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Abstract

Core-guided techniques have revolutionized Boolean satisfi-
ability approaches to optimization problems (MaxSAT), but
the process at the heart of these methods, strengthening
bounds on solutions by repeatedly adding cardinality con-
straints, remains a bottleneck. Cardinality constraints require
significant work to be re-encoded to SAT, and SAT solvers
are notoriously weak at cardinality reasoning. In this work,
we lift core-guided search to pseudo-Boolean (PB) solvers,
which deal with more general PB optimization problems
and operate natively with cardinality constraints. The cut-
ting planes method used in such solvers allows us to derive
stronger cardinality constraints, which yield better updates
to solution bounds, and the increased efficiency of objective
function reformulation also makes it feasible to switch repeat-
edly between lower-bounding and upper-bounding search.
A thorough evaluation on applied and crafted benchmarks
shows that our core-guided PB solver significantly improves
on the state of the art in pseudo-Boolean optimization.

1 Introduction
The Boolean satisfiability (SAT) problem plays a fasci-
nating dual role in computer science. Although it is an
archetypal hard problem—proven NP-complete in (Cook
1971; Levin 1973) and widely believed to be exponen-
tially hard in theory—at the same time it serves as the
modelling language for the conflict-driven clause learn-
ing (CDCL) SAT solvers (Bayardo Jr. and Schrag 1997;
Marques-Silva and Sakallah 1999; Moskewicz et al. 2001)
that have emerged over the last two decades as highly
practical tools for solving large-scale real-world problems
in a wide range of application areas (Biere et al. 2021).
This success has also led to exports of the conflict-driven
paradigm beyond SAT solving to, e.g., SAT-based opti-
mization (MaxSAT) (Fu and Malik 2006), pseudo-Boolean
(PB) optimization (Chai and Kuehlmann 2005; Sheini and
Sakallah 2006), constraint programming (CP) (Ohrimenko,
Stuckey, and Codish 2009; Stuckey 2010), and mixed integer
programming (MIP) (Achterberg 2007).

Our starting point in this work is the MaxSAT problem,
which differs from SAT in that some of the constraints are
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declared to be soft, but with associated penalties for vio-
lating them, and where the goal is to minimize the total
penalty of violated constraints. The core-guided approach
introduced by (Fu and Malik 2006) optimistically assumes
that this penalty is zero, and then tries to solve the result-
ing SAT problem under this assumption as described in (Eén
and Sörensson 2003). If this attempt fails, the solver returns
a core explaining why the assumption was too good to be
true, and such cores are repeatedly used to update the esti-
mate of the optimal solution and make new attempts with
revised assumptions. Such techniques play a crucial role for
the performance of modern MaxSAT solvers (Morgado et al.
2013), and have also been adapted to other paradigms such
as answer set programming (ASP) (Andres et al. 2012) and
constraint programming (Gange et al. 2020).

A technical barrier for efficient implementations of core-
guided search, however, is that the process of using cores
to strengthen bounds requires dealing with cardinality con-
straints. Such constraints are cumbersome to encode in the
low-level language of propositional logic, and the resolu-
tion method on which CDCL SAT solvers are based (Beame,
Kautz, and Sabharwal 2004) has severe limitations when it
comes to cardinality reasoning (Haken 1985), affecting even
core-guided approaches that use clauses to explain propaga-
tions by the cardinality constraints (Manquinho, Marques-
Silva, and Planes 2009; Alviano, Dodaro, and Ricca 2015).

Our Contribution The simple but crucial observation un-
derlying our work is that the MaxSAT problem of minimiz-
ing a weighted sum of penalties subject to constraints ex-
pressed in conjunctive normal form (CNF) is just a special
case of pseudo-Boolean optimization (also known as 0-1 in-
teger linear programming). An intriguing fact in this context
is that there are PB solvers that borrow the conflict-driven
paradigm from SAT but perform their reasoning using the
cutting planes method (Cook, Coullard, and Turán 1987).
Cardinality constraints are no problem for such solvers,
since they operate with even more general PB constraints,
and it is known that cutting planes applied to cardinality con-
straints is exponentially more powerful than resolution.

In view of this, it might seem like an attractive, and even
obvious, proposition to combine pseudo-Boolean reasoning
with core-guided search. In practice, however, harnessing



the theoretical power of the cutting planes method in PB
solvers has turned out to be very challenging, to the ex-
tent that the best PB optimization solver NAPS (Sakai and
Nabeshima 2015) in the most recent PB Competition in
2016 (www.cril.univ-artois.fr/PB16/) instead
rewrites the input to CNF and runs a CDCL solver. One of
the problems with PB solvers is that the increased degree of
freedom make it hard to know how to best explore the search
space, and for the same reason it is not a priori obvious what
would be “the right way” of generalizing core-guided tech-
niques to a PB setting.

In this paper, we report on our work on designing algo-
rithms and heuristics for core-guided pseudo-Boolean solv-
ing. We implement different approaches in the state-of-the-
art PB solver ROUNDINGSAT (Elffers and Nordström 2018),
and perform an extensive evaluation on applied and crafted
benchmarks from different domains.

The one-sentence summary of our results is that adding
core-guided techniques dramatically improves the solver.
Core-guided search with clausal cores, as in SAT, already
enhances performance, but the cutting planes method also
allows the solver to derive stronger, non-clausal, cores.
These cores lead to better updates of the solution bounds,
meaning that the solver can zoom in faster on the optimal so-
lution. Even more strikingly, the fact that all cores and objec-
tive function reformulations can be expressed in the native
format of the solver means that there is very little overhead.
This makes it possible to go beyond core-boosting (Berg,
Demirović, and Stuckey 2019), which combines an initial
core-guided search phase with a longer upper-bounding lin-
ear search phase, and implement a fully hybrid mode that
switches repeatedly back and forth between core-guided
search and linear search at very little cost, similar to inter-
leaving in ASP (Alviano et al. 2015). This hybrid mode is
what gives the best performance overall.

We have also evaluated popular heuristics from
core-guided MaxSAT solvers such as using stratifica-
tion (Ansótegui et al. 2012) and independent cores (Berg
and Järvisalo 2017) during core-guided search, and fixing
the phase to that of the incumbent solution during linear
search (Demirović, Chu, and Stuckey 2018; Demirović and
Stuckey 2019) rather than using standard phase saving as
in (Pipatsrisawat and Darwiche 2007). Here the results are
not so clear-cut. How to set the phase does not seem to have
a decisive influence. Stratification and independent cores
have a much less positive impact than we expected—these
settings are good for some classes of benchmarks, but for
others they make performance notably worse (which is
particularly pronounced for independent cores).

Overall, adding core-guided search to ROUNDINGSAT
dramatically improves the solver, to the extent that it is now
better by a wide margin than the latest versions of both
NAPS (Sakai and Nabeshima 2015) and SAT4J (Le Berre
and Parrain 2010) for the PB Competition 2016 benchmarks.

2 Preliminaries
We start with a review of the basics of pseudo-Boolean
solving—this material is standard, and can be found, e.g.,
in (Buss and Nordström 2021). A literal ` over a Boolean

variable x is x itself or its negation x = 1− x, where vari-
ables take values 0 (false) or 1 (true) and where we de-
fine x = x for convenience. A pseudo-Boolean (PB) con-
straint C is a 0-1 integer linear inequality∑

iai`i ≥ B , (1)
which without loss of generality we always assume to be
in normalized form; i.e., all literals `i are over distinct vari-
ables and the coefficients ai and the degree (of falsity) B are
non-negative integers. A cardinality constraint is a PB con-
straint in normalized form where all coefficients are 1. We
use equality

∑
iai`i = B as syntactic sugar for the pair of

inequalities
∑
iai`i ≥ B and

∑
i − ai`i ≥ −B (but rewrit-

ten in normalized form).
The weakening rule weaken(C, `j) ≡

∑
i 6=j ai`i ≥

B − aj removes a literal `j from the constraint by sub-
tracting its coefficient from the right-hand side, and
weaken(C,L) for a set of literals L performs this oper-
ation for all `j ∈ L. The division rule divide(C, d) ≡∑
dai/de`i ≥ dB/de divides all coefficients and the degree

by d ∈ N+ and rounds up. The operation round2card(C)
computes a cardinality constraint over the literals in C with
the degree equal to the minimum number of literals that must
be set to true in order to satisfy C.

A PB formula is a conjunction F =
∧
j Cj of PB con-

straints. Note that a clause `1 ∨ · · · ∨ `k is equivalent to
the constraint `1 + · · ·+ `k ≥ 1, so formulas in conjunctive
normal form (CNF) are special cases of PB formulas.

A (partial) assignment ρ is a (partial) function from liter-
als to { 0, 1 }, where we write ρ(x) = ρ(x) = ∗ if x is not
in the domain of ρ and define ρ(x) = 1− ρ(x) otherwise. If
ρ is partial, then it is also referred to as a restriction, and the
restricted constraint C�ρ is obtained by substituting values
for all assigned variables and adjusting the degree appropri-
ately, i.e.,

C�ρ =
∑
ρ(`i)=∗ai`i ≥ B −

∑
ρ(`i)=1ai . (2)

For a PB formula F =
∧
j Cj we define F�ρ =

∧
j Cj�ρ.

The constraint C is satisfied by ρ if
∑
ρ(`i)=1 ai ≥ B,

(or, equivalently, if the restricted constraint (2) has a non-
positive degree and hence is trivial). A PB formula is satis-
fied by ρ if all constraints in it are, in which case it is satisfi-
able and ρ is a solution. If there is no satisfying assignment,
the formula is unsatisfiable.

A constraint C is said to unit propagate the literal ` un-
der ρ if C�ρ cannot be satisfied unless ` 7→ 1. During unit
propagation on F under ρ, we extend ρ iteratively by any
propagated literals ` 7→ 1 until an assignment ρ′ is reached
under which no constraint C ∈ F is propagating, or under
which some constraintC propagates a literal that has already
been assigned to the opposite value. The latter scenario is
referred to as a conflict, since ρ′ violates the constraint C in
this case, and ρ′ is called a conflicting assignment.

A pseudo-Boolean optimization problem consists of a PB
formula F and an objective function O ≡

∑m
i=1 ai`i + co.

We will abuse notation slightly and write (a, `) ∈ O to ob-
tain coefficient-literal pairs from the objective. Given an as-
signment ρ we write ρ(O) to denote the value of the objec-
tive function under ρ. Without loss of generality we assume



that all coefficients in the objective are positive and that we
want to minimize the objective function. An optimal solu-
tion is a satisfying assignment for F with minimum objec-
tive value ρ(O) among all solutions.

Let Vars(F ) (Lits(F )) denote the variables (literals) ap-
pearing in F and analogously for O. Given a PB optimiza-
tion problem, a fresh variable is a variable that does not ap-
pear in the formula or the objective function.

The idea of linear search, a widely used approach for PB
optimization, is to find a solution ρ to the formula F , after
which the constraint O ≤ ρ(O)− 1 (in normalized form) is
added to F . This can be repeated until F turns unsatisfiable,
at which point the solution last found is the optimal solution.

Core-guided MaxSAT Solving Maximum satisfiability
(MaxSAT) can be viewed as a PB optimization problem with
a CNF formula, but many MaxSAT solvers do not use lin-
ear search. Instead, core-guided approaches are used, which
work in the following way (expressed in pseudo-Boolean
notation).

Given an objective function O, we build a set of assump-
tions A = Lits(O) and solve the formula F ∪ {`i | `i ∈ A}.
There are two cases: either we find a solution (which must
be optimal, since the objective value is zero under A) or
the problem is unsatisfiable. In the latter case, the solver
can be made to return a subset κ ⊆ A of the assumption
that force unsatisfiability. This subset κ, treated as a clause∑
`∈κ ` ≥ 1, is called an unsatisfiable core (or just core).

The clause is a consequence of F , since one of the assump-
tions must be falsified in any solution. Core-guided methods
then reformulate the problem to take this information into
account. Clearly the minimum value of the objective is now
amin = min`i∈κ ai. The OLL method (Andres et al. 2012;
Morgado, Dodaro, and Marques-Silva 2014) introduces new
Boolean variables zj that represent the (lower bounds of the)
sum 1 +

∑
j zj =

∑
`∈κ `, and essentially rewrites the ob-

jective to O + amin(1 +
∑
j zj −

∑
`∈κ `). This is a new

MaxSAT problem, for which we can repeat the procedure
described above again. The whole process terminates when
a solution is found, and this solution is then guaranteed to
be optimal since it assigns zero to all literals in the rewritten
objective function.

3 Overview of the Optimization Algorithm
The general idea of our PB optimization approach is shown
in Algorithm 1, which uses an incremental PB solver. The
interface to the solver is similar to that of an incremental
SAT solver (Eén and Sörensson 2003) and has two methods,
one for adding constraints and one for solving the problem.
The solve method solve(A) also takes a (potentially empty)
set of literalsA and returns either sat(ρ) where ρ is a full as-
signment satisifying the added constraints and the assump-
tions A; or unsat(C) where C is a PB constraint implied
by the added constraints that is falsified by the assumptions.
We call this constraint a core. Note that in contrast to the
MaxSAT setting described in Section 2, such a core can now
be an arbitrary, non-clausal PB constraint.

Algorithm 1 PB Optimization with Core Extraction.
1: procedure OPTIMIZE(F ,O)
2: lb← 0; ub←∞; O′ ← O
3: solver.add(F )
4: while ub− lb > 0 do
5: pick set of assumption literals A ⊆ Lits(O′)
6: result← solver.solve({`i | `i ∈ A})
7: if result ≡ sat(ρ) then
8: ub← ρ(O)
9: . improves best solution by at least 1

10: solver.add(O < ub)
11: else . unsatisfiable under assumptions
12: let result ≡ unsat(C)
13: lb← improveBound(O′, C)
14: . improves lower bound by at least 1
15: E ← encoding for reformulation variables
16: O′ ← reformulate(O′, E)
17: solver.add(E)
18: return ub

In each iteration, Algorithm 1 will refine either the lower
or upper bound. If a solution is found a constraint is added
that only allows strictly better solutions. If a core is returned
we will reformulate the objective function so that the best
known lower bound is the constant part of the objective and
so that all coefficients remain non-negative.
Example 1. Let us illustrate the algorithm on an example.
Assume we want to minimize x1 + x2 + x3 + x4 subject
to x1 + x2 + 2x5 ≥ 2 and x3 + x4 − 2x5 ≥ 0. If we
start by assuming all variables to false, the solver obtains the
core x1 + x2 + x3 + x4 ≥ 2 by adding the two constraints
in the formula together. This core gives us a lower bound
of 2. Next we introduce new variables z1, z2 that encode the
value of the sum of the xi variables by adding the constraint
z1 + z2 + 2 = x1 + x2 + x3 + x4 to the solver. Note that
this equality represents a reformulation z1 + z2 + 2 of the
objective function, so we can now continue by minimizing
this reformulated objective z1 + z2 + 2, which contains the
just derived lower bound 2 as constant term. Suppose we
perform the next iteration without assumptions and let us
say the solver produces a solution with objective value 3.
We add the constraint x1 + x2 + x3 + x4 < 3 and continue.
Because the gap between best solution and lower bound is 1
the solver will terminate in the next iteration by finding an
optimal solution.

This example also demonstrates the advantages of using
a PB solver. Firstly, the produced cores are not clauses but
more general PB constraints, thanks to which we can obtain
larger increases in the lower bound. Secondly, it is very easy
to add the upper bound after a solution is found, because
the upper bound is represented as a single constraint that the
solver can handle natively. And finally, the PB solver can
employ strong reasoning based on the cutting planes proof
system.

To fully utilize the potential of combining PB optimiza-
tion with core-guided search we need to overcome multiple
challenges: How do we extract cores? How can we guaran-



tee a sound reformulation for arbitrary PB cores? How do
we avoid introducing huge numbers of variables during re-
formulation that would slow down the solver? How do we
choose the set of assumptions? We will discuss these ques-
tions in what follows.

4 Contributions
Lifting Incremental Solving to PB Incremental PB solv-
ing is similar to incremental SAT solving, but there are more
degrees of freedom to core extraction, which we explore in
this section. Similar to SAT, we detect unsatisfiability with
respect to the assumptions when a learned constraint L is
generated that causes a conflict after propagating the as-
sumptions. All literals in L which were falsified by prop-
agation can be systematically eliminated (Elffers and Nord-
ström 2018) from L to generate a core C.

Two differences arise in PB: first the core C may still
involve non-assumption literals. These can be safely elimi-
nated by weakening. The resulting decision literal core is a
PB constraint only involving assumption literals. Secondly,
we may encounter a valid core before eliminating all falsi-
fied non-assumption literals. We can stop core extraction im-
mediately and weaken all non-assumption literals to obtain a
constraint that we will call an early core. Both circumstances
occur frequently throughout core-guided PB solving.

Postprocessing the Core to a Cardinality Constraint
The cores obtained from the solver will in general be ar-
bitrary PB constraints. To simplify handling of the core con-
straint later in the process we generate and use a cardinality
constraint consequence as the core. We will explain the rea-
son for this restriction later.

A PB constraintC ≡
∑
ai`i ≥ B can imply multiple car-

dinality constraints, so we need to choose which one. Natu-
rally, this question does not arise in SAT core-guided search.
We consider two options: (a) the cardinality constraint that
maximizes the lower bound increase; and (b) the shortest
implied clause.

Maximal lower bound increase Given a cardinality core∑
`∈X ` ≥ B, let a` be the objective coefficient of the literal

`. Since ` are assumptions, they appear positively in the ob-
jective, so a` > 0. The increase in the lower bound caused
by this core is B × min`∈X a`. To find the best such core,
we weaken away all literals with small objective coefficients
and evaluate the resulting rounded cardinality constraint in
terms of lower bound increase, keeping the best one, as per
Algorithm 2.
Example 2. Consider the core C ≡ 3x1 + 3x2 + 2x3 +
x4 + x5 ≥ 7 with objective 7x1 + 3x2 + 9x3 + 6x4 + 7x5.
Then round2card(C) = x1 + x2 + x3 + x4 + x5 ≥ 3.
We compute m = 3 and set lb+ = 9. We then weaken C
to obtain 3x1 + 2x3 + x4 + x5 ≥ 4, which rounds to R ≡
x1+x3+x4+x5 ≥ 2. We computem = 6 and set lb+ = 12
storing R as the current best. We then weaken C obtaining
3x1+2x3+x5 ≥ 1, which rounds to x1+x3+x5 ≥ 1. We
compute m = 7 but lb+ does not increase. We weaken C to
obtain 2x3 ≥ −3, which ends the loop, returning R.

Algorithm 2 Compute the cardinality constraint implied by
C with maximal lower bound increase.

1: procedure MAXLOWERBOUNDINCREASE(C,O)
2: lb+ ← 0
3: repeat
4:

∑
`∈X ` ≥ B ← round2card(C)

5: m← min`∈X a`
6: if B ×m > lb+ then
7: lb+ ← B ×m
8: R←

∑
`∈X ` ≥ B

9: C ← weaken(C, {` | (m, `) ∈ O})
10: until B ≤ 0
11: return R

Minimal Size Clause We construct a minimal size clause
from C by weakening literals with the smallest coefficients
until the degree is no greater than any remaining coefficient,
after which we can construct a clause by division with the
greatest coefficient amax.
Example 3. As in Example 2, consider the core C ≡ 3x1+
3x2 + 2x3 + x4 + x5 ≥ 7. Then we can weaken x5, x4 and
x3 to obtain 3x1 + 3x2 ≥ 3, with the remaining coefficients
at least the weakened degree. The resulting shortest clause
is divide(3x1 + 3x2 ≥ 3, 3) or x1 + x2 ≥ 1.

Objective Reformulation After we obtained a cardinality
constraint

∑
`∈X ` ≥ B from a core we reformulate the ob-

jective function such that the new lower bound is reflected
in the constant part of the objective. Essentially we follow
the OLL approach (Andres et al. 2012; Morgado, Dodaro,
and Marques-Silva 2014) of MaxSAT, but crucially we avoid
the need for encoding any cardinality constraints as clauses.
To this end we introduce fresh variables zi that represent a
unary encoding of the sum of literals in the core and we add
the sum encoding ∑

`∈X

` = B +

|X|∑
i=B+1

zi (3)

to the solver. To obtain better propagation we want zi to be
true if and only if

∑
`∈X ` ≥ i. This is achieved by adding

ordering constraints zi ≥ zi+1. Note that if we did not re-
strict ourselves to cardinality constraints then this step could
potentially introduce an exponential number of variables.

Using (3) we can reformulate the objective function∑
(a,`)∈O

a`+ co (4)

=
∑

(a,`)∈O

a`+ co +m(
∑
`∈X

`)−m(
∑
`∈X

`) (5)

(3)
=

∑
(a,`)∈O

a`+ co +m(B +

|X|∑
i=B+1

zi)−m(
∑
`∈X

`) (6)

where m is the smallest coefficient in the objective function
of literals in X and hence

∑
(a,`)∈O a` −m(

∑
`∈X `) does



not introduce negative coefficients by construction. Remem-
ber that we consider only objective functions with positive
coefficients and thus the constant part of the objective func-
tion, i.e., co +mB, now reflects our new lower bound.

Note that this reformulation is always possible because
we only assume literals that appear in the current reformu-
lated objective function and the lower bound is increased by
at least 1 so that this reformulation will eventually result in
an optimal lower bound.

Lazy Variable Encodings The issue with the objective re-
formulation as described is that many fresh variables may be
introduced that potentially decrease the solver performance
for future incremental calls. To alleviate this, one can intro-
duce the zi variables only lazily, i.e., when they are needed.
To understand this idea, observe that, due to the ordering
constraints zi ≥ zi+1, we know that setting zk to false forces
all zi, i > k to false as well. Hence, we do not need the other
variables zi, i > k when assuming zk as false. A similar
idea was proposed to incrementally encode the cardinality
constraints to clauses (Martins et al. 2014).

To obtain a lazy encoding we take the sum encoding (3)
and remove variables in a safe manner. Assume we only
want to introduce variables up to zk. We can write the equal-
ity in (3) as two inequalities

|X|∑
i=B+1

zi ≤
∑
`∈X

`−B ≤
|X|∑

i=B+1

zi (7)

On the lower bound (left inequality) we can just omit the
variables zi, i > k, because this will only make the lower
bound smaller. On the upper bound (right inequality) we
make sure that no bound is imposed if zk = 1 by increasing
the coefficient of zk. This leads to the lazy sum encoding

k∑
i=B+1

zi ≤
∑
`∈X

`−B ≤
k−1∑

i=B+1

zi + (|X| − k + 1)zk (8)

If we also want to remove zi, i < k we can do so on the
upper bound by replacing them with 1, which can only in-
crease the upper bound and on the lower bound we increase
the coefficient of zk so that the correct bound is implied for
zk = 1. This results in the lazy reified encoding

(k−B)zk ≤
∑
`∈X

`−B ≤ (k−B−1)+(|X|−k+1)zk (9)

Note that if zk = 0, this simplifies to B ≤
∑
`∈X ` ≤ k − 1

and if zk = 1 to k ≤
∑
`∈X ` ≤ |X| as desired.

When a core is found, we will use the sum encoding (3) to
reformulate the objective. This is implemented by maintain-
ing an implicit representation of the reformulated objective
function, storing for each core the factor used for reformula-
tion as well as the number of variables that are not added to
the solver yet. Instead of adding Equation (3) to the solver
we only add the lazy encoding for a single variable. Due to
other cores this variable can disappear from the reformulated
objective and at this point we add the next variable and the
corresponding lazy encoding to the solver. In case of the lazy
sum encoding the solver can delete constraints that were in-
troduced for variables with smaller index.

Utilizing the Upper Bound A further improvement can
be achieved if an upper bound u ∈ N is known for the literals
in the core, i.e.,

∑
`∈X ` ≤ u. Such an upper bound means

that we do not need to introduce all zi variables but only
variables up to i = min(u, |X|).

Hybrid Search The easiest strategy for choosing the as-
sumptions is to not set any assumptions at all, which will
result in pure linear search. On the other hand, if the set
of assumptions is non-empty we will say that we are doing
core search. Because adding upper and lower bound con-
straints is very easy in a PB setting, we propose to use hy-
brid search where we switch rapidly between linear search
and core search such that both search types perform roughly
the same amount of work. This “amount of work” is a deter-
ministic measure, mainly consisting of the number of literals
iterated over during unit propagation.

5 Experiments
We have implemented versions of the discussed core-guided
techniques in the PB solver ROUNDINGSAT (Elffers and
Nordström 2018), and we have evaluated our implementa-
tion on four benchmark sets (converted to the standard OPB
format used for PB solvers as needed):

• PB16: OPT-SMALL-INT benchmarks from the most re-
cent PB Competition in 2016.

• MIP: 0-1 integer linear programming optimization prob-
lems from MIPLIB.

• KNAP: Knapsack benchmarks from (Pisinger 2005).

• CRAFT: A collection of crafted combinatorial bench-
marks.

For comparing against other PB solvers, the PB16 bench-
marks are the main target. We also study MIP and KNAP be-
cause they are two quite challenging sets of benchmarks for
PB solvers, as observed in (Devriendt, Gleixner, and Nord-
ström 2021). Finally, the crafted benchmarks are inspired by
(Elffers et al. 2018; Vinyals et al. 2018), but generated with
larger parameters so as to be more challenging. These allow
us to “stress-test” the solvers by exposing them to problems
that provably require sophisticated reasoning.

As hardware we used AMD Opteron 6238 nodes having
6 cores and 16 GiB of memory running Ubuntu 16.04.7.
Each run was executed as a single thread on a node (leav-
ing 5 cores unused to avoid timing issues due to compe-
tition for memory resources) with a 5000 second time-out
limit. Binary, source code and detailed experimental results
are available online (Devriendt et al. 2020).

Contribution of Core-Guided PB Techniques In order
to investigate the impact of the different core-guided tech-
niques we developed for PB solving, we started by running
extensive experiments with a large number of different set-
tings to identify a good base configuration. Guided by these
experiments we fixed in what follows a configuration re-
ferred to as HYBRID. It uses fully hybrid solving interleav-
ing core-guided and linear optimization phases, chooses the



PB16 MIP KNAP CRAFT
(1600) (291) (783) (985)

HYBRID 968 78 306 639
CLAUSE 937 75 298 618
NONLAZY 936 70 186 607
CLAUSENONLAZY 917 67 203 612
ROUNDINGSAT 853 75 341 309
COREGUIDED 911 61 43 595
COREBOOSTED 10% 959 80 344 580
SAT4J 773 61 373 105
NAPS 896 65 111 345
SCIP 1057 125 765 642

Table 1: Number of instances solved to optimality for state-
of-the-art solvers and ROUNDINGSAT core-guided variants.

cardinality core that yields the largest increase of the lower
bound for the objective function, and reformulates the objec-
tive using the lazy reified encoding. We then used this base
configuration to investigate three technical novelties of PB
core-guided search:

1. non-clausal cores,
2. lazy reformulation of the objective function,
3. hybrid optimization with repeated switches back and forth

between core-guided search and linear search.
We want to stress that the language of PB inequalities gives
native support for an efficient implementation of this kind of
approaches, in contrast to CNF. The top seven configurations
of Table 1 shows that all three new features significantly im-
prove the performance of core-guided PB solving.

In more detail, Figure 1 provides a scatter plot of the num-
ber of cores needed to prove optimality for HYBRID as com-
pared to the version CLAUSE with clausal cores. To illustrate
this point as clearly as possible, the plots are for pure core-
guided search with these solvers—adding in phases with lin-
ear search does not change the conclusions, but has the side-
effect of making the plot more fuzzy. Clearly, in the non-
clausal settings fewer cores are needed.

In Figure 2 we study the number of new variables intro-
duced by HYBRID as compared to the version NONLAZY
which eagerly introduces all new variables in one go when
the objective is reformulated. For many instances the lazy
approach introduces orders of magnitude less variables, and
this effect is especially pronounced for knapsack instances.
We studied the two different lazy encodings (lazy sum en-
coding and lazy reified encoding), but we did not see any sig-
nificant differences in performance between the two—what
is important is to avoid non-lazy reformulation. It is worth
noting, though, that even the weakest core-guided setting
with clausal cores and non-lazy reformulations is clearly
better than the original ROUNDINGSAT solver on the PB16
benchmarks, so core-guided search in itself is clearly pow-
erful.

The theoretical benchmarks in CRAFT give us a possi-
bility to peek inside the solver, as it were, by exposing it to
formulas expressing different combinatorial principles and
thus requiring different forms of sophisticated reasoning. It

Figure 1: Number of cores during search for non-clausal
(x-axis) versus clausal (y-axis) cores for instances solved by
both approaches (but using pure core-guided optimization).

is striking that on these benchmarks we see the clearest gains
from the core-guided techniques.

Overall, a clear message is that adding core-guided tech-
niques provides a dramatic boost for PB solving. And even
though the simplest version of core-guided search, with-
out exploiting PB-specific techniques, can already provide
major gains for some domains compared to the non-core-
guided solver, our further PB optimizations help signifi-
cantly to give more consistent performance improvements.

An interesting question is how to balance lower-bounding
search using core-guided solving and upper-bounding linear
search. As can be seen in Table 1, pure core-guided search
(COREGUIDED) is not universally beneficial, and for KNAP
even the hybrid mode (HYBRID) is clearly not helpful com-
pared to simple linear search. But it is interesting that the set-
ting with 10% core-boosting (Berg, Demirović, and Stuckey
2019) (COREBOOSTED 10%) shows that a little bit of core-
guided search can also help on these benchmarks. Overall,
our new hybrid mode, switching repeatedly between core-
guided and linear search, is the best. This is not just an ef-
fect of hybrid providing a portfolio, as it were, of pure core-
guided and pure linear search. For the crafted benchmarks,
the hybrid solver is even better than an in-house parallel ver-
sion where pure core-guided and pure linear search get to
run side by side, each with a 5000 second time-out.

We have also evaluated the popular heuristics stratifica-
tion (Ansótegui et al. 2012) and independent cores (Berg
and Järvisalo 2017) from the core-guided MaxSAT litera-
ture. Figure 3 shows the effects of turning on stratification
(strat) and independent cores (ind) for the PB16 bench-
marks. The impact of these heuristics seem to depend quite
a lot on the type of benchmark. Switching on both stratifi-



Figure 2: Number of new variables during search for lazy
(x-axis) versus non-lazy (y-axis) objective reformulation for
instances solved by both approaches.

cation and independent cores helps for MIP and KNAP but
does not change much for PB16 and is terrible for CRAFT.
Stratification alone seems never to be a bad idea—we could
have included it in our base configuration HYBRID and the
conclusions would not really have changed—but using inde-
pendent cores can cause real problems for the wrong kind of
benchmarks, which is especially clear for CRAFT. We are
currently unable to explain why this is so.

Comparison to State of the Art In addition to comparing
our core-guided PB solver to the original ROUNDINGSAT
version, we evaluate two other PB solvers that performed
well in the PB16 Competition as well as one MIP solver:

• SAT4J (Le Berre and Parrain 2010) commit c091d768.
We use the Both strategy that essentially runs a CDCL
solver and a cutting-planes-based PB solver in parallel.1

• NAPS (Sakai and Nabeshima 2015) commit 7aaa54f4.
We use the bignum version as suggested to us by the au-
thors. In contrast to ROUNDINGSAT and SAT4J, NAPS
does not use cutting-planes-based reasoning but instead
re-encodes the input to CNF and runs a CDCL solver.

• SCIP (Gamrath et al. 2020) version 7.0.0 using SOPLEX
version 5.0.0 as LP solver, with presolving support of PA-
PILO 1.0 but without symmetry detection.

We present the results of this comparison in Table 1. Figure 3
gives a more detailed picture of the PB16 benchmarks.

1This dual-threaded approach gets twice the cpu time of the
other solvers, but we kept it anyway so that our core-guided PB
solvers would compete against the best version of SAT4J for each
instance.

Figure 3: Cumulative plot for PB16 benchmarks.

Overall, our core-guided PB solver HYBRID decisively
beats ROUNDINGSAT, SAT4J, and NAPS, with the notable
exception that the dual-threaded version of SAT4J is best for
KNAP benchmarks.

Sadly, PB solvers still struggle to compete with MIP
solvers such as SCIP, and addressing this shortcoming
seems to be the most interesting challenge for future re-
search. One important factor to note is that presolving is a
very important part of MIP performance, whereas current
cutting-planes-based PB solvers essentially have no prepro-
cessing. A natural approach would be to integrate the PA-
PILO presolver with a cutting-planes-based PB solver and
see what happens to performance. Another direction would
be to integrate core-guided solving with solving linear pro-
gramming relaxations, which is another core component of
MIP solvers, and where the results in (Devriendt, Gleixner,
and Nordström 2021) look promising. Already now, though,
the results for some of the benchmarks in CRAFT show that
there are problems that PB solvers solve very efficiently but
that are beyond MIP solvers such as SCIP.

6 Concluding Remarks
Core-guided search is well suited to pseudo-Boolean rea-
soning since it naturally involves cardinality constraints that
PB solvers can deal with natively. In this paper we show how
core-guided reasoning dramatically improves PB solving us-
ing a novel hybrid that alternates core-guided reasoning and
linear search.
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