo 2,3) graphs using σ
phase1
nauty(k) (48 hours timeout using Clasp).

σ
phase1
nauty(0) == σplex [18] σ

phase1
nauty(1) σ

phase1
nauty(2) σ

phase1
nauty(3)

n cls vars sat sols cls vars sat sols cls vars sat sols cls vars sat sols

3 791 216 0.00 3 852 231 0.00 3 1139 290 0.00 3 1426 349 0.00 3
4 1645 422 0.01 4 1817 459 0.02 4 2702 626 0.02 4 3587 793 0.02 4
5 3024 717 0.16 16 3379 785 0.13 13 5398 1139 0.15 13 7417 1493 0.29 13
6 4973 1105 2.03 60 5606 1219 1.49 39 9574 1896 1.75 39 13542 2573 3.89 39
7 7705 1590 36.06 426 8715 1761 24.27 179 15658 2908 72.60 171 22601 4055 140.68 171
8 11438 2180 6891.22 7087 12936 2419 1795.15 1647 24154 4217 9799.19 1447 35372 6015 15828.39 1430
9 16275 2881 T.O - 18385 3200 39.71 hr. 36984 35456 5844 T.O - 52527 8488 T.O -

Table 1 illustrates the impact of structural information when breaking sym-
metries and enumerating the graphs obtained with n vertices. The column headed
by |G≈n | indicates the number of non-isomorphic graphs with n vertices. These
numbers correspond to sequence A000088 of the OEIS [20]. The next columns, in

groups of 4, are headed by σ
phase1
nauty(k) for 0 ≤ k ≤ 2. Each such foursome details the

size of the SAT encoding (number of clauses and variables), sat solving time (for
all solutions in seconds), and the number of solutions found. When k = 0 there
is no structural information and the encoding corresponds to the one introduced
in [18]. When k = 1, the nodes of the graph are partitioned according to degree
information. When k > 0, the symmetry breaks are more refined than the one
introduced in [18]. Notice that as we add structural information in the encoding
(as k increases), the number of graphs decreases. For example, when n = 10,
using k = 0 there are circa 184 million solutions, when k = 1, circa 16 million,
and k = 2, circa 12 million (close to the true number |G≈10|). Note that as we
add structural information, the cost of the solving time increases considerably.
In the following we will show how to counter this increase.

Table 2 summarizes an application of symmetry breaking with the first phase
of nauty to search for all TM graphs (modulo 2,3) (see Example 4). The columns,

in groups of 4, are headed by σ
phase1
nauty(k) for 0 ≤ k ≤ 3. Each such foursome details

the size of the SAT encoding (number of clauses and variables), sat solving time
in seconds unless indicated otherwise, and the number of solutions generated.
The table illustrates the high cost of the nauty encoding: we can solve up to
n = 9, and then only for k = 1. We will come back to resolve this problem below
by decomposing the instances to consider given nauty partitionings.

3.2 Encoding the second phase of nauty

We present a symmetry break predicate, σ
phase2
nauty(k), which eliminates isomorphic

graphs that have not been ruled out by the first phase predicate, σ
phase1
nauty(k). In the

second phase of nauty, the graph G is given, and so is the partitioning P, from
its first phase computation. In our case, we seek a predicate that states that
an unknown graph, G, is canonical. The search strategy applied in nauty is not
easily modeled as a propositional formula when G is unknown and so we intro-
duce an alternative approach, assuming that the partitioning P, from the first
phase, is given. As a starting point, consider clex(A,P) given as Equation (7).

This predicate provides a complete symmetry break when combined with σ
phase1
nauty .

However, its implementation is inefficient as the encoding must consider each of
the permutations in Sn which preserve P, and their number may be huge.

In [12] the authors show that complete symmetry breaks for graph isomor-
phism with n vertices can be obtained using only a small fraction of the required
n! permutations. For example, [12] reports that a complete symmetry break for
n = 10 vertices involves only 7853 permutations whereas the complete symmetry
break σclex(A) introduced as Equation (6) in Example 5 involves 10! = 3,628,800
permutations. In this paper we enhance the approach of [12] to consider parti-
tionings expressed by encodings of the first stage of the nauty algorithm.

A common approach for improving performance of combinatorial existence
checking is decomposition: splitting the problem into a manageable set of disjoint
subproblems, each of which can (ideally) be solved more easily. We can decom-

pose a graph search problem with respect to the partitioning inferred by σ
phase1
nauty(k).

This results in a decomposition to 2n−1 subproblems, one for each partitioning.
To compute a concise and complete symmetry break for a partitioning P cor-

responding to the first phase σ
phase1
nauty(k) we apply the same approach as advocated

in [12], but restricted to break symmetries on graphs which have the structural
information P after k iterations of the nauty first phase algorithm. This com-
putation is performed by application of Algorithm 2 where we denote: (a) SPn
the set of permutations that preserve a partitioning P, and (b) for Π ⊆ Sn,
minΠ(G) =

∧{
G � π(G)

∣∣π ∈ Π }
.

For a given partitioning P and value k, Algorithm 2 starts with an empty
set of permutations Π and iterates adding permutations as long as the condition
in Line 3 holds. The condition seeks a pair (G, π) such that π(G) � G, where

G ∈ sol(σphase1
nauty(k)(A,P)) and π preserves P. Such a graph violates clex(P, G) and

hence π is added to Π. The implementation performs this check by invoking a
SAT solver, the same as in [12].

We say that Π is redundant if there exists π such that for all G, minΠ(G)↔
minΠ\{π}(G). The set computed by the while-loop at Line 3 may be non-
minimal, as an existing permutation may become redundant in view of per-
mutations added later. Thus the algorithm then iterates to remove redundant
permutations applying the for-loop at Line 5.

Table 3 is about computing the permutations to make the nauty partitionings
complete (phase2). For each n (number of vertices), we indicate (“parts”) the

Algorithm 2 Compute Canonizing Set

1: procedure Compute-Canonizing-Set(P, k)
2: Init: Π = ∅
3: while ∃(G, π) ∈ (sol(σ

phase1
nauty(k)(A,P)), SPn) s.t minΠ(G) ∧ π(G) ≺ G do

4: Π = Π ∪ {π}
5: for each π ∈ Π do
6: if ∀G ∈ sol(σphase1

nauty(k)(A,P)): minΠ\{π}(G) ⇒ G � π(G) then

7: Π = Π \ {π}
8: return Π

number of partitions. We detail separately the cost of computing the permuta-
tions for the regular partitioning (“regular part”) where degree-based structural
information has no impact. These have the most permutations and are the most
costly to compute. Then for σnauty(1), σnauty(2) and σnauty(3) we detail the number
of permutations and the time to compute them using Algorithm 2. For the num-
ber of permutations we detail x/y where x is the largest number of permutations
computed for a single partitioning, and y is the total number. For the time we
detail x/y where x is the longest time to compute for a single partitioning and
y is the total time.

Notice how the required number of permutations decreases as structural in-
formation is added (k increases). For n = 10 we have 8608 permutations with
k = 1, 3703 with k = 2, and 1497 when k = 3. Recall that without structural
information 7853 permutations were required [12], and computation beyond 10
vertices was not possible. Moreover note that because of the decomposition to
partitionings we require no more than 37 permutations to break all symmetries

on 10 vertices given a partitioning derived from σ
phase1
nauty(3). The permutations com-

puted here provide complete symmetry breaks for any graph search problem with
up to 12 vertices.

Table 3. Canonizing sets per partitioning. Time in seconds except under the line (for
n = 11, 12) where in hours. Timeout is 48 hours using Glucose.

regular part σnauty(1) σnauty(2) σnauty(3)

n parts perms time perms time perms time perms time

6 32 0 0.22 1/2 0.09/1.73 0/0 0.12/2.60 0/0 0.18/3.87
7 64 2 0.14 5/49 0.25/6.24 1/2 0.24/10.75 0/0 0.37/15.68
8 128 12 1.22 18/330 2.49/35.11 5/93 1.29/62.21 6/40 2.33/82.52
9 256 20 4.54 44/1875 22.38/303.19 13/640 4.16/400.65 14/225 7.88/512.03

10 512 144 447.48 215/8608 750.2/4649.30 51/3703 67.16/3309.17 37/1497 95.83/4576.36

11 1024 346 0.84 1030/44521 8.36/44.9 169/16391 0.22/9.62 171/6718 0.19/12.91
12 2048 513139 16.32 - T.O 718/77158 3.08/99.44 577/33182 2.22/116.2

5 To stay within the time-out, the computation of these permutations omits the re-
moval of redundant permutations, skipping the for-loop at Line 5 in Algorithm 2.

Table 4. Enumerating TM (modulo 2,3) graphs using σnauty(k) complete symmetry
breaks. Time in seconds except under the line (for n = 9, 10) where in hours. Column
1 computed with Clasp, column 2,3 computed with Glucose. (120 hours timeout).

σ∗clex σnauty(1) σnauty(2)

n cls vars sat inst. cls vars sat inst. cls vars sat sols

3 791 216 0.00 4 346 80 0.00/0.00 4 346 80 0.00/0.00 3
4 1640 421 0.02 11 935 218 0.00/0.02 11 1053 233 0.00/0.02 4
5 3179 748 0.13 31 1783 409 0.01/0.18 33 2163 466 0.01/0.21 13
6 5093 1129 1.03 102 3088 699 0.06/1.52 143 4254 882 0.04/1.92 39
7 8710 1791 14.49 342 4794 1060 1.07/26.19 755 7293 1462 0.33/28.24 171
8 21633 4219 304.20 1213 7091 1524 18.16/766.32 4817 11503 2220 5.87/678.68 1425

9 105030 20632 11.91 4361 10079 2104 0.17/11.73 32883 16863 3140 0.07/12.71 29415
10 1428281 284565 T.O 16016 14466 2925 T.O 223554 23572 4233 114.51/2215.12 1099398

A first attempt to enumerate all TM graphs modulo 2,3 using the complete
symmetry breaks σnauty(k) per partitioning failed. The instances are simply too
hard. To this end, we took a second approach where the encoding for each
partitioning was enhanced with additional information on the degree sequences
of solutions. Namely, the implementation considers for each partition all possible
relevant degree sequences and solve each instance separately.

Table 4 summarizes the results. For each n we detail the results obtained
using the complete symmetry breaks of [12] denoted by σ∗clex (these symmetry
breaks are equivalent to σclex(A) but are much compact), and then the results
for σnauty(k) with k = 1, 2. Here we detail the total number of instances (on
all partitionings). For time we detail x/y where x is the time for the hardest
instance and y is the total time. The number of solutions is the same as this is,
in all three cases, the number of canonical solutions.

4 Conclusion

This paper presents polynomial-size static symmetry breaking predicates which
encode structural properties in the same way that nauty exploits information
when it maps graphs to their canonical representations. These structural breaks
apply to strengthen existing incomplete symmetry-breaking predicates, and can
be extended into complete symmetry breaks. These structural properties also
yield a natural strategy for problem decomposition. We have described a SAT
encoding for the structural symmetry-breaking predicates, and applied these to
compute compact, complete symmetry breaks for graphs of up to 12 vertices. We
also demonstrated the effectiveness of these structural techniques in accelerating
the enumeration of TM graphs modulo 2, 3. Ongoing work focuses on an encoding
that exploits on richer structural properties than the current focus on vertex
degree. As described in [17], this is expected to improve the situation when
breaking symmetries on regular graphs. We also plan to apply the same technique
to compute sets of permutations with which to break symmetries for a given
graph search problem. We expect to then be able to apply the tecnique for
larger instances than those we can do now.

References

1. Read, R.C.: Every one a winner or how to avoid isomorphism search when cata-
loguing combinatorial configurations. Ann. Discrete Math. 2 (1978) 107–120

2. Jäger, G., Arnold, F.: SAT and IP based algorithms for magic labeling including a
complete search for total magic labelings. J. Discrete Algorithms 31 (2015) 87–103

3. Puget, J.: On the satisfiability of symmetrical constrained satisfaction problems.
In: Methodologies for Intelligent Systems, 7th International Symposium, ISMIS
’93, Trondheim, Norway, June 15-18, 1993, Proceedings. (1993) 350–361

4. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking pred-
icates for search problems. In: Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning (KR’96), Cambridge,
Massachusetts, USA, November 5-8, 1996. (1996) 148–159

5. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. Discrete Applied Mathematics 155(12) (2007) 1539–1548

6. Walsh, T.: General symmetry breaking constraints. In: Principles and Practice
of Constraint Programming - CP 2006, 12th International Conference, CP 2006,
Nantes, France, September 25-29, 2006, Proceedings. (2006) 650–664

7. Gent, I.P., Smith, B.M.: Symmetry Breaking in Constraint Programming. In Horn,
W., ed.: ECAI 2000, Proceedings of the 14th European Conference on Artificial
Intelligence, Berlin, Germany, August 20-25, 2000, IOS Press (2000) 599–603

8. Mears, C., Banda, M.G.d.l., Demoen, B., Wallace, M.: Lightweight dynamic sym-
metry breaking. Constraints 19(3) (December 2013) 195–242

9. McKay, B.D.: Practical Graph Isomorphism. Congressus Numerantium 30 (1981)
45–87

10. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large
and sparse graphs. In: Proceedings of the Ninth Workshop on Algorithm Engi-
neeringand Experiments, SIAM (2007) 135–149

11. Darga, P.T., Liffiton, M.H., Sakallah, K.A., , Markov, I.L.: Exploiting structure in
symmetry detection for CNF

12. Itzhakov, A., Codish, M.: Breaking symmetries in graph search with canonizing
sets. Constraints (2016) 1–18

13. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR) 46
(2013) 303–341

14. Audemard, G., Simon, L.: Glucose 4.0 SAT Solver. http://www.labri.fr/perso/
lsimon/glucose/.

15. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artif. Intell. 187 (2012) 52–89

16. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices (in Hungar-
ian). Mat. Lapok (1960) 264–274 Available from http://www.renyi.hu/~p_erdos/

1961-05.pdf.
17. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal of Symbolic

Computation 60 (January 2014) 94–112
18. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Breaking symmetries in graph

representation. In Rossi, F., ed.: Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, Beijing, China, IJCAI/AAAI (2013)

19. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR) 46
(2013) 303–341

20. Sloane, N. J. A., ed.: The On-Line Encyclopedia of Integer Sequences. https:

//oeis.org Accessed April 2016.

