
The Core Concept for 0/1 Integer Programming

Anonymous

Abstract

In this paper we examine an extension of the
core concept for the 0/1 Multidimensional Knap-
sack Problem (MKP) towards general 0/1 Integer
Programming (IP) by allowing negative profits,
weights and capacities. The core concept provides
opportunities for heuristically solving the MKP,
achieving higher quality solutions and shorter run-
times than general IP methods. We provide the
theoretical foundations of the extended core con-
cept and further provide computational experi-
ments showing that we can achieve similar com-
putational behaviour for extended MKP instances
with negative weights, profits and capacities.

1 Introduction

The core concept for the 0/1 Multidimensional
Knapsack Problem (MKP) (13, 14) has been
shown to be very effective in providing opportu-
nities for heuristically solving the MKP, achiev-
ing higher quality solutions and shorter run-times
than general IP methods. In this paper we will
examine the possibilities of extending the core
concept towards general 0/1 Integer Programming
(IP).

The Multidimensional Knapsack Problem
(MKP) is defined as:

maximise z =
n∑

j=1

pjxj (1)

subject to
n∑

j=1

wijxj ≤ ci, i = 1, . . . ,m (2)

xj ∈ {0, 1}, j = 1, . . . , n., (3)

where the profits pj , the weights wij , and the ca-
pacities ci are all positive. Allowing negative val-
ues for those variables results in general 0/1 Inte-
ger Problems.

The aim of the core concept is to reduce the
original problem to a core of items for which it is
hard to decide whether or not they will occur in
an optimal solution. All variables corresponding
to items outside the core are fixed to their optimal
values.

The core of a given MKP is defined with re-
spect to some variable ordering where variables
that are expected to be in the knapsack (set to
one) occur before those which are not expected to
be in the knapsack (set to zero). Given the opti-
mal solution of the MKP the exact core is defined
as the set of variables from the first variable that
takes the value zero to the last variable that takes
the value one. In order to devise an exact core
for a given MKP, the optimal solution has to be
known. However, being able to heuristically ob-
tain good approximation to cores and solve those
smaller problems, may lead to high quality solu-
tions in short computational times.

The underlying concept of such a heuristic is
to order the items of the MKP according to a spe-
cific efficiency measure. This ordering will allow to
partition the items into three sections. The first
section which contains items which are included
in the knapsack (variables set to one). The second
section, named the approximate core, containing
the items which may or may not be included in
the knapsack (variables set to either one or zero).
Finally the third section contains the items which
are not included in the knapsack (variables set to
zero). The aim is to have the approximate core
closely mimic the exact core.

The following example illustrates the core con-
cept for a small 2-dimensional knapsack problem.
The variables are ordered by an efficiency measure
described later. The first line shows the optimal
integer solution, while the second line shows the
optimal solution to the LP-relaxation of the prob-
lem. The exact core is shown in bold in the first
line, while an approximate core (adding 2 variables
around the non 0-1 LP solution values) is shown
in bold in the second line.

IP 1 1 0 0 1 0 1 0 0 0
LP 1 1 1 1 1 0.96 0.23 0 0 0

In the remainder of the paper, we first intro-
duce the core concept in the context of its previous
uses. We then extend the efficiency measure used
for MKPs to general 0/1 integer programs, and
prove that the efficiency measure is tightly related
to the optimal solution. In Section 4 we show the
result of experiments illustrating the effectiveness
of the approximate core computations, the loss of
precision that arises from restricting the problem

to an approximate core, and the improvement in
best solutions found if we use approximate cores.

2 Background

2.1 The Multidimensional Knapsack
Problem

A comprehensive overview of practical and theo-
retical results for the MKP can be found in the
monograph on knapsack problems by Kellerer et
al. (9). Solving the MKP with heuristic methods
seems to be the method of choice for the bigger
instances described in the literature, since no ex-
act method is known for solving these instances
to optimality. Besides exact techniques for solv-
ing small to moderately sized instances, based on
dynamic programming (6, 19) and branch-and-
bound (16, 5), many kinds of meta-heuristics have
been applied to the MKP (7, 2). See (15) for a re-
cent survey and comparison of evolutionary algo-
rithms for the MKP. The hybrid tabu-search meth-
ods presented in (17, 18) are currently yielding the
best known results for the commonly used bench-
mark instances.

2.2 The core concept for KP and MKP

The core concept was first presented for the clas-
sical 0/1-Knapsack Problem (KP) (1) and led to
very successful knapsack algorithms (10, 11, 12).
These ideas were also studied in the context of bi-
criteria knapsack problems in (8). The core con-
cept was successfully extended to the MKP (13,
14), leading to highly competitive heuristic algo-
rithms.

The classical greedy heuristic for KP packs the
items into the knapsack in decreasing order of their
efficiencies pj

wj
as long as the knapsack constraint

is not violated. The same ordering also defines
the solution structure of the LP-relaxation, which
consists of three parts: The first part contains all
variables set to one, the second part consists of
at most one split item (s), whose corresponding
LP-value is fractional, and finally the remaining
variables, which are always set to zero, form the
third part.

The precise definition of the core of KP intro-
duced by (1) requires the knowledge of an optimal
integer solution x∗. Assume that the items are
sorted according to decreasing efficiencies and let

a := min{j | x∗j = 0}, b := max{j | x∗j = 1}.
(4)

The core is given by the items in the interval
C = {a, . . . , b}. It is obvious that the split item is
always part of the core.

These ideas have been expanded to MKP with-
out major difficulties (13, 14). The main differ-
ence is that the choice of the efficiency measure is
not obvious for the MKP any more. The efficiency
measure:

ej =
pj

sj
,

where sj =
∑m

i=1 uiwij , and ui are the dual vari-
able values of the LP-relaxation of the MKP, pro-
vided the best theoretical and practical results.

Let x∗ be an optimal solution and assume that
the items are sorted according to the decreasing
efficiency measure e, then define

a := min{j | x∗j = 0} and b := max{j | x∗j = 1}.
(5)

The core is given by the items in the interval
C := {a, . . . , b}, and the core problem (MKPC)
is defined as

maximise z =
∑
j∈C

pjxj + p̃ (6)

subject to
∑
j∈C

wijxj ≤ ci − w̃i, i = 1, . . . ,m

(7)
xj ∈ {0, 1}, j ∈ C, (8)

with p̃ =
∑a−1

j=1 pj and w̃i =
∑a−1

j=1 wij , i =
1, . . . ,m.

In contrast to KP, the solution of the LP-
relaxation of MKP does not consist of a single frac-
tional split item, but its up to m fractional values
give rise to a whole split interval S := {s, . . . , t},
where s and t are the first and the last index of
variables with fractional values after sorting by ef-
ficiency e.

The split interval Se has been precisely charac-
terized (13, 14). Let xLP be the optimal solution
of the LP-relaxation of MKP.

Theorem 1 ((13, 14)) For efficiency values ej
we have:

xLP
j =


1 if ej > 1 ,
∈ [0, 1] if ej = 1 ,
0 if ej < 1 .

(9)

3 Extending the core concept

As mentioned above, the main goal of this paper is
to extend the core concept to general 0/1 Integer
Programs. We show how the efficiency measure for
the classical MKP problem can be adapted in such
a way that the ordering of the variables according
to this measure remains valuable for devising good
approximate cores. We further provide a charac-
terization of the structure of the LP relaxation of
the 0/1 Integer Program.

We extend the previously defined efficiency
measure ej to create a tuple based measure. We
introduce ordering variables, oj which takes values
representing a section of the ordering. Variables
xj are sorted in decreasing (lexicographic) order
of efficiency (oj , ej), in other words they are first
sorted by section variable, oj , and then efficiency
value ej .

These extensions are implemented as indicated
in equation 10:

2

(oj , ej) =



(7, pj

sj
) if pj > 0 ∧ sj < 0

(6, pj) if pj > 0 ∧ sj = 0
(5, 1

sj
) if pj = 0 ∧ sj < 0

(4, pj

sj
) if pj > 0 ∧ sj > 0

(4, sj

pj
) if pj < 0 ∧ sj < 0

(4, 1) if pj = 0 ∧ sj = 0
(3, 1

sj
) if pj = 0 ∧ sj > 0

(2, pj) if pj < 0 ∧ sj = 0
(1, pj

sj
) if pj < 0 ∧ sj > 0

(10)

The ordering values are chosen to minimize the
size of the IP core. The section oj = 4 contains
the center of the split interval. Our experiments
in Section 4 show that the center of the core and
the center of the split interval are close for our
benchmark instances.

The sections oj ∈ {7, 6, 5} contain items that
are purely beneficial: they either increase profit
or “on average” remove weight from the multi-
dimensional knapsack without decreasing profit.
They are ordered to maximize profit and removal
of weight. Similarly the sections oj ∈ {1, 2, 3} con-
tain items that are purely detrimental to the knap-
sack: they either decrease profit or add weight.
Again they are ordered to maximize profit and re-
moval of weight.

In none of the benchmarks where we can actu-
ally compute the exact core do items in sections
other than 4 appear in the core.

Using this efficiency measure the nature of the
split interval can be characterized as follows. Let
xLP be the optimal solution of the LP-relaxation
of MKP with negative profits and weights.

Theorem 2

xLP
j =

{
1 if ej > 1 or oj > 4,
∈ [0, 1] if ej = 1 and oj = 4,
0 if 0 ≤ ej < 1 or oj < 4.

(11)

Proof The dual LP (DMKP) associated with
the LP-relaxation of MKP is given by

minimise
m∑

i=1

ciui +
n∑

j=1

vj (12)

subject to
m∑

i=1

wijui + vj ≥ pj , j = 1, ..., n (13)

ui, vj ≥ 0, i = 1, ...,m, j = 1, ..., n, (14)

where ui are the dual variables corresponding to
the knapsack constraints and each vj corresponds
to the inequality xj ≤ 1. For the optimal primal
and dual solutions the following complementary
slackness conditions hold for j = 1, ..., n.

xj

(
m∑

i=1

wijui + vj − pj

)
= 0 (15)

vj (xj − 1) = 0 (16)

We illustrate the result for each section in the
definitions of the ordered tuple (oj , ej).

Consider the top 3 sections (oj ∈ {7, 6, 5}).
Clearly in each case we have that pj > sj . Hence
satisfying equation (13) requires that vj > 0.
Therefore equation (16) implies that xj = 1.

Consider the bottom 3 sections (oj ∈ {1, 2, 3}).
Clearly in each case pj < sj . Hence the expression∑m

i=1 wijui + vj − pj or equivalently sj + vj − pj
is greater than 0, since vj ≥ 0. In order to satisfy
equation 15 xj = 0.

For section (4, pj

sj
) we consider two cases. If

ej = pj

sj
> 1 then pj > sj since sj > 0 and the

same reasoning as for case (7, 2) applies, while if
ej < 1 then pj < sj and the same reasoning as
case (2, 0) applies.

For section (4, sj

pj
) we consider two cases. If

ej = sj

pj
> 1 then pj > sj since pj < 0 and the

same reasoning as for case (7, 2) applies, while if
ej < 1 then pj < sj and the same reasoning as
case (2, 0) applies.

For the remainder of the cases, ej = 1 and oj =
4, there is nothing to prove.

�
An illustration of the ordering (oj , ej) is given

in Table 1. This example shows some of the sec-
tions described above. As predicted by the theo-
rem, the split interval exists entirely within section
oj = 4.

4 Computational experiments

4.1 Benchmark Problems

In order to study the core concept on 0/1 integer
programs we generated 0/1 integer programs using
the Chu and Beasley (2) benchmark instances for
the MKP, as the starting point.

These benchmark problems consist of classes
of randomly created instances for each combina-
tion of n ∈ {100, 250, 500} items, m ∈ {5, 10, 30}
constraints and tightness ratios 0.25, 0.50.75. The
tightness ratio refers to the ratio between the con-
straint value and the sum of the corresponding
weights.

α =
ci∑n

j=1 wij
∈ {0.25, 0.5, 0.75} (17)

Weights are integers between 0 and 1000. Prof-
its are generated by the equation:

pj =
m∑

i=1

wij

m
+ [500ri] ∈ {0.25, 0.5, 0.75}

where ri is a random number generated from (0, 1].
For each permutation of n, mand α, 10 instances
are provided.

In order to generate 0/1 integer programs with
negative values we multiply a random percent-
age of the weights and profits of a given problem
by −1. The percentages used are 5%, 10%, 20%.
Larger percentages of negative values were tried,

3

Weight1 Weight2 Profit sj (oj , ej) LP IP
-1 -1 1 -0.89 (7,0.89) 1.00 1
-9 12 7 -5.17 (7,0.74) 1.00 1
0 0 8 0.00 (6,8.00) 1.00 1
-2 13 12 0.24 (4,0.25) 1.00 1
5 0 19 3.77 (4,5.04) 1.00 1
-5 -4 -3 -4.31 (4,1.44) 1.00 1
16 21 18 14.88 (4,1.21) 1.00 1
13 15 14 11.81 (4,1.19) 1.00 0
-6 -10 -5 -5.87 (4,1.17) 1.00 1
20 -8 14 14.00 (4,1.00) 0.71 1
-6 -11 -6 -6.00 (4,1.00) 0.85 0
20 16 15 17.22 (4,0.87) 0.00 0
10 8 6 8.61 (4,0.70) 0.00 0
-1 -14 -4 -2.63 (4,0.66) 0.00 0
14 9 5 11.76 (4,0.43) 0.00 0
16 -3 3 11.66 (4,0.26) 0.00 0
-7 23 -9 -2.19 (4,0.24) 0.00 0
-1 10 0 0.59 (3,1.69) 0.00 0
7 0 -5 5.28 (1,0.95) 0.00 0
24 10 -9 19.43 (1,0.46) 0.00 0

Table 1: Example 2-Dimensional Knapsack Problem. The 3 sections are separated based upon the IP
solution. This example shows an exact core using the efficiency measure defined in Theorem 2.

however the problems quickly became optimally
solvable in short run-times.

The set of profits and the set of all weights are
operated on separately. This ensures that there
is a set percentage of negative profits and a set
percentage of negative weights. Combinations of
different percentages of negative weights and prof-
its were tried, however almost invariably this made
the problems easier and thus faster to solve.

This process will change the tightness ratio. In
order to maintain the tightness ratio the capacities
have to be adjusted:

ĉi =
ci ∗

∑n
j=1 ŵi,j∑n

j=1 wi,j
,

wi,j represents the original weights, ŵi,j represents
the adjusted weights, and ĉi represents the new
constraint value. Since the sum of the adjusted
weights may become negative, it is possible that
the new capacity ĉi will also be negative.

4.2 MKP Core Analysis

We provide empirical results supporting our adap-
tation of the efficiency measure e, (see Table 2).
This table shows information about actual cores
when the above efficiency function is utilized. The
problems shown in these tables are based upon
the smaller instances in Chu and Beasley’s bench-
mark library (2). Specifically these problems use
n = 100,m ∈ 5, 10, and n = 250,m = 5. These
problems were chosen because they are solvable in
reasonable runtime. This means that the optimum
solutions can be found, and the size of the core can
be determined.

The tables show the averaged values over 10
problem instances. Average values listed include

size of the split interval (|Se|), size of the exact core
(|Ce|), percentage that the split interval covers the
exact core (ScC), percentage that the exact core
covers the split interval (ScC), and the distance
between the centre of the split interval and the
centre of the exact core (|Cdist|) as a percentage
of the number of items in the problem. We only
show results where the percent of negative weights
and negative profits are the same, since this tended
to be where the harder problems arose.

The table entries for 0% negative coefficients
shows that the newly defined efficiency value pro-
vides equivalent results for standard MKP prob-
lems as those reported in (14). As expected from
Theorem 2, negative values do not increase the size
of the split interval or the core.

The size of the split interval and the core actu-
ally decreases as the number of negative weights
increases. The centre of the core remains close to
the centre of the split interval.

4.3 Approximate core algorithm

In order to evaluate the influence of negative val-
ues on solution quality and run-times an approx-
imate core algorithm was implemented. This al-
gorithm is similar to the algorithm implemented
by Puchinger et al. (14). The approximate core
is generated by adding δ items to either side of
the center of the split interval. The values of δ
were chosen to approximately reflect the size of
the actual cores detected in the previous section:
δ ∈ 0.1n, 0.15n, 0.2n, 0.1n+ 2m, 0.2n+ 2m.

The problems shown in these tables are based
upon the smaller instances in Chu and Beasley’s
benchmark library (2). They are the same set of
problems used to investigate the actual core sizes
in the previous section.

4

e - 0% negative weights e - 5% negative weights
0% negative profits 5% negative profits

n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 5.00 20.20 28.12 100.00 3.30 5.00 20.00 31.58 100.00 2.90
0.5 5.00 22.10 27.49 100.00 3.45 5.00 15.90 28.33 86.00 2.65
0.75 5.00 20.00 26.32 100.00 3.40 5.00 14.80 35.91 98.00 3.50

250 5 0.25 2.00 12.68 18.16 100.00 2.46 2.00 13.36 17.35 100.00 3.12
0.5 2.00 12.20 18.45 100.00 1.38 2.00 9.60 21.47 100.00 1.20
0.75 2.00 10.40 20.18 100.00 1.56 2.00 10.96 21.04 100.00 1.92

100 10 0.25 10.00 23.20 46.57 100.00 2.90 9.90 25.80 42.74 96.67 3.45
0.5 9.80 25.80 48.17 96.00 3.10 9.70 23.70 44.06 100.00 3.00
0.75 9.70 18.30 54.36 94.00 3.00 9.20 16.90 60.09 93.19 2.45

Average 5.61 18.32 31.98 98.89 2.73 5.53 16.75 33.62 97.10 2.69
e - 10% negative weights e - 20% negative weights

10% negative profits 20% negative profits
n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 5.00 23.60 22.31 100.00 4.30 5.00 18.60 29.55 100.00 2.70
0.5 5.00 19.40 27.11 100.00 3.00 4.60 9.80 57.68 95.50 1.20
0.75 4.80 12.40 47.28 98.00 1.60 2.50 16.90 30.34 86.67 7.00

250 5 0.25 2.00 10.36 20.27 100.00 1.22 2.00 10.52 20.22 98.00 2.02
0.5 2.00 11.72 18.79 100.00 2.22 2.00 8.84 24.31 100.00 1.94
0.75 2.00 7.28 30.13 98.00 1.24 1.56 6.08 40.80 100.00 1.74

100 10 0.25 9.70 24.20 42.19 97.89 4.05 9.70 28.00 37.91 100.00 4.15
0.5 9.50 20.10 49.20 97.00 3.20 8.40 20.10 47.86 98.89 3.35
0.75 8.80 14.30 65.99 92.70 2.05 4.30 13.80 35.51 92.50 4.05

Average 5.42 15.92 35.92 98.18 2.54 4.45 14.74 36.02 96.84 3.13

Table 2: Split intervals, core sizes, mutual coverage of the split interval and cores, distances of the centers
for various percentages of negative values. (Values are averaged over 10 instances of each problem.)

The results of this experiment are shown in Ta-
ble 3. It shows the average values over 10 problems
with the same tightness ratio. Values shown for
the original problem include the average optimal
IP solution for the problem (z̄), then the average
amount of CPU-time taken to produce the opti-
mal IP solution in seconds (t[s]). Values shown
for each core include the average percentage dif-
ference between the optimal IP solution(z∗) and
the IP solution produced by the core problem(z),
(%opt = 100∗(z∗−z)/z∗), the number of times the
optimal solution was reached (#), and the average
CPU-time taken to solve the core IP, as a percent-
age of the CPU-time taken to solve the original IP
problem, %t = 100 ∗ (tcore/toriginal).

The solution to the core of the problem is al-
ways within 0.7 % of the optimal solution. The
results shown in Table 3 show that smaller ap-
proximate core sizes produce a significant increase
in speed. However they are less likely to produce
the optimal solution, and on average produce less
optimal solutions than the larger cores. As the
percentage of negative values increases the prob-
lems become faster to solve. Larger negative per-
centages were examined, however run-times were
too small to see any benefit from the core concept.

4.4 Larger MKPs with Fixed Time Runs

We now investigate fixed-time runs over larger in-
stances. These tests are performed over instances
which are currently very hard or not at all solv-
able to optimality. The problems we tested over
are based on the hardest benchmarks provided by

Chu and Beasley (2), n = 500, m ∈ 5, 10, 30
Again these problems were adjusted to contain

negative values in a manner similar to the prob-
lems above. All of the results shown here are per-
formed over problems with 10% negative weights,
and 10% negative profits. The constraints are also
adjusted accordingly.

Table 4 shows the best feasible solution for the
original problem and the core problems as a per-
centage of the LP solution, (%LP = 100 ∗ (LP −
IP)/LP). These values are averaged over 10 in-
stances of similar problems. Standard deviations
are provided as subscripts. The smallest values for
each row are highlighted in bold. This table also
shows the number of times a particular core size
has lead to the best solution for a problem, (#).
The final column for each core size is the average
number of nodes explored in the branch and bound
tree.

The experiments show that for the considered
time limits the results obtained on the core prob-
lems are, on average, better that the results ob-
tained from the original problem. There is also a
inverse relationship between the size of the core
and the number of nodes explored. As the size of
the core decreases the number of nodes explored
increases. The best average results for a time
limit of 500 seconds is δ = 0.2. It can be seen
that smaller time limits provide best results with
smaller approximate core sizes.

5

0
%

ne
ga

ti
ve

w
ei

gh
ts

,
0

%
ne

ga
ti

ve
pr

ofi
ts

no
co

re
δ

=
0.

1n
δ

=
0.

15
n

δ
=

0.
2n

δ
=

0.
1n

+
2m

δ
=

0.
2n

+
2m

n
m

α
z̄

t[
s]

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

10
0

5
0.

25
24

19
7

4.
81

0.
09

7
5

3
0.

03
4

7
24

0.
01

5
9

51
0.

01
5

9
51

0.
00

0
10

69
0.

50
43

25
3

5.
77

0.
05

3
4

2
0.

00
7

8
16

0.
00

2
9

42
0.

00
2

9
42

0.
00

2
9

71
0.

75
60

47
1

1.
78

0.
03

8
5

6
0.

01
9

7
35

0.
00

1
9

53
0.

00
1

9
53

0.
00

0
10

72
25

0
5

0.
25

60
41

4
27

7.
22

0.
00

8
7

29
0.

00
3

9
70

0.
00

0
10

66
0.

00
3

9
51

0.
00

0
10

59
0.

50
43

25
3

5.
77

0.
05

3
4

2
0.

00
7

8
16

0.
00

2
9

42
0.

00
2

9
42

0.
00

2
9

71
0.

75
60

47
1

1.
78

0.
03

8
5

6
0.

01
9

7
35

0.
00

1
9

53
0.

00
1

9
53

0.
00

0
10

72
10

0
10

0.
25

22
60

2
61

.8
5

0.
47

3
1

0
0.

06
1

7
2

0.
00

2
9

17
0.

00
0

10
53

0.
00

0
10

75
0.

50
43

25
3

5.
77

0.
05

3
4

2
0.

00
7

8
16

0.
00

2
9

42
0.

00
2

9
42

0.
00

2
9

71
0.

75
60

47
1

1.
78

0.
03

8
5

6
0.

01
9

7
35

0.
00

1
9

53
0.

00
1

9
53

0.
00

0
10

72
A

ve
ra

ge
46

48
7

40
.7

3
0.

09
5

4.
4

6
0.

02
0

7.
6

28
0.

00
3

9.
1

47
0.

00
3

9.
1

49
0.

00
1

9.
7

70
5

%
ne

ga
ti

ve
w

ei
gh

ts
,

5
%

ne
ga

ti
ve

pr
ofi

ts
no

co
re

δ
=

0.
1n

δ
=

0.
15
n

δ
=

0.
2n

δ
=

0.
1n

+
2m

δ
=

0.
2n

+
2m

n
m

α
z̄

t[
s]

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

10
0

5
0.

25
26

60
3

1.
91

0.
11

3
3

4
0.

01
4

8
31

0.
00

4
9

50
0.

00
4

9
50

0.
00

0
10

82
0.

50
44

66
6

1.
88

0.
07

2
5

5
0.

00
1

9
17

0.
00

0
10

41
0.

00
0

10
41

0.
00

0
10

69
0.

75
60

38
7

0.
46

0.
02

5
7

15
0.

01
3

8
50

0.
01

1
9

63
0.

01
1

9
63

0.
00

0
10

72
25

0
5

0.
25

68
59

8
65

.5
2

0.
00

7
7

33
0.

00
4

8
69

0.
00

3
9

89
0.

00
4

8
55

0.
00

3
9

93
0.

50
44

66
6

1.
88

0.
07

2
5

5
0.

00
1

9
17

0.
00

0
10

41
0.

00
0

10
41

0.
00

0
10

69
0.

75
60

38
7

0.
46

0.
02

5
7

15
0.

01
3

8
50

0.
01

1
9

63
0.

01
1

9
63

0.
00

0
10

72
10

0
10

0.
25

24
21

1
16

.2
4

0.
61

4
1

0
0.

13
3

6
3

0.
02

6
7

16
0.

00
0

10
59

0.
00

0
10

75
0.

50
44

66
6

1.
88

0.
07

2
5

5
0.

00
1

9
17

0.
00

0
10

41
0.

00
0

10
41

0.
00

0
10

69
0.

75
60

38
7

0.
46

0.
02

5
7

15
0.

01
3

8
50

0.
01

1
9

63
0.

01
1

9
63

0.
00

0
10

72
A

ve
ra

ge
48

28
6

10
.0

8
0.

11
4

5.
2

11
0.

02
1

8.
4

34
0.

00
7

9.
1

52
0.

00
5

9.
3

53
0.

00
0

9.
9

75
10

%
ne

ga
ti

ve
w

ei
gh

ts
,

10
%

ne
ga

ti
ve

pr
ofi

ts
no

co
re

δ
=

0.
1n

δ
=

0.
15
n

δ
=

0.
2n

δ
=

0.
1n

+
2m

δ
=

0.
2n

+
2m

n
m

α
z̄

t[
s]

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

10
0

5
0.

25
28

58
2

2.
04

0.
13

6
2

6
0.

06
7

6
38

0.
00

0
10

58
0.

00
0

10
58

0.
00

0
10

78
0.

50
45

22
2

1.
84

0.
05

1
4

5
0.

00
4

8
29

0.
00

0
10

46
0.

00
0

10
46

0.
00

0
10

83
0.

75
59

18
0

0.
15

0.
00

3
8

22
0.

00
0

10
50

0.
00

0
10

68
0.

00
0

10
68

0.
00

0
10

86
25

0
5

0.
25

74
52

1
45

.5
9

0.
00

0
10

29
0.

00
0

10
43

0.
00

0
10

74
0.

00
0

10
43

0.
00

0
10

72
0.

50
45

22
2

1.
84

0.
05

1
4

5
0.

00
4

8
29

0.
00

0
10

46
0.

00
0

10
46

0.
00

0
10

83
0.

75
59

18
0

0.
15

0.
00

3
8

22
0.

00
0

10
50

0.
00

0
10

68
0.

00
0

10
68

0.
00

0
10

86
10

0
10

0.
25

25
58

1
33

.9
4

0.
67

3
1

0
0.

20
1

5
3

0.
03

8
8

20
0.

00
0

10
59

0.
00

0
10

73
0.

50
45

22
2

1.
84

0.
05

1
4

5
0.

00
4

8
29

0.
00

0
10

46
0.

00
0

10
46

0.
00

0
10

83
0.

75
59

18
0

0.
15

0.
00

3
8

22
0.

00
0

10
50

0.
00

0
10

68
0.

00
0

10
68

0.
00

0
10

86
A

ve
ra

ge
49

09
9

9.
73

0.
10

8
5.

4
13

0.
03

1
8.

3
36

0.
00

4
9.

8
55

0.
00

0
10

.0
56

0.
00

0
10

.0
81

20
%

ne
ga

ti
ve

w
ei

gh
ts

,
20

%
ne

ga
ti

ve
pr

ofi
ts

no
co

re
δ

=
0.

1n
δ

=
0.

15
n

δ
=

0.
2n

δ
=

0.
1n

+
2m

δ
=

0.
2n

+
2m

n
m

α
z̄

t[
s]

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

¯
%

o
p
t

#
%
t

10
0

5
0.

25
34

07
1

0.
72

0.
11

7
4

12
0.

00
8

9
35

0.
00

0
10

61
0.

00
0

10
61

0.
00

0
10

83
0.

50
46

97
0

0.
11

0.
00

8
9

29
0.

00
0

10
55

0.
00

0
10

75
0.

00
0

10
75

0.
00

0
10

90
0.

75
56

53
8

0.
02

0.
02

9
7

64
0.

00
6

8
64

0.
00

6
8

72
0.

00
6

8
72

0.
00

6
8

80
25

0
5

0.
25

85
20

6
33

.7
4

0.
00

5
8

32
0.

00
0

10
46

0.
00

0
10

70
0.

00
0

10
49

0.
00

0
10

80
0.

50
46

97
0

0.
11

0.
00

8
9

29
0.

00
0

10
55

0.
00

0
10

75
0.

00
0

10
75

0.
00

0
10

90
0.

75
56

53
8

0.
02

0.
02

9
7

64
0.

00
6

8
64

0.
00

6
8

72
0.

00
6

8
72

0.
00

6
8

80
10

0
10

0.
25

29
09

0
13

.3
7

0.
60

4
1

0
0.

19
0

5
5

0.
04

8
7

19
0.

00
1

9
64

0.
00

0
10

81
0.

50
46

97
0

0.
11

0.
00

8
9

29
0.

00
0

10
55

0.
00

0
10

75
0.

00
0

10
75

0.
00

0
10

90
0.

75
56

53
8

0.
02

0.
02

9
7

64
0.

00
6

8
64

0.
00

6
8

72
0.

00
6

8
72

0.
00

6
8

80
A

ve
ra

ge
50

98
8

5.
36

0.
09

3
6.

8
36

0.
02

4
8.

7
49

0.
00

7
9.

0
66

0.
00

2
9.

2
68

0.
00

2
9.

3
84

T
ab

le
3:

So
lv

in
g

di
ffe

re
nt

si
ze

d
co

re
s

fo
r

va
ri

ou
s

pe
rc

en
ta

ge
s

of
ne

ga
ti

ve
va

lu
es

to
op

ti
m

al
it

y.
(A

ll
va

lu
es

sh
ow

n
ar

e
av

er
ag

ed
ov

er
10

pr
ob

le
m

in
st

an
ce

s)

6

T
im

e
L

im
it

=
5

Se
co

nd
s

or
ig

in
al

pr
ob

le
m

δ
=

0.
1n

δ
=

0.
15
n

δ
=

0.
2n

n
m

α
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
50

0
5

0.
25

0.
12

0 0
.0

2
1

2
16

42
1

0.
11

4 0
.0

2
5

4
31

84
7

0.
11

6 0
.0

2
2

3
26

95
5

0.
11

7 0
.0

1
4

4
24

33
7

0.
50

0.
06

7 0
.0

1
1

2
15

97
6

0.
05

1 0
.0

1
2

9
31

90
1

0.
06

1 0
.0

1
1

4
27

58
7

0.
06

1 0
.0

1
7

3
23

95
8

0.
75

0.
04

1 0
.0

0
4

5
18

59
8

0.
04

1 0
.0

0
4

8
32

79
1

0.
04

2 0
.0

0
6

6
29

19
4

0.
04

2 0
.0

0
5

6
27

45
4

50
0

10
0.

25
0.

43
8 0

.0
2
4

0
80

61
0.

35
2 0

.0
4
8

6
23

20
8

0.
38

3 0
.0

5
1

3
15

49
6

0.
36

4 0
.0

3
7

6
13

70
7

0.
50

0.
06

7 0
.0

1
1

2
15

97
6

0.
05

1 0
.0

1
2

9
31

90
1

0.
06

1 0
.0

1
1

4
27

58
7

0.
06

1 0
.0

1
7

3
23

95
8

0.
75

0.
04

1 0
.0

0
4

5
18

59
8

0.
04

1 0
.0

0
4

8
32

79
1

0.
04

2 0
.0

0
6

6
29

19
4

0.
04

2 0
.0

0
5

6
27

45
4

50
0

30
0.

25
1.

22
0 0

.1
1
5

2
29

77
1.

19
1 0

.1
0
5

3
10

26
2

1.
23

0 0
.0

4
4

3
78

81
1.

21
4 0

.1
1
3

2
60

14
0.

50
0.

06
7 0

.0
1
1

2
15

97
6

0.
05

1 0
.0

1
2

9
31

90
1

0.
06

1 0
.0

1
1

4
27

58
7

0.
06

1 0
.0

1
7

3
23

95
8

0.
75

0.
04

1 0
.0

0
4

5
18

59
8

0.
04

1 0
.0

0
4

8
32

79
1

0.
04

2 0
.0

0
6

6
29

19
4

0.
04

2 0
.0

0
5

6
27

45
4

A
ve

ra
ge

0.
33

3 0
.0

3
1

2.
0

96
42

0.
31

0 0
.0

3
4

5.
3

22
01

9
0.

32
3 0

.0
2
3

3.
4

17
43

3
0.

31
5 0

.0
3
4

4.
2

15
25

9
T

im
e

L
im

it
=

50
Se

co
nd

s
or

ig
in

al
pr

ob
le

m
δ

=
0.

1n
δ

=
0.

15
n

δ
=

0.
2n

n
m

α
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
50

0
5

0.
25

0.
10

3 0
.0

1
6

3
17

24
71

0.
10

0 0
.0

1
5

5
33

02
80

0.
10

0 0
.0

1
5

6
27

26
42

0.
09

9 0
.0

1
5

7
24

99
98

0.
50

0.
04

9 0
.0

1
1

6
18

11
77

0.
04

6 0
.0

0
8

9
32

80
66

0.
04

8 0
.0

1
1

8
28

73
41

0.
04

7 0
.0

0
9

8
26

01
45

0.
75

0.
03

8 0
.0

0
4

6
18

84
92

0.
03

8 0
.0

0
4

7
32

29
98

0.
03

8 0
.0

0
4

8
28

96
10

0.
03

8 0
.0

0
4

9
27

54
09

50
0

10
0.

25
0.

33
1 0

.0
2
6

2
85

18
7

0.
30

1 0
.0

1
9

4
23

10
31

0.
29

6 0
.0

2
4

6
15

07
26

0.
31

2 0
.0

3
1

4
13

28
56

0.
50

0.
04

9 0
.0

1
1

6
18

11
77

0.
04

6 0
.0

0
8

9
32

80
66

0.
04

8 0
.0

1
1

8
28

73
41

0.
04

7 0
.0

0
9

8
26

01
45

0.
75

0.
03

8 0
.0

0
4

6
18

84
92

0.
03

8 0
.0

0
4

7
32

29
98

0.
03

8 0
.0

0
4

8
28

96
10

0.
03

8 0
.0

0
4

9
27

54
09

50
0

30
0.

25
1.

10
8 0

.0
7
6

1
33

85
5

1.
04

5 0
.0

6
6

6
10

21
29

1.
09

8 0
.0

7
7

2
78

25
0

1.
09

4 0
.0

8
0

2
62

55
6

0.
50

0.
04

9 0
.0

1
1

6
18

11
77

0.
04

6 0
.0

0
8

9
32

80
66

0.
04

8 0
.0

1
1

8
28

73
41

0.
04

7 0
.0

0
9

8
26

01
45

0.
75

0.
03

8 0
.0

0
4

6
18

84
92

0.
03

8 0
.0

0
4

7
32

29
98

0.
03

8 0
.0

0
4

8
28

96
10

0.
03

8 0
.0

0
4

9
27

54
09

A
ve

ra
ge

0.
28

9 0
.0

2
3

3.
0

10
34

22
0.

27
2 0

.0
2
2

5.
7

22
21

98
0.

27
9 0

.0
2
3

5.
3

17
48

50
0.

28
1 0

.0
2
5

4.
8

15
59

27
T

im
e

L
im

it
=

25
0

Se
co

nd
s

or
ig

in
al

pr
ob

le
m

δ
=

0.
1n

δ
=

0.
15
n

δ
=

0.
2n

n
m

α
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
50

0
5

0.
25

0.
09

3 0
.0

1
2

8
83

93
28

0.
09

2 0
.0

1
1

10
12

62
58

1
0.

09
2 0

.0
1
1

10
12

60
52

4
0.

09
4 0

.0
1
4

8
11

15
97

1
0.

50
0.

04
6 0

.0
0
9

8
78

96
50

0.
04

5 0
.0

0
8

8
13

44
00

4
0.

04
4 0

.0
0
7

10
12

22
07

7
0.

04
6 0

.0
0
8

8
11

12
72

4
0.

75
0.

03
8 0

.0
0
4

10
78

01
68

0.
03

8 0
.0

0
4

10
96

51
54

0.
03

8 0
.0

0
4

10
94

80
57

0.
03

8 0
.0

0
4

10
92

65
72

50
0

10
0.

25
0.

30
5 0

.0
2
1

1
39

75
84

0.
28

4 0
.0

2
1

6
11

01
56

6
0.

28
5 0

.0
1
8

4
64

03
35

0.
28

3 0
.0

2
3

5
56

88
91

0.
50

0.
04

6 0
.0

0
9

8
78

96
50

0.
04

5 0
.0

0
8

8
13

44
00

4
0.

04
4 0

.0
0
7

10
12

22
07

7
0.

04
6 0

.0
0
8

8
11

12
72

4
0.

75
0.

03
8 0

.0
0
4

10
78

01
68

0.
03

8 0
.0

0
4

10
96

51
54

0.
03

8 0
.0

0
4

10
94

80
57

0.
03

8 0
.0

0
4

10
92

65
72

50
0

30
0.

25
1.

03
0 0

.0
8
2

2
16

42
46

0.
98

8 0
.0

3
3

5
50

79
29

1.
01

4 0
.0

5
5

1
38

27
31

1.
00

7 0
.0

8
4

3
30

68
41

0.
50

0.
04

6 0
.0

0
9

8
78

96
50

0.
04

5 0
.0

0
8

8
13

44
00

4
0.

04
4 0

.0
0
7

10
12

22
07

7
0.

04
6 0

.0
0
8

8
11

12
72

4
0.

75
0.

03
8 0

.0
0
4

10
78

01
68

0.
03

8 0
.0

0
4

10
96

51
54

0.
03

8 0
.0

0
4

10
94

80
57

0.
03

8 0
.0

0
4

10
92

65
72

A
ve

ra
ge

0.
26

8 0
.0

2
2

4.
8

47
26

58
0.

25
7 0

.0
1
8

7.
0

95
51

27
0.

26
2 0

.0
1
7

5.
9

74
49

10
0.

26
0 0

.0
2
2

6.
0

66
46

61
T

im
e

L
im

it
=

50
0

Se
co

nd
s

or
ig

in
al

pr
ob

le
m

δ
=

0.
1n

δ
=

0.
15
n

δ
=

0.
2n

n
m

α
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
%

L
P

#
N

no
de

s
50

0
5

0.
25

0.
09

2 0
.0

1
1

10
14

68
30

6
0.

09
2 0

.0
1
1

10
21

56
85

9
0.

09
2 0

.0
1
1

10
20

38
74

1
0.

09
2 0

.0
1
1

9
18

44
03

7
0.

50
0.

04
5 0

.0
0
8

9
14

74
39

0
0.

04
4 0

.0
0
7

10
22

82
44

5
0.

04
4 0

.0
0
7

10
21

84
81

9
0.

04
5 0

.0
0
8

9
19

68
42

0
0.

75
0.

03
8 0

.0
0
4

10
10

51
11

1
0.

03
8 0

.0
0
4

10
11

70
73

9
0.

03
8 0

.0
0
4

10
11

93
31

1
0.

03
8 0

.0
0
4

10
11

33
26

7
50

0
10

0.
25

0.
29

1 0
.0

2
2

1
75

21
03

0.
26

6 0
.0

2
7

4
19

73
08

3
0.

26
9 0

.0
2
4

5
11

90
39

1
0.

27
4 0

.0
1
8

4
10

70
74

1
0.

50
0.

04
5 0

.0
0
8

9
14

74
39

0
0.

04
4 0

.0
0
7

10
22

82
44

5
0.

04
4 0

.0
0
7

10
21

84
81

9
0.

04
5 0

.0
0
8

9
19

68
42

0
0.

75
0.

03
8 0

.0
0
4

10
10

51
11

1
0.

03
8 0

.0
0
4

10
11

70
73

9
0.

03
8 0

.0
0
4

10
11

93
31

1
0.

03
8 0

.0
0
4

10
11

33
26

7
50

0
30

0.
25

0.
98

2 0
.0

8
8

3
31

28
74

0.
98

2 0
.0

2
6

3
99

06
96

0.
97

4 0
.0

2
5

2
75

93
24

0.
95

2 0
.0

7
3

3
61

06
11

0.
50

0.
04

5 0
.0

0
8

9
14

74
39

0
0.

04
4 0

.0
0
7

10
22

82
44

5
0.

04
4 0

.0
0
7

10
21

84
81

9
0.

04
5 0

.0
0
8

9
19

68
42

0
0.

75
0.

03
8 0

.0
0
4

10
10

51
11

1
0.

03
8 0

.0
0
4

10
11

70
73

9
0.

03
8 0

.0
0
4

10
11

93
31

1
0.

03
8 0

.0
0
4

10
11

33
26

7
A

ve
ra

ge
0.

25
8 0

.0
2
1

5.
3

84
03

46
0.

25
3 0

.0
1
6

6.
3

16
78

29
6

0.
25

3 0
.0

1
5

6.
1

13
08

29
2

0.
25

1 0
.0

2
0

5.
9

11
62

16
5

T
ab

le
4:

F
ix

ed
ti

m
e

ru
ns

of
la

rg
er

be
nc

hm
ar

k
in

st
an

ce
s.

V
ar

io
us

co
re

si
ze

s
ar

e
sh

ow
n

fo
r

10
%

ne
ga

ti
ve

co
eff

ec
ie

nt
s.

A
ll

va
lu

es
sh

ow
n

ar
e

av
er

ag
ed

ov
er

10
pr

ob
le

m
in

st
an

ce
s.

7

5 Related Work

The most closely related work to this paper is the
application of the core concept to the MKP (13,
14). We extend the results therein to general 0/1
Integer Programs, and show that the core concept
continues to be valuable in the more general case.

Recently, very interesting results have been
achieved with heuristics for 0/1 Mixed Integer
Programming Problems with the goal of devising
better feasible solutions earlier in the optimiza-
tion process. Local Branching (4) combines local
search and general branch-and-bound by introduc-
ing local branching constraints forcing the search
to explore the neighborhoods of current feasible
solutions first.

In Relaxation Induced Neighborhood Search
(RINS) (3) subproblems for finding better feasi-
ble solutions are solved at some nodes the branch-
and-bound tree. The subproblems are obtained by
fixing the variables having identical values in the
current best feasible solution and in the current so-
lution of the LP-relaxation, leaving the remaining
variables free.

RINS and local branching are local-search
based ideas, reducing the subproblems to certain
neighborhoods around a currently feasible solu-
tion. Our approach requires an LP solution only,
and does not make use of feasible solutions at all.

6 Conclusions

We have extended the core concept, previously
successfully used for finding better solutions to
Multiple Knapsack Problems to general 0/1 In-
teger Programs. We provided an ordering of the
variables using dual information, which results in
a compact split interval just as for the standard
MKP. This ordering is used to reduce the size of
the tackled instances and obtain near-optimal so-
lutions in shorter run-times. Our computational
experiments show, that for challenging 0/1 Integer
Programs with a large number of variables com-
pared to the number of constraints, the core con-
cept provides better solutions than directly solving
the original problem. In the future we plan to test
our approach on other 0/1 MIP test instances.

References

[1] E. Balas and E. Zemel. An algorithm for large
zero-one knapsack problems. Operations Re-
search, 28(5):1130–1154, 1980.

[2] P.C. Chu and J.E. Beasley. A genetic al-
gorithm for the multidimensional knapsack
problem. Journal of Heuristics, 4(1):63–86,
1998.

[3] E. Danna, E. Rothberg, and C. Le Pape. Ex-
ploring relaxation induced neighborhoods to
improve MIP solutions. Mathematical Pro-
gramming, Series A, 102:71–90, 2005.

[4] Matteo Fischetti and Andrea Lodi. Local
Branching. Math. Programming Series B,
98:23–47, 2003.

[5] B. Gavish and H. Pirkul. Efficient algorithms
for solving the multiconstraint zero-one knap-
sack problem to optimality. Mathematical
Programming, 31:78–105, 1985.

[6] P.C. Gilmore and R. Gomory. The theory
and computation of knapsack functions. Op-
erations Research, 14:1045–1074, 1966.

[7] F. Glover and G.A. Kochenberger. Critical
event tabu search for multidimensional knap-
sack problems. In I.H. Osman and J.P. Kelly,
editors, Metaheuristics: Theory and Applica-
tions, pages 407–427. Kluwer Academic Pub-
lishers, 1996.

[8] Carlos Gomes da Silva, João Cĺımaco, and
José Figueira. Core problems in bi-criteria
{0,1}-knapsack: new developments. Techni-
cal Report 12/2005, INESC-Coimbra, 2005.

[9] H. Kellerer, U. Pferschy, and D. Pisinger.
Knapsack Problems. Springer, 2004.

[10] S. Martello and P. Toth. A new algorithm
for the 0–1 knapsack problem. Management
Science, 34:633–644, 1988.

[11] D. Pisinger. An expanding-core algorithm for
the exact 0-1 knapsack problem. European
Journal of Operational Research, 87(1):175–
187, 1995.

[12] D. Pisinger. A minimal algorithm for the 0-
1 knapsack problem. Operations Research,
45(5):758–767, 1997.

[13] J. Puchinger, G.R. Raidl, and U. Pferschy.
The core concept for the multidimensional
knapsack problem. In Evolutionary Compu-
tation in Combinatorial Optimization - Evo-
COP 2006, volume 3906 of LNCS, pages 195–
208. Springer, 2006.

[14] J. Puchinger, G.R. Raidl, and U. Pfer-
schy. The multidimensional knapsack prob-
lem: Structure and algorithms. Technical Re-
port 006149, National ICT Australia, Mel-
bourne, Australia, March 2007. submitted for
publication.

[15] G.R. Raidl and J. Gottlieb. Empirical anal-
ysis of locality, heritability and heuristic bias
in evolutionary algorithms: A case study for
the multidimensional knapsack problem. Evo-
lutionary Computation, 13(4):441–475, 2005.

[16] W. Shih. A branch and bound method for
the multiconstraint zero-one knapsack prob-
lem. Journal of the Operational Research So-
ciety, 30:369–378, 1979.

[17] M. Vasquez and J.K. Hao. A hybrid ap-
proach for the 0–1 multidimensional knapsack
problem. Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelli-
gence, pages 328–333, 2001.

[18] M. Vasquez and Y. Vimont. Improved results
on the 0-1 multidimensional knapsack prob-
lem. European Journal of Operational Re-
search, 165(1):70–81, 2005.

8

[19] H. M. Weingartner and D. N. Ness. Meth-
ods for the solution of the multidimensional
0/1 knapsack problem. Operations Research,
15:83–103, 1967.

9

