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Discrete optimization problems are one of the most challenging class of problems to solve, they are typically NP-

hard. Complete solving approaches to these problems, such as integer programming or constraint programming,

are able to prove optimal solutions. Since complete solvers are highly complex software objects, when a solver

returns that it has proved optimality, how confident can we be in this result? The short answer is not very.
Constraint programming (CP) solvers can hide difficult to observe bugs because they rely on complex state

maintenance over backtracking.

In this paper we develop a strategy for validating unsatisfiability and optimality results. We extend a lazy

clause generation CP solver with proof-generating capabilities, which is paired with an external, formally

certified proof checking procedure. From this, we derive several proof checkers, which establish different

compromises between trust base and performance. We validate the practicality of this approach by verifying

the correctness of alleged unsatisfiability and optimality results from the 2016 MiniZinc challenge.
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1 INTRODUCTION
Discrete optimization problems arise in a vast range of applications: scheduling, rostering, routing,

and management decision. These problems frequently arise in mission critical applications; am-

bulance dispatch [40], E-commerce [28] and disaster recovery [47], amongst others – situations

where mistakes can have disastrous consequences. Since the results of the optimization problems

are critical to the industry to which they belong, when we use optimization technology to create

solutions we wish to be able to trust the results we obtain. Optimization tools are also seeing

increasing use in combinatorics, where an incorrect result fundamentally undermines the entire

endeavor.

Two kinds of error can occur:

• a “solution” returned by the solver does not satisfy the problem

• a claimed optimal solution returned by the solver is not in fact optimal
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The first problem: determining whether an assignment returned by the solver is actually a

solution, is not difficult to overcome. Checking whether an assignment satisfies its constraints is a

reasonably straightforward task. We simply need to create a certified checker for each constraint in

the problem, and check that the assignment satisfies the initial domain of each variable and passes

each checker.

The difficult problem is the second one, verifying that a claimed optimal solution is in fact

optimal. The proof of optimality will involve substantial search by the complete solver, and any

error occurring in the search could have hidden the true optimal solution.

Modern complete solvers for discrete optimization are complex software objects. Efficient imple-

mentation in constraint programming (CP) solvers of backtracking search requires careful tracking

and restoration of internal state changes; complex global propagators are used in an attempt to

eliminate additional infeasible subproblems. Many modern CP solvers also integrate SAT-style con-

flict analysis and learning procedures adding redundant constraints to the problem during search

to avoid re-exploring similar regions of the search tree. With so many intricate, interconnected

components, it is entirely unsurprising that modern CP solvers are also difficult to implement

correctly. Indeed, the MiniZinc challenge [43] includes a preliminary feedback phase to help authors

identify and fix bugs before the final competition; but even so, in the final competition round of the

2016 challenge, 7 of the 22 submitted solvers still reported at least one incorrect result (5 solvers

incorrectly claiming optimality on at least one instance).

In this paper we develop a strategy for validating unsatisfiability and optimality results produced

by CP solvers. We extend a lazy clause generation CP solver [39] with the capability to generate a

proof log. We then develop external formally certified proof checking procedures to check that the

proof log is correct, both in terms of stepwise inferences and the underlying axioms introduced to

describe the behaviour of propagators. We develop several different proof checkers which represent

different tradeoffs in terms of trust base and performance. We demonstrate the practicality of the

approach by verying the optimality and unsatisfiability results of the 2016 MiniZinc challenge [43].

This paper is organized as follows. In the next section we introduce preliminaries. In Section 3,

we discuss the formalization of variables, assignments, constraints and models. Then Section 4

briefly outlines the architecture of a finite-domain optimality checker, and Section 5 discusses

checking claimed solutions. Section 6 discusses the obstacles to checking large atomic resolution

proofs. We propose a modified checking algorithm and develop a corresponding formalization, also

formulating representations of atomic constraints and variable domains. This characterization of

variable domains provides a convenient framework for reasoning about inferences; in Section 7

we formulate inference checkers for global constraints, adding the remaining pieces needed for

a full optimality checker. In Section 8, we test several variants of our implementation, obtaining

different tradeoffs between confidence and efficiency. Section 9 discusses existing proof-logging

and verification work in discrete optimization.

2 PRELIMINARIES
Boolean Satisfiability. Let ≡ denote syntactic identity,⇒ denote logical implication and⇔ denote

logical equivalence. A propositional variable 𝑝 is a Boolean variable from a universe of Boolean

variables P. A literal 𝑙 is either a propositional variable 𝑝 , its negation ¬𝑝 or the false literal ⊥.
We overload the negation operator ¬ to operate on literals in the obvious way, e.g. ¬¬𝑝 is defined

to be 𝑝 . A clause 𝜑 is a disjunction of literals. We will sometimes treat a clause 𝑙1 ∨ · · · ∨ 𝑙𝑛 as a

set of literals {𝑙1, . . . , 𝑙𝑛}. We shall often write clauses in implication form, e.g. 𝑙1 ∧ · · · ∧ 𝑙𝑛 → 𝑙

is shorthand for the clause ¬𝑙1 ∨ · · · ∨ ¬𝑙𝑛 ∨ 𝑙 . Note that we shall also sometimes treat clauses in

implication form 𝑙1 ∧ · · · ∧ 𝑙𝑛 → 𝑙 as if the left hand side is a set of literals {𝑙1, . . . , 𝑙𝑛} → 𝑙 .
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A resolution step, resolve(𝑙, 𝑙 ∨𝜑1,¬𝑙 ∨𝜑2), for clauses 𝑙 ∨𝜑1 and ¬𝑙 ∨𝜑2 returns the clause 𝜑1∨𝜑2.

In implication form a resolution step corresponds to the observation that 𝜑1 → 𝑙 and 𝑙 ∧ 𝜑2 → 𝑙 ′

entails 𝜑1 ∧ 𝜑2 → 𝑙 ′. A partial assignment 𝜇 is a (total) function from propositional variables to

2
{true,false}

. The four different results are interpretable as: {true} (the propositional variable is true),
{false} (the propositional variable is false), {true, false} (the propositional variable is unknown),
and ∅ (a contradiction). We extend this mapping to literals (so 𝜇 (¬𝑝) = {¬𝑣 | 𝑣 ∈ 𝜇 (𝑝)}). A partial

assignment 𝜇 is total if 𝜇 (𝑝) ∈ {{true}, {false}} for all 𝑝 , and is conflicting if, for any 𝑝 , 𝜇 (𝑝) = ∅. 𝜇
satisfies a clause 𝜑 iff 𝜇 (𝑙) = {true} for some 𝑙 ∈ 𝜑 . 𝜇′ extends a partial assignment 𝜇 iff 𝜇′ (𝑝) ⊆ 𝜇 (𝑝)
for all 𝑝 . The goal of a SAT problem {𝜑1, . . . , 𝜑𝑛} is to find a total assignment to P which satisfies

all clauses 𝜑1, . . . , 𝜑𝑛 . We extend a partial assignment 𝜇 with positive literal 𝑝 by assigning 𝜇 (𝑝) :=
𝜇 (𝑝) ∩ {true}. We similarly extend 𝜇 with ¬𝑝 by assigning 𝜇 (𝑝) := 𝜇 (𝑝) ∩ {false}.

Boolean solving. We assume a Unit propagation or Boolean constraint propagation procedure

BCP applied to a set of clauses 𝐶 . The 𝐵𝐶𝑃 procedure works on a set of labelled clauses 𝐿, where

each label is a set of clauses. Initially each clause 𝜑 ∈ 𝐶 is labelled by a singleton set of itself, i.e.

𝐿 = {𝜑 {𝜑 } | 𝜑 ∈ 𝐶}. If there exists a labelled clause 𝜑𝑆 ∈ 𝐿 of the form 𝑙1 ∨ · · · ∨ 𝑙𝑛 and 𝑛 labelled

unit clauses (¬𝑙𝑖 )𝑆𝑖 ∈ 𝐿, 1 ≤ 𝑖 ≤ 𝑛 then the procedure returns a pair ((𝑈𝑁𝑆𝐴𝑇 ), 𝑆 ∪ 𝑆1 ∪ · · · ∪ 𝑆𝑛)
indicating the set of clauses is unsatisfiable, and this is caused by the subset of 𝐶 , 𝑆 ∪ 𝑆1 ∪ · · · ∪ 𝑆𝑛 .

If there exists a labelled clause 𝜑𝑆 ∈ 𝐿 of the form 𝑙1 ∨ · · · ∨ 𝑙𝑛 and 𝑛 − 1 labelled singleton clauses

(¬𝑙𝑖 )𝑆𝑖 ∈ 𝐿, 1 ≤ 𝑖 ≤ 𝑛−1, and no labelled clause (¬𝑙𝑛)𝑆𝑛 ∈ 𝐿 then we add the labelled singleton clause

𝑙
𝑆∪𝑆1∪···∪𝑆𝑛−1
𝑛 to 𝐿. The BCP procedure repeatedly looks for clauses satisfying the conditions above

until it returns UNSAT, or it finds no further additions can be made to 𝐿 when it returns (UNKNOWN, ∅).
SAT solvers are almost exclusively inspired by DPLL [16] algorithm, which progressively extends a

partial assignment 𝜇. DPLL alternates between running unit propagation (on the union of the partial

assignment 𝜇 thought of as a set of literals and the clauses of the problem) until no further inferences

can be obtained, and tentatively selecting some literal to add to 𝜇. If some unit propagation results

in UNSAT the procedure backtracks, negating the most recent assumption.

Modern conflict-directed clause learning (CDCL) SAT solvers extend DPLL with conflict analysis:
when a conflict is discovered, the solver performs resolution over the inferences leading to conflict

to derive a new redundant clause – which would have eliminated the current branch of the search

tree – then adds this new clause to the problem. As each redundant clause cuts off some part of

the search space, it is no longer necessary to explicitly track which decisions remain to be made.

Instead, search terminates when either a satisfying assignment is discovered, or the empty (false)

clause is obtained by resolution.

Unsatisfiability proofs. Verifying an unsatisfiability proof is then a matter of checking that the

sequence of resolution steps used to derive the empty clause were correct. Proof-generating SAT

solvers typically produce certificates in either resolution or clausal form. In a resolution proof, each

derived clause is explicitly annotated with its antecedents. In a clausal proof, only the resolvent is

recorded.

A resolution proof checker (such as TraceCheck [9]) ensures (1) each derived clause is a valid

resolvent of its claimed antecedents, and (2) the empty clause is derived. Pseudo-code for a

TraceCheck-style proof checker check_res is shown in Figure 1(a). Some checkers permit re-

solvents to appear in a different order than the resolutions that happened in the solver, in which

case one must also ensure the resolution graph contains no cycles. A clausal proof consists of the

original problem, and a sequence of derived clauses (without antecedents). A Reverse-unit propaga-
tion (RUP)-based checker verifies that each derived clause 𝐶 can be derived from its predecessors 𝐹

by verifying that unit propagation on 𝐹 ∪ {¬𝑙 | 𝑙 ∈ 𝐶} finds a contradiction. These proofs are easy
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check_res(𝑃 , [𝑠1, . . . , 𝑠𝑚 ])
𝐶 := 𝑃

for 𝑠 ∈ 𝑠1, . . . , 𝑠𝑚

let 𝑠 ≡ infer 𝑐 ⊣ 𝑎1, . . . , 𝑎𝑘
for 𝑎 ∈ 𝑎1, . . . , 𝑎𝑘

if 𝑎 ∉ 𝐶 : return INVALID
𝑟𝑒𝑠 := resolve (𝑎1, . . . , 𝑎𝑘 )
if 𝑟𝑒𝑠 ≠ 𝑐 : return INVALID
𝐶 :=𝐶 ∪ {𝑐 }

if ∅ ∉ 𝐶 : return INCOMPLETE
return VALID

check_drup(𝑃 , [𝑠1, . . . , 𝑠𝑚 ])
𝐶 := 𝑃

for 𝑠 ∈ 𝑠1, . . . , 𝑠𝑚

match 𝑠 with
infer 𝑐 :𝐶 :=𝐶 ∪ {𝑐 }
del 𝑐 :𝐶 :=𝐶 \ {𝑐 }

if ∅ ∉ 𝐶 : return INCOMPLETE
used := {∅}
for 𝑠 ∈ 𝑠𝑚, . . . , 𝑠1

match 𝑠 with
infer 𝑐 :

𝐶 :=𝐶 \ {𝑐 }
if 𝑐 ∉ used: continue
(status, ants) := 𝐵𝐶𝑃 (𝐶 ∪ {¬𝑙 | 𝑙 ∈ 𝑐 })
if status ≠ UNSAT

return INVALID
used := used ∪ (ants \ {¬𝑙 | 𝑙 ∈ 𝑐 })

del 𝑐 :𝐶 :=𝐶 ∪ {𝑐 }
return VALID

Fig. 1. Pseudo-code sketches of tracecheck and backwards DRUP style proof checkers.

to produce, and more compact than resolution traces, but dramatically more expensive to verify.

RAT checkers [51] extend RUP to proofs involving extended resolution [46]. For large proofs, it

is expensive to maintain the complete set of resolved clauses. DRUP/DRAT checkers [27, 52] add

deletion information to improve performance by discarding clauses which will no longer be used.

Pseudo-code for a backwards DRUP checker check_drup is shown in Figure 1(b). The checker first

scans forward to determine the final clause database, then replays the proof in reverse, ensuring

that each clause (transitively) required to derive ∅ was a sound inference.

A recent variant is the grit [14] format, which adds deletion information to tracecheck-style
resolution traces, with the added restriction that clauses must be provided in the order in which

they become unit under RUP (so checking an inference may be performed by a single scan of the

antecedents).

Propagation-based constraint solvers. A domain 𝐷 is a (total) mapping from a fixed (finite) set of

variables V to finite sets of integers. We shall sometimes consider a domain 𝐷 as equivalent to the

formula ∧𝑥∈V𝑥 ∈ 𝐷 (𝑥). A false domain 𝐷 is a domain with 𝐷 (𝑥) = ∅ for some 𝑥 ∈ V . A singleton

domain 𝐷 has |𝐷 (𝑥) | = 1,∀𝑥 ∈ V . A domain 𝐷1 is stronger than a domain 𝐷2, written 𝐷1 ⊑ 𝐷2,

if 𝐷1 (𝑥) ⊆ 𝐷2 (𝑥) for all 𝑥 ∈ V . A range is a contiguous set of integers, we use range notation
[ 𝑙 .. 𝑢 ] to denote the range {𝑑 ∈ Z | 𝑙 ≤ 𝑑 ≤ 𝑢} when 𝑙 and 𝑢 are integers. Note for 𝑙 > 𝑢 then

[ 𝑙 .. 𝑢 ] = ∅. We shall be interested in the notion of a starting domain, which we denote 𝐷init . The

starting domain gives the initial values possible for each variable. It allows us to restrict attention

to domains 𝐷 such that 𝐷 ⊑ 𝐷init . We will assume Boolean variables 𝑏 are modeled by integers

with 𝐷init (𝑏) = [ 0 .. 1 ].
An integer assignment 𝜃 is a mapping of variables to integer values, written {𝑥1 ↦→ 𝑑1, . . . , 𝑥𝑛 ↦→

𝑑𝑛}. We extend the assignment 𝜃 to map expressions and constraints involving the variables in

the natural way. A singleton domain 𝐷 , maps each variable 𝑥 to a singleton set of values {𝑑𝑥 }, and
corresponds to an assignment 𝑣𝑎𝑙 (𝐷) = {𝑥 ↦→ 𝑑𝑥 | 𝐷 (𝑥) = {𝑑𝑥 }}. Let vars be the function that

returns the set of variables appearing in an assignment. We define an assignment 𝜃 to be an element

of a domain 𝐷 , written 𝜃 ∈ 𝐷 , if 𝜃 (𝑥𝑖 ) ∈ 𝐷 (𝑥𝑖 ) for all 𝑥𝑖 ∈ vars(𝜃 ).
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A constraint 𝑐 over variables 𝑥1, . . . , 𝑥𝑛 is a set of assignments 𝜃 such that vars(𝜃 ) = {𝑥1, . . . , 𝑥𝑛}.
We also define vars(𝑐) = {𝑥1, . . . , 𝑥𝑛}. An assignment 𝜃 satisfies constraint 𝑐 iff {𝑥 ↦→ 𝜃 (𝑥) | 𝑥 ∈
𝑣𝑎𝑟𝑠 (𝑐)} ∈ 𝑐 . We will implement a constraint 𝑐 by a propagator 𝑓𝑐 that map domains to domains.

A propagator 𝑓 is a monotonically decreasing function from domains to domains: 𝑓 (𝐷) ⊑ 𝐷 , and

𝑓 (𝐷1) ⊑ 𝑓 (𝐷2) whenever 𝐷1 ⊑ 𝐷2. A propagator 𝑓 is at fixpoint for domain 𝐷 if 𝑓 (𝐷) = 𝐷 . We

assume propagators 𝑓𝑐 are correct, i.e. for all domains 𝐷 , {𝜃 | 𝜃 ∈ 𝐷} ∩ 𝑐 = {𝜃 | 𝜃 ∈ 𝑓 (𝐷)} ∩ 𝑐,

and checking, i.e. for all singleton domains 𝐷 𝑓 (𝐷) = 𝐷 iff 𝑣𝑎𝑙 (𝐷) represents a solution of 𝑐 . Let

𝑐𝑜𝑛𝑠 (𝑓𝑐 ) = 𝑐 return the constraint implemented by propagator 𝑓𝑐 .

Note that while a constraint is theoretically simply a set of satisfying assignments, we assume

implicit representations of constraints. For the purposes of this paper we restrict ourselves to a

small but representative set of implicit constraints. The basic constraints are defined by arithmetic

operations: 𝑥 = 𝑦 +𝑧, 𝑥 = 𝑦−𝑧, 𝑥 = 𝑦 ∗𝑧, 𝑥 = 𝑦÷𝑧, 𝑥 = 𝑦 mod 𝑧; together with the basic arithmetic

relations: 𝑥 = 𝑦, 𝑥 ≥ 𝑦, 𝑥 ≠ 𝑦; where each of 𝑥,𝑦, 𝑧 may be an integer variable in V or a fixed

integer constant. Another important implicit constraint is the clause (for constraint programs)

[¬]𝑥1 ∨ · · · ∨ [¬]𝑥𝑛 where 𝑥𝑖 are assumed to be [ 0 .. 1 ] variables which may or may not be negated.

These constraints (and linear below) may all appear in a conditional (or half-reified [21]) form

[¬]𝑝 → 𝑐 , where 𝑐 is enforced only if [ 0 .. 1 ] variable 𝑝 is true.

One of the key features of constraint programming is the use of specialized propagators to

implement complex global constraints. The other implicit constraint representations we assume are:

the linear constraint

∑
𝑖 𝑐𝑖𝑥𝑖 ≤ 𝑘 ; the element constraint element(𝑥, [𝑦1, . . . , 𝑦𝑘 ], 𝑖) which ensures

that𝑥 = 𝑦𝑖 ; and the cumulative resource constraint cumulative( [𝑠1, . . . , 𝑠𝑛], [𝑑1, . . . , 𝑑𝑛], [𝑟1 . . . , 𝑑𝑛], 𝐿)
which ensures that for tasks 𝑖 ∈ 1..𝑛 executing from start time 𝑠𝑖 for duration 𝑑𝑖 and requiring 𝑟𝑖
units of resource, that at no time are more that 𝐿 resources required. The cumulative constraint is a

key constraint for scheduling problems.

A constraint optimization problem (COP) is a tuple 𝑃 ≡ (𝑉 , 𝐷init,𝐶, 𝑜), where𝑉 is a set of variables,

𝐷init is an initial domain defined on 𝑉 , 𝐶 is a set of constraints involving only variables in 𝑉 , and

𝑜 ∈ 𝑉 is an objective variable (for simplicity). An assignment 𝜃 ∈ 𝐷init is a solution of 𝑃 if 𝜃 satisfies

every constraint in 𝐶 . An assignment 𝜃1 is preferred to assignment 𝜃2 if 𝜃1 (𝑜) < 𝜃2 (𝑜) (we assume

minimization always). An optimal solution of 𝑃 is a solution 𝜃 of 𝑃 for which there is no solution 𝜃 ′

of 𝑃 which is preferred to 𝜃 .

A lazy clause generation (LCG) solver [39] has a dual Boolean representation for the domain of

each integer variable 𝑥 using atomic constraints. Given an integer variable 𝑥 with initial domain

𝐷𝑖𝑛𝑖𝑡 (𝑥) = [ 𝑙 .. 𝑢 ] we introduce propositional variables, ⟨𝑥 = 𝑙⟩ , . . . , ⟨𝑥 = 𝑢⟩ and ⟨𝑥 ≥ 𝑙 + 1⟩ , . . . , ⟨𝑥 ≥ 𝑢⟩.
The interpretation of these propositional variables is that ⟨𝜓 ⟩ given an assignment 𝜃 is true if 𝜃 sat-

isfies𝜓 and false otherwise. We can represent all possible subsets of 𝐷init (𝑥) as conjunctions of the
literals over these propositional variables. We define atomic constraints as the set of literals defined
using these new propositional variables. We introduce new notation to refer to negated proposi-

tional variables: ⟨𝑥 ≠ 𝑣⟩ is shorthand for ¬ ⟨𝑥 = 𝑣⟩ and ⟨𝑥 ≤ 𝑣⟩ is shorthand for ¬ ⟨𝑥 ≥ 𝑣 + 1⟩. We

add the special atomic constraint ⊥, which evaluates to false for any assignment 𝜃 , to represent

false domains.

The changes in domains created by a propagator 𝑓 when applied to a current domain 𝐷 , that is

when 𝑓 (𝐷) = 𝐷 ′ ≠ 𝐷 , can be recorded using atomic constraints. If 𝐷 ′
is a false domain then the

only atomic constraint generated is ⊥. Otherwise, we can examine each variable 𝑥 ∈ V separately.

We can categorize the changes as either: ⟨𝑥 = 𝑣⟩ fixing a variable 𝐷 ′ (𝑥) = {𝑣}, |𝐷 (𝑥) | > 1; ⟨𝑥 ≠ 𝑣⟩
punching a hole 𝑣 ∈ 𝐷 (𝑥) −𝐷 ′ (𝑥); ⟨𝑥 ≥ 𝑣⟩ tightening the lower bound 𝑣 = min𝐷 ′ (𝑥) > min𝐷 (𝑥);
or ⟨𝑥 ≤ 𝑣⟩ tightening the upper bound 𝑣 = max𝐷 ′ (𝑥) < max𝐷 (𝑥). Let 𝐴𝐶 (𝐷 ′, 𝐷) be a set of

atomic constraints that describe the changes from domain 𝐷 to 𝐷 ′
. We will abuse notation and also

treat clauses of atomic constraint literals as propagators.
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Given current domain 𝐷 , suppose the propagator 𝑓𝑐 for constraint 𝑐 makes an inference 𝑎 ∈
𝐴𝐶 (𝑓 (𝐷), 𝐷), i.e., 𝑐 ∧ 𝐷 ⇒ 𝑎. An explanation for this inference is a clause: reason(𝑎, 𝑓𝑐 , 𝐷) ≡
𝑙1∧ . . .∧𝑙𝑘 → 𝑎 where 𝑙𝑖 and 𝑎 are atomic constraints, s.t. 𝑐 ⇒ reason(𝑎, 𝑓𝑐 , 𝐷) and𝐷 ⇒ 𝑙1∧ . . .∧𝑙𝑘 .
For example, given constraint 𝑥 ≤ 𝑦 and current domain 𝑥 ∈ {3, 4, 5}, the propagator may infer that

𝑦 ≥ 3, with the explanation ⟨𝑥 ≥ 3⟩ → ⟨𝑦 ≥ 3⟩. The explanation reason(𝑎, 𝑓𝑐 , 𝐷) explains why 𝑎
has to hold given 𝑐 and the current domain 𝐷 . We can consider reason(𝑎, 𝑓𝑐 , 𝐷) as the fragment of

the constraint 𝑐 from which we inferred that 𝑎 has to hold. Later, we shall use ACP (𝐶) to denote unit
propagation over clauses containing atomic constraints (by analogy to the Boolean unit propagation

procedure BCP above).

Constraint programming solvers, similar to DPLL [16], alternate propagation with making search

decisions. During running the decision level reflects how many search decisions have been made to

reach the current state. The decision level of a literal or atomic constraint that is true in the current

state is the number of decisions after which it first became true.
An incremental propagation solver isolv(𝐹𝑛𝑓 , 𝐷, 𝑙𝑒𝑣𝑒𝑙), shown in Figure 2, takes a set of propa-

gators 𝐹𝑛𝑓 , a domain 𝐷 ⊑ 𝐷init , and a decision level 𝑙𝑒𝑣𝑒𝑙 (which records the number of previous

decisions made to reach the current state 𝐷), and finds the greatest fixpoint stronger than 𝐷 of all

the propagators 𝑓 ∈ 𝐹 in the global set of propagators 𝐹 , assuming those not in 𝐹𝑛𝑓 are at fixpoint,

i.e. 𝑓 (𝐷) = 𝐷, 𝑓 ∈ 𝐹 − 𝐹𝑛𝑓 . The algorithm keeps a queue 𝑄 of propagators to run, chooses one, and

computes 𝐷 ′
the new domain as a result. We also keep a global stack – called a trail – which stores

information necessary for backtracking, and for analysing the cause of failure. For each atomic

constraint change 𝑎, we record a reason 𝑟 , the constraint 𝑐 that caused the propagation, and the

current level 𝑙 in the trail TR. trail(𝑎, 𝑟, 𝑐, 𝑙𝑒𝑣𝑒𝑙) is simply defined as TR := [(𝑎, 𝑟, 𝑐, 𝑙𝑒𝑣𝑒𝑙)] ++ 𝑇𝑅.

Then any propagators which may not be at fixpoint are added to 𝑄 by new(). For our purposes we
assume new() is simply defined as

new(𝑓 , 𝐹 , 𝐷, 𝐷 ′) = {𝑓𝑐 ∈ 𝐹 | 𝑣𝑎𝑟𝑠 (𝑐) ∩ {𝑥 ∈ 𝑉 | 𝐷 ′ (𝑥) ≠ 𝐷 (𝑥)} ≠ ∅}

that is all propagators for constraints whose variables have changed domain are added to the queue.

In practice much more efficient approaches are used (see e.g. [42]). If propagation detects failure

then isolv() returns a (nogood, backjump level) pair generated by 1uip_conflict(), where nogood
is a clause which is valid, conflicting in 𝐷 , and contains exactly one literal which became false

at the current level. This ensures that nogood will be unit after backtracking, and will prevent us

from re-exploring 𝐷 . Backjump level is the earliest decision level where nogood is unit – the earliest

point where nogood is immediately useful. Otherwise when propagation reaches a fixpoint of all

propagators, it returns the new domain that results.

Conflict analysis is triggered each time a failure is detected. Conflict analysis is the crucial step

in a learning solver. Determining a strong reusable nogood is crucial to the advantage of learning

solvers over those that do not learn. The solver examines the implication graph which is stored in

the trail, which records which literals made each propagated literal true, and determines a globally

valid nogood that explains and records the failure.

The main idea is captured by the function 1uip_conflict() in Figure 3, which is essentially identical
to conflict generation in a SAT solver [36]. It is invoked when a propagator 𝑓 returns a false domain

during isolv (See Figure 2). It takes the current decision level 𝑙𝑎𝑠𝑡 , and an initial explanation of

the failure given by 𝑛 = reason(⊥, 𝑓 , 𝐷) and returns a nogood and backjump level. It unrolls the

trail using untrail(). Each call to untrail() removes and returns the first triple from TR and resets

the domain 𝐷 to the state before the trail entry. When unrolling finds an entry (𝑙, 𝑅 → 𝑙, 𝑐, 𝑙𝑣𝑙)
for a literal 𝑙 in the current nogood it replaces 𝑙 with the 𝑅 in the current nogood. This is simply

resolution of the literal 𝑙 in the two clauses. We assume a function 𝑙𝑖𝑡𝑙𝑒𝑣𝑒𝑙 (𝑙) returns the decision
level when a literal became true. The process continues until there is only one literal 𝑙 in the nogood
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isolv(𝐹𝑛𝑓 , 𝐷, 𝑙𝑒𝑣𝑒𝑙)
𝑄 := 𝐹𝑛𝑓
while (𝑄 ≠ ∅)

𝑓 := choose(𝑄) % select next propagator to apply

𝑄 := 𝑄 − {𝑓 };
𝐷 ′

:= 𝑓 (𝐷)
if(𝐷 ′

is a false domain) % failure return (nogood,bj)

% log intro 𝑐𝑜𝑛𝑠 (𝑓 ) ⇒ reason(⊥, 𝑓 , 𝐷)
return 1uip_conflict(𝑙𝑒𝑣𝑒𝑙, reason(⊥, 𝑓 , 𝐷))

for(𝑎 ∈ 𝐴𝐶 (𝐷 ′, 𝐷))
trail(𝑎, reason(𝑎, 𝑓 , 𝐷), 𝑐𝑜𝑛𝑠 (𝑓 ), 𝑙𝑒𝑣𝑒𝑙) % record reason for propagation

𝑄 := 𝑄 ∪ new(𝑓 , 𝐹 , 𝐷, 𝐷 ′) % add propagators 𝑓 ′ ∈ 𝐹 . . .

𝐷 := 𝐷 ′
% . . . not necessarily at fixpoint at 𝐷 ′

return 𝐷

Fig. 2. Incremental propagation solver with logging shown in blue.

1uip_conflict(𝑙𝑎𝑠𝑡 , 𝑛)
% 𝐸𝑥𝑝𝑠 := {𝑛}
while(|{𝑙 | 𝑙 ∈ 𝑛, 𝑙𝑖𝑡𝑙𝑒𝑣𝑒𝑙 (𝑙) = 𝑙𝑎𝑠𝑡}| > 1)

(𝑙, 𝑅 → 𝑙, 𝑐, 𝑙𝑣𝑙) := untrail()
if 𝑙 ∈ 𝑛

𝑛 := resolve(𝑙 , 𝑅 → 𝑙 , 𝑛) % resolution step

% log entry 𝑐 ⇒ 𝑅 → 𝑙

% 𝐸𝑥𝑝𝑠 := 𝐸𝑥𝑝𝑠 ∪ {𝑅 → 𝑙}
𝑏 𝑗 := max({0} ∪ {𝑙𝑖𝑡𝑙𝑒𝑣𝑒𝑙 (𝑙) | 𝑙 ∈ 𝑛, 𝑙𝑖𝑡𝑙𝑒𝑣𝑒𝑙 (𝑙) < 𝑙𝑎𝑠𝑡})
% log entry 𝐸𝑥𝑝𝑠 ⇒ 𝑛

% add log entries: del 𝐸, 𝐸 ∈ 𝐸𝑥𝑝𝑠

return (𝑛,𝑏 𝑗 )

Fig. 3. Conflict analysis with proof logging shown commented in blue.

at the last level (𝑙𝑖𝑡𝑙𝑒𝑣𝑒𝑙 (𝑙) = 𝑙𝑎𝑠𝑡 ), creating the 1UIP nogood [36]. It returns the nogood and the

backjump level 𝑏 𝑗 where the nogood will first propagate, which is the second greatest 𝑙𝑖𝑡𝑙𝑒𝑣𝑒𝑙

appearing in the nogood.

The propagation solver is used in the context of optimization search as shown in Figure 4.

Given an COP (𝑉 , 𝐷init,𝐶, 𝑜) we set 𝐹 = {𝑓𝑐 |𝑐 ∈ 𝐶} and call search(𝐹, 𝐷init, 𝑜, 0). In each call to

search() the propagation engine isolv is executed returning 𝐷 . If isolv() returns a nogood the search
starts backjumping. If 𝐷 is not a singleton domain we need to make a search decision 𝑎 which

is restricted to be an atomic constraint. After a choice is made search continues recursively: we

first try searching with 𝑎 imposed, and when failure is detected we untrail all changes made until

we reach the backjump level of the nogood. We then add the nogood to 𝐹 and restart search by

propagating the new nogood. If 𝐷 is a singleton domain, then 𝑣𝑎𝑙 (𝐷) represents a solution. We

store this best known solution 𝑣𝑎𝑙 (𝐷) in 𝜃 ∗ and return a nogood to enforce that search only looks

for better solutions. Search will continue until a nogood false is generated which will prevent

further search. On completion 𝜃 ∗ holds an optimal solution.

Example 2.1. Consider minimizing 𝑜 subject to 𝑐1 ≡ 𝑜 ≥ 𝑥1 + 𝑥2 + 𝑥3, 𝑐2 ≡ 𝑥1 + 𝑥2 ≥ 2,

𝑐3 ≡ 𝑥1 + 𝑥3 ≥ 2, and 𝑐4 ≡ 𝑥2 + 𝑥3 ≥ 2 with initial domains 𝐷init (𝑥1) = 𝐷init (𝑥2) = 𝐷init (𝑥2) =
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search(𝐹𝑛, 𝐷, 𝑜, 𝑙𝑒𝑣𝑒𝑙 )
𝐷 := isolv(𝐹𝑛, 𝐷, 𝑜, 𝑙𝑒𝑣𝑒𝑙) % propagation

if (𝐷 is a nogood backjump level pair) return 𝐷

% periodically delete some nogoods 𝑁 ⊆ 𝐹 , 𝐹 := 𝐹 \ 𝑁
% add log entries del 𝐶 , 𝐶 ∈ 𝑁

if (𝐷 is not a singleton domain)

choose atomic constraint 𝑎 where 𝐷 ⇏ 𝑎. % search strategy

(𝑛,𝑏 𝑗) := search({𝑎}, 𝐷, 𝑜, 𝑙𝑒𝑣𝑒𝑙 + 1))
untrail all TR entries (𝑎, 𝑅, 𝑙𝑣𝑙) where 𝑙𝑣𝑙 > 𝑙𝑒𝑣𝑒𝑙

if (𝑏 𝑗 < 𝑙𝑒𝑣𝑒𝑙 ) return (𝑛,𝑏 𝑗)
else 𝐹 := 𝐹 ∪ {𝑛} % store nogood

return search({𝑛}, 𝐷, 𝑜, 𝑙𝑒𝑣𝑒𝑙))
𝜃 ∗ := 𝑣𝑎𝑙 (𝐷); % record best solution

return (⟨𝑜 ≤ 𝜃 ∗ (𝑜) − 1⟩ , 0) % return fathoming nogood

Fig. 4. Search procedure with periodic nogood deletion commented in blue

level 0 level 1

𝑜 ≤ 2

&&

$$

$$

  
𝑥1 ≤ 2 𝑥1 ≤ 0

&&

$$
𝑥2 ≤ 2 𝑥2 ≥ 2

// ⊥

𝑥3 ≤ 2 𝑥3 ≥ 2

::

level 0

𝑜 ≤ 2

&& ''

$$

$$

""
𝑥1 ≤ 2 𝑥1 ≥ 1

&&

$$

%%
𝑥2 ≤ 2 𝑥2 ≤ 1

&&
𝑥2 ≥ 1

// ⊥

𝑥3 ≤ 2 𝑥3 ≤ 1

88
𝑥3 ≥ 1

::

(a) (b)

Fig. 5. Implication graphs for Example 2.1. Decision literals are double boxed. Decision levels are separated
by dashed lines.

𝐷init (𝑜) = [ 0 .. 5 ]. Let 𝐹 = {𝑓𝑐1 , 𝑓𝑐2 , 𝑓𝑐3 , 𝑓𝑐4 }. Then suppose the call search(𝐹, 𝐷init, 𝑜, 0) has found
the solution 𝜃 ∗ = {𝑥1 ↦→ 1, 𝑥2 ↦→ 1, 𝑥3 ↦→ 1, 𝑜 ↦→ 3}. This creates the nogood backjump level

pair (⟨𝑜 ≤ 2⟩ , 0) which backjumps to the original call, untrailing all changes, adds 𝑛0 ≡ ⟨𝑜 ≤ 2⟩
to 𝐹 and calls search({𝑛0}, 𝐷init, 𝑜, 0). The propagation solver isolv({𝑛0}, 𝐷init, 𝑜, 0) returns new
domain 𝐷0 where 𝐷0 (𝑥1) = 𝐷0 (𝑥2) = 𝐷0 (𝑥3) = 𝐷0 (𝑜) = [ 0 .. 2 ] using 𝑛0 and 𝑐1. We now need to

make a choice. Suppose we choose ⟨𝑥1 ≤ 0⟩, calling search({⟨𝑥1 ≤ 0⟩}, 𝐷0, 𝑜, 1). The propagation

solver determines that ⟨𝑥2 ≥ 2⟩ from 𝑐2 and ⟨𝑥3 ≥ 2⟩ from 𝑐3 and detects a failure using 𝑐1. The

implication graph recorded in the trail at this point is shown in Figure 5(a). The initial nogood is

⟨𝑥2 ≥ 2⟩ ∧ ⟨𝑥3 ≥ 2⟩ ∧ ⟨𝑜 ≤ 2⟩ → ⊥. The call to 1uip_conflict() returns the (nogood, backjump) pair

(⟨𝑜 ≤ 2⟩ ∧ ⟨𝑥1 ≤ 0⟩ → ⊥, 0). Search backtracks to the start and adds 𝑛1 ≡ ⟨𝑜 ≤ 2⟩ ∧ ⟨𝑥1 ≤ 0⟩ → ⊥
to 𝐹 and calls search({𝑛1}, 𝐷0, 𝑜, 0). The propagation solver isolv({𝑛1}, 𝐷0, 𝑜, 0) determines that

⟨𝑥1 ≥ 1⟩ by 𝑛1 and then ⟨𝑥2 ≤ 1⟩ and ⟨𝑥3 ≤ 1⟩ by 𝑐1, then ⟨𝑥3 ≥ 1⟩ by 𝑐4 and ⟨𝑥2 ≥ 1⟩ by 𝑐4 and

then detects a failure using 𝑐1. The implication graph at this point in shown in Figure 5(b). The

initial nogood is ⟨𝑥1 ≥ 1⟩ ∧ ⟨𝑥2 ≥ 1⟩ ∧ ⟨𝑥3 ≥ 1⟩ ∧ ⟨𝑜 ≤ 2⟩ → ⊥ and 1uip_conflict() resolves away
all literals to generate the nogood ⊥, which terminates the search, proving that 𝜃 ∗ is optimal. □

Commented (blue) lines in Figures 2–4 illustrate the modifications needed to perform proof

logging (in either a resolution or clausal style). These modifications log propagations lazily –

inferences are recorded only when used during conflict analysis. For solvers which do not maintain a
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trail or perform conflict analysis, it may be simpler to instead log inferences eagerly: emit 𝑐𝑜𝑛𝑠 (𝑓 ) ⇒
reason(𝑎, 𝑓 , 𝐷) → 𝑎 for every propagation, and the corresponding del upon backtracking. This, of

course, may produce much larger proofs.

2.1 Branch and Bound Optimality Proofs
A reader accustomed to mathematical programming may be perplexed by the absence of an explicit

bounding mechanism in the above; that search() is solving not an optimization problem, but a

succession of decision problems.

This is not the case; bounding is simply propagation on the objective. In a branch-and-bound

solver, the incumbent 𝜃 ∗ imposes an implicit bound on the objective, corresponding to the nogood

⟨𝑜 ≤ 𝜃 ∗ (𝑜) − 1⟩. In contrast, in search() pruning occurs when we find 𝐷 ⇒ ⟨𝑜 > 𝑘⟩ in the presence

of an existing nogood ⟨𝑜 ≤ 𝑘⟩ – that is, the branch is pruned by lower bounding.

3 FORMAL SPECIFICATIONS OF FINITE DOMAIN PROBLEMS
To construct a certified checker, we must begin by formally specifying the intended behavior. In

this section, we outline a Coq specification of variables, assignments, constraints and models. The

full Coq specification is available at https://bitbucket.org/gkgange/cert-cp.

A finite domain CSP/COP is defined over a finite set of variables 𝑉 . For convenience, we instead

assume a bijection between variables and integers; this is sound, as the addition of unconstrained

variables does not affect satisfiability. We similarly relax the requirement for variable domains to

be finite, so the additional variables can indeed be unconstrained.

An assignment is a function from variables to values. We assume all variables take integer values;

Boolean variables are simply treated as 0-1 integer variables, and the atomic constraint ⟨𝑏⟩ thus
becomes ⟨𝑏 > 0⟩.
Definition ivar : = Z .

Definition asg : = ( ivar → Z ) .

Variables𝑉 are equipped with finite initial domains. We assume these are given as a list of initial

bounds. Frequently, constraints take arguments which may be either a variable or constant. Thus,

we introduce a type iterm for integer terms, and give its denotation by defining the value an iterm
takes under a given assignment:

Inductive iterm : =

| Ivar : ivar → iterm

| Icns : Z → iterm .

Definition eval_iterm t theta : =

match t with

| Ivar v ⇒ theta v

| Icns k ⇒ k

end .

For the following formulation, we must briefly discuss the handling of propositions and compu-

tations in Coq. In Coq, the type of logical propositions Prop is extremely expressive; definitions of

propositions may involve existential or universal quantification, even over the set of propositions

itself.
1
This expressiveness is useful in developing compact, readable specifications. Unfortunately,

it also means concrete computation cannot be performed over members of Prop. We must instead

write functions which return computable Boolean values (of type bool), then establish correspon-

dence between our concrete computation and specification of interest.

1Prop is said to be impredicative
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We will represent the initial range of a variable as a tuple of the variable with its lower and upper

bounds, called model_bound. We can then represent the set of initial variable ranges as a list of

model_bounds.

(* A model_bound (x, (l, u)) denotes x ∈ [l, u] *)

Definition model_bound : Set : = ( ivar ∗ ( Z ∗ Z ) ) .

We must then specify how these model_bounds relate to assignments. This occurs in two stages.

First, we define a “semantic function” defining what it means for an assignment to satisfy a variable

range, and a set of ranges:

(* The interpretation of (sets of) variable bounds *)

Definition eval_bound ( b : model_bound ) ( theta : asg ) : =

match b with

| ( x , ( lb , ub ) ) ⇒ ( lb ≤ theta x ) ∧ ( theta x ≤ ub )

end .

Fixpoint eval_bounds ( bs : list model_bound ) ( theta : asg ) : =

match bs with

| nil ⇒ True

| cons b bs ' ⇒ ( eval_bound b theta ) ∧ ( eval_bounds bs ' theta )

end .

These functions are used to specify the semantics of problems, and form part of the trusted base.

But these specifications return values in the non-computational type Prop. As we shall wish to

evaluate whether a candidate model satisfies initial bounds, we must also define a corresponding

function which returns concrete Boolean values:

(* The corresponding Boolean computation *)

Definition evalb_bound ( b : model_bound ) ( theta : asg ) : =

match b with

| ( x , lb , ub ) ⇒ andb ( Z . leb lb ( theta x ) ) ( Z . leb ( theta x ) ub )

end .

Fixpoint evalb_bounds ( bs : list model_bound ) ( theta : asg ) : =

match bs with

| nil ⇒ true

| cons b bs ' ⇒ andb ( evalb_bound b theta ) ( evalb_bounds bs ' theta )

end .

Note the distinction here between eval_boundswhich uses the logical comparison and conjunction

(<= and /\) operators and returns a value in Prop, and evalb_boundswhich uses the corresponding
Boolean operations Z.leb and andb to compute a value of type bool. As only the specification will

form part of the trust base, it then remains to establish a correspondence between the concrete

computation and the specification. We provide the theorems and proofs in full here for illustration;

in later sections we will largely omit proofs and intermediate lemmas.

Lemma evalb_bound_iff : forall b theta ,

evalb_bound b theta = true ↔ eval_bound b theta .

Proof .

intros ; unfold evalb_bound , eval_bound ; destruct b ; destruct p .

rewrite Bool . andb_true_iff ; repeat rewrite Z . leb_le ; intuition .

Qed .
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Theorem eval_bounds_iff : forall bs theta ,

evalb_bounds bs theta = true ↔ eval_bounds bs theta .

Proof .

intros ; induction bs ;

unfold evalb_bounds , eval_bounds ; fold evalb_bounds ; fold eval_bounds .

intuition .

rewrite Bool . andb_true_iff , evalb_bound_iff , IHbs ; intuition .

Qed .

A constraint identifies a set of satisfying assignments – that is, has type asg -> Prop. However,
it is typically more convenient to reason about an entire class of constraints (linear, element, . . . ).

A class of constraints turns objects of some type T into a constraint:

Record Constraint : =

mkConstraint {

T : Type ;

eval : ( T → asg → Prop )

} .

Example 3.1. Consider the linear constraint,

∑
𝑐𝑖𝑥𝑖 ≤ 𝑘 . An instance consists of a list of 𝑐𝑖𝑥𝑖

terms, and the bounding constant. These can be directly represented:

Definition linterm : Type : = ( Z ∗ iterm ) .

Definition lin_leq : Type : = ( ( list linterm ) ∗ Z ) .

We then give the interpretation of these terms under an assignment.

Definition eval_linterm term theta : = ( fst term ) ∗ ( eval_iterm ( snd term ) theta ) .

Fixpoint eval_linsum ts theta : =

match ts with

| nil ⇒ 0

| cons t ts ' ⇒ ( eval_linterm t theta ) + ( eval_linsum ts ' theta )

end .

Definition eval_lincst lincon ( theta : asg ) : =

( eval_linsum ( fst lincon ) theta ) ≤ ( snd lincon ) .

We then finish the definition by creating an instance of the Constraint type:

Definition LinearCst : = mkConstraint lin_leq eval_lincst .

2

For the purposes of the end-to-end certified checker, we assume a closed set of supported

constraint classes. For the moment, we consider primitive arithmetic constraints, disjunctions of

atomic constraints (i.e. clauses), plus linear, element and cumulative constraints.

Inductive cst : =

| Arith : ArithCst . ( T ) → cst

| Clause : ClauseCst . ( T ) → cst

| Lin : LinearCst . ( T ) → cst

| Elem : ElemCst . ( T ) → cst

| Cumul : CumulCst . ( T ) → cst .
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Definition eval_cst c theta : = match c with

| Arith x ⇒ ArithCst . ( eval ) x theta

| Clause x ⇒ ClauseCst . ( eval ) x theta

| Lin x ⇒ LinearCst . ( eval ) x theta

| Elem x ⇒ ElemCst . ( eval ) x theta

| Cumul x ⇒ CumulCst . ( eval ) x theta

end .

A model of a problem, then, consists of a set of initial bounds and a set of constraints. For the

purposes of certifying inferences it shall be useful to associate each constraint with an identifier,

which will be used to identify the source of a given inference.

Definition model : = ( list model_bound ) ∗ ( list ( Z ∗ cst ) ) .

Fixpoint eval_csts cs theta : =

match cs with

| nil ⇒ True

| cons ( id , c ) cs ' ⇒ eval_cst c theta ∧ eval_csts cs ' theta

end .

Definition eval_model m theta : =

( eval_bounds ( fst m ) theta ) ∧ ( eval_csts ( snd m ) theta ) .

For efficiency during checking, this list of (id, constraint) pairs is transformed (by function

cst_map_of_csts) into a semantically equivalent finite map (under an interpretation function

eval_cst_map).

4 ARCHITECTURE OF A FINITE-DOMAIN OPTIMALITY CHECKER
For some assignment 𝜃 to be an optimal solution to 𝑃 (with objective 𝑧), two properties must hold:

𝜃 must be a solution to 𝑃 , and every other solution to 𝑃 must be no better than 𝜃 .

Checking the solution simply requires evaluating the model under the proposed solution. The

latter condition requires showing that the refined problem 𝑃∧⟨𝑜 < 𝜃 (𝑜)⟩ is unsatisfiable. To this end,
we can equip our solver with lightweight instrumentation, and verify its reasoning step-by-step.

Lazy clause generation based CP solvers apply two forms of reasoning. When reaching a state

where all the variables are fixed (the current domain is a singleton domain), they use the fact

that all propagators are checking to infer that the corresponding assignment is a solution. More

commonly they use propagators to infer new atomic constraints from existing domain information,

including discovering unsatisfiability. We can verify unsatisfiability by logging only propagation

and resolution steps. The checker maintains a database of valid inferences; any time it sees a

propagation it verifies that it’s a valid consequence of some constraint, and whenever it sees a

resolution step, it checks that the corresponding inference can be derived from the existing database.

However, this approach quickly runs into practical issues; the clause database grows linearly with

the number of propagations and derivations. We instead include deletion directives, to simulate the

solver’s clause database handling.

Also, upon encountering a propagation, we need to check with each propagator to see if the

given inference is entailed, which is wasted effort – the solver clearly knows which propagator is

active when propagation occurs. We instead have the solver record hint directives to indicate which
propagator to consult. Hints are persistent – all Intro directives following a Hint are assumed

to originate from the identified constraint (until the next Hint).2 This results in the following

formulation for proof steps:

2
Note that Hint and Del are always optional and may be omitted.
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Intro 1 [𝑜 ≤ 2]
Hint 𝑐1
Intro 2 [𝑥1 ≤ 2, 𝑜 ≥ 3]
Intro 3 [𝑥2 ≤ 2, 𝑜 ≥ 3]
Intro 4 [𝑥3 ≤ 2, 𝑜 ≥ 3]
Hint 𝑐2
Intro 5 [𝑥2 ≥ 2, 𝑥1 ≥ 1]
Hint 𝑐3
Intro 6 [𝑥3 ≥ 2, 𝑥1 ≥ 1]
Hint 𝑐1
Intro 7 [𝑥2 ≤ 1, 𝑥3 ≤ 1, 𝑜 ≥ 3]

Resolve 8 [𝑥1 ≥ 1] [7, 6, 5, 1]
Del 𝐶 , 𝐶 ∈ [2, 3, 4, 5, 6, 7]

Hint 𝑐1
Intro 9 [𝑥2 ≤ 1, 𝑥1 ≤ 0, 𝑜 ≥ 3]
Intro 10 [𝑥3 ≤ 1, 𝑥1 ≤ 0, 𝑜 ≥ 3]
Hint 𝑐2
Intro 11 [𝑥2 ≥ 1, 𝑥3 ≥ 2]
Hint 𝑐3
Intro 12 [𝑥3 ≥ 1, 𝑥2 ≥ 2]
Hint 𝑐1
Intro 13 [𝑥1 ≤ 0, 𝑥2 ≤ 0, 𝑥3 ≤ 0, 𝑜 ≥ 3]

Resolve 14 ∅ [13, 12, 11, 10, 9, 8, 1]

Fig. 6. Proof trace generated during Example 2.1. The left column derives the nogood ⟨𝑥 ≥ 1⟩, then the right
column proves unsatisfiability.

Inductive step : =

| Intro : Z → clause → step

| Resolve : Z → clause → list Z → step .

| Hint : Z → step

| Del : Z → step

Example 4.1. Recall the search procedure performed in Example 2.1. The corresponding proof

trace given in Figure 6 (eliding representation of atomic constraints, which we discuss in Section 6):

Observe the mapping between solver and proof steps: each propagation corresponds to an Intro
(and, except at the root level, a corresponding Del) directive; backtracking and backjumping

correspond to Resolve steps. Also note that the fathoming nogood ⟨𝑜 ≤ 2⟩ is also treated as an

axiom – during verification, this will be justified by checking the alleged solution. 2

We check the unsatisfiability proof by starting from an empty clause database (which is trivially

entailed by the model), then checking that each proof step preserves correctness and the empty

clause is derived.

It is straightforward to instrument a LCG solver to output such logs, as propagators must already

explain inferences, and resolution occurs explicitly. For a classical CP solver, the solver needs simply

to log the sequence of branches, propagations and failures – it is a straightforward to re-process

this into the corresponding resolution-based proof.
3

An unsatisfiability proof, then, consists of a sequence of proof steps. The natural representation

here would be list step. However, this would require eagerly loading the complete proof in

memory. The checker avoids this by instead consuming a lazily generated stream of proof steps.

The following sections describe the verification of solutions, resolution steps and propagation

steps.

5 CHECKING SOLUTIONS
Checking an alleged solution 𝜃 is typically straightforward, and amounts to evaluating the specifi-

cation of each constraint under 𝜃 . Note, however, that our asg type assigns values to all variables,
whereas the solver will give values only to variables appearing in the problem. To address this,

3
This transformation step need not be certified – verification only requires some correct proof be provided.
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we give absent variables an arbitrary default value (in our case, 0); since absent variables should

be totally unconstrained, this should not cause any problems (unless the original specification or

solver output is malformed).

Similar to the definition of the Constraint type, we can introduce the notion of a SolCheck
type, which associates a constraint with a solution checker and corresponding proof of correctness.

Given an appropriate SolCheck instance for each primitive constraint, defining the overall solution

checker is straightforward.

(* Defining the type of solution checkers (in general ). *)

Record SolCheck ( C : Constraint ) : = mkSolCheck

{

sol_check : C . ( T ) → asg → bool ;

sol_check_valid : forall ( x : C . ( T ) ) ( sol : asg ) ,

( sol_check x sol = true ) → C . ( eval ) x sol

} .

Given SolCheck instances for each class of constraints, we can now define a checker for an

individual constraint, and for sets of constraints. The definitions of the solution checkers are elided

for brevity. As an example LinearSolCheck is defined in Example 5.1 below.

Definition check_cst_sol ( c : cst ) ( sol : asg ) : =

match c with

| Arith x ⇒ sol_check ArithCst ArithSolCheck x sol

| Clause x ⇒ sol_check ClauseCst ClauseSolCheck x sol

| Lin x ⇒ sol_check LinearCst LinearSolCheck x sol

| Elem x ⇒ sol_check ElemCst ElemSolCheck x sol

| Cumul x ⇒ sol_check CumulCst CumulSolCheck x sol

end .

Fixpoint check_csts_sol ( cs : csts ) ( sol : asg ) : =

match cs with

| nil ⇒ true

| cons ( _ , c ) cs ' ⇒ andb ( check_cst_sol c sol ) ( check_csts_sol cs ' sol )

end .

With this, we may now define the overall solution checker.

(* A solution is valid if it respects initial variable domains , and

* satisfies all constraints. *)

Definition certify_solution ( m : model ) ( sol : asg ) : =

match m with

| ( bs , cs ) ⇒ andb ( evalb_bounds bs sol ) ( check_csts_sol cs sol )

end .

Defining solutions checkers for individual constraints is typically straightforward. In the absence

of quantifiers, a solution checker can often be derived directly from the specification by replacing

any non-computational propositions with the corresponding Boolean computations.

Example 5.1. Recall the definition of linear given in Example 3.1. The solution checker simply

replaces ≤ (which is in Prop) with the Boolean equivalent Z.leb.
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trace := header step★

header := header-len ident★

step := hint-tag constraint-id
| del-tag clause-id
| clause-id num-atoms atom★ num-ants clause-id★

atom := atom-tag atom-kind atom-val

Fig. 7. The machine-readable a-dres log format.

Definition check_lincst_sol lincst sol : =

Z . leb ( eval_linsum ( fst lincon ) sol ) ( snd lincon ) .

Theorem check_lincon_sol_valid : forall lincon theta ,

( check_lincon_sol lincon theta = true ) → eval_lincon lincon theta .

Proof . (* ... *) Qed .

Definition LinearSolCheck : =

mkSolCheck LinearCst check_lincst_sol check_lincst_sol_valid .

2

Even for quantified properties, defining a solution checker is usually straightforward. For cu-

mulative, the checker checks that resource limits are not exceeded over the makespan; then the

correctness proof additionally establishes that resource limits are never violated outside the plan

duration.

6 ATOMIC RESOLUTION PROOFS
In this section we consider the verification of resolution steps in isolation. As discussed in Section 2,

lazy clause generation solvers maintain (implicitly or explicitly) a dual representation of the problem:

a direct representation of finite-domain variable domains, and the induced Boolean structure of

atomic constraints.

One approach to recording the unsatisfiability/optimality proof, then, is to record the proof

directly on the Boolean structure (using existing formalisms for resolution or clausal proofs). This

approach is appealing in solvers which represent the Boolean structure explicitly. But for solvers (e.g.

CPX [22]) where this structure is implicit, requiring a Boolean trace is troublesome: first, the solver

is required to maintain a mapping between atoms and unique identifiers. Second, relationships

between atoms (i.e. transitivity) must be introduced as axioms and, for resolution traces, included

explicitly as antecedents.

Instead, we prefer to express derivation steps directly in terms of atomic constraints. Thus we

consider atomic proof traces, where clauses contain atomic constraints rather than literals. This

permits more expressive proofs, and avoids both problems discussed above. However, we shall see

in Section 6.2 that it also yields complications for proof checking. We define an atomic proof trace

format a-dres in the next subsection.

6.1 Machine-readable a-dres representation
Themachine-readable version of the a-dres log format is given in Figure 7. Each atom is packed into

two 32-bit words. The atom-tag consists of a 30-bit variable index, plus a 2-bit flag indicating the

atom relation, and atom-val contains the corresponding constant. The header maps variable indices

to (string) identifiers – the header may be skipped entirely when checking only the refutation, but

is necessary to establish correspondence with the model.
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In the main body of the proof, the first word distinguishes the directive kind, using ‘special’

clause identifiers to denote hint and deletion. For introduction and resolution steps, this is followed

by a sequence of atoms, and then of antecedents; for hint and deletion directives, it is followed by

the appropriate constraint or clause identifier respectively.

6.2 Checking atomic resolution proofs
In this section, we describe a procedure for checking refutations over atomic constraints. First,

however, we must give the semantics of atomic constraints and clauses.

As in the Boolean case, we can construct either resolution- or clausal-style proofs.

However, resolution of atoms introduces a problem for tracecheck-style validation techniques:

as a pair of atoms may be jointly inconsistent but not complementary, a given set of antecedents

may not uniquely identify a (minimal) resolvent.

Example 6.1. Consider the clauses𝐶 = {⟨𝑥 ≥ 5⟩∨⟨𝑦 ≥ 5⟩ , ⟨𝑥 ≤ −5⟩∨⟨𝑦 ≤ −5⟩}. Any assignment

satisfying ⟨𝑥 ≥ 5⟩ necessarily falsifies ⟨𝑥 ≤ −5⟩, so we can infer ⟨𝑦 ≥ 5⟩ ∨ ⟨𝑦 ≤ −5⟩.
By the same argument, we could also infer ⟨𝑥 ≥ 5⟩ ∨ ⟨𝑥 ≤ −5⟩. 2.

This problem was observed in [48], and handled by breaking up long resolutions chains, and

explicitly recording the pivot variable at each step. However, adopting a RUP-style approach (but

using atomic constraint semantics) avoids this problem entirely.

Example 6.2. Consider the clauses from Example 6.1, and checking inference ⟨𝑦 ≥ 5⟩ ∨ ⟨𝑦 ≤ −5⟩.
To check this via RUP, we start from revised clauses:

{⟨𝑦 < 5⟩ , ⟨𝑦 > −5⟩ , ⟨𝑥 ≥ 5⟩ ∨ ⟨𝑦 ≥ 5⟩ , ⟨𝑥 ≤ −5⟩ ∨ ⟨𝑦 ≤ −5⟩}.

From the unit clauses, we conclude 𝑦 ∈ [−4, 4]. Since ⟨𝑦 ≥ 5⟩ is false, ⟨𝑥 ≥ 5⟩ propagates. But then
⟨𝑥 ≤ −5⟩ and ⟨𝑦 ≤ −5⟩ are both false, so the last clause is conflicting. 2

This makes a RUP-based checker strategy appealing. However, the cost of checking a proof step

via RUP grows roughly linearly with the clause database – a direct implementation of this approach

proved unacceptably slow.
4

6.3 Building a fast, robust checker
We instead adopt a similar strategy to that of grit [14] – we check alleged derived clauses using

RUP, but restrict propagation to a set of specified antecedents (though we do not require antecedents

to be ordered). This preserves the performance of a resolution approach, while handling resolution

steps involving non-complementary atomic constraints (plus gracefully handling other issues such

as repeated literals, non-linear resolution chains and redundant antecedents). Note however that the

presence of inconsistent but not complementary atoms prevents us from adopting the set-difference

based checking algorithm of grit.
An additional complication is the role of axioms. In normal SAT proofs, the set of initial claus-

es/axioms is usually quite compact (relative to the proof size). In a CP/LCG solver, the number of

propagations typically far outstrips the number of resolution steps. As each propagation yields

an axiom, the number of “initial” clauses becomes enormous – it isn’t practical to eagerly load

the axioms into memory, as is usual for SAT proof checkers. However, these clauses are largely

4
We also implemented a backwards RUP checker for atomic traces. Performance was not substantially improved, as the

majority of resolution steps needed to be checked. This may be partly due to repeated introduction/deletion of axioms,

which interferes with proof-shrinking strategies described in [27].
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idres(𝑃 )
𝐹 := ∅
for 𝑝 ∈ 𝑃

match 𝑝 with

intro 𝑐 ⇒ 𝑅 → 𝑙 : 𝐹 := 𝐹 ∪ {𝑅 → 𝑙 }
del 𝐸: 𝐹 := 𝐹 \ {𝐸}
infer𝐶𝑠 ⇒ 𝐸:

if(𝐶𝑠 ⊈ 𝐹 ) return INVALID
𝐹 ′

:=𝐶𝑠 ∪ {¬𝑙 | 𝑙 ∈ 𝐸}
(status, _) := ACP (𝐹 ′ )
if(status = UNSAT) 𝐹 := 𝐹 ∪ {𝐸}
else return INVALID

if (∅ ∈ 𝐹 ) return VALID
else return INCOMPLETE

Fig. 8. Forward-checking for resolution proofs with axiom introduction and deletion. Here, ACP denotes
unit propagation over clauses of atomic constraints.

ephemeral, and disappear upon backtracking. As such, we also introduce Intro directives to al-

low delayed introduction of axioms. Combining Intro and Del we can mimic the solver’s clause

database handling, thus avoiding the memory problems mentioned above.

Pseudo-code for a stand alone finite-domain resolution checker using this approach is shown in

Figure 8. In the following sections, we will construct a certified resolution checker following this

approach.

6.4 Certifying a finite-domain resolution checker
Section 6.3 described an efficient and scalable, but uncertified, FD resolution checker. We now face

the task of building a certified (but still performant) implementation.

As the refutation procedure operates by manipulating systems of atomic constraints, we must

first specify the semantics of atomic constraints and clauses. The definition of atomic constraints is

conventional: type aprop of atomic propositions, and atom of signed atomic propositions, and their

semantics.

(* The type of atomic propositions. *)

Inductive aprop : Type : =

| ILeq : ivar → Z → aprop

| IEq : ivar → Z → aprop

| CFalse : aprop .

(* A literal/atomic constraint is a possibly -negated proposition. *)

Inductive atom : Type : =

| Pos : aprop → atom

| Neg : aprop → atom .

(* Define the interpretation of propositions ... *)

Definition eval_aprop ( p : aprop ) ( theta : asg ) : =

match p with

| ILeq iv k ⇒ ( theta iv ) ≤ k

| IEq iv k ⇒ ( theta iv ) = k

| CFalse ⇒ False
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end .

(* ...and atoms. *)

Definition eval_atom ( a : atom ) ( theta : asg ) : =

match a with

| Pos ap ⇒ eval_aprop ap theta

| Neg ap ⇒ ∼ ( eval_aprop ap theta )

end .

Finally, we need to give the semantics of clauses, and of products (which arise when we negate a

clause).

(* A clause is a disjunction of atoms , so is true iff

* some member is true. *)

Definition clause : = list atom .

Fixpoint eval_clause

( cl : clause ) ( theta : asg ) : Prop : =

match ls with

| nil ⇒ False

| cons a cl ' ⇒ ( eval_atom a theta ) ∨ ( eval_clause cl ' theta )

end .

(* Conversely , a product term is true iff all its atoms are true. *)

Definition prod : = list atom .

Fixpoint eval_prod ( pr : prod ) ( theta : asg ) : Prop : =

match pr with

| nil ⇒ True

| cons p pr ' ⇒ ( eval_atom p theta ) ∧ ( eval_prod pr ' theta )

end .

Definition neg_atom ( at : atom ) : =

match at with

| Pos x ⇒ Neg x

| Neg x ⇒ Pos x

end .

Definition neg_clause cl : = List . map neg_atom cl .

Validating an inference 𝐶𝑠 ⇒ 𝐸 requires us to compute the domain imposed by ¬𝐸, and progres-

sively tighten it using propagation information extracted from 𝐶𝑠 . An inference may be deemed

valid if a sound sequence of propagation steps eventually infers an empty domain.

Definition resolvable ( cl : clause ) ( ants : list clause ) : =

let ds : = domain_of_prod ( neg_clause cl ) in

domain_unsatb ( unit_prop ds ants ) .

We shall return to the handling of domains (i.e. domain_of_prod, domain_unsatb) in Section 6.4.1,

and to the definition of unit_prop in Section 6.4.2. The remainder of the resolution checker is

relatively straightforward. We store the clause database as mapping from identifiers to clauses.

The representation of a proof step is similar to that of [31]: each step is an axiom introduction

Intro, a clause deletion Del, or a resolution step Resolve. The Hint directive will be discussed in

Section 7.1.
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A proof may naturally be represented as a list of steps. However, this would result in the entire

proof being constructed in memory, which is not feasible. Instead, we represent the proof lazily

by a thunk which is evaluated to yield the next step. To ensure termination, we must also give an

upper bound on the number of steps to be evaluated.

We end up with the following definition:

Function apply_steps ( ds : domain ) ( s : state ) ( lim : Z )

( T : Type ) ( x : T ) ( next : T → option ( step ∗ T ) ) { measure Zabs_nat lim } : =

if Z . leb lim 0 then

s

else match next x with

| None ⇒ s

| Some ( d , x ' ) ⇒
apply_steps bs ( apply_step bs s d ) ( Zpred lim ) T x ' next

end .

(* Proof of well -foundedness *)

Defined .

Definition certify_unsat ( m : model ) ( lim : Z )

( T : Type ) ( x : T ) ( next : T → option ( step ∗ T ) ) : =

state_unsat ( apply_steps ( domain_of_bounds ( fst m ) )

( empty_state m ) lim T x next ) .

We shall return to the representation and manipulation of states and steps in Section 7.1.

Where the proof is provided as a list, we can specialize certify_unsat by instantiating next
and lim.

Definition list_next ss : = match ss with

| nil ⇒ None

| cons s ss ' ⇒ Some ( s , ss ' )

end .

Definition certify_unsat_list m ss : =

certify_unsat m ( Z_of_nat ( List . length ss ) ) ( list step ) ss list_next .

Before filling in the definitions of certify_unsat and certify_unsat_stream, we must con-

sider the representation of variable domains.

6.4.1 Intervals and Variable Domains. To determine whether a clause is unit, we must check

which atomic constraints are unsatisfiable under the current domain. In a RUP/RAT-based SAT

proof checker, the domain (or partial assignment) is stored as an array mapping variables to {0, 1,⊤}
(where ⊤ denotes an un-fixed value).

In a finite domain context, atomic constraints restrict variable domains; either by changing the

upper/lower bounds, or punching individual holes in the domain. We then represent each variable

domain as a pair (r, h) of a range r and a finite set of holes h. A domain is a mapping from

variables to variable domains. This allows us to compactly represent an arbitrary conjunction of

atomic constraints.

In the following, zset is the type of finite sets of integers, and zmap T is the type of finite

mappings from integers to T. They are internally implemented as balanced trees; we omit the

scaffolding for this, as it is long, painful and uninteresting.

Inductive bound : =
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| Unbounded : bound

| Bounded : Z → bound .

Definition range : = ( bound ∗ bound ) .

Definition vardom : Type : = ( range ∗ zset ) .

We can then define interpretations of bounds, ranges and variable domains.

(* Testing membership with respect to lower and upper bounds *)

Definition sat_lb ( b : bound ) ( k : Z ) : =

match b with

| Bounded l ⇒ l ≤ k

| _ ⇒ True

end .

Definition sat_ub ( b : bound ) ( k : Z ) : =

match b with

| Bounded u ⇒ k ≤ u

| _ ⇒ True

end .

Definition in_range ( r : range ) ( k : Z ) : =

sat_lb ( fst r ) k ∧ sat_ub ( snd r ) k .

Definition in_dom ( d : vardom ) ( k : Z ) : =

in_range ( fst d ) k ∧ ∼in_set ( snd d ) k .

(* Constants for free and inconsistent variable domains *)

Definition range_unconstrained : = ( Unbounded , Unbounded ) .

Definition range_contra : = ( Bounded 1 , Bounded 0 ) .

Definition dom_unconstrained : = ( range_unconstrained , ZMaps . empty ) .

Definition dom_contra : = ( range_contra , ZMaps . empty ) .

Note that, for for variable domain ([l, u], h), we do not require 𝑙 ≤ 𝑢, nor do we require

ℎ ⊆ [𝑙, 𝑢]. The definition of in_dom will behave correctly regardless.

A domain is then either the inconsistent domain (which we denote with None) or a mapping

from variables to variable domains. A domain 𝐷 is consistent with an assignment 𝜃 (equivalently, 𝜃

satisfies 𝐷) iff 𝜃 (𝑥) ∈ 𝐷 (𝑥), for every 𝑥 .
Definition domain : Type : = option ( zmap vardom ) .

(* Inspecting individual domains *)

Definition var_dom ( ds : domain ) ( x : ivar ) : =

match ds with

| None ⇒ dom_contra

| Some m ⇒
match ZMaps . find x m with

| None ⇒ dom_unconstrained

| Some dom ⇒ dom

end

end .
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(* Check whether [x = k] is consistent with domain ds. *)

Definition sat_domain ( ds : domain ) ( x : ivar ) ( k : Z ) : =

in_dom ( var_dom ds x ) k .

(* Check if [x = theta(x)] is consistent , for all x. *)

Definition eval_domain ( ds : domain ) ( theta : asg ) : = forall x : ivar ,

sat_domain ds x ( theta x ) .

(* Testing emptiness , which we needed checking resolution *)

Definition domain_unsatb ( ds : domain ) : =

match ds with

| None ⇒ true

| _ ⇒ false

end .

Observe that all variables not appearing in the mapping are treated as unconstrained. Also,

eval_domain is not directly executable, as it is quantified over all variables.
Having established a representation of domains, we then model the effect of extending domains

with additional variable domains or atomic constraints. The omitted function vardom_meet com-

putes the intersection of two variable domains, and vardom_unsatb returns true iff the given

variable domain ((l, u), h) is empty, by testing whether [l, u] ⊆ h.

(* Tighten the domain of variable x *)

Definition apply_vardom ( ds : domain ) x d : =

match ds with

| None ⇒ None

| Some s ⇒
(* Find the current domain of x,

* and intersect it with d *)

let d0 : = var_dom ds x in

let dM : = vardom_meet d0 d in

(* Now re-check feasibility and update. *)

if vardom_unsatb dM then

None

else

Some ( ZMaps . add x dM s )

end .

To apply an atomic constraint 𝑎 to a domain, we convert the values consistent with 𝑎 to a variable

domain, which we conjoin with the current domain of the relevant variable.

Definition domain_with_atom ( ds : domain ) ( a : atom ) : =

match ds with

| None ⇒ None

| Some s ⇒
match a with

| Pos CFalse ⇒ None

| Neg CFalse ⇒ Some s

| Pos ( ILeq x k ) ⇒ apply_vardom ds x ( dom_le k )

| Neg ( ILeq x k ) ⇒ apply_vardom ds x ( dom_ge ( Z . succ k ) )
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| Pos ( IEq x k ) ⇒ apply_vardom ds x ( dom_const k )

| Neg ( IEq x k ) ⇒ apply_vardom ds x ( dom_neq k )

end

end .

Later, we will also need to approximate the results of computations under an induced domain.

We can do this with a fairly straightforward implementation of integer interval arithmetic (together

with corresponding soundness proofs).
5

(* Extract the interval component of a domain. *)

Definition var_range ds x : = fst ( var_dom ds x ) .

(* For each operation of interest , we need both an implementation

* and a proof of soundness. *)

Definition range_approx f g : = forall x y k k ' ,

in_range x k → in_range y k ' → in_range ( g x y ) ( f k k ' ) .

Definition range_plus x y : = (* ... *) .

Definition range_mul x y : = (* ... *) .

(* ... *)

Lemma range_plus_sound : range_approx Z . add range_plus .

Lemma range_mul_sound : range_approx Z . mul range_mul .

(* ... *)

Note that we are discarding holes in domains, so these computations are merely sound approxima-

tions (unlike the previous operations on domains, which are precise). If we were to verify inferences

made by domain-consistent propagators for non-convex constraints, an exact representation (such

as sets of disjoint intervals) would be required.

6.4.2 Guided Reverse Unit Propagation. An efficient implementation of the idres algorithm

requires imperative features (most critically, watched literals) which are difficult to achieve in a

functional framework.

However, we know that if a set of clauses 𝐶 is conflicting under unit propagation, there is some

order 𝑐1, . . . , 𝑐𝑘 of𝐶 (the order in which the clauses fired under unit propagation) such that applying

unit propagation to each 𝑐𝑖 in order (recording only the set of false literals) is sufficient to infer ⊥.
If we, like grit, require antecedents to be provided in the order of unit propagation, we can make

a single scan over the antecedents, verifying that each clause is unit and collecting the imposed

domains. Rather than requiring proofs to be provided in this order, we adopt a compromise: the

checker makes up to 𝑘 linear sweeps over the set of antecedents, collecting simplified clauses

and tightening the induced domain. If the antecedents are provided in order of propagation, this

procedure will terminate after a single pass. Otherwise, it will run in O(𝛼 (𝑘 +∑
𝑖 |𝑐𝑖 |)) time (where

𝛼 is the cost of testing atom unsatisfiability).

The key function in this construction is atom_unsatb ds a, which checks whether atomic con-

straint a is unsatisfiable under domain ds. It could be defined as domain_unsatb (domain_with_atom
ds a), but in practice is implemented directly. From this, we build a function which tests if the

(suffix of) a clause is unsatisfiable, discarding any unsatisfiable atoms we observe while doing so.

Fixpoint clause_unsat ds cl : =

match cl with

| nil ⇒ None

5
Constructing certified, precise implementations of integer interval multiplication and division is somewhat involved

(particularly as automation of non-linear reasoning is rather limited) but not conceptually difficult.
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| cons l cl ' ⇒
if atom_unsatb ds a then

clause_unsat ds cl '

else

Some ( cons a cl ' )

end .

From here, we implement unit-propagation of a single clause. We scan the clause until we reach

the first satisfiable literal. If none exists, we have detected a conflict. Otherwise, we then search for

a second satisfiable literal. If none is found, the clause is unit, so we return an updated domain.

Otherwise, we return the clause (having eliminated any unsatisfiable literals we have observed).

(* Representing the possible results of propagation *)

Inductive prop_result : =

| Unit : domain → prop_result

| Simp : clause → prop_result

| Conflict : prop_result .

(* Search for a non -false atom ,

* discarding any false atoms observed. *)

Fixpoint prop_clause ds cl : =

match cl with

(* If all atoms are false , the clause is conflicting *)

| nil ⇒ Conflict

| cons a cl ' ⇒
if atom_unsatb ds a then

prop_clause ds cl '

else

(* Found a possibly -true atom *)

match clause_unsat ds cl ' with

(* If remaining atoms are unsat , propagate

* a and discard the clause *)

| None ⇒ Unit ( domain_with_atom ds a )

(* Otherwise , return the simplified clause *)

| Some cl ' ' ⇒ Simp ( cons a cl ' ' )

end

end .

Thus equipped, we extend the single-clause prop_clause to a sweep over a set of clauses, and

then to multiple sweeps.

(* Scan remaining antecedents , returning an updated

* domain and simplified clauses. *)

Fixpoint unit_prop_step ds cs : =

match cs with

| nil ⇒ Some ( ds , nil )

| cons cl cs ' ⇒
match prop_clause ds cl with

| Conflict ⇒ None

| Unit ds ' ⇒ unit_prop_step ds ' cs '
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| Simp cl ' ⇒
match unit_prop_step ds cs ' with

| None ⇒ None

| Some ( ds ' , cs ' ' ) ⇒ Some ( ds ' , cons cl ' cs ' ' )

end

end

end .

(* Perform at most k passes of unit_prop_step *)

Fixpoint unit_prop_rep ds k cs : =

match k with

| O ⇒ ds

| ( S k ' ) ⇒
match unit_prop_step ds cs with

| None ⇒ None

| Some ( ds ' , cs ' ) ⇒ unit_prop_rep ds ' k ' cs '

end

end .

(* Since each pass must eliminate at least one clause ,

* at most (List.length cs) passes are necessary. *)

Definition unit_prop ( ds : domain ) ( cs : list clause ) : =

unit_prop_rep ds ( List . length cs ) cs .

This fills in the final missing pieces from our definition of resolvable, given in Section 6.4:

Definition resolvable ( cl : clause ) ( ants : list clause ) : =

let ds : = domain_of_prod ( neg_clause cl ) in

domain_unsatb ( unit_prop ds ants ) .

When applying a resolution proof step we add the new clause, but only if it passes resolvable.
Since proofs steps record antecedents as clause ids, we also need to turn these ids into the corre-

sponding constraints.

Definition apply_resolution ( s : state ) ( id : Z ) ( cl : clause ) ( ants : list Z ) : =

if resolvable cl ( get_clauses s ants ) then

add_clause s id cl

else

s .

Theorem resolvable_valid : forall cl ants ,

resolvable cl ants = true → forall theta ,

eval_clauses ants theta → eval_clause cl theta .

The proof for resolvable_valid first establishes that prop_clause preserves satisfiability (that is,
any assignment satisfying both ds and cl also satisfies prop_clause ds cl), then uses this to show

that resolvable returns true only whenever domain_of_prod (neg_clause cl) is inconsistent

with the clause database.
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6.5 Semantic forward trimming
The proofs generated by LCG solvers are frequently unnecessarily large. If the solver logs inferences

eagerly (as discussed in Section 2) many of the logged inferences can be irrelevant to the proof. As

discussed in Section 6, some LCG solvers (including chuffed) maintain the underlying Boolean

structure explicitly. The proof traces generated by such solvers will (typically) contain all the

extraneous axioms we adopted a-dres proofs to avoid.

Example 6.3. Recall the proof generated for Example 2.1, shown in Figure 6. Clauses 2–4 are

introduced, then deleted, without ever appearing in a Resolve step. These clauses may be omitted

without affecting the correctness of the proof.

In a solver which uses a Boolean (as opposed to semantic) view of resolution, the proof will be

further bloated with additional axioms:

Intro . . . [𝑜 ≤ 0, 𝑜 ≥ 1]
Intro . . . [𝑜 ≤ 1, 𝑜 ≥ 2]
Intro . . . [𝑜 ≤ 2, 𝑜 ≥ 3]
Intro . . . [𝑥 ≤ 0, 𝑥 ≥ 1]

. . .

Intro . . . [𝑜 ≤ 1, 𝑜 ≠ 1]
Intro . . . [𝑜 ≥ 1, 𝑜 ≠ 1]
Intro . . . [𝑜 = 1, 𝑜 ≤ 0, 𝑜 ≥ 2]

. . .

These axioms degrade checker performance in two ways: they are always present in the solver, so

increase memory overhead, and appear frequently as antecedents, increasing the cost of performing

RUP. 2

However, when simplifying one must be careful to preserve equivalence under unit propagation:

Example 6.4. Consider the clause 𝑐 : ⟨𝑥 ≤ 0⟩ ∨ ⟨𝑥 ≥ 3⟩ ∨ 𝑦 ≥ 0.

The following clauses are both semantic consequences of 𝑐:

𝑐𝑎 : ⟨𝑥 ≠ 1⟩ ∨ ⟨𝑦 ≥ 0⟩
𝑐𝑏 : ⟨𝑥 ≠ 2⟩ ∨ ⟨𝑦 ≥ 0⟩ .

However, replacing occurrences of 𝑐𝑎 and 𝑐𝑏 with 𝑐 does not preserve equivalence under RUP.

Consider the additional clause 𝑑 ≡ ⟨𝑥 = 1⟩ ∨ ⟨𝑥 = 2⟩ ∨ ⟨𝑦 ≥ 0⟩. Given 𝑐 ∧ 𝑑 , we cannot conclude

⟨𝑦 ≥ 0⟩ by RUP, as neither 𝑐 nor 𝑑 becomes unit. However, ⟨𝑦 ≥ 0⟩ can be derived by RUP from

𝑐𝑎 ∧ 𝑐𝑏 ∧ 𝑑 . 2

Given some inference {𝑅′} ⇒ 𝑅, we can safely replace occurrences of 𝑅 with 𝑅′
iff, whenever

𝑅 propagates, 𝑅′
propagates at least as strongly. We can ensure this by identifying an injective

mapping 𝜋 from atoms of 𝑅′
onto atoms of 𝑅, such that for 𝑎 ∈ 𝑅′

, 𝑎 → 𝜋 (𝑎).
Pseudo-code for semantic proof trimming is given in Figure 9. It makes use of several book-

keeping structures: 𝑖𝑑 maps clauses to identifiers, and 𝐶𝑠 tracks details of clauses: the atoms,

(possibly) origin constraint and antecedents. The remaining structures are used to determine

when entries must be printed: 𝑜𝑐𝑐𝑢𝑟𝑠 (𝑐𝑖𝑑 ) tracks how many clauses map to identifier 𝑐𝑖𝑑 (through

subsumption), 𝑢𝑠𝑒𝑠 (𝑐𝑖𝑑 ) identifies those clauses having 𝑐 as an antecedent, 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 tracks which

clauses have already been printed, and 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 is used to batch deletions. sem-trim() performs

several forms of simplification. Introduction and use of tautologies is eliminated, and any clauses

which are (now) subsumed by their single antecedent are replaced by that antecedent. The procedure

is-subsumed(E, R) tests for subsumption by attempting to build an injective mapping from 𝑅 onto

𝐸. Otherwise, the clauses are then simplified. The procedures is-tauto(E) and simplify(E) re-use
the domain-manipulation mechanisms from Section 6.3. is-tauto(E) checks whether the domain

induced by ¬𝐸 is inconsistent. simplify(E) similarly computes the domain induced by ¬𝐸, but
then reads the corresponding simplified clause back out. This handles atom subsumption (e.g.

⟨𝑥 ≤ 4⟩ ∨ ⟨𝑥 ≤ 6⟩ ↦→ ⟨𝑥 ≤ 6⟩) and bounds strengthening (e.g. ⟨𝑥 ≤ 0⟩ ∨ ⟨𝑥 = 1⟩ ↦→ ⟨𝑥 ≤ 1⟩).
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sem-trim(P, [𝑠1, . . . , 𝑠𝑚])

𝑖𝑑 := ∅
𝐶𝑠 := ∅
𝑜𝑐𝑐𝑢𝑟𝑠 := ∅
uses := ∅
𝑒𝑚𝑖𝑡𝑡𝑒𝑑 := ∅
𝑑𝑒𝑙𝑒𝑡𝑒𝑑 := ∅
for(𝑠 ∈ 𝑠1, . . . , 𝑠𝑚 )

match 𝑠 with

intro 𝑐 ⇒ 𝐸:

purge-removed()
if(¬is-tauto(𝐸 ))

add-clause(simplify(𝐸 ), 𝑐, ∅))
infer 𝑅𝑠 ⇒ 𝐸:

purge-removed()
𝑅𝑠′ := {id (𝑟 ) | 𝑟 ∈ 𝑅𝑠, 𝑟 ∈ id}
if(𝑅𝑠′ = ∅) continue
if(𝑅𝑠′ = {𝑅𝑖𝑑 })

% Potential alias

(𝑅, _, _) :=𝐶𝑠 (𝑅𝑖𝑑 )
if is-subsumed(E, R)

𝑖𝑑 (𝐸 ) := 𝑅𝑖𝑑
𝑜𝑐𝑐𝑢𝑟𝑠 (𝑅𝑖𝑑 ) := 𝑜𝑐𝑐𝑢𝑟𝑠 (𝑅𝑖𝑑 ) + 1

continue
add-clause(simplify(𝑙 ), nil, 𝑅𝑠′)

del 𝐸:
if 𝐸 ∉ 𝑖𝑑 continue
𝐸𝑖𝑑 := 𝑖𝑑 (𝐸 )
𝑖𝑑 := 𝑖𝑑 − {𝐸}
𝑜𝑐𝑐𝑢𝑟𝑠 (𝐸𝑖𝑑 ) := 𝑜𝑐𝑐𝑢𝑟𝑠 (𝐸𝑖𝑑 ) − 1

if(𝑜𝑐𝑐𝑢𝑟𝑠 (𝐸𝑖𝑑 ) = 0)

𝑑𝑒𝑙𝑒𝑡𝑒𝑑 := 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 ∪ {𝐸𝑖𝑑 }

add-clause(𝐸, 𝑐, 𝑅)
if (𝐸 ∈ 𝑖𝑑)

𝐸𝑖𝑑 := 𝑖𝑑 (𝐸 )
𝑜𝑐𝑐𝑢𝑟𝑠 (𝐸𝑖𝑑 ) := 𝑜𝑐𝑐𝑢𝑟𝑠 (𝐸𝑖𝑑 ) + 1

return 𝐸𝑖𝑑
𝐸𝑖𝑑 := fresh-id( )
𝐶𝑠 (𝐸𝑖𝑑 ) := (𝐸, 𝑐, 𝑅)
𝑖𝑑 (𝐸 ) := 𝐸𝑖𝑑 ; 𝑜𝑐𝑐𝑢𝑟𝑠 (𝐸𝑖𝑑 ) := 1

𝑢𝑠𝑒𝑠 (𝐸𝑖𝑑 ) := ∅
for(𝑟 ∈ 𝑅)

𝑢𝑠𝑒𝑠 (𝑟 ) := 𝑢𝑠𝑒𝑠 (𝑟 ) ∪ {𝐸𝑖𝑑 }

purge-removed()
% Remove use of antecedents.

for(𝑑 ∈ 𝑑𝑒𝑙𝑒𝑡𝑒𝑑)

(_, _, 𝑅) :=𝐶𝑠 (𝑑 )
for(𝑐 ∈ 𝑅)

uses (𝑐 ) := uses (𝑐 ) − {𝑑 }
% Emit clauses which depend on

% the to-be-removed clause.

for(𝑑 ∈ 𝑑𝑒𝑙𝑒𝑡𝑒𝑑)

for (𝑝 ∈ 𝑢𝑠𝑒𝑠 (𝑑 )) emit-clause(𝑝)
if 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 (𝑑 )

print(del 𝑑)
𝐶𝑠 :=𝐶𝑠 − 𝑑𝑒𝑙𝑒𝑡𝑒𝑑

𝑜𝑐𝑐𝑢𝑟𝑠 := 𝑜𝑐𝑐𝑢𝑟𝑠 − 𝑑𝑒𝑙𝑒𝑡𝑒𝑑

𝑢𝑠𝑒𝑠 := 𝑢𝑠𝑒𝑠 − 𝑑𝑒𝑙𝑒𝑡𝑒𝑑

𝑒𝑚𝑖𝑡𝑡𝑒𝑑 := 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 − 𝑑𝑒𝑙𝑒𝑡𝑒𝑑

emit-clause(𝐸𝑖𝑑 )
if(𝑒𝑚𝑖𝑡𝑡𝑒𝑑 (𝐸𝑖𝑑 )) return
𝑒𝑚𝑖𝑡𝑡𝑒𝑑 (𝐸𝑖𝑑 ) := true
(𝐸, 𝑐, 𝑅) :=𝐶𝑠 (𝐸𝑖𝑑 )
if(𝑅 = ∅)

print(intro 𝑐 ⇒ 𝐸)

else
% Antecedents must be emitted first.

for(𝑟 ∈ 𝑅) emit-clause(𝑟 )
print(infer 𝑅 ⇒ 𝐸)

Fig. 9. Algorithm for semantic proof trimming. We eliminate tautologies, merge aliases and discard un-used
clauses. The support structures 𝑖𝑑 , 𝐶𝑠 , etc. are treated as global.

Finally, an attempt is made to discard disconnected subgraphs. When sem-trim() encounters a

intro or infer directive, it is not emitted immediately. Instead, we simply record the derivation

information. Then, when an inference 𝑐 is about to be deleted, we check whether any dangling

references would remain (clauses having 𝑐 as an antecedent which are not yet deleted); if so, we print

the subtrees rooted at the offending clauses. This step simulates the behavior of a solver performing

lazy logging. Where proofs have been emitted lazily, this provides little to no improvement. But

this step is crucial where proofs have been emitted eagerly – in experiments where traces were

generated eagerly, we observed some large proofs to be reduced by more than 80%. Presumably

we could obtain greater improvements at a cost of more memory by further deferring deletion

processing, and using a more granular approach to emitting to-be-deleted clauses.
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7 A CERTIFIED CHECKER FOR UNSATISFIABILITY/OPTIMALITY PROOFS
Our overarching objective is to construct a function certify_optimal, which satisfies the following
theorem:

Theorem certify_optimal_sound :

forall ( m : model ) ( obj : ivar ) ( sol : asg ) ( p : proof ) ,

certify_optimal m obj sol p = true →
eval_model m sol

∧ forall sol ' , eval_model m sol ' → ( sol obj ) ≤ ( sol ' obj ) .

This decomposes neatly into two sub-processes – checking that the solution is valid, and

checking that tightening the objective yields an unsatisfiable model. These subprocesses become

check_solution and model_is_unsat, with the following theorems:

Theorem check_solution_valid : forall ( m : model ) ( theta : asg ) ,

check_solution m theta = true → eval_model m theta .

Theorem model_is_unsat_valid : forall ( m : model ) ( d : domain ) ( p : proof ) ,

model_is_unsat m d p = true →
forall theta , eval_domain d theta → ∼ eval_model m theta .

Checking solutions was discussed in Section 5; in the remainder of this section, we describe the

construction and certification of model_is_unsat.

7.1 Checking inferences
To complete the verification of an unsatisfiability proof, we must also verify that each introduced

axiom is a valid consequence of the model. In a constraint programming context, we require each

axiom to be implied by some single constraint.
For a given axiom, we could scan through each constraint in the problem, and check for entail-

ment; however, this is expensive and wasteful. Thus, we return to the Hint directive. We associate

an identifier with each constraint in the model; a hint simply indicates the constraint which should

be checked as a witness for entailment.

We represent the state of the verification process as a mapping from identifiers to constraints

(initially constructed by cst_map_of_csts), a mapping from identifiers to clauses, and the current

hint. A state (cstrs, clauses, hint) is valid in the context of some initial bounds bs if every
clause in clauses is entailed by the conjunction of constraints cstrs and bs.
The initial state contains an empty clause database, which is trivially valid (under any initial

bounds). We then ensure that every step preserves validity. That is,

Definition empty_state ( m : model ) : =

match m with

| ( bs , cs ) ⇒ ( cst_map_of_csts cs , ZMaps . empty clause , ( − 1 ) )

end .

Definition state_valid ( bs : domain ) ( s : state ) : =

match s with

| ( cs , clauses , _ ) ⇒
forall ( id : Z ) ( cl : clause ) ,

ZMaps . MapsTo id cl clauses → forall theta ,

eval_domain bs theta →
eval_cst_map cs theta → eval_clause cl theta

end .
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Definition apply_step ( bs : domain ) ( s : state ) ( d : step ) : =

match d with

| Intro cid cl ⇒ apply_inference bs s cid cl

| Hint cid ⇒ set_hint s cid

| Del cid ⇒ del_clause s cid

| Resolve cid cl ants ⇒ apply_resolution s cid cl ants

end .

Lemma empty_state_valid : forall bs s , state_valid bs ( empty_state m ) .

Theorem apply_step_valid : forall bs state step ,

state_valid bs state → state_valid bs ( apply_step bs state step ) .

empty_state_valid is easy to establish, as every clause in an empty database is satisfied. Proving

apply_step_valid requires us to establish that each of apply_inference, set_hint, del_clause
and apply_resolution preserves validity. For set_hint and del_clause, this is straightforward
– set_hint does not touch the clause database, and del_clause only deletes clauses, relaxing the

state.

For apply_resolution, we ensure the specified antecedents exist, and only update the database

if resolvable (from Section 6.4.2) returns true; we can use the corresponding proof of correctness

to show validity is preserved.

All that remains is to show that apply_inference only adds clauses which are implied by the

model. To this end, we must implement inference checkers for classes of constraints which may

appear in the model.

7.1.1 Building certified inference checkers. Constraints appearing in CP models are heteroge-

neous structures, so we cannot define a single efficient checking procedure for all constraints.

However, several observations can simplify our task of implementing individual checkers.

For checking validity of inferences, it is often easier to reason about the contrapositive; rather

than attempting to verify 𝑐 ⇒ E, we instead show that ¬E ∧ 𝑐 ⇒ ⊥: that 𝑐 is unsatisfiable under
the domain induced by ¬E.

Here we can take advantage of our formalization of domains established in Section 6.4.1. As ¬E
is a conjunction of atomic constraints – which can be precisely represented as a set of domains –

we need only define a function which checks if a constraint is unsatisfiable under some domain.

As for checking solutions, we introduce a type for inference checkers. This allows us to easily

provide checkers of different strengths (e.g. timetable [2] versus energetic reasoning [6] for cumu-

lative, or bounds versus domain reasoning for linear (dis-)equalities), and compose checkers (e.g.

disjunction or reification).

Definition cst_is_unsat ( CT : Constraint ) ( c : CT . ( T ) ) ( ds : domain ) : =

forall theta , eval_domain ds theta → CT . ( eval ) c theta → False .

Record UnsatChecker ( CT : Constraint ) : = mkUnsatChecker

{

check_unsat : CT . ( T ) → domain → bool ;

check_unsat_valid :

forall ( c : CT . ( T ) ) ( ds : domain ) ,

check_unsat c ds = true → cst_is_unsat CT c ds

} .
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The implementation of apply_inference then becomes straightforward: given an alleged in-

ference 𝑐 ⇒ 𝐸, we call check_unsat (for constraint 𝑐) with the domain derived from the model

bounds and ¬E. We then add E to the clause database only if check_unsat returns true (except in

the case of tautologies, where we simply verify that conjoining the model bounds with ¬E gives an

empty domain).
6

It is at this point that the interval operations (range_plus, range_mul, etc.) introduced in

Section 6.4.1 become relevant. Where constraints are naturally expressed as some property of a

computation on 𝜃 , we can approximate the corresponding computation under domain 𝐷 and verify

that the required relation cannot hold. Observe that, as these interval operations over-approximate

the true set of solutions, we may fail to validate correct inferences. check_unsat is required only

to be sound, not complete.

We can now give brief sketches of the certified checkers for constraints supported by certcp.

Example 7.1. Recall the linear definition from Example 3.1. To verify that

∑
𝑖 𝑐𝑖𝑥𝑖 ≤ 𝑘 is

unsatisfiable under 𝐷 , we first compute an interval approximation 𝐴 of

∑
𝑖 𝑐𝑖𝑥𝑖 under 𝐷 . We

conclude unsatisfiability if 𝐴 ∩ [−∞, 𝑘] = ∅. 2

Example 7.2. The checker for arithmetic constraints 𝑧 = 𝑥 ⊲⊳ 𝑦, ⊲⊳∈ {×,÷}, follows the same

pattern as for linear. We compute an interval 𝐴 approximating 𝑥 ⊲⊳ 𝑦 under 𝐷 , and verify that

𝐴 ∩ 𝐷 (𝑧) = ∅.

Example 7.3. Consider the element(𝑥,𝑌, 𝑖) constraint, where 𝑌 = [𝑦1, ..., 𝑦𝑘 ] is an ordered list

of constants, which is satisfied iff 𝜃 (𝑥) = 𝑌 [𝜃 (𝑖)].
To verify that element(𝑥,𝑌, 𝑖) is unsatisfiable under 𝐷 , we check that, for each 𝑗 , 𝑗 ∉ 𝐷 (𝑖) ∨𝑦 𝑗 ∉

𝐷 (𝑥). If this holds for every 𝑗 , we conclude the constraint is unsatisfiable.

The extension to variable 𝑌 is similarly straightforward; the test simply becomes ∀ 𝑗 . 𝑗 ∉

𝐷 (𝑖) ∨ 𝐷 (𝑦 𝑗 ) ∩ 𝐷 (𝑥) = ∅.

Example 7.4. In Section 6.4.2, we required the function clause_unsatb, which checks whether

a clause is unsatisfiable under the given domain. We can simply re-use this as an inference checker

for clause constraints.

Example 7.5. Timetable reasoning [2] for cumulative propagates by identifying some time 𝑇

and task 𝑠 such that the duration of 𝑠 may not overlap𝑇 (due to resources consumed by other tasks

scheduled across 𝑇 ).

Looking at the domain imposed by ¬ inf , this amounts to checking whether, for some time 𝑇 ,

the resource consumption of tasks definitely overlapping 𝑇 exceeds capacity. If this holds for any

time, it must also hold for the latest start time of some task.

Thus, our checker first collects the latest start time of each task (if the task has some compulsory

region). Then, it computes the usage of all tasks which must overlap the given time – if any of

these exceed capacity, we conclude that the inference is unsatisfiable.

Note that the timetable-based checker for cumulative, like the interval-based checkers for

arithmetic expressions, is sound but not complete; it may fail to certify some inferences made by

more sophisticated propagators (e.g. TTEF cumulative reasoning [49]).

8 EXPERIMENTAL EVALUATION
We have implemented certified solution and inference checkers for a range of primitive con-

straints: basic arithmetic operations and relations, clauses, linear inequalities and disequalities,

6
Using this formulation allows the solver to omit atomic constraints implied by initial bounds when logging inferences.
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trust base / variant certcp-coq certcp-stream certcp-infer
coq core • • •
constraint semantics • • •
OCaml extraction • •
model parsing • •
C++ dres checker •

Table 1. Summary of the trusted base for each of the certcp variants.

plus the element and cumulative global constraints. These are augmented with support for

half-reification [21] (i.e. 𝑟 → 𝐶), conjunction, and disjunction of constraints. As we shall see, this

set of primitives is sufficient to provide certified optimization for arbitrary MiniZinc problems

(over integers and Booleans). We have integrated these into three proof checkers striking different

balances between trust base and efficiency.

Table 1 summarizes the required trust base for the different approaches. All approaches require

correctness of the constraint specifications, and soundness of the coq proof system. The validation

of constraint semantics necessarily cannot be automated. However, manual inspection of these is

not onerous: constraint definitions may be inspected independently, and the two most complex,

nested arithmetic expressions and cumulative, respectively take 29 and 28 lines of code to define

both representation and interpretation. There is always the potential for some error in the coq proof
system, but there are several mitigations (above and beyond being a mature, heavily used system):

the interactive nature of proof development would make such errors apparent during development,

and a standalone checker coqchk has been used to validate the corresponding compiled modules.

certcp-coq is fully coq-based – models and proofs are both encoded as coq structures, and

unsatisfiability/optimality is stated as a theorem. However, its scalability is limited, as the entire

proof will be loaded as a list in-memory. certcp-stream uses the same, fully certified, checking

procedure as certcp-coq, but extracted to OCaml code. This expands the required trust base to

include the extraction process and model parsing code, but allows us to handle arbitrarily large

proofs – the proof can be treated as a stream (rather than list) of proof steps, and is only processed

on demand. Finally, certcp-infer is also extracted to OCaml, but only checks inference steps. This

is paired with an efficient but uncertified C++ implementation of dres-based resolution checking –

either dres-check for strictly Boolean proofs, or adres-check for atomic-dres proofs. Code and

proofs for all checkers and log pre-processing are available at https://bitbucket.org/gkgange/cert-cp.

To evaluate the checkers, we modified chuffed [12] to lazily generate log traces for FlatZinc
models. The resulting fork of chuffed is available at https://github.com/gkgange/chuffed-cert We

generated FlatZincmodels for all instances in the 2016MiniZinc challenge [43], and ran chuffed
(without proof logging) on these instances with a 30 minute time limit. To produce models readable

by the certified checker, the FlatZinc models were preprocessed by:

• Reformulating maximization objectives into minimization:

i.e. solve maximize obj ⇒ solve minimize -obj
• Eliminating sparse variable domains:

i.e. var {1, 3, 5}: x; ⇒ var 1..5: x; constraint set_in(x, {1, 3, 5});

The resultingmodels were then translated intomodels readable by certcp-infer and certcp-stream.
Experiments were performed on a 3.4GHz Intel Core i7-3770 running Ubuntu 13.10 with 8GB

memory. chuffed was run on each instance with a time limit of 30 minutes. Where one or more

solutions were obtained, the best solution was recorded. If search terminated within the time limit
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Fig. 10. Solving and logging times for generating proof traces for MiniZinc challenge 2016 instances.

(either reporting UNSAT or optimality), chuffed was re-run with logging enabled to produce a

dres proof trace.

Where only a solution was found, the solution was verified using certcp-stream. Where a

proof trace was generated, the trace was preprocessed to produce an atomic-dres proof, then two

forms of proof-checking were performed:

Resolution checking In this phase, only the refutation structure of the proof is checked. The

dres and atomic-dres traces were checked using dres-check and adres-check respectively.
Additionally, from the dres trace we derived resolution and drup proofs, which we validated

using tracecheck [9] and drat-trim [52] respectively.
Inference checking Then, each proof was checked using certcp-infer (to check only infer-

ences) and certcp-stream (for full optimality results).

The trace preprocessing is not certified, but cannot cause unsound results: an error in the prepro-

cessor could turn a valid trace into an invalid one, but the checker would reject the result. It could

also turn an invalid trace into a valid one, which would (correctly) be accepted by the checker – a

valid refutation is valid, even if derived unsoundly.
7

Comparison of solving time with and without logging is given in Figure 10. Logging increases

runtime by up to a factor of 3. This cost is primarily due to inefficient serialization and IO overhead

– preliminary tests using emitting a binary dres format suggest this can be reduced considerably.

Results for resolution-only trace checking are given in Figures 11 and 12. It appears that clausal

(DRUP-style) proof checking scales poorly on the classes of proofs we consider. dres-check
typically provides only a modest performance improvement relative to TraceCheck except on

the very largest instances, where TraceCheck aborts in memory allocation. Checking using the

simplified atomic-dres traces usually reduces both time and memory footprint; however, the time

7
Conversion of FlatZinc models into the internal representation, however, could result in unsoundness, and must be

inspected manually.
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to simplify the atomic-dres proof is usually larger than the reduction (indeed, in some cases

simplification time is itself greater than the dres checking time).
8

The value of atomic-dres proofs is more evident in Figure 13, which shows performance of the

certified inference and optimality checkers. The certified optimality checker incurs a considerable

cost relative to the inference-only checker, up to a factor of 5. However, the switch to binary

a-dres traces provides enough improvement that the cost of a-dres optimality checking is, in

many cases, close to that of dres inference checking.

8
It is interesting to note that, on these instances, the human-readable variant of atomic-dres proofs exhibited extremely

poor performance – in some cases, more than an order of magnitude slower than the dres checker. This is entirely parsing

overhead – repeatedly reading identifiers, and looking up the corresponding variable identifier.
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using a 1 hour time limit.

With a longer time-limit of 4 hours, we were able to certify optimality for all except one instance

(a 68Gb proof trace, which failed due to memory exhaustion – although the certified checker

emulates the solver’s clause database, the internal representation of clauses is much less compact).

The spike in adres runtime observed in Figure ?? has a similar origin: while the atomic-dres proof
contains fewer (and potentially smaller) clauses, each dres literal occupies a single word, where
an atomic-dres atom requires two (variable + value). Thus each clause in an atomic-dres trace

requires roughly twice the memory. We later successfully certified the remaining instance using a

more powerful machine (configured with 32Gb memory and an SSD), taking 181 minutes.

On balance, the combination of certcp-infer with adres-check on a-dres proofs appears to

achieve a suitable performance/confidence balance for many applications. It is also interesting to

observe that, during development, all incorrect inferences we observed were all due to incorrect

logging code; we did not observe chuffed making any unsound inferences or resolution steps.

chuffed thus appears to be quite robust, at least for the subset of constraints which we support

(robustness of other global propagators remains, of course, an open question).

9 RELATEDWORK
Problems of correctness in discrete optimization have long been documented. Work on ensuring

correctness of results comes in two flavors: formally verifying the solver itself, or (as we have done)

modifying the solver to output some proof/certificate of correctness which is separately verified.

9.1 Certified solvers
A number of certified SAT solvers have been developed, with varying trade-offs regarding sim-

plicity, efficiency, certified properties and trust base. Direct, functional formalizations such as [33]

are straightforward, but sacrifice key features (such as watched literals) of modern SAT solvers.

Supporting these (inherently imperative) features requires either extending Coq (as in [5]) or using

some other formal reasoning system (a strategy adopted by [38]). These approaches expand the

trust base, but permit efficient implementations and modern features. The method of [33] was later

extended into a certified SMT solver AltErgo [32], making the same sacrifices regarding imperative

features.
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The state of certified CP solvers is less mature. A verified CP solver was presented in [11].

However, the described solver is quite basic, supporting only binary extensional constraints and not

viable for problems with large domains and global constraints. More recent reports [18, 19] indicate

bounds propagation (though still in extension) has been added and formalization of all-different

is under way, but progress is evidently slow and painstaking. Certifying a fully-featured modern

solver without sacrificing performance promises to be a monumental task.

9.2 Proof logging approaches
The proof certificate approach has seen much more activity, with related approaches proposed for

verifying the output of SAT, CP and SMT solvers. These pair some representation of reasoning steps

with some procedure for establishing their correctness (which may or not be certified). They may

be targeted either purely towards checking solver outputs, or integration as automated decision

procedures in formal reasoning systems such as [1, 26, 37]. Proofs or logs may also be generated

for purposes other than verification, e.g. computing interpolants [24] and debugging or profiling

models [44].

Proof logs are typically either inference-based, or transition-based. Inference-based traces ap-

proach the proof as a sequence of deduction steps in some calculus: they elide details of the solver,

recording a sequence of inferences ending with the empty clause. Our approach is inference-based,

as is most SAT and SMT proof generation. Transition-based logs, in contrast, view the proof as a

sequence of solver states. Proof steps are transitions from one solver state to another, explicitly

recording the branching, pruning, fathoming and backtracking steps performed by the solver. This

approach is less common, but is adopted, for example, in proof generation for dReal [23] (where
typical problem sizes are observed to be on the order of 10 variables).

In inference-based proofs, a further trade-off is the degree of additional information attached to

reasoning steps: consider the difference between RUP proofs (where only the inference is recorded),

or resolution traces (where inferences are annotated with antecedents). Additional annotations

increase the complexity of logging, but can simplify or improve performance of validation. Where

the proof is to be checked by some deductive system, either as a proof oracle (or reflexive tactic)
or stand-alone validity check, it may be required to justify inferences by providing a certificate: a
chain of deductions in terms of axioms ‘understood’ by the deductive system.

This is the strategy adopted by CVC4 [45]: theories are specified as deduction rules in LFSC

(Logical Framework with Side Conditions, an extension of the Edinburgh Logical Framework [25]),

and theory lemmas appearing in the proof must be justified in terms of these rules. This approach

is flexible, as it allows the checker to be extended with new theories. However having the solver

produce certificates introduces overhead, and requires the solver to be aware of the supported

axioms. In [29] this overhead was reduced by adopting a two-stage approach: the initial refutation is

produced without certificates, then a second pass runs backwards to trim the proof, and retroactively

generate certificates for only those lemmas which were used by the final refutation. Other SMT

solvers use similar formalisms. Fx7 [35] encodes proofs as a sequence of term rewriting steps,

and Z3 [17] builds natural deduction-style proof trees. For smtcoq [4], certificates are intended to

reconstruct rather than verify an inference, and the proof structure is similar to ours: the proof

is presented as a sequence of inferences, the graph of refutations being left implicit. chk-no [8]

produces transition-based proofs (tracking the current set of inferred literals and equivalences),

but similarly generates proof certificates for inferences derived by each theory solver. For each

theory, the choice of certificates is fairly uniform across these approaches: rewriting axioms for

uninterpreted functions, vectors satisfying Farkas’ lemma (see e.g. [41]), and branch-and-cut traces

for integer arithmetic.
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9.3 Proof checking
A brief discussion of SAT proof-checking techniques was given in Section 2; most such checkers [9,

27, 52] are uncertified. However at least one certified resolution checker [15] has been developed,

[50] describes a mechanically verified RAT checker implemented in ACL2, and a certified checker for

grit [14] proofs (which has been extended [13] to support RAT-style proofs) has been formulated

in Coq. Also, certified checkers for inference-based SMT proofs necessarily contain a certified

resolution procedure; however these tend to focus more on validating theory lemmas and rewriting

than scaling to large proofs.

There is considerable variety in SMT proof checkers, both in approach and the required trust

base. As in the SAT case uncertified checkers are common, offering solid performance but relying

on the checker code being ‘simple enough’ to give a reasonable degree of confidence. Fx7 [35],

for example, provides checkers implemented in OCaml and C (but also offers translation into Coq
and Maude scripts). For methods used as reflexive tactics (e.g. [4, 8, 10]), the trust base consists of

the parsing and interpretation of models, and soundness of the underlying reasoning system. For

proofs using LFSC, the trust base also extends to the specified deduction rules; an exception is

described in [20], where LFSC proofs are reprocessed into input for smtcoq. Authors sometimes

make similar trust-base compromises as for certified solvers: the initial implementation of smtcoq
required the variant of Coq described in [5], which adds arrays and machine arithmetic but modifies

the runtime to do so, and the use of ACL2 in [50] requires a much larger trust base, but allows use of

destructively updated arrays. The key impediment to a more unified approach for SMT proofs is that

theory atoms are heterogeneous: there is no common language of propositions between theories,

so there is no systematic way to reason over the semantics (rather than the syntax) of inferences. In

a CP context, while constraints are wildly different, inferences share a common language of atomic

constraints. Thus we can implement constraint checkers semantically by reasoning over domains,

rather than the syntax of sound inferences. Doing so, we can readily support new constraints and

incorporate new checking algorithms without requiring any corresponding changes to the proof

format or solver.

9.4 Verifying optimization
Work on validation of Boolean optimization problems have followed similar strategies: [30, 31]

used the notion of cost-resolution (essentially atomic constraint resolution with a single non-

Boolean variable) to validate branch-and-bound optimization over Boolean constraints. This can

be seen as a special case of our approach, where the problem contains only a single non-clausal

constraint (providing lower bounding). Their validation procedure uses an external solver to check

the bounding clauses (using CPLEX in the linear case), validating the cost-resolution refutation

separately. Morgado and Marques-Silva [34] discussed validation of MaxSAT algorithms based on

repeated SAT queries (rather than branch-and-bound), by checking the resolution proof of the

weakest unsatisfiable query, and the solution of the strongest satisfiable query (at the transition

between SAT and UNSAT). For unsatisfiable-core approaches, they re-solve the problem with the

allegedly minimal cores to produce the optimality certificate. In both cases, [34] assumes correctness

of their model transformations.

The only other existing CSP solver which produces unsatisfiability proofs is PCS [48], although

the instrumentation developed for profiling [44] of gecode and chuffed could plausibly be adapted
to generating dres proofs. PCS, like chuffed, is a lazy clause generation/nogood learning solver,

but which uses atomic constraints of the form ⟨𝑥 ∈ 𝑆⟩, where 𝑆 is a set of disjoint intervals. Similar

to our approach and smtcoq, PCS records proofs as a sequence of inferred clauses. However, proofs

are expressed in terms of a fixed set of deduction rules: each inference (including resolution steps)
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is annotated with the corresponding deduction rule, plus any antecedents and parameters needed

to reconstruct the inference. Interestingly, they make a similar observation resolving atomic clauses

can produce multiple resolvents; we adopt an RUP-based approach, they instead annotate each

resolution step with the corresponding pivot variable. No discussion is made in [48] of how the

proofs are checked, but the intent appears to check each step by instantiating the specified deduction

rule with the recorded parameters, and check that the result is (a permutation of) the inference.

Most of these approaches (excluding those which rely on external solvers for reconstruction)

require the solver to provide a fine-grained justification for each theory lemma/propagation step.

This makes the checker simpler (as in only needs to be able to apply deductions, rather than derive

them), but requires an unfortunate synchronization: extending a checker with a new constraint or

theory requires deriving a sound and complete set of deduction rules (otherwise there are correct

traces for which no proof can be recorded), and solver writers must justify inferences in terms of

this proof language (which can be onerous, and may not reflect the propagator’s reasoning).

While we are not aware of any certified/proof generating (mixed-)integer programming solvers,

there is no reason (besides engineering effort) one could not emit branch-and-cut certificates in

the style of [7] (which are also used by [4]). A complication is that industrial MIP solvers apply

numerous preprocessing and presolving techniques to simplify the input problem, each of which

would need to be certified, and logged during solving. Indeed, a similar strategy was used to

provide optimality certificates for travelling salesman routes [3] (paired with an uncertified checker

consisting of >8000 lines of C), though it additionally exploited the structure of the TSP to derive

additional valid inequalities.

10 CONCLUSION
We have introduced a methodology for validating unsatisfiability and optimality results produced

by constraint programming solvers. Following this approach, we have developed a fully-certified

proof checking procedure in Coq which supports the integer and Boolean fragment of FlatZinc,
plus several global constraints. We have also presented several variants of the checker, achieving

different trade-offs between trust base and performance. The required proofs are straightforward to

generate from lazy clause generation solvers, and are not dependent on the constraints supported

by the checker.
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History. This paper was submitted to ACM TOPLAS in October 2017, and we received fairly

positive reviews requiring some changes. I think we made most of them, but then Graeme, who is

the principal author never made changes to answer some of the review questions, and no matter

how much encouragement I gave him, he never found time for it. During Covid Graeme left

academia so the paper will never be resubmitted. Given the current interest in certified CP and the

new and exciting methods being developed I am adding this to arxiv so at least the work we did

can be referred to.
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