
Solving Difference Constraints over Modular

Arithmetic

Graeme Gange, Harald Søndergaard, Peter J. Stuckey, and Peter Schachte

Department of Computing and Information Systems,
The University of Melbourne, Victoria 3010, Australia
{ggange,harald,pjs,schachte}@csse.unimelb.edu.au

Abstract. Difference logic is commonly used in program verification
and analysis. In the context of fixed-precision integers, as used in assem-
bly languages for example, the use of classical difference logic is unsound.
We study the problem of deciding difference constraints in the context of
modular arithmetic and show that it is strongly NP-complete. We discuss
the applicability of the Bellman-Ford algorithm and related shortest-
distance algorithms to the context of modular arithmetic. We explore
two approaches, namely a complete method implemented using SMT
technology and an incomplete fixpoint-based method, and the two are
experimentally evaluated. The incomplete method performs considerably
faster while maintaining acceptable accuracy on a range of instances.

1 Introduction

We consider the problem of adapting classical difference logic over Z [2] to the
congruence class used in modulo-m integer arithmetic, here denoted Zm. Under-
standing this class is important for the design of automated reasoning that is
concerned with machine arithmetic. Our particular interest in this arises from
our work on analysis and verification of low-level code. We wish to improve
static analysis techniques for low-level programming languages that use w-bit
fixed-precision integers, that is, we are interested in the particular case m “ 2w.
Much of the literature on program analysis and software verification uses dif-
ference logic and similar numeric abstract domains, tacitly assuming unbounded

integers. It is well known that, in that context, difference logic can be decided in
Op|V ||C|q deterministic time, for variables V and constraints C. In the context
of Zm, the decision problem becomes strongly NP-complete.

Consider the program fragment shown in Figure 1. Conventional static anal-
ysis with difference bound matrices [4] or octagons [11] will derive the bounded
difference constraint 0 ď y ´ x ď 6 and determine that the branch y ă x will
never be executed. In a context of fixed-precision integers, owing to possible over-
flow, this conclusion is clearly wrong. Nevertheless, in some sense the derived
invariant is meaningful, as y lies between x and x ` 6 on the modular integer
number circle.

The challenge is to ensure that program analysis “understands” machine
operations so as to remain faithful to machine arithmetic. Previous work has

unsigned int x “ ‹;
unsigned int y “ x;
for(int i “ 0; i ă 6; i `̀)

if(‹)
y `̀ ;

if(y ă x) ERROR;

Fig. 1: Unbounded relational analysis will deem ERROR unreachable; however,
on systems with fixed-width integers, y may wrap to 0 if x is very large.

mainly dealt with non-relational abstract domains, notably interval domains [15,
16, 8]. Simon and King [17] considered adapting convex polyhedra to modular
arithmetic by computing a convex approximation relative to a fixed wrapping
point. Other approaches consider instead systems of equations [13] and disequa-
tions [9] under modular arithmetic. SMTpBVq [10] problems involve a variety of
constraints over Z2w ; solvers for these problems typically convert the arithmetic
operations to SAT. These techniques are complete, but may be too slow to be
viable for certain applications, such as invariant synthesis.

One critical issue with classical abstract domains such as interval domains,
octagons, and so on, is that they rely on having a linear ordering, ď, on the set
of integers. The only way to capture a non-trivial concept of ordering on Zm is
to discuss order only with respect to some reference point. For example, we may
decide that x ď y means, loosely, that “starting from 0 and moving clockwise
on the number circle, x is encountered no later than y”—a natural reading
when unsigned integer representation is used. Or, we may decide that it means
“starting from ´m{2, x is met no later than y”—when signed representation
is used. To complicate matters, many low-level languages, such as LLVM and
assembly languages, fail to provide signedness information, relying on the fact
that arithmetic operations such as addition, subtraction and multiplication are
agnostic with respect to signedness. Navas et al. [14] point out that analysis of
such languages, in order to maintain precision, has to be signedness-agnostic as
well, which means superposing signed/unsigned assumptions during analysis.

For the remainder of this paper, we assume all inequalities are unsigned.
Signed inequalities xďs y can be expressed in terms of unsigned inequalities:
xďs y iff x` m

2
ď y` m

2
. This does, however, require the introduction of shifted

variables x1 “ px` m
2
q mod m and y1 “ py ` m

2
q mod m.

Classical integer difference constraints provide lower and upper bounds on
integer differences x ´ y, and these bounds have consequences for order. For
example, for positive k, a constraint x´ y ě k allows us to deduce x ě y. When
we move to Zm, this link between difference and order is lost. For example,
assuming signed arithmetic, rx ÞÑ ´2w´1, y ÞÑ 2w´1 ´ 1s satisfies x´ y ě 0 but
not x ě y. Hence an important step towards getting a handle on “wrapped”
difference logic is to separate the aspects of proximity and (relative) order.

The following contributions are made in this paper:

2

bellman ford(xV,Ey)
% Introduce a fresh least element.
V 1 = V Y tv1u
E1 = E Y txv1, 0, viy | vi P V u
% Initialize relations
Dpv1q := 0
for(vi P V)

Dpviq := ´8
% Progressively expand the set of paths to each node.
for(k P t1, . . . , |V |u)

for(pxvi, w, vjy P E
1)

Dpvjq “maxpDpvjq, Dpviq ` wq
% Check for any inconsistencies
for(pxvi, w, vjy P E

1)
if(Dpviq ` w ą Dpvjq)

return UNSAT

return SAT

Fig. 2: Pseudo-code for the Bellman-Ford algorithm for checking satisfiability of
a set of unbounded difference logic constraints.

– We study the complications that arise when reasoning about difference con-
straints takes place in the presence of modular arithmetic.

– We offer a simple proof that, in that context, for m ą 2, decidability of
difference constraints is NP-complete.

– We propose a framework for combined reasoning about proximity and order
and use this to develop an efficient but incomplete decision procedure.

– We evaluate the resulting method, comparing it to two more traditional
SMT-based decision procedures.

In Section 2 we recapitulate the classical case. In Section 3 we discuss “wrapped”
difference constraints and develop the different approaches: a complete method
based on SMTpBVq (bit-vector) technology, one using SMTpDLq (difference
logic), and an incomplete fixpoint-based method. Section 4 contains the evalua-
tion and Section 5 concludes.

2 Deciding difference logic

The classical method for deciding difference logic1 is the Bellman-Ford algo-
rithm [2]. For later reference, we show it in Figure 2. It uses a graph represen-
tation of constraints, each variable giving rise to a node, and each difference

1 The term “separation logic” is sometimes used [18, 19]. To avoid confusion with
Reynolds-O’Hearn separation logic, we use the alternative “difference logic”.

3

x ´ w ě 0
y ´ x ě 1
z ´ y ě 1
x ´ z ě 1

(a)

v1 w x

y

z

0
1

1

1

0

0

0

0

(b)

Fig. 3: (a) A set of difference constraints. (b) the corresponding graph represen-
tation (v1 is a freshly introduced root vertex).

constraint giving rise to a weighted directed edge. The algorithm relies on these
inference rules for difference logic (K denotes unsatisfiability):

Inversion: α ď y ´ x ď β iff ´β ď x´ y ď ´α

Resolution:
α1 ď y ´ x ď β1 α2 ď z ´ y ď β2

α1 ` α2 ď z ´ x ď β1 ` β2

Tightening:
α1 ď y ´ x ď β1 α2 ď y ´ x ď β2

maxpα1, α2q ď y ´ x ďminpβ1, β2q

Contradiction:
α ď y ´ x ď β, α ą β

K

Example 1. Consider the set of constraints shown in Figure 3(a). The graph cor-
responding to these constraints is given in Figure 3(b). Note that the constraints
are satisfiable if and only if there are no positive-weight cycles in the graph.2

After computing the longest paths of length up to |V |, we have:

tDpv1q “ 0, Dpwq “ 0, Dpxq “ 3, Dpyq “ 3, Dpzq “ 3u

However, performing another iteration would still increase the path lengths,
since, for example, Dpzq ` 1 ą Dpxq. This indicates the presence of a positive-
weight cycle. [\

3 Wrapped difference constraints

In this section, we consider systems of constraints of the form α P y´x P β (which
we sometimes write it as y ´ x P rα, βs) under modular arithmetic. Given that

2 Presentations of difference logic sometimes express the problem in terms of shortest
(rather than longest) paths, in which case unsatisfiability corresponds to negative
(rather than positive) cycles.

4

we are concerned with numerical proximity as well as ordering, we allow these
intervals to cross m; such a wrapped interval rα, βs is interpreted as follows:3

γrα, βs “

"

td | α ď d^ d ď βu if α ď β

td | α ď d^ d ď m´ 1u Y td | 0 ď d^ d ď βu otherwise

For example, in a modulo-16 context, the wrapped interval r14, 2s denotes the
set t0, 1, 2, 14, 15u. In this modulo-m context, a one-sided constraint (such as y´
x ě 3) is essentially meaningless; the usual inequalities under Zm are implicitly
bounded by 0 and m´ 1. On the other hand, containment of wrapped intervals
is easily expressed:

rα, βs Ď rα1, β1s iff γrα, βs Ď γrα1, β1s

We can perform certain operations, similar to those of Section 2, on the number
circle. However, of Section 2’s inference rules, only inversion remains sound.

Example 2. Consider, for k ą 1, this set of constraints:

1 ď y ´ x ď k, 1 ď z ´ y ď k, 1 ď x´ z ď k (1)

Resolving the first two constraints, we get 2 ď z ´ x ď 2k, or, equivalently,
´2k ď x´ z ď ´2. Under standard difference logic, (1) would be unsatisfiable:

1 ď x´ z ď k ´2k ď x´ z ď ´2
1 ď x´ z ď ´2

K

However, as illustrated here, in the modular-
arithmetic case, this set of constraints is sat-
isfiable if k is sufficiently large. For example,
the constraints are satisfiable in Z16, for k “ 7
(take, say, x “ 1, y “ 6, z “ 11). [\

x

x` 7

yy ` 7
z

z ` 7

The n constraints

α1 ď x2 ´ x1 ď β1, . . . , αn´1 ď xn ´ xn´1 ď βn´1, αn ď x1 ´ xn ď βn

induce the constraint α ď 0 ď β, where α “ α1`¨ ¨ ¨`αn and β “ β1`¨ ¨ ¨`βn.
This latter constraint is unsatisfiable exactly when 0 falls outside rα, βs, a condi-
tion which is reminiscent of the positive-weight cycle condition for conventional
difference logic.

In principle a variant of a shortest-path algorithm could be used to detect
these inconsistent cycles; however, this requires computing the intersection of

3 The definition overloads the square bracket notation: The function γ takes a possibly
wrapped interval and expresses its meaning in terms of ordinary intervals.

5

(a) (b) (c)

Fig. 4: (a) A pair of intervals on the number circle, (b) the intersection of the
two intervals and (c) an optimal over-approximation of the intersection.

wrapped intervals. Consider the two intervals shown in Figure 4(a). The inter-
section of these two intervals is no longer a single interval. Indeed, the intersection
of k wrapped intervals produces up to minpk, m

2
q disjoint feasible intervals; when

combined with resolution, minp2
k

2 , m
2
q intervals can be generated. For example,

with these constraints:

0 ď y ´ x ď 2, 0 ď z ´ y ď 4, 2 ď y ´ x ď m, 4 ď z ´ y ď m

we have y ´ x P t0, 2u and z ´ y P t0, 4u, which yields z ´ x P t0, 2, 4, 6u. There
are four equally good interval approximations of this set.

3.1 Interval sets

We could represent the feasible relations between two variables exactly by explic-
itly maintaining the set of (disjoint) feasible intervals. To reason about bounded
difference constraints, we require two operations: intersection of interval-sets
(denoted [) and pointwise addition of interval-sets (denoted `).

A[A1 “
Ů

rα,βsPA

Ů

rα1,β1sPA1

$

’

’

&

’

’

%

rα, βs if α P rα1, β1s ^ β P rα1, β1s
rα, β1s if α P rα1, β1s ^ β1 P rα, βs
rα1, βs if α1 P rα, βs ^ β P rα1, β1s
rα1, β1s if α1 P rα, βs ^ β1 P rα, βs

,

/

/

.

/

/

-

A`A1 “
Ů

rα,βsPA

Ů

rα1,β1sPA1trα` α1, β ` β1su

The operation [can be implemented in Op|A|`|A1|q time; ` requires Op|A||A1|q
time in the worst case. In the case of `, the results are normalized by merging
overlapping intervals. Note that ` and [are both commutative and associative.
Also note that the full interval, J, is a neutral element for [, while tr0, 0su
is neutral for `. It would be convenient if the resulting structure formed a
semiring, as this would allow us to use the algebraic shortest distance framework
of Mohri [12]. Unfortunately, while we do have the property

pa[bq` c Ď pa` cq [pb` cq

6

it is not the case that ` distributes over [. As a counter-example, consider Z16,
and take A “ r0, 8s and B “ r9, 0s. We have A`pA[Bq “ A`r0, 0s “ A, while
pA`Aq[pA`Bq “ J[J “ J. As we shall see in Section 3.6, this complicates
the operation of longest path algorithms.

3.2 Wrapped-interval approximation

For the analysis of programs that use Zm for a large m (and usually m is 232 or
264), representing the feasible values precisely is impractical. In this section, we
propose the construction of an over-approximation of the set of feasible intervals.

We adopt a “wrapped interval” representation [14], approximating the set of
feasible intervals with a single interval. A wrapped interval is any sequence of
consecutive numbers on the modulo-m number circle; for example, with m “ 16,
the interval r8, 0s is the set t8, 9, . . . , 15, 0u. Given a set of integers modulo m,
there may be several minimal approximations in the form of wrapped intervals;
for example, the set t0, 8u may be approximated by r0, 8s or by r8, 0s, two inter-
vals of equal cardinality. To ensure a deterministic choice, we use a total ordering
ĺ over wrapped intervals, ordering them primarily by cardinality and then lex-
icographically (we write x ‘m y for px ‘ yq mod m for binary infix operator
‘):

rα, βs ĺ rα1, β1s iff pβ ´m αq ă pβ1 ´m α1q _ ppβ ´m α “ β1 ´m α1q ^ α ď α1q

This allows us to define an over-approximation of the meet which selects the
approximation with minimum cardinality, breaking ties by favouring the lexico-
graphically smallest left-bound.

rα, βs [L rα
1, β1s “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

if α R rα1, β1s ^ α1 R rα, βs then K
else if rα, βs Ď rα1, β1s then rα, βs
else if rα1, β1s Ď rα, βs then rα1, β1s
else if α1 R rα, βs then rα, β1s
else if α R rα1, β1s then rα1, βs
else minĺprα, βs, rα

1, β1sq

rα, βs ` rα1, β1s “

"

J if pβ ´m αq ` pβ1 ´m α1q ě m´ 1
rα`m α1, β `m β1s otherwise

Notice that, using this approximation, [L lacks several properties provided by
typical lattice operations. [L is absorptive and commutative but not associative.

Example 3. With m “ 16, consider A “ r8, 15s, B “ r12, 9s, and C “ r0, 10s. We
have pA[L Bq[L C “ r8, 15s [Lr0, 10s “ r8, 10s. On the other hand, we have
A[LpB[L Cq “ r8, 15s [Lr0, 9s “ r8, 9s. [\

Also, [L is not monotone (nor decreasing) with respect to the inclusion ordering
Ď (however, [L is monotone with respect to the cardinality ordering ĺ).

Example 4. Consider the intervals A “ r0, 10s, A1 “ r0, 8s, B “ r8, 1s on Z16. A
1

is clearly a subset of A, however A[L B is incomparable with A1[L B. Namely,
A[LB “ r8, 1s, while A1[L B “ r0, 8s. So [L fails to be monotone. [\

7

0̄

(a)

0̄

(b)

0̄

(c)

Fig. 5: (a) When the concrete range covers the entire circumference of the num-
ber circle, the proximity bounds cannot be reduced further. (b) The concrete
bounds can, however, be reduced to the next corresponding proximity bound.
(c) If both sets of endpoints are mutually contained, there can be no reduction.

0̄

(a)

0̄

(b)

Fig. 6: If the union of the concrete and proximity intervals do not cover the entire
number circle, each can be tightened to the region satisfying both.

3.3 Combining wrapped difference with relative order

The wrapped interval constraints discussed so far express proximity only. They
cannot express constraints such as x ă y. This can be fixed, however, by al-
lowing “concrete” interval information. Thus we combine proximity and range
constraints in pairs xrα, βs, rd,Dsy with the semantics:

γxrα, βs, rd,Dsy “ tpx, yq P Z2

m | y ´m x P rα, βs ^ y ´ x P rd,Dsu

Note that, with x, y P r0,m ´ 1s, the value of y ´ x can be anywhere between
´m ` 1 and m ´ 1 (2m ´ 1 possible values). Hence J “ xr0,m ´ 1s, r´m `
1,m ´ 1sy. Figure 5(a) depicts an interval pair (assuming m “ 16, the pair is
xr4, 9s, r´15, 15sy), the first interval shown by a solid arc, the second by a dashed
arc.

We normalise interval pairs by propagating information from each component
to the other. Let dm be d projected onto the range r0,m´ 1s. We can use this
to determine how far the lower (respectively upper) bound of the concrete range
must be adjusted to reach the corresponding proximity bound. This difference
is then mapped back onto the concrete range. Note the use of rd,Dsm, the

8

projection of the interval onto r0,m ´ 1s, defined as rd,Dsm “ r0,m ´ 1s if
D ´ d ě m, and rd,Dsm “ rdm, Dms, otherwise.

norm xrα, βs, rd,Dsy “ xrα1, β1s, rd1, D1sy where

d1 “

"

d if dm P rα, βs
d` pα´m dmq otherwise

D1 “

"

D if Dm P rα, βs
D ´ pDm ´m βq otherwise

rα1, β1s “

"

rα, βs if α P rd,Dsm ^ dm P rα, βs
rα, βs [rd,Dsm otherwise

Details of the definition are justified by considering the cases shown in Figures 5
and 6. The following theorem says that norm establishes the tightest possible
consistent bounds.

Theorem 1. Let xA1, C 1y “ norm xA,Cy. For allA2, C2, if γxA2, C2y “ γxA,Cy
then A1

Ď A2 ^ C 1
Ď C2.

Proof. Consider a pair xrα1, β1s, rd1, D1sy “ norm xrα, βs, rd,Dsy. In the case that
α P rdm, Dms and dm P rα, βs, as illustrated in Figure 5(c), neither bound can
be tightened. If rα, βs and rd,Dsm do not intersect, we have d`pα´m dmq ą D,
and the result correctly represents K.

This leaves the case where there is some overlap between rα, βs and rd,Dsm,
but the intervals do not cross at both ends. In that case, rα, βs [rd,Dsm is the
largest interval consistent with both rα, βs and rd,Ds. If dm R rα, βs, we must
adjust d to the next point on the number circle consistent with rα, βs – that is,
α. The minimum distance d must be shifted is α´m dm, in which case d1

m “ α.
By similar reasoning, if Dm R rα, βs, we must reduce D by Dm ´m β, giving
D1

m “ β. Both d1
m and D1

m are in rα1, β1s. Assume there were some element of
c P rα1, β1s such that c R rd1, D1sm. As c P rα1, β1s, we have c P rα, βs ^ c P rd,Ds.
Then c is either in the interval rd, d1q, or pD1, Ds. However, this cannot be the
case, as there are no elements of rα, βs in either interval. Therefore, all elements
of rα1, β1s must be consistent with rd1, D1s.

We conclude that norm computes the tightest intervals that preserve the
semantics of the input pair. [\

In the case of the complete interval set representation, rα1, β1s can be computed
with a standard join; the additional case is to avoid losing information when
the intervals overlap in two places (analogous to the case in Figure 4(a)). Using
normalisation, we can define the necessary operators on the combined domain:

xrαx, βxs, rdx, Dxsy [xrαy, βys, rdy, Dysy “

norm xrαx, βxs [rαy, βys, rmaxpdx, dyq,minpDx, Dyqsy

xrαx, βxs, rdx, Dxsy` xrαy, βys, rdy, Dysy “

norm xrαx, βxs `rαy, βys, rdx ` dy, Dx `Dysy

9

3.4 NP-completeness of wrapped difference constraints

As already observed by Bjørner et al. [1], wrapped difference constraints are
NP-complete. In this section we give a simpler proof, using, as do Bjørner et al.,
reduction from graph 3-colourability. We strengthen the result [1] by showing
NP-completeness for all cases m ą 2. For m “ 2, the problem can be solved in
polynomial time in the same manner as 2-colouring.

First, given an assignment to variables tv1, . . . , vnu, we can check, in polyno-
mial time, whether each difference constraint is satisfied; so wrapped difference
logic is in NP. It remains to show that the problem is NP-hard.

Assume m ą 2; consider a 3-colourability instance G “ xtv1, . . . , vnu, Ey.
We construct a system of |E| ` n difference constraints in Zm over variables
tx, x1, . . . , xnu:

– For each vertex vi, introduce the constraint xi ´ x P r0, 2s (for m “ 3 this is
a vacuous constraint, so it can be omitted).

– For each edge pvi, vjq P E, introduce the constraint xi ´ xj P r1,m´ 1s.

The system of constraints can be generated in linear time. We claim that it is
satisfiable iff G is 3-colourable.

Assume the set of constraints can be satisfied and let ν be a satisfying val-
uation. For each xi, we have νpxiq P tνpxq, νpxq `m 1, νpxq `m 2u, owing to
the constraint xi ´ x P r0, 2s. Taking νpxq, νpxq `m 1, and νpxq `m 2 as three
“colours”, we choose the colour νpxiq for node vi. This gives a 3-colouring of
G, because, for adjacent vertices vi and vj , the colours νpxiq and νpxjq must be
different, owing to the constraint xi ´ xj P r1,m´ 1s.

Conversely, assume that G is 3-colourable. Call the three colours used in the
colouring 0, 1, and 2. We claim that the valuation ν which maps x to 0 and xi

to the colour of vi satisfies the generated constraints. The constraints of form
xi ´ x P r0, 2s are satisfied by construction. The constraints of form xi ´ xj P
r1,m´ 1s are similarly satisfied, as the “difference” between the “colours” of vi
and vj are precluded from being 0.

It follows that wrapped difference logic is NP-complete. Note that the usual
directionality of edges in the graph generated by difference constraints is irrele-
vant here, since in modulo m arithmetic, x´ y P r1,m´1s and y´x P r1,m´1s
(and x ­“ y) are equivalent. Also note that the reduction does not synthesize m

from a 3-colourability instance. Rather, m is a fixed constant in the transfor-
mation. As 3-colourability is strongly NP-complete, and the transformation
is pseudo-polynomial [7], wrapped difference logic is also strongly NP-complete.

3.5 SMT encodings: Two complete decision procedures

A common approach for solving problems over Z2w is satisfiability modulo bit-

vectors (SMTpBVq) [10]. In an SMTpBVq solver, each w-bit word x is typically
translated into a vector vx of w Boolean variables. Operations on Z2w are encoded
using Boolean formulae to simulate the corresponding hardware circuit.

We can readily couch wrapped difference constraints in terms of SMTpBVq.
Letting -bv denote w-bit bit-vector subtraction, encode each constraint directly:

10

For a constraint x ď y: vxďu vy

For a constraint y ´ x P ri, js: pvy -bv vxq -bv iďu j -bv i

SMTpBVq solvers typically use complete methods for solving bit-vector con-
straints. These, then, provide a complete decision procedure for wrapped differ-
ence constraints.

An alternative way is to use satisfiability modulo difference logic (SMTpDLq).
Each variable is constrained to the interval rzero, zero `m´ 1s. We encode the
concretization of a wrapped interval ri, js as a disjunction of concrete difference
constraints, using similar reasoning to that illustrated in Figure 5:

For a variable x: 0 ď vx ´ zero ď m´ 1

For a constraint x ď y: vxďu vy

For a constraint
y ´ x P ri, js:

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˝

´m` 1 ď vy ´ vx ď ´m` j

_ ´m` i ď vy ´ vx ď j

_ i ď vy ´ vx ď m´ 1

˛

‚ if jm ă im

ˆ

´m` i ď vy ´ vx ď ´m` j

_ i ď vy ´ vx ď j

˙

otherwise

3.6 An incomplete decision procedure

Ideally, we would like an efficient, sound and complete decision procedure. Given
that wrapped difference constraints are NP-complete, it seems highly unlikely
that such a procedure exists. The SMT approaches are sound and complete,
but can exhibit exponential running time. For use in an abstract interpretation
framework, we require the analysis to be efficient, and we can afford to sacrifice
completeness (but not soundness). We must therefore develop a sound over-
approximation which maintains reasonable accuracy without excessive cost.

Given the similarities between wrapped difference constraints and classical
difference logic, it seems likely that variants of shortest-path algorithms would
provide suitable heuristics. Indeed, the problem of detecting a set of inconsistent
wrapped difference constraints is very similar to the algebraic shortest distance
framework of Mohri [12]. As observed in Section 3.1, our [and ` operators
lack some critical semiring properties; however, the structure of the problem
remains the same. It is worth noting that all edges have an inverse; for any
edge y ´ x P rα, βs, there is a corresponding edge x ´ y P rm ´ β,m ´ αs. As
the inverse is easily computed, there is no need to store both edges explicitly.
Similarly, we do not need to compute pz´yq`py´xq if we have already computed
px´ yq ` py ´ zq.

In principle, the Bellman-Ford algorithm [2] provides a suitable sound over-
approximation. Unfortunately, in the context of modular arithmetic, it quickly
loses information about infeasible paths.

11

y ´ x P r0, m{2s
z ´ y P r0, m{2s
v ´ z P r1, 1s
w ´ v P r1, 1s
z ´ w P r1, 1s

(a)

x y z

v

w

r0, m

2
s r0, m

2
s

r1,
1s

r1
,1

s
r1, 1s

(b)

Fig. 7: The cycle z Ñ w Ñ v Ñ z is inconsistent. However, this information is
lost when applying Bellman-Ford from the root x.

a b c

d

r0, 8s r0, 8s

r8
, 0

s r1, 1s

Fig. 8: After running the Floyd-Warshall algorithm (with variables ordered lex-
icographically), we have c´ a P J, rather than the tightest bound of r0, 9s.

Example 5. Consider the set of constraints in Figure 7. The cycle z Ñ w Ñ v Ñ
z has value r3, 3s, which is an inconsistent self-loop (assuming m ą 3). However,
applying Bellman-Ford from root node x, we quickly determine that z ´ x P J.
Then, as J` r1, 1s “ J, we derive the same relation for v ´ x and w ´ x. We
cannot then deduce the existence of an inconsistent cycle. [\

This example suggests that a single-source approach is unlikely to work. An
alternative approach is to use an all-pairs shortest path algorithm to derive the
strongest relation between each pair of variables. The obvious algorithm to use is
the Floyd-Warshall algorithm [5]. However, as mentioned in Section 3.1, ` does
not distribute over [; as a result, a direct application of the Floyd-Warshall
algorithm is not guaranteed to reach a fixpoint with respect to every pair of
variables.

Example 6. Consider a problem in Z16, with the constraint graph given in Fig-
ure 8. The algorithm computes the longest paths via first a then b (neither
tightening any constraints). Since d ´ c P r15, 15s and c´ b P r0, 8s, paths via c

tighten d ´ b to r8, 0s [r15, 7s “ r15, 0s (note that c´ b is still r0, 8s, and d ´ a

is still J). Once we compute paths via d, we tighten c ´ b to r0, 1s. After the
algorithm has finished, c´ a has still not yet been tightened to the correct value
of r0, 9s. [\

We could modify the Floyd-Warshall algorithm to continue iterating until a
fixpoint is reached. However, this performs a great deal of redundant work;
particularly given that most such constraint systems are quite sparse, so many
edges are J. Instead, we use a worklist-based algorithm to compute the fixpoint
directly. We maintain a queue of pvi, vjq pairs which have changed, and update

12

wrapdiff fixpoint(xV,Ey)
Q := H
% Initialize relations
R := tpvi, vjq ÞÑ J | vi, vj P V u
Adj := tvi ÞÑ H | vi P V u
for(xvj ´ vi P ry P E)

update rel(vi, vj , r[Rpvi, vjq)
whilep Q.emptypqq
pvi, vjq := Q.poppq
for(vk P Adjpvjqztviu)

rik := Rpvi, vkq[pRpvi, vjq`Rpvj , vkqq
ifprik “ Kq return UNSAT

update rel(vi, vk, rik)
for(vk P Adjpviqztvju)

rkj := Rpvk, vjq[pRpvk, viq`Rpvi, vjqq
ifprkj “ Kq return UNSAT

update rel(vk, vj , rkj)
% If we reach a fixpoint without unsatisfiability,
% assume satisfiability
return SAT

update rel(vi, vj , rij)
if(rij ‰ Rpvi, vjq)

Rpvi, vjq := rij
Q.insertppvi, vjqq
Adjpviq := Adjpviq Y tvju
Adjpvjq := Adjpvjq Y tviu

Fig. 9: Computation of a fixpoint of a set of difference constraints.

any adjacent pvi, vkq or pvk, vjq edges. This method is given in Figure 9. R

maintains the relations between each pair of variables, and Q is the queue of
updated edges. Since c`J “ J for all c, we need not compute Rpvi, vjq`Rpvj , vkq
unless both Rpvi, vjq and Rpvj , vkq are not J.Adj holds, for each vertex vi, the set
of adjacent vertices vk such that Rpvi, vkq ‰ J. When an edge pvi, vjq is changed,
we need only test elements in Adjpviq and Adjpvjq. We must, however, ensure
Adj is updated whenever an edge ceases to be J – this is done in update rel. Adj
can be maintained in constant time with Opn2q space and initialization time.
As mentioned, we do not need to keep track of both an edge and its inverse; we
similarly avoid adding pvj , viq to the queue if pvi, vjq has already been added.

This procedure is sound, as each step in the algorithm is the application of
an inference of the form x´ z Ď px ´ yq` py ´ zq.

Theorem 2. The procedure wrapdiff fixpoint terminates.

13

Proof. Using either the disjoint-set lattice or the interval over-approximation,
the [operation is monotone (according to the Ď and ĺ orderings respectively)
and non-increasing. At each step of wrapdiff fixpoint, either some Rpvi, vkq or
Rpvk, vjq must decrease, or all entries remain constant and the size of Q de-
creases. As both the disjoint-set and interval domains are finite, there cannot be
any infinite descending chains. Hence wrapdiff fixpoint must terminate. [\

The fixpoint time complexity is clearly bounded by Opmn3q. However, in practice
the algorithm runs much faster; we suspect a tighter bound exists which is not
dependent on m.

Proposition 1. In cases where a classical difference constraint solver soundly
proves unsatisfiability, wrapdiff fixpoint also proves unsatisfiability.

Proof. Classical difference constraints are unsatisfiable if there is some cycle
C “ rc1, c2, . . . , cks in the graph, such that SC “

ř

C ą 0. This conclusion
is only sound if there is a corresponding cycle C 1 “ r´c1

k, . . . ,´c
1
2
,´c1

1
s which

prevents the cycle from wrapping to 0. Let SC1 “
ř

C 1, and let SC “ pm ` r

such that r P r1,m ´ 1s. The cycle C excludes 0 only if SC1 ă pp ` 1qm. Note
that for each edge ci P C, ci ´ c1

i ď 0 (otherwise, the cycle rci, c
1
is is trivially

unsatisfiable).
Consider the behaviour of wrapdiff fixpoint on the corresponding constraints

trc1, c
1
1
sm, rc2, c

1
2
sm, . . . , rck, c

1
ksmu. The interval size c1

i ´ ci is non-negative. As

SC1 ´ SC ă m, the size of each partial-sum interval |
řj

i“1
rci, c

1
ism| is less than

m, so the interval cannot wrap. Adding all the edges then yields the inter-
val rSC , SC1sm, which does not contain 0. If 0 R

řk
i“1
rci, c

1
ism, we also have

řk´1

i“1
rci, c

1
ism[rck, c

1
ksm “ K. (A[´B ‰ K means there is some x such that

x P A,´x P B. Therefore 0 “ x` p´xq P A`B.)
Hence, if a cycle exists which allows classical difference logic to soundly con-

clude unsatisfiability, wrapdiff fixpoint will do the same. [\

4 Experimental evaluation

In this section, we evaluate the performance of the two SMT-based methods,
and the incomplete shortest-path approach. For the SMTpBVq approach, we
used the stp solver [6]; for the SMTpDLq encoding, we used the Z3 theorem
prover [3]. The shortest-path algorithm is implemented in C++. The evaluation
was conducted on a 3.00GHz Core2 Duo with 2Gb of RAM running Ubuntu
GNU/Linux 10.04. Reported times are in milliseconds.

We compared the performance of the two approaches on a set of randomly
generated problems over Z232 with an increasing number of variables. 100 in-
stances were generated for each problem size between 20 and 200 variables. To
ensure a mix of satisfiable and unsatisfiable instances, the number of constraints
|C| was fixed to 1.2|V |. Of these, 1

10
are ordering constraints, the remainder be-

ing uniformly distributed proximity constraints.4 Results are given in Table 1.

4 The solver and instances are available at ww2.cs.mu.oz.au/~ggange/moddiff/

14

|V | |C| timeBV timeDL timefix #U #fp

20 24 50.8 19.2 0.2 24 1
40 48 99.9 24.4 0.4 22 1
60 72 150.0 29.8 0.8 22 1
80 96 197.5 36.4 1.1 29 1
100 120 268.9 43.3 1.7 22 0
120 144 341.3 50.9 2.0 21 0
140 168 404.0 59.0 2.6 22 1
160 192 494.9 65.9 2.8 27 0
180 216 537.7 73.2 3.4 31 1
200 240 675.6 85.5 3.9 25 0

Table 1: Comparing the SMTpBVq and SMTpDLq approaches with
wrapdiff fixpoint. Time reported (in milliseconds) is the average runtime over
100 instances of each size.

timeBV , timeDL and timefix denote the time for each method to solve all in-
stances of the given size. #U indicates the number of unsatisfiable instances,
and #fp the number of instances which the fixpoint-based method incorrectly
reported to be satisfiable.

On these instances, the SMTpDLq encoding is considerably faster than the
SMTpBVq encoding. The incomplete method is generally around 30 times faster
than the SMTpDLq method, while having a very low false positive rate.

5 Conclusion

Difference logic is useful for program verification and analysis. However, for
machine-arithmetic-aware program analysis and verification, classical difference
logic is unsound. We have shown that, when extended to modular arithmetic,
difference constraints are NP-complete even for Z3. We have presented two com-
plete methods based on SMT techniques, and a sound heuristic based on a
fixpoint computation. The heuristic runs substantially faster than the complete
methods, and correctly determines unsatisfiability for the majority of the ran-
dom instances we tested. It would be interesting to develop alternative techniques
which improve precision without sacrificing performance. Further work will in-
volve embedding this method in an abstract interpretation framework for static
analysis.

Acknowledgments

This work was supported through ARC grant DP110102579. We are grateful to
the anonymous reviewers who identified a number of critical misprints in the
draft version and suggested an improved SMT encoding which we have adopted.

15

References

1. N. Bjørner, A. Blass, Y. Gurevich, and M. Musuvathi. Modular difference logic is
hard, November 2008. Unpublished, arXiv:0811.0987v1.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2009.

3. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’08), volume 4963 of LNCS,
pages 337–340. Springer, 2008.

4. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Automatic Verification Methods for Finite State Systems, volume 407 of LNCS,
pages 179–212. Springer, 1989.

5. R. W. Floyd. Algorithm 97: Shortest path. Comm. ACM, 5:345, 1962.
6. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In

Computer Aided Verification, volume 4590 of LNCS, pages 519–531. Springer, 2007.
7. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.
8. A. Gotlieb, M. Leconte, and B. Marre. Constraint solving on modular integers. In

Proc. Ninth Int. Workshop Constraint Modelling and Reformulation, 2010. http:

//www.it.uu.se/research/group/astra/ModRef10/programme.html.
9. A. K. John and S. Chakraborty. A quantifier elimination algorithm for linear

modular equations and disequations. In Computer Aided Verification, volume 6806
of LNCS, pages 486–503. Springer, 2011.

10. D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of
View. Springer, 2008.

11. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

12. M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. J.
Automata, Languages and Combinatorics, 7(3):321–350, 2002.

13. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. ACM Trans. Pro-
gramming Languages and Systems, 29(5), 2007. Article 29.

14. J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Signedness-agnostic
program analysis: Precise integer bounds for low-level code. In Proc. APLAS 2012,
volume 7705 of LNCS, pages 115–130. Springer, 2012.

15. J. Regehr and U. Duongsaa. Deriving abstract transfer functions for analyzing
embedded software. In LCTES’06: Proc. Conf. Language, Compilers, and Tool
Support for Embedded Systems, pages 34–43. ACM Press, 2006.

16. R. Sen and Y. N. Srikant. Executable analysis using abstract interpretation with
circular linear progressions. In Proc. Fifth IEEE/ACM Int. Conf. Formal Methods
and Models for Codesign, pages 39–48. IEEE, 2007.

17. A. Simon and A. King. Taming the wrapping of integer arithmetic. In Static
Analysis, volume 4634 of LNCS, pages 121–136. Springer, 2007.

18. O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding separation formulas with
SAT. In Computer Aided Verification, volume 2404 of LNCS, pages 209–222.
Springer, 2002.

19. C. Wang, F. Ivanc̆ić, and M. Ganai. Deciding separation logic formulae by SAT
and incremental negative cycle elimination. In Logic for Programming, Artificial
Intelligence, and Reasoning, volume 3835 of LNAI, pages 322–336. Springer, 2005.

16

