
Nested Constraint Programs

Geoffrey Chu and Peter J. Stuckey

National ICT Australia, Victoria Laboratory,
Department of Computing and Information Systems,

University of Melbourne, Australia
{gchu,pjs}@cis.unimelb.edu.au

Abstract. Many real world discrete optimization problems are express-
ible as nested problems where we solve one optimization or satisfac-
tion problem as a subproblem of a larger meta problem. Nested prob-
lems include many important problem classes such as: stochastic con-
straint satisfaction/optimization, quantified constraint satisfaction/op-
timization and minimax problems. In this paper we define a new class
of problems called nested constraint programs (NCP) which include the
previously mentioned problem classes as special cases, and describe a
search-based CP solver for solving NCP’s. We briefly discuss how no-
good learning can be used to significantly speedup such an NCP solver.
We show that the new solver can be significantly faster than existing
solvers for the special cases of stochastic/quantified CSP/COP’s, and
that it can solve new types of problems which cannot be solved with
existing solvers.

1 Introduction

An aggregator constraint takes the form: y = agg([f(x1, . . . , xn, z1, . . . , zm) |
z1, . . . , zm where C(x1, . . . , xn, z1, . . . , zm)]) where agg is an aggregator function
such as sum, max, min, and, or, f is a function which we will call the local
function, c is a (set of) local constraint(s), xi are some input variables, y is an
output variable, and zi are some local variables.

Aggregator constraints are an extremely flexible and powerful modelling con-
struct, especially when we allow them to be nested inside each other. Prob-
lems such as constraint satisfaction/optimization problems, stochastic constraint
satisfaction/optimization problems, quantified constraint satisfaction/optimiza-
tion problems, bi-level and multi-level programming, and many others, can be
expressed using aggregator constraints. Unfortunately, most of these problem
classes, and the solvers designed for them, only support a very restricted subset
of aggregator constraints. For example CP solvers typically cannot handle ag-
gregator constraints natively at all, and rely on some sort of unrolling procedure
to convert them into primitive constraints first.

An aggregator constraint can be unrolled by eliminating the local variables
and local constraints in the aggregator. If we can statically find the set of local
solutions S to the constraint C(x1, . . . , xn, z1, . . . , zm) (either independent of xi
or if the xi are fixed), then for each θ ∈ S, we create a variable a[θ] and post the
constraints a[θ] = f(θ), then post the constraint y = agg([a[θ] | θ ∈ S]). This

completely eliminates the need to handle those local variables and constraints
during solving, but at a potential cost of creating exponentially many variables
and constraints.

Example 1. Suppose we have variable arrays p and q. Suppose we have aggre-
gator constraint y = max([p[z] + z × q[z] | z where z ∈ {1, 2, 3}). We can unroll
this to: y = max([a[1], a[2], a[3]]), a[1] = p[1] + q[1], a[2] = p[2] + 2 × q[2],
a[3] = p[3] + 3× q[3]. ut

Such an approach can handle many common CSP problems, and can also be
used to convert stochastic CSP’s and quantified CSP’s into normal CSP’s which
can be solved using standard CP solvers. For example, scenario-based methods
for solving stochastic CSP’s [1] eliminate the stochastic variables in order to
convert the problem into a CSP.

However, there are significant problems with this approach. Firstly, in gen-
eral, it may not be possible or efficient to calculate the set of local solutions S
statically. E.g., if the input variables xi are not fixed at compile time, then it may
not be possible at all, or if we have complex constraints in c (like other aggrega-
tor constraints), it may take exponential time just to check the satisfiability of
an assignment. Secondly, if there are many nested aggregator constraints, then
such unrolling could create an exponential number of variables and constraints,
causing the solver to run out of memory. For example, in a k-stage stochastic
CSP, we have k nested max and weighted sum aggregators. If each stage had
O(S) scenarios and we were to unroll all the weighted sum aggregator constraints
by eliminating their local variables, then we end up with O(Sk) variables and
constraints which could easily cause the solver to run out of memory. Thirdly,
not all the terms in the aggregation are necessarily relevant, especially with ag-
gregators like max, min, and, or, etc, where evaluating one term may mean
that other terms do not need to be evaluated or do not need to be evaluated
fully.

An alternative method for handling aggregator constraints is to keep the
local variables and constraints, and dynamically calculate the local solutions to
the aggregator constraint during solving, rather than statically at compile time.
Such search-based approaches have been used in stochastic CSP/COP solvers [2],
in quantified CSP/COP solvers [3], and in quantified Boolean formulae solvers,
e.g., [4, 5]. In this paper we go further than these works by defining a much more
general class of problems which we will call nested constraint programs (NCP’s).
Rather than only allowing linear aggregation structures where the output of
one aggregator is immediately used as the function for the next as in stochastic
CSP/COP’s and quantified CSP/COP’s, we represent the output of aggregators
with a variable and allow these variables to be used in an arbitrary manner in
the parent context. This means that they can be used in constraints, or as part
of some complex expression for the parent’s local function. It also means that
we can have multiple aggregator constraints in the local constraints of another
aggregator constraint, and thus we can have tree-like quantification structures.
NCP’s include stochastic CSP/COP, quantified CSP/COP/COP+ and many
more as special cases, but can model problems which do not fit in any of these
subclasses. We describe a new CP-based solver for solving NCP’s, and briefly
describe how to apply nogood learning in such a solver.

The contributions of this paper are:

– An expressive framework for nested constraint programs (Section 3).
– A propagation based solver architecture that supports this class of problems

(Section 4).
– Experiments showing that the resulting system is highly competitive with

existing solvers for specialized subclasses of NCP (Section 5).

2 Preliminaries

A valuation, θ, is a mapping of variables to values, denoted {x1 7→ d1, . . . , xn 7→
dn}. Let vars(θ) = {x1, . . . , xn}. We can apply a valuation to a variable θ(xi) to
return the value di, and extend application of valuations θ to arbitrary expres-
sions involving vars(θ) in the obvious way.

A constraint, c, is a set of valuations over a set of variables vars(c). A val-
uation θ is a solution of c if {x 7→ θ(x) | x ∈ vars(c)} ∈ c. A valuation θ is
a solution of a set of constraints C if it is a solution for each c ∈ C. We write
c1 |= c2 if every solution of c1 is a solution of c2.

A literal is a unary constraint (we can restrict to the forms x = d, x 6= d, x ≥
d, x ≤ d), or false. A domain D is a conjunction of literals over vars(D). We use
notation D(x) = {θ(x) | θ is a solution of D}. We use range notation [l .. u] =
{d | l ≤ d ≤ u}. A singleton domain is one where |D(x)| = 1, x ∈ vars(D), and
we let θD = {x 7→ dx | x ∈ vars(D), D(x) = {dx}} in this case.

A propagator p(c) for constraint c is an inference algorithm, it maps a domain
D to a conjunction of literals p(c)(D), whereD∧c |= p(c)(D). We shall sometimes
treat this conjunction as a set. We assume each propagator is checking, that is
if ∀x ∈ vars(c).|D(x)| = 1 then p(c)(D) = ∅ if θD is a solution of c and {false}
otherwise.

In lazy clause generation (LCG) solvers [6, 7] propagators are also required to
return explanations for each new consequence l ∈ p(c)(D), that is an explanation
clause e ≡ l1 ∧ · · · ln → l where ∀1 ≤ i ≤ n,D |= li and c |= e. LCG solvers,
like SAT solvers, create an implication graph, where every new consequence is
attached to a reason. On failure this used to create a nogood by repeatedly
replacing literals in the explanation of failure until only one literal that became
true after the last decision remains. This nogood is guaranteed to generate new
propagation information. See [5] for more details.

3 Aggregators and Nested Constraint Programs

An aggregator function is a function which maps a multiset (list) of values to a
single value by performing some sort of aggregation over them, e.g., by summing
over them, or taking the maximum, etc. Aggregators are functions on multisets,
they cannot make use of the order of elements in the list they operate on. They
may be partial functions.

An aggregator constraint is of the form: y = agg([f(x1, . . . , xn, z1, . . . , zm) |
z1, . . . , zm where C(x1, . . . , xn, z1, . . . , zm)]) where agg is an aggregator function,

f is the local function of the aggregator constraint, and C is a set (or conjunc-
tion) of local constraints of this aggregator constraint. We assume the local
function f is total in its inputs, if not we can add constraints to C to ensure
it is total for all possible local solutions, thus implementing the relational se-
mantics [8]. The scope of this aggregator constraint is vars(a) = {y, x1, . . . , xn}.
Given aggregator constraint a, let ovar(a) = y be the output variable, ivars(a) =
{x1, . . . , xn} be the input variables, lvars(a) = {z1, . . . , zm} be the local vari-
ables, and lcons(a) = C.

The solutions of an aggregator constraint c ≡ y = agg([f(x1, . . . , xn, z1, . . . , zm) |
z1, . . . , zm where C(x1, . . . , xn, z1, . . . , zm)]) are defined inductively on the depth
of nesting. Let Θ be the solutions of the constraint C, then the solutions of c are

{x1 7→ d1, . . . , xn 7→ dn, y 7→ agg([f(d1, . . . , dn, θ(z1), . . . , θ(zm) | θ ∈ Θ, θ(xi) = di])}

for all (d1, . . . , dn) where ∃θ ∈ Θ.∀1 ≤ i ≤ n.θ(xi) = di. If C includes no
aggregator constraints then this definition is self-contained, otherwise we can
determine the solutions of C by induction (since the depth of nesting is 1 less)
and use them to define the solutions of c. Note that an aggregator constraint
may have no solutions if the aggregation function is not defined on the resulting
multiset of solutions, e.g. y = average([]).

Example 2. Suppose we have y = sum([z1 | z1, z2 where z1, z2 ∈ [1 .. 3] , z1 +
z2 ≤ x]). Then given a particular value of x, we find all solutions to z1, z2 which
satisfy z1, z2 ∈ [1 .. 3] , z1 +z2 ≤ x, and sum over the z1 values of those solutions
in order to calculate y. So for example, this constraint would allow the tuples:
(x, y) ∈ {. . . , (0, 0), (1, 0), (2, 1), (3, 4), (4, 10), (5, 15), (6, 18), (7, 18), . . .}. ut

Some commonly used aggregators are sum, product, min, max, and, or,
average, stddev, variance, whose definitions are already well known. Note
that we have not restricted the types of the variables or the input or output
arguments to the aggregator functions. This means for example, we can define
aggregator functions which take in a list of tuples as arguments, or which return
a tuple as the output, etc. For example, weighted average can be defined on a
list of pairs where the first element is the weight and the second element is the
value and it returns a single value as output. Similarly, we can extend min and
max to take a list of tuples as argument and use the lexico-graphical ordering
to return the smallest or largest tuple as the return value.

A nested constraint program (NCP) consists of a single aggregator constraint
with no input variables: e.g. y = agg([f | z1, . . . , zm where C(z1, . . . , zm)]) The
goal of an NCP is to determine the value of the output variable of the top-level
aggregator constraint. The power of NCPs arise from the fact that the local con-
straints of one aggregator constraint can contain other aggregator constraints.
Thus in general, we can have a nested structure where we have a tree of aggrega-
tor constraints, each with its own local variables and constraints, and where each
aggregator constraints is a local constraint of its parent aggregator constraint.

Example 3. In the simple production planning problem studied in [2], in each
stage, we can choose to produce 0 or more books. After production, there is a
stochastic demand for books between 100 and 105 with equal probabilities for

each. There are soft constraints enforcing that the available stock be sufficient to
satisfy the demand. The problem is to find a policy whose expected satisfiability
is above a certain threshold α. We can model a 3 stage instance as follows:

r = or([m1 ≥ α | m1 where
m1 = max([a1 | s1, p1, a1 where s1 = 0 ∧
a1 = average([bool2int(s1 + p1 ≥ d1)×m2 | d1 ∈ [100..105],m2 where
m2 = max([a2 | s2, p2, a2 where s2 = s1 + p1 − d1 ∧
a2 = average([bool2int(s2 + p2 ≥ d2)×m3 | d2 ∈ [100..105],m3 where
m3 = max([a3 | s3, p3, a3 where s3 = s2 + p2 − d2 ∧
a3 = average([bool2int(s3 + p3 ≥ d3) | d3 ∈ [100..105]])])])])])])])

Example 4. Consider the 2-player Nim-Fibonacci game [10]. The game starts
with n matches. The first player may take between 1 to n − 1 of the matches.
Thereafter, the turns alternate and the current player may take between 1 to 2k
of the matches where k is the number of matches taken by the previous player.
The player who takes the final match wins. The problem is to find out for each
n whether the first player has a winning strategy. It has the interesting property
that the first player has a winning strategy iff n is not a Fibonacci number.
The problem can be modelled as follows. Given turn i, let ri be the number of
matches left, li be the maximum number of matches that can be taken during
that turn, ti the actual number of matches taken, and wi whether there is a
winning strategy from that position.

w1 = or([l1 ≥ r1 ∨ ¬w2 | w2, l1, r1, t1 where
l1 = n− 1 ∧ r2 = n ∧ 1 ≤ t1 ≤ l1 ∧
w2 = or([l2 ≥ r2 ∨ ¬w3 | w3, l2, r2, t2 where
l2 = 2× t1 ∧ r2 = r1 − t1 ∧ 1 ≤ t2 ≤ l2 ∧
w3 = or([l3 ≥ r3 ∨ ¬w4 | w4, l3, r3, t3 where
l3 = 2× t2 ∧ r3 = r2 − t2 ∧ 1 ≤ t3 ≤ l3 ∧
. . .
wn = true]) . . .])

The ability to model problems using tree-like quantification structures rather
than the linear quantification structure used in stochastic CSP and quantified
CSP allows certain kinds of optimisations.

Example 5. Consider a stochastic scheduling problem with precedence and non-
overlap constraints C on n tasks where we fix the (array of) start times s̄ within

the makespan [0 ..m], written as s̄ ∈ [0 ..m], but then each task duration di
can then independently be one of three values Li = {fi, ri, wi} fast, regular or
slow, and we need to pay recourse recoursec(sc1 , sc2 , dc1 , dc2) for the violation
of each constraint c ∈ C involving at most two tasks numbered c1 and c2. Given
n tasks there are 3n scenarios. The natural stochastic model is

u = min([average([sum([recoursec(sc1 , sc2 , dc1 , dc2) | c ∈ C])

| d̄ ∈ L̄]) | s̄ ∈ [0 ..m]])

where we find a schedule (start times) s̄ which minimizes the expected recourse
cost, over all possible durations d̄ ∈ L̄ scenarios The problem is there are 3n

scenarios and hence evaluating a schedule is O(|C|3n). But, since the recourse
for each constraint c ∈ C is dependent on at most two stochastic durations dc1
and dc2 , we can model this instead as

u = min([sum([average([recoursec(sc1 , sc2 , dc1 , dc2) | dc1 ∈ Lc1 , dc2 ∈ Lc2])

| c ∈ C])) | s̄ ∈ [0 ..m]])

There are at most 9 scenarios for each constraints recourse calculation, hence
to evaluate a schedule is O(|C|). Note that such a quantification structure is not
supported by stochastic CSP solvers but can be solved with our more generic
NCP solver. ut

Aggregator functions involving tuples allows us to model things like bi-level
programs.

Example 6. The Network Links Pricing problem [3] can be described as follows.
The problem is to set the tariffs on the network links in order to maximise the
profit of the owner of the links. The i ∈ I customer (or data movement) will
route their di data from srci to snki using the smallest possible cost path. Each
path has to cross a tolled arc j ∈ J with cost per unit data tj . We assume the
cost per unit data from srci to snki via j is ci,j for the rest of the network.
Hence the cost to the customer of a path through arc j is (ci,j + tj) × di. The
income to the network is tj × di. The customer can choose another independent
network provider with cost ui instead of using this network. The problem is
determine the toll tj from some set of possibilities Tj (t̄ ∈ T̄) for each arc j to
maximise revenue. We assume customers will pick the cheapest link for them,
but if there are ties, they will pick the one most profitable for the operator, as
the network operator can simply adjust their tariffs by some small ε to make that
choice the cheapest for that customer. The interesting thing here is that in the
subproblem, we need to minimize one quantity, i.e., the cost the customer, but
return another value as the result, i.e., the profit to the operator. Such problems
cannot be modelled as normal QCOPs, but can be modelled as QCOP+s or as
NCPs by using tuples.

y = max([sum(p ∗ di | c, p where
(c, p) = max([(−(ci,j + tj), tj) | j ∈ J where

(ci,j + tj)× di ≤ ui])) | i ∈ I]) | t̄ ∈ T̄])

Note that the inner (lexico-graphical) max on the pair picks the link with the
lowest cost, and among those the one with highest profit, and returns that pair
as the return value. ut

The greater expressivity of NCP allow us to model all kinds of meta problems
where the results or properties of subproblems can be used in constraints or the
objective function of the parent problem, or the output of one subproblem can
be used as the input to another, etc.

Example 7. Consider a Sudoku problem, given a set of possible clues {xiljl =
dl | 1 ≤ l ≤ n}, find the smallest subset of these clues such that the resulting
Sudoku problem has a unique solution. We can model this as a NCP, using a
Boolean variable bl to indicate whether a clue is used:

c = min([sum([bl | l ∈ [1 .. n]]) | b̄ ∈ [0 .. 1] where

1 = sum([1 | x̄ ∈ [1 .. 9] where
and([bl → xiljl = dl | l ∈ [1 .. n]]) ∧ sudoku(x̄)])])

where sudoku(x̄) are constraints enforcing that x̄ is a solution to a Sudoku
problem. ut

CSP/COP, stochastic CSP/COP [2], QCSP [11], QCOP, QCOP+ [3], stochas-
tic SAT, MAXSAT, QBF [12], influence diagrams, finite horizon markov deci-
sion processes, MPE and MAP queries over stochastic graphical models such as
Bayesian nets, and probably many more, are all expressible as NCP. In addition
to this, there are many problems expressible as NCP which cannot easily be ex-
pressed as any of the previously mentioned problem classes. Thus NCP is a very
expressive and generic problem class. In this paper, we are interested in solving
NCPs using a modified CP solver. Thus we restrict our attention to finite NCPs,
i.e., where every local variable is constrained to have a fixed finite initial domain
given by explicit local constraints, e.g. z ∈ [1 .. 100].

4 Solving NCP’s

In this section, we describe how to solve NCPs. The main idea is to augment a
standard CP solver with a new class of propagators which can encapsulate the
subproblem modelled by an aggregator constraint. Such a propagator constrains
the input and output variables of the aggregator constraint and performs prop-
agation on these variables. The major difference with normal CP propagators
is that unlike a normal CP propagator which run a self-contained algorithm to
perform propagation, these new propagators may take control of the search en-
gine itself to do some search in order to perform their propagation. However, at
the end of their propagation algorithm, they must return the search engine to its
former state so that it is as if nothing has happened. Thus these new propagators
simply change the domains of variables, just like all other standard CP propag-
tors, and there is no need to treat them specially in any way. The fact that the
set of assignments allowed by the aggregator constraint is defined via aggregat-
ing the solutions to a CP problem rather than extensionally or intensionally as
in normal CP constraints is irrelevant. As far as the parent subproblem is con-
cerned, the aggregator constraint is just a normal constraint which is satisfied
by a particular set of assignments, and we have a propagator which is capable
of enforcing the constraint, and thus the parent subproblem can be treated as
a completely normal (non-nested) CP problem. This allows us to solve NCPs
using CP solvers by simply adding a new kind of propagator.

Recall that there are two main ways to deal with an aggregator constraint.
We can either unroll it by eliminating the local variables and local constraints
as described in Section 1, or we can post a propagator which can handle it

natively as described above. The first suffers from a potential combinatorial ex-
plosion in the number of variable/constraints required, while the second tends
to have weaker propagation strength. The key here is to try to find the best
tradeoff between propagation strength and time/memory usage. For simple ag-
gregator constraints, we would often get a better tradeoff simply by unrolling
them. Whereas for more complicated ones with non-trivial local constraints, the
search based approach may give a better tradeoff. In general, we use the follow-
ing policy: given an aggregator constraint a, if the local solutions of a can be
computed at compile time and there are no more than L of them where L is some
user defined parameter, and there are no nested aggregator constraints within
a, then we unroll a. Otherwise, we leave it as is and post a propagator that can
handle it natively. Such a policy ensures that we avoid any sort of exponential
blowup in problem size that can occur when we unroll aggregator constraints.

After unrolling, we create a domain object for each variable and a propagator
object for each constraint and aggregator. Unlike a normal CP solver where all
variables exist in the one existential context, variables in a NCP may belong
to different contexts. Each variable is either a local variable to one aggregator
constraint or is the root variable. It can also be an input variable of zero or
more descendant aggregator constraints. Each local constraint can contain local
variables from the same aggregator constraint and also input variables which are
local to the ancestor aggregator constraints.

First, we consider a non-aggregator constraint c. For each such constraints
c, we create a modified propagator p(c) which is identical to the standard CP
propagator, except that it is only allowed to prune values from the domains of
the local variables of the parent aggregator constraint y = agg([...]) to which it
belongs. It is incorrect in general to prune values from the input variables. The
reason for this is that when a local constraint has no solutions, this does not
mean that the parent aggregator constraint has no solutions, rather it means that
the value of y is given by agg([]) since the local problem has no solutions. This
does not constrain the input variables, so pruning their domains is incorrect!

Example 8. Consider the following problem: y = min([x2 | x1, x2 where x1 ∈
[0 .. 3] ∧ x2 ∈ [−4 .. 4] ∧ x2 = sum([x3 | x3 where x3 ∈ [1 .. 5] ∧ x3 ≤ x1])]).
The local constraint x2 = sum([x3 | x3 where x3 ∈ [1 .. 5] ∧ x3 ≤ x1]) has
the solutions (x1, x2) ∈ {. . . , (−1, 0), (0, 0), (1, 1), (2, 3), (3, 6), (4, 10), (5, 15),
(6, 15), . . .}. This means that the local solutions of the min aggregator are
(x1, x2) ∈ {(0, 0), (1, 1), (2, 3)}, giving y = 0. Suppose however, we allowed the
constraint x3 ≤ x1 to propagate on its input variable x1. Then at the root,
since we have x3 ∈ [1 .. 5] we can immediately propagate x1 ≥ 1, and we have
completely pruned off a totally valid local solution ((x1, x2) = (0, 0)) of the min
aggregator, leading to an answer of y = 1 which is simply wrong. ut

For each aggregator constraint a, we create a propagator p(a). This can use
the semantics of its aggregator function to propagate domain changes to the
output variable based on the domains of its input and local variables. For exam-
ple, consider an aggregator constraint a ≡ y = min([f(z, x) | z where c(z, x)]).
Suppose that a has not yet taken control of the search (i.e., x is not yet fixed),
but propagation of the local constraints c has already forced a lower bound l on
f(z, x). Then we can immediately propagate y ≥ l, because no matter what x

ends up being set to, any local solution must have local objective value greater
than or equal to l.

Secondly, we maintain a copy of each aggregator constraint in A which will
propagate in a more complex way. When all the input variables of a are fixed,
then a can take control of the search engine and perform search on its local vari-
ables in order to calculate the value of the output variable. Different aggregator
constraints can use different search strategies. The search strategy can either be
defined in the model, or some sort of autonomous or default search can be used.
They will have different conditions for when they can yield control of the search
engine. For example, an or (resp. and) aggregator can yield control as soon
as a true (resp. false) solution is found. A min aggregator will perform local
branch and bound in order to find its output value. The first branching decision
that it will make will be of the form o < k where o is the objective variable,
and k is either the value of the best solution found so far, or maxD(y) + 1 if
it has just taken control.1 If it finds a solution with objective value k, it can
propagate y ≤ k. If the branch and bound decision o < k produces failure,
then it can immediately propagate y ≥ k. It can yield control if it either proves
y ≤ minD(y)− 1, y ≥ maxD(y) + 1 or it finds the optimal solution and proves
optimality. Similarly, a sum aggregator would perform a search to find all of its
local solutions to calculate the sum of the local function values. If it proves that
y ≤ minD(y)− 1 or y ≥ maxD(y) + 1, it can terminate early.

Pseudo-code for the algorithm is given in Figure 1. We set up an initial
domain D for all variables, and set P to be the propagators p(c) for each c ∈
C ∪A. Initially, the root aggregator root is in control of the search engine with
the call agg(root,D, P,A). The aggregator constraint sets the variables V as its
input and local variables, and invokes search.

Then propagation is performed to fixed point or failure by propagate. Prop-
agation repeatedly chooses a propagator p from the queue Q, calculates a new
domain D′ then adds all the propagators in P that may need to be recomputed
due to changes in the domain computed by new(P,D,D′, a), repeating until the
queue is empty. There is a subtle difference with regular CP propagation. If a
variable x gets an empty domain, this does not necessarily mean that the last
decision made was infeasible. If x 6∈ V is not a local variable then it simply
means that the aggregator a′ that introduces x (which must be a descendent of
a in the aggregator tree) has no local solution given the decisions of its ancestor
aggregators. This means that a′ needs to be woken up so that it can propagate
y = agg([]) where y is its output variable and agg is its aggregator function.
Note that a′ has to be a descendant of a, because decisions made by a can only
cause domain changes to variables belonging to descendants of a.

If we reach propagation fixed point, then we need to check whether any other
aggregator constraints become eligible for taking over control of the search. An
aggregator a is eligible if:

– its not currently suspended and either all its input variables are fixed or one
of its local variables has an empty domain, and

– its output variable has not already been fixed by a when it executed earlier
on the same fixed inputs or empty domain, and

1 Assuming y is integer for simplicity of explanation

– its output variable appears in at least one constraint which is not already
satisfied.

In the last case, no other constraint cares about the value so we do not need to
calculate it. If an aggregator is eligible, it will immediately take over control of
the search engine and the aggregator constraint which was previously in control
will be suspended until this one returns. If multiple aggregators become eligible
at the same time, then we choose one of the aggregators closest to the root in
the aggregator tree.

After propagation quiesces there are three cases. If a local variable has no so-
lution this indicates failure, hence search backtracks. If all the local variables are
fixed then we have discovered a new solution θ. Then the aggregator constraint
will do whatever sort of bookkeeping it needs to do to calculate its aggregate
value using process solution. If it determines it now has enough information to
determine the final aggregate value or fail, process solution returns true and the
search finishes, otherwise it backtracks and continues the search. If propagation
neither fails nor succeeds, the aggregator constraint a in control of the search
makes a branching decision c1∨· · ·∨cn using its branching heuristic branch(a,D),
and searches each resulting subproblem. Search continues until either the entire
subtree for this subproblem is explored or process solution detects early termi-
nation.

When search finishes the aggregator calculates the result on its output vari-
able and updates the domain accordingly, then yields control to its parent.
The algorithm terminates when the root aggregator constraint yields control,
at which point, we have calculated the value of its output variable and solved
the NCP.

Example 9. Consider the problem of Example 8. We create an initial domain
D(x1) = [0 .. 3], D(x2) = [−4 .. 4], D(x3) = [1 .. 5], D(y) = [−∞ ..∞]. We cre-
ate propagators for the constraints x3 ≤ x1 and the two aggregator constraints.
Execution begins by calling the search on the root min aggregator. Propagation
uses x3 ≤ x1 to set D(x3) = [1 .. 3] and queisces. Assume the min aggregator
makes a branching decision on the x1 variable x1 = 0∨x1 ≥ 1 (since the branch
and bound decision x2 < +∞ ∨ x2 ≥ +∞ is not useful). Searching on the left
branch sets D(x1) = {0} which causes D(x3) = ∅ which wakes the sum aggrega-
tor (with an empty domain for the local variable x3) which immediately returns
settingD(x2) = {0}. The min aggregator processes the solution (x1, x2) = (0, 0),
(we will at this stage propagate that D(y) = [−∞ .. 0]). Search then tries the
right branch where propagation returns the domain D(x1) = [1 .. 3], D(x2) =
[−4 .. 4], D(x3) = [1 .. 3] by propagating the constraint x1 ≥ 1. Once again
the min aggregator makes a branching decision x1 = 1 ∨ x1 ≥ 2, and taking
the left branch sets D(x1) = {1} and D(x3) = {1} waking the sum aggrega-
tor since its input variable x1 is fixed. This aggregator finds a single solution
(x1, x3) = (1, 1) and then sets D(x2) = {1}. The min aggregator processes the
solution (x1, x2) = (1, 1) by just throwing it away. Search continues with the
right branch where eventually the min aggregator finds the remaining solution
(x1, x2) = (2, 3), and returns y = 0.

Note that if we use a cleverer propagator for the sum aggregator then at the
first propagation step it will set D(x2) = [0 .. 4] since the sum of any number of

agg(a,D, P,A)
let a = agg([o|lvars(a) where lcons(a)])
search(D, ivars(a) ∪ lvars(a), P,A, {p(c) | c ∈ lcons(a)}, a)
let Θ be the set of solutions processed
D := D ∧ ovar(a) = agg([θ(o)|θ ∈ Θ])
return D

search(D,V, P,A,Q, a)
D := propagate(D,V, P,A,Q, a)
if (∃x ∈ V.D(x) = ∅) return false
if (∀x ∈ V.|D(x)| = 1)

let θ = {x 7→ dx | x ∈ V,D(x) = {dx}}
return process solution(θ, a,D)

else
{c1, . . . , cm} := branch(a,D)
for i ∈ 1..m

if (search(D,P ∪Q,A, {p(ci)}, a))
return true

return false

propagate(D,V, P,A,Q, a)
P := P ∪Q
repeat

while (∀x ∈ V.D(x) 6= ∅ ∧ ∃p′ ∈ Q)
Q := Q− {p′}
D′ := D ∧ p′(D)
Q := Q ∪ new(P,D,D′, a)
D := D′

if (∃a ∈ A.eligible(a))
A := A− {a}
D′ := agg(a,D, P,A)
Q := Q ∪ new(P,D,D′, a)
D := D′

until Q = ∅
return D

Fig. 1. Pseudo-code for evaluating NCPs.

positive values (x3 ∈ [1 .. 3]) is at least 0. The min propagator can also add the
bounding constraint x2 < 0 after it finds the first solution. These two together
would cause search to terminate immediately once the first solution was found.

ut

In this paper we only consider computing the result of the NCP, in practice
we will may want to know the “policy” of decisions that lead to this result. It
is easy enough to expose the values of the local variables of the root aggregator,
thus giving the “first-stage” decisions. To record the entire policy of decisions we
would need to store a shorthand form of the entire search tree (including nested
search trees) analogous to the approach used in QCOP+ [3].

4.1 Complexity

The time and space complexity of the algorithm depends on many things, such as
the time and space complexity of the propagators and aggregators, and the search
strategy. However, a very large subclass of finite NCP is PSPACE-complete. In
particular, consider the subclass where all non-aggregator constraints have a
polynomial space propagator (this is true for all commonly used CP constraints)
and all aggregator functions require only a polynomial space to compute their
output value when the elements of its list argument are fed in one by one (this is
true for sum, product, min, max, and, or, average, stddev, variance, but
not for aggregators like median). This subclass includes QBFs and quantified
CSPs and thus is PSPACE-HARD. For such problems, the algorithm is PSPACE-
complete.

4.2 Learning for NCPs

Nogood learning [5, 6] significantly improves both SAT and CP solving perfor-
mance. Similarly, it dramatically improve the efficiency of an NCP solver. Un-
fortunately we do not have sufficient space to adequately describe how to add
nogood learning to an NCOP solver. Instead we will briefly discuss the uses of
nogood learning, and some of the issues that arise in implementing it. There are
generally two different kinds of nogoods that we can learn: ones which explain
a local failure, and ones which explain the return value of a subproblem.

– Nogoods learned within one execution of an aggregator constraint a become
new local constraints for a. Just like other local constraints they are only
allowed to prune local variables. When we reexecute a with different input
variable values, much of the search in a may be repeated, and these local
nogoods can substantially reduce this repeated search, similar to the case
for inter-problem nogood learning [15].

– We can cache the return value of an execution of an aggregator constraint
a using a nogood, e.g. if we run a with input variables fixed to x1 =
d1, . . . , xn = dn and find that output y = d we can cache this as x1 =
d1 ∧ · · ·xn = dn → y = d. This nogood prevents us from having to run the
aggregator again on the same input values.
Nogood learning can be better than this however, since it may determine
that only some of the input constraints are required to give the result of
aggregator a leading to a much more general nogood. Consider for example
the aggregator of Example 2, setting x = 0 gives y = 0, but nogood learning
will learn that x ≤ 1 → y = 0. Similarly, x = 7 gives y = 18, but nogood
learning will learn universally that y ≤ 18.

The challenge for implementing nogood learning in an NCOP solver is to
extend the propagators for aggregator constraints to explain their propagation
behaviour. To do so we must be able to determine what parts of the input
constraints contributed to the result of the aggregator. This requires combining
the usual uses of nogoods, to explain why some part of the search failed, with
explaining why some part of the search succeeded with a certain value of the local
function. The success explanation part is entirely novel, and is a generalisation
of solution analysis in QBF, (see e.g. [12]) where all constraints are clauses and
they use specialized heuristics to pick a satisfying literal for each clause.

5 Experiments

Due to the very large range of problem classes that can be modelled as NCPs,
it is difficult to compare against the current state of the art in all those problem
classes. Instead, we concentrate on the problem classes where CP-based solvers
have had some success, namely in stochastic CSP/COP problems and quantified
CSP/COP problems. We implemented a NCP solver in Chuffed, a state-of-the-
art CP solver that supports nogood learning. Experiments are run on Intel Xeon
2.40GHz processors, with a 1800s timeout. Times are given in seconds. We use
an unrolling limit (L in Section 4) of 100. We use input order search and try the

Table 1. Comparison of the search-based NCP solver with learning (learn) and without
learning (no-learn) with QeCode (qecode) on the Nim-Fibonacci Problem.

Size no-learn learn qecode
fails time fails time fails time

5 2 0.01 2 0.01 23 0.01
10 20 0.01 13 0.01 1310 0.02
15 174 0.01 45 0.01 11116 0.26
20 1438 0.01 101 0.01 56560 1.61
30 62313 0.36 272 0.01 483346 16.24
40 4773553 30.13 727 0.01 — TO
50 — TO 1502 0.0 — TO
100 — TO 8461 0.21 — TO
200 — TO 45227 2.12 — TO
500 — TO 414152 55.29 — TO

smallest value first. We compare against QeCode 2.0 [3], which is a state of the
art QCOP+ solver, on the problems that it supports. QeCode does not support
floating point variables or weighted sum aggregators. As a result, it is unable to
solve stochastic COP’s, so we only compare against it on integer and Boolean
problems. We also compare against the published results of other systems that
are not publicly available.

The Nim-Fibonacci problem is described in Example 4. It is a QCSP and can
potentially be unrolled into a CSP by eliminating the universal variables and
solved using a CP solver. However, this is not really practical as this produces
O(nn/2) variables and constraints and causes the solver to run out of memory on
all but the smallest instances. In this experiment, we compare the new search-
based NCP solver with and without learning with QeCode. It can be seen from
Table 1 that our search-based NCP solver does significantly better than QeCode
on this problem. Even without learning, we are much faster, due to the fact
that we have variables representing the output values of subproblems and it is
possible to propagate domain changes on them. Such variables do not exist in
Qecode. Nogood learning provides a massive benefit due to its ability to explain
successes. It is able to learn that if there is a winning strategy with a particular
number of matches where you take k matches next, then in any other branch
where you had the same number of matches but the limit on the number of
matches you can take is greater than or equal to k, its a won game. In fact, the
asymptotic complexity of the NCP solver is polynomial when nogood learning
is used, as opposed to O(nn) if no learning is used.

The Network Links Pricing problem [3] is described in Example 6. The results
are shown in Table 2. The no-learn solver is substantially faster than QeCode,
which appears to be because Qecode does not use branch and bound during
solving this problem. Nogood learning is only slightly beneficial for this problem,
giving a constant factor reduction in node count and run times. This is not
surprising, as the problem is very shallow (only 3 layers), and there is only a
single inequality constraint in the final layer, so there is not much propagation
going on, and thus not much opportunity for learning.

Table 2. Comparison of the search-based NCP solver without learning (no-learn) and
with learning (learn) with QeCode (qecode) on the network link pricing problem.

Stages no-learn learn qecode
fails time fails time fails time

6 37399 2.63 5037 1.80 376234 7.10
7 342823 23.06 52301 18.54 2218653 44.48
8 985622 68.24 121815 56.82 12148442 255.66
9 17566514 1225.80 2253269 903.01 — TO

Table 3. Comparison on a simple production planning problem of the search-based
NCP with solver learning (learn) with published results (from [1], run on a different
machine) for the search-based stochastic CSP solver of [2] (search) and the scenario-
based solver of [1] (scen), also showing how learn scales to larger numbers.

Stages no-learn learn search scen
fails time fails time fails time fails time

1 7 0.01 8 0.01 10 0.01 4 0.00
2 178 0.01 16 0.01 148 0.03 8 0.02
3 4574 0.36 24 0.01 3604 0.76 24 0.16
4 116305 9.24 32 0.01 95570 19.07 42 1.53
5 2955371 233.05 40 0.01 2616858 509.95 218 18.52
6 — TO 48 0.01 — TO 1260 474.47

Stages learn
fails time

10 80 0.03
20 160 0.11
30 240 0.27
40 320 0.53
50 400 0.93
100 800 7.40

Consider the simple production planning problem of Example 3 which was
examined in [2] using search-based approaches and [1] using unrolling or scenario
generation. From Table 3, it is clear there is an asymptotic difference in complex-
ity. This occurs since each subproblem only involves a single input parameter,
i.e., how much stock we currently have. If the stock is over the maximum de-
mand for this period, then increasing it does not help at all, since we can just
produce it during the next period instead. Nogood learning is able to derive a
nogood that expresses this. Similarly, if the current stock is under the minimum
demand for this period, then it fails in all scenarios, and again, nogood learning
is able to derive a nogood that expresses this. Thus at each stage, the solver only
has to try O(S) values for the production, where S is the number of different
possible demands, and we end up needing to examine only O(Sk) nodes where
k is the number of stages. If we do not use nogood learning, then our solver has
virtually identical behaviour to the search based approach of [1] (search) and has
an exponential complexity. Although our learning solver only requires a linear
number of nodes, the run time appears to be growing as O(k3) due to the fact
that as k increases, we have more variables and constraints to propagate at each
node.

6 Related Work

NCPs are a very general form of optimization problem. They include stochastic
CSP/COP, quantified CSP/COP, QCOP+ [3], QBF, bi-level and multi-level
programming. The evaluation approach we define for NCP is a generalization
of the search-based approaches used for many of these problems, although not

many focus on propagation, and only QBF solvers also consider learning. NCPs
are more general than these other formalisms principally because aggregator
terms can appear arbitrarily nested in both function terms and constraints.

Probably the closest work to NCPs is Quantified Constraint Optimization
(QCOP+) [3]. QCOP+ are based on extending quantified CSPs to include local
objective functions. They are limited compared to NCPs since only a single chain
of nesting is allowed, meaning they cannot for example use the efficient form of
the problem in Example 5. QCOP+ is implemented in a system QeCode which
we compare with in the experiments section. They do not consider learning.

Another closely related work is the Plausibility-Feasibility-Utility (PFU)
framework [16]. However, PFU does not allow tuple types to be the result of
aggregator constraints, which means it cannot express bilevel problems such as
the Network Link Pricing problem of Example 6. The tree search algorithms for
evaluating PFUs is similar to that for NCPs, but they do not consider shortcir-
cuit evaluation or learning. The PFU framework is studied theoretically in [16]
and does not appear to have an implementation.

QBF is the form of NCP with only and and or aggregator constraints and
clauses, and there is a significant body of work about how propagation and clause
learning can be used in this context. The learning used in QBF is considerably
simpler than for NCP, which tackles finite domain and interval variables and
constraints and a much larger range of aggregators and more complicated nest-
ing. SAT modulo theory solvers (e.g. Z3 [17]) are extended to handled quantified
formula but principally through instantiation [18] akin to unrolling, which does
not require (partial) search trees to be explained and only considers the and
and or aggregators.

7 Conclusion

In summary, NCP’s are a highly expressive formalism that unifies CSP/COP’s,
stochastic CSP/COP’s, quantified CSP/COP’s, bi-level and multi-level program-
ming in the one framework, and allows many other kinds of nested problems to
be expressed. We have demonstrated an effective search-based CP solver for eval-
uating them, which is significantly improved by the use of nogood learning to
avoid repeating similar search. The resulting solver is competitive with or signifi-
cantly better than state of the art CP-based approaches for many of the problems
in these problem classes and brings us much closer to a universal CP solver that
can “solve them all”. Interesting directions for further investigation are: lazy or
partial unrolling of aggregator constraints, model analysis and transformation
for NCPs, improving propagation using the structure of the aggregation tree,
approximation methods, and hybrid methods where each subproblem is solved
using the technology most suited for it, e.g., using an LP or MIP propagator.

Acknowledgments

NICTA is funded by the Australian Government through the Department of
Communications and the Australian Research Council through the ICT Centre
of Excellence Program. This work was partially supported by Asian Office of
Aerospace Research and Development grant 12-4056.

References

1. Tarim, A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A
Scenario-Based Approach. Constraints 11(1) (2006) 53–80

2. Walsh, T.: Stochastic Constraint Programming. In van Harmelen, F., ed.: ECAI,
IOS Press (2002) 111–115

3. Benedetti, M., Lallouet, A., Vautard, J.: Quantified constraint optimization. In
Stuckey, P.J., ed.: Principles and Practice of Constraint Programming, 14th Inter-
national Conference. Volume 5202 of Lecture Notes in Computer Science., Springer
(2008) 463–477

4. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res.(JAIR) 26
(2006) 371–416

5. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiabil-
ity solver. In: Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design, ACM (2002) 442–449

6. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3) (2009) 357–391

7. Feydy, T., Stuckey, P.J.: Lazy Clause Generation Reengineered. In Gent, I.P.,
ed.: Proceedings of the 15th International Conference on Principles and Practice
of Constraint Programming. Volume 5732 of Lecture Notes in Computer Science.,
Springer (2009) 352–366

8. Frisch, A., Stuckey, P.: The proper treatment of undefinedness in constraint lan-
guages. In Gent, I., ed.: Proceedings of the 15th International Conference on Prin-
ciples and Practice of Constraint Programming. Volume 5732 of LNCS., Springer-
Verlag (2009) 367–382

9. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda, M.,
Wallace, M.: The design of the Zinc modelling language. Constraints 13(3) (2008)
229–267

10. Schwenk, A.: Take-away games. Fibonacci Quarterly 8 (1970) 225–234
11. Chen, H.: The Computational Complexity of Quantified Constraint Satisfaction.

PhD thesis, Cornell University (2004)
12. Samulowitz, H.: Solving Quantified Boolean Formulas. PhD thesis, University of

Toronto (2007)
13. Benedetti, M., Lallouet, A., Vautard, J.: Reusing CSP propagators for QCSPs. In:

Recent Advances in Constraints. Springer (2007) 63–77
14. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM Trans-

actions on Programming Languages and Systems (TOPLAS) 31(1) (2008) 2
15. Chu, G., Stuckey, P.: Inter-problem nogood learning in constraint programming.

In Milano, M., ed.: Proceedings of the 18th International Conference on Principles
and Practice of Constraint Programming. Number 7514 in LNCS, Springer (2012)
238–247

16. Pralet, C., Verfailles, G., Schiex, T.: An algebraic graphical model for decision with
uncertainties, feasibilities, and utilities. Journal of Artificial Intelligence Research
29 (2007) 421–489

17. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. (2008)
337–340

18. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. In Pfenning, F., ed.: Proceedings of the Conference
on Automated Deduction. Volume 4603 of Lecture Notes in Computer Science.,
Springer (2007) 167–182

