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Abstract. Most propagation-based set constraint solvers approximate
the set of possible sets that a variable can take by upper and lower
bounds, and perform so-called set bounds propagation. However Lagoon
and Stuckey have shown that using reduced ordered binary decision dia-
grams (ROBDDs) one can create a practical set domain propagator that
keeps all information (possibly exponential in size) about the set of pos-
sible set values for a set variable. In this paper we first show that we can
use the same ROBDD approach to build an efficient bounds propaga-
tor. The main advantage of this approach to set bounds propagation is
that we need not laboriously determine set bounds propagations rules for
each new constraint, they can be computed automatically. In addition
we can eliminate intermediate variables, and build stronger set bounds
propagators than with the usual approach. We then show how we can
combine this with the set domain propagation approach of Lagoon and
Stuckey to create a more efficient set domain propagation solver.

1 Introduction

It is often convenient to model a constraint satisfaction problem (CSP) using
finite set variables and set relationships between them. A common approach to
solving finite domain CSPs is using a combination of a global backtracking search
and a local constraint propagation algorithm. The local propagation algorithm
attempts to enforce consistency on the values in the domains of the constraint
variables by removing values from the domains of variables that cannot form part
of a complete solution to the system of constraints. Various levels of consistency
can be defined, with varying complexities and levels of performance.

The obvious representation of the true domain of a set variable as a set of
sets is too unwieldy to solve many practical problems. For example, a set vari-
able which can take on the value of any subset of {1, . . . , N} has 2N elements in
its domain, which rapidly becomes unmanageable. Instead, most set constraint
solvers operate on an approximation to the true domain of a set variable in order
to avoid the combinatorial explosion associated with the set of sets representa-
tion. One such approximation [4, 8] is to represent the domain of a set variable
by upper and lower bounds under the subset partial ordering relation. A set
bounds propagator attempts to enforce consistency on these upper and lower



bounds. Various refinements to the basic set bounds approximation have been
proposed, such as the addition of upper and lower bounds on the cardinality of
a set variable [1].

However, Lagoon and Stuckey [6] demonstrated that it is possible to use re-
duced ordered binary decision diagrams (ROBDDs) as a compact representation
of both set domains and of set constraints, thus permitting set domain propa-
gation. A domain propagator ensures that every value in the domain of a set
variable can be extended to a complete assignment of all of the variables in a
constraint. The use of the ROBDD representation comes with several additional
benefits. The ability to easily conjoin and existentially quantify ROBDDs allows
the removal of intermediate variables, thus strengthening propagation, and also
makes the construction of propagators for global constraints straightforward.

Given the natural way in which ROBDDs can be used to model set constraint
problems, it is therefore worthwhile utilising ROBDDs to construct other types
of set solver. In this paper we extend the work of Lagoon and Stuckey [6] by
using ROBDDs to build a set bounds solver. A major benefit of the ROBDD-
based approach is that it frees us from the need to laboriously construct set
bounds propagators for each new constraint by hand. The other advantages of
the ROBDD-based representation identified above still apply, and the resulting
solver performs very favourably when compared with existing set bounds solvers.

Another possibility that we have investigated is an improved set domain
propagator which splits up the domain representation into fixed parts (which
represent the bounds of the domain) and non-fixed parts. This helps to limit the
size of the ROBDDs involved in constraint propagation and leads to improved
performance in many cases.

The contributions of this paper are:

– We show how to represent the set bounds of (finite) set variables using
ROBDDs. We then show how to construct efficient set bounds propagators
using ROBDDs, which retain all of the modelling benefits of the ROBDD-
based set domain propagators.

– We present an improved approach for ROBDD-based set domain propagators
which splits the ROBDD representing a variable domain into fixed and non-
fixed parts, leading to a substantial performance improvement in many cases.

– We demonstrate experimentally that the new bounds and domain solvers
perform better in many cases than existing set solvers.

The remainder of this paper is structured as follows. In Section 2 we define
the concepts necessary when discussing propagation-based constraint solvers.
Section 3 reviews ROBDDs and their use in the domain propagation approach
of Lagoon and Stuckey [6]. Section 4 investigates several new varieties of propa-
gator, which are evaluated experimentally in Section 5. In Section 6 we conclude.

2 Propagation-based Constraint Solving

In this section we define the concepts and notation necessary when discussing
propagation-based constraint solvers. Most of these definitions are identical to



those presented by Lagoon and Stuckey [6], although we repeat them here for
self-containedness.

Let L denote the powerset lattice 〈P(U),⊆〉, where the universe U is a finite
subset of Z. A subset K ⊆ L is said to be convex if and only if for any a, b ∈ K
and any c ∈ L the relation a ⊆ c ⊆ b implies c ∈ K. A collection of sets C ⊆ L is
said to be an interval if there are sets a, b ∈ L such that C = {x ∈ L | a ⊆ x ⊆ b}.
We then refer to C by the shorthand C = [a, b]. Clearly an interval is convex.

For any finite collection of sets x = {a1, a2, . . . , an}, we define the convex
closure operation conv : L → L by conv(x) = [∩a∈xa,∪a∈xa].

Let V denote the set of all set variables. Each set variable has an associated
finite collection of possible values from L (which are themselves sets).

A domain D is a complete mapping from the fixed finite set of variables V
to finite collections of finite sets of integers. We often refer to the domain of a
variable v, in which case we mean the value of D(v). A domain D1 is said to be
stronger than a domain D2, written D1 v D2, if D1(v) ⊆ D2(v) for all v ∈ V. A
domain D1 is equal to a domain D2, written D1 = D2, if D1(v) = D2(v) for all
variables v ∈ V. We extend the concept of convex closure to domains by defining
ran(D) to be the domain such that ran(D)(x) = conv(D(x)) for all x ∈ V.

A valuation θ is a set of mappings from the set of variables V to sets of
integer values, written {x1 7→ d1, . . . , xn 7→ dn}. A valuation can be extended to
apply to constraints involving the variables in the obvious way. Let vars be the
function that returns the set of variables appearing in an expression, constraint
or valuation. In an abuse of notation, we say a valuation is an element of a
domain D, written θ ∈ D, if θ(vi) ∈ D(vi) for all vi ∈ vars(θ).

Constraints, Propagators and Propagation Solvers A constraint is a restriction
placed on the allowable values for a set of variables. We define the following
primitive set constraints: (membership) k ∈ v, (non-membership) k /∈ v, (con-
stant) u = d, (equality) u = v, (subset) u ⊆ w, (union) u = v ∪w, (intersection)
u = v ∩ w, (difference) u = v \ w, (complement) u = v, (cardinality) |v| = k,
(lower cardinality bound) |v| ≥ k, (upper cardinality bound) |v| ≤ k, where
u, v, w are set variables, k is an integer, and d is a ground set value. We can
also construct more complicated constraints which are (possibly existentially
quantified) conjunctions of primitive set constraints.

We define the solutions of a constraint c to be the set of valuations θ that
make that constraint true, ie. solns(c) = {θ | (vars(θ) = vars(c)) ∧ (� θ(c))}

We associate a propagator with every constraint. A propagator f is a mono-
tonically decreasing function from domains to domains, so D1 v D2 implies that
f(D1) v f(D2), and f(D) v D. A propagator f is correct for a constraint c if
and only if for all domains D:

{θ | θ ∈ D} ∩ solns(c) = {θ | θ ∈ f(D)} ∩ solns(c)

This is a weak restriction since, for example, the identity propagator is correct
for any constraints.

A propagation solver solv(F,D) for a set of propagators F and a domain
D repeatedly applies the propagators in F starting from the domain D until a



fixpoint is reached. In general solv(F,D) is the weakest domain D′ v D which
is a fixpoint (ie. f(D′) = D′) for all f ∈ F .

Domain and Bounds Consistency A domain D is domain consistent for a con-
straint c if D is the strongest domain containing all solutions θ ∈ D of c. In other
words D is domain consistent if there does not exist D′ v D such that θ ∈ D
and θ ∈ solns(c) implies θ ∈ D′.

A set of propagators F maintain domain consistency for a domain D if
solv(F,D) is domain consistent for all constraints c.

We define the domain propagator for a constraint c as

dom(c)(D)(v) =

{
{θ(v) | θ ∈ D ∧ θ ∈ solns(c)} if v ∈ vars(c)
D(v) otherwise

Since domain consistency is frequently difficult to achieve for set constraints,
instead the weaker notion of bounds consistency is often used. We say that a
domain D is bounds consistent for a constraint c if for every variable v ∈ vars(c)
the upper bound of D(v) is the union of the values of v in all solutions of c in D,
and the lower bound of D(v) is the intersection of the values of v in all solutions
of c in D.

A set of propagators F maintain set bounds consistency for a constraint c if
solv(F,D) is bounds consistent for all domains D.

We define the set bounds propagator for a constraint c as

sb(c)(D)(v) =

{
conv(dom(c)(ran(D))(v)) if v ∈ vars(c)
D(v) otherwise

3 ROBDDs and Set Domain Propagators

We make use of the following Boolean operations: ∧ (conjunction), ∨ (disjunc-
tion), ¬ (negation), → (implication), ↔ (bi-implication) and ∃ (existential quan-
tification). We denote by ∃V F the formula ∃x1 · · · ∃xnF where V = {x1, . . . , xn},
and by ∃̄V F we mean ∃V ′F where V ′ = vars(F ) \ V .

Binary Decision Trees (BDTs) are a well-known method of representing
Boolean functions on Boolean variables using complete binary trees. Every in-
ternal node n(v, f, t) in a BDT r is labelled with a Boolean variable v, and has
two outgoing arcs — the ‘false’ arc (to BDT f) and the ‘true’ arc (to BDT t).
Leaf nodes are either 0 (false) or 1 (true). Each node represents a single test of
the labelled variable; when traversing the tree the appropriate arc is followed
depending on the value of the variable. Define the size |r| as the number of in-
ternal nodes in an ROBDD r, and VAR(r) as the set of variables v appearing
in some internal node in r. A Binary Decision Diagram (BDD) is a variant of a
Binary Decision Tree that relaxes the tree requirement, instead representing a
Boolean function as a directed acyclic graph with a single root node by allowing
nodes to have multiple parents. This permits a compact representation of many
(but not all) Boolean functions.
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Fig. 1. ROBDDs for (a) LU = v3∧¬v4∧¬v5∧v6∧v7 (b) R = ¬(v1 ↔ v9)∧¬(v2 ↔ v8)
and (c) LU ∧R (omitting the node 0 and arcs to it). Solid arcs are “then” arcs, dashed
arcs are “else” arcs.

Two canonicity properties allow many operations on a BDD to be performed
very efficiently [3]. A BDD is said to be reduced if it contains no identical nodes
(that is, nodes with the same variable label and identical then and else arcs)
and has no redundant tests (no node has both then and else arcs leading to the
same node). A BDD is said to be ordered if there is a total ordering ≺ of the
variables, such that if there is an arc from a node labelled v1 to a node labelled
v2 then v1 ≺ v2. A reduced ordered BDD (ROBDD) has the nice property that
the function representation is canonical up to variable reordering. This permits
efficient implementations of many Boolean operations.

We shall be interested in a special form of ROBDDs. A stick ROBDD is
an ROBDD where for every internal node n(v, f, t) exactly one of f or t is the
constant 0 node.

Example 1. Figure 1(a) gives an example of a stick ROBDD representing the
formula v3∧¬v4∧¬v5∧v6∧v7. Figure 1(b) gives an example of a more complex
ROBDD representing the formula ¬(v1 ↔ v9) ∧ ¬(v2 ↔ v8). One can verify
that the valuation {v1 7→ 1, v2 7→ 0, v8 7→ 1, v9 7→ 0} makes the formula true by
following the path right, left, right, left from the root.

3.1 Modelling Set Domains using ROBDDs

The key step in building set domain propagation using ROBDDs is to realise
that we can represent a finite set domain using an ROBDD.

If x is a set variable and A ∈ D(x) is a subset of {1, . . . , N}, then we can
represent A as a valuation θ over the Boolean variables V (x) = {x1, . . . , xN},
where θA = {xi 7→ 1 | i ∈ A} ∪ {xi 7→ 0 | i 6∈ A}. The domain of x can be
represented as a Boolean formula φ which has as solutions {θA | A ∈ D(x)}. We
will order the variables x1 ≺ x2 · · · ≺ xN .

An ROBDD allows us to represent (some) subsets of P({1, . . . , N}) efficiently.
For example the subset S = {{3, 6, 7, 8, 9}, {2, 3, 6, 7, 9}, {1, 3, 6, 7, 8}, {1, 2, 3, 6, 7}},



where N = 9, is represented by the ROBDD in Figure 1(c). In particular, an
interval can be compactly represented as a stick ROBDD of a conjunction of
positive and negative literals (corresponding to the lower bound and the com-
plement of the upper bound respectively). For example the subset conv(S) =
[{3, 6, 7}, {1, 2, 3, 6, 7, 8, 9}] is represented by the stick ROBDD in Figure 1(a).

3.2 Modelling Primitive Set Constraints using ROBDDs

We will convert each primitive set constraint c to an ROBDD B(c) on the
Boolean variable representations V (x) of its set variables x. By ordering the
variables in each ROBDD carefully we can build small representations of the
formulae. The pointwise order of Boolean variables is defined as follows. Given
set variables u ≺ v ≺ w ranging over sets from {1, . . . , N} we order the Boolean
variables as u1 ≺ v1 ≺ w1 ≺ u2 ≺ v2 ≺ w2 ≺ · · ·un ≺ vn ≺ wn.

By ordering the Boolean variables pointwise we can guarantee linear sized
representations for B(c) for each primitive constraint c except those for cardi-
nality. The size of the representations of B(k ∈ v) and B(k 6∈ v) are O(1), while
B(v = w), B(v = d), B(v ⊆ w), B(u = v ∪ w), B(u = v ∩ w), B(u = v \ w),
B(v = w̄) and B(v 6= w) are all O(N), and B(|v| = k), B(|v| ≤ k) and B(|v| ≥ k)
are all O(k × (N − k)). For more details see [6].

3.3 ROBDD-based Set Domain Propagation

Lagoon and Stuckey [6] demonstrated how to construct a set domain propagator
dom(c) for a constraint c using ROBDDs. If vars(c) = {v1, . . . , vn}, then we
have the following description of a domain propagator:

dom(c)(D)(vi) = ∃V (vi)(B(c) ∧
n∧

j=1

D(vj)) (1)

Since B(c) and D(vj) are ROBDDs, we can directly implement this formula
using ROBDD operations. In practice it is more efficient to perform the exis-
tential quantification as early as possible to limit the size of the intermediate
ROBDDs. Many ROBDD packages provide an efficient combined conjunction
and existential quantification operation, which we can utilise here. This leads to
the following implementation:

φ0
i = B(c)

φj
i =

{
∃V (vj)(D(vj) ∧ φj−1

i ) 1 ≤ i, j ≤ n, i 6= j

φi−1
i i = j

dom(c)(D)(vi) = D(vi) ∧ φn
i

(2)

The worst case complexity is still O(|B(c)| × Πn
j=1|D(vj)|). Note that some of

the computation can be shared between propagation of c for different variables
since φj

i = φj
i′ when j < i and j < i′.



4 Set Bounds and Split Domain Propagation

4.1 Set Bounds Propagation Using ROBDDs

ROBDDs are a very natural representation for sets and set constraints, so it
seems logical to try implementing a set bounds propagator using ROBDD tech-
niques. Since set bounds are an approximation to a set domain, we can con-
struct an ROBDD representing the bounds on a set variable by approximating
the ROBDD representing a domain. Only a trivial change is needed to the set
domain propagator to turn it into a set bounds propagator.

The bounds on a set domain can be easily identified from the corresponding
ROBDD representation of the domain. In an ROBDD-based domain propagator,
the bounds on each set variable correspond to the fixed variables of the ROBDDs
representing the set domains. A BDD variable v is said to be fixed if either for
every node n(v, t, e) t is the constant 0 node, or for every node n(v, t, e) e is the
constant 0 node. Such variables can be identified in a linear time scan over the
domain ROBDD. For convenience, if φ is an ROBDD, we write JφK to denote
the ROBDD representing the conjunction of the fixed variables of φ. Note that
if φ represents a set of sets S, then JφK represents conv(S). For example, if φ is
the ROBDD depicted in Figure 1(c), then JφK is the ROBDD of Figure 1(a).

We can use this operation to convert our domain propagator into a bounds
propagator by discarding all of the non-fixed variables from the ROBDDs repre-
senting the variable domains after each propagation step. Assume that D(v) is
always a stick ROBDD, which will be the case if we have only been performing
set bounds propagation. If c is a constraint, and vars(c) = {v1, . . . , vn}, we can
construct a set bounds propagator sb(c) for c thus:

φ0 = B(c)
φj = ∃VAR(D(vj))(D(vj) ∧ φj−1)

sb(c)(D)(vi) = ∃V (vi)(D(vi) ∧ JφnK)

(3)

Despite the apparent complexity of this propagator, it is significantly faster
than a domain propagator for two reasons. Firstly, since the domains D(v)
are sticks, the resulting conjunctions φj are always decreasing (technically non-
increasing) in size, hence the corresponding propagation is much faster. Overall
the complexity can be made O(|B(c)|).

As an added bonus, we can use the updated set bounds to simplify the
ROBDD representing the propagator. Since fixed variables will never interact
further with propagation they can be projected out of B(c), so we can replace
B(c) by ∃VAR(JφnK)φn. In practice it turns out to be more efficient to replace
B(c) by φn since this has already been calculated.

This set bounds solver retains many of the benefits of the ROBDD-based
approach, such as the ability to remove intermediate variables and the ease
of construction of global constraints, in some cases permitting a performance
improvement over more traditional set bounds solvers.



4.2 Split Domain Propagation

One of the unfortunate characteristics of ROBDDs is that the size of the BDD
representing a function can be very sensitive to the variable ordering that is
chosen. If the fixed variables of a set domain do not appear at the start of
the variable ordering, then the ROBDD for the domain in effect can contain
several copies of the stick representing those variables. For example, Figure 1(c)
effectively contains several copies of the stick in Figure 1(a). Since many of the
ROBDD operations we perform take quadratic time, this larger than necessary
representation costs us in performance.

In the context of groundness analysis of logic programs Bagnara [2] demon-
strated that better performance can be obtained from an ROBDD-based pro-
gram analyzer by splitting an ROBDD up into its fixed and non-fixed parts. We
can apply the same technique here.

We split the ROBDD representing a domain D(v) into a pair of ROBDDs
(LU,R). LU is a stick ROBDD representing the Lower and Upper set bounds
on D(v), and R is a Remainder ROBDD representing the information on the
unfixed part of the domain. Logically D = LU ∧R. We will write LU(D(v)) and
R(D(v)) to denote the LU and R parts of D(v) respectively.

The following result provides an upper bound of the size of the split domain
representation (proof omitted for space reasons):

Proposition 1. Let D be an ROBDD, LU = JDK, and R = ∃VAR(LU)D. Then
D ↔ LU ∧R and |LU |+ |R| ≤ |D|. �

Note that |D| can be O(|LU | × |R|). For example, considering the ROBDDs in
Figure 1 where LU is shown in (a), R is in (b) and D = LU ∧R in (c) we have
that |LU | = 5 and |R| = 9 but |D| = 9 + 4× 5 = 29.

We construct the split propagator as follows: First we eliminate any fixed
variables (as in bounds propagation) and then apply the domain propagation on
the “remainders” R. We return a pair (LU,R) of the new fixed variables, and
new remainder.

φ0 = B(c)

φj = ∃VAR(LU(D(vj)))
(LU(D(vj)) ∧ φj−1)

δi = ∃V (vi) (φn ∧
n∧

j=1

R(D(vj)))

βi = LU(D(vi)) ∧ JδiK
dom(c)(D)(vi) = (βi,∃VAR(βi)δi)

(4)

For efficiency each δi should be calculated in an analogous manner to φn
i of

Equation (2).
There are several advantages to the split domain representation. Proposi-

tion 1 tells us that the split domain representation is effectively no larger the
simple domain representation. In many cases, the split representation can be sub-
stantially smaller, thus speeding up propagation. Secondly, we can use techniques



from the bounds solver implementation to simplify the ROBDDs representing
the constraints as variables are fixed during propagation. Thirdly, it becomes
possible to mix the use of set bounds which operate only on the LU compo-
nent of the domain with set domain propagators that need complete domain
information.

5 Experimental Results

We have extended the set domain solver of Lagoon and Stuckey [6] to incorporate
a set bounds solver and a split set domain solver. The implementation is written
in Mercury [10] interfaced with the C language ROBDD library CUDD [9].

A series of experiments were conducted to compare the performance of the
various solvers on a 933Mhz Pentium III with 1 Gb of RAM running Debian
GNU/Linux 3.0. For the purposes of comparison benchmarks were also imple-
mented using the ic sets library of ECLiPSe v5.6 [5]. Since our solvers do not
yet incorporate an integer constraint solver, we are limited to set benchmarks
that utilise only set variables.

5.1 Steiner Systems

A commonly used benchmark for set constraint solvers is the calculation of small
Steiner systems. A Steiner system S(t, k,N) is a set X of cardinality N and a
collection C of subsets of X of cardinality k (called ‘blocks’), such that any t
elements of X are in exactly one block. Steiner systems are an extensively studied
branch of combinatorial mathematics. If t = 2 and k = 3 we have the so-called
Steiner Triple Systems, which are often used as benchmarks [4, 6]. Any Steiner
system must have exactly m =

(
N
t

)
/
(
k
t

)
blocks (Theorem 19.2 of [7]).

We use the same modelling of the problem as Lagoon and Stuckey [6], ex-
tended for the case of more general Steiner Systems. We model each block as a
set variable s1, . . . , sm, with the constraints:

m∧
i=1

(|si| = k) (5)

∧
m−1∧
i=1

m∧
j=i+1

(∃uij .uij = si ∩ sj ∧ |uij | ≤ (t− 1)) ∧ (si < sj) (6)

A necessary condition for the existence of a Steiner system is that
(
N−i
t−i

)
/
(
k−i
t−i

)
is an integer for all i ∈ {0, 1, . . . , t − 1}; we say a set of parameters (t, k,N) is
admissible if it satisfies this condition [7]. In order to choose test cases, we ran
each solver on every admissible set of (t, k,N) values for N < 32. Results are
given for every test case that at least one solver was able to solve within a
time limit of 10 minutes. The labelling method used in all cases was sequen-
tial ‘element-not-in-set’ in order to enable accurate comparison of propagation
performance.



Table 1. Performance results on Steiner Systems. The time and number of fails needed
to find a solution or prove unsatisfiability are reported.× denotes abnormal termination
on a test-case, either due to global/trail stack overflow in the case of ECLiPSe, or due
to allocating too many BDD variables for the ROBDD solvers. ‘—’ denotes failure to
complete a testcase within 10 minutes. In all cases the domain solver and the split
solver have the same number of fails

Problem

Separate Constraints Merged Constraints

ECLiPSe Bounds Domain Split Bounds Domain Split

Time Fails Time Fails Time Fails Time Time Fails Time Fails Time
/s /s /s /s /s /s /s

S(2,3,7) 0.6 10 0.1 10 0.1 0 0.2 0.1 8 0.1 0 0.1
S(3,4,8) 1.0 21 0.2 21 0.9 0 0.9 0.1 18 0.2 0 0.2
S(2,3,9) 16.7 1,394 5.9 1,394 2.1 100 3.1 0.3 325 0.2 9 0.2
S(2,3,13) — — — — — — — — — 253.1 24,723 350.6
S(2,4,13) 4.0 313 1.9 313 3.6 32 3.1 0.2 157 0.3 0 0.3
S(2,3,15) 7.7 65 7.9 65 43.3 0 49.7 0.7 56 2.8 0 3.5
S(2,4,16) — — — — — — — — — 1.3 15 1.2
S(2,6,16) — — — — — — — — — 162.4 15,205 166.3
S(3,4,16) 162.0 289 × × × × × 24.5 274 — — —
S(2,5,21) 6.9 421 6.7 421 227.6 0 120.3 0.9 413 2.9 0 2.9
S(3,6,22) 115.4 1,619 × × × × × 19.5 1,608 — — —
S(2,3,31) × × × × × × × 62.1 280 — — —

To compare the raw performance of the bounds propagators we performed
experiments using a model of the problem with primitive constraints and inter-
mediate variables uij directly as shown in Equations 5 and 6. The same model
was used in both ECLiPSe and ROBDD-based solvers, permitting comparison
of propagation performance, irrespective of modelling advantages. The results
are shown in “Separate Constraints” section of Table 1. In all cases the ROBDD
bounds solver performs better than ECLiPSe, with the exception of two cases
which the ROBDD-based solvers cannot solve due to a need for an excessive
number of BDD variables to model the intermediate variables (no propagation
occurs in these cases).

Of course, the ROBDD representation permits us to merge primitive con-
straints and remove intermediate variables, allowing us to model the problem
as m unary constraints and

(
m
2

)
binary constraints (containing no intermedi-

ate variables uij) corresponding to Equations 5 and 6 respectively. Results for
this improved model are shown in the “Merged Constraints” section of Table 1.
Lagoon and Stuckey [6] demonstrated this leads to substantial performance im-
provements in the case of a domain solver; we find the same effect evident here
for all of the ROBDD-based solvers.

With the revised model of the problem the ROBDD bounds solver outstrips
the ECLiPSe solver by a significant margin for all test cases. Conversely the
split domain solver appears not to produce any appreciable reduction in the



Table 2. First-solution performance results on the Social Golfers problem. Time and
number of failures are given for all solvers, and the ROBDD peak live node count
for ROBDD-based solvers. A first-fail “element-in-set” labelling strategy is used in all
cases. “—” denotes failure to complete a test case within 10 minutes. The cases 5-4-3,
6-4-3, and 7-5-5 have no solutions

Problem
ECLiPSe Bounds Domain Split

time fails time fails size time fails size time fails size
w-g-s /s /s ×103 /s ×103 /s ×103

2-5-4 16.2 10,468 0.2 30 41 0.2 0 44 0.2 0 43
2-6-4 107.6 64,308 1.5 2,036 117 0.4 0 129 0.3 0 124
2-7-4 210.8 114,818 5.1 4,447 212 1.0 0 346 0.9 0 325
2-8-5 — — — — — 5.3 0 1,367 4.4 0 1,342
3-5-4 30.8 14,092 0.3 44 82 0.8 0 199 0.6 0 189
3-6-4 200.0 83,815 5.5 2,357 212 3.4 0 952 2.9 0 919
3-7-4 404.8 146,419 16.7 5,140 366 5.5 0 1,504 4.8 0 1,419
4-5-4 39.5 14,369 0.6 47 137 2.0 0 487 1.6 0 461
4-6-5 — — 106.2 19,376 425 187.9 0 4,159 131.1 0 2,880
4-7-4 560.2 149,767 31.7 5,149 500 24.7 0 2,139 17.6 0 2,004
4-9-4 95.4 19,065 6.0 139 1,545 395.7 0 13,137 256.9 0 5,615
5-4-3 — — 454.8 103,972 137 52.9 3,812 543 63.1 3,812 613
5-5-4 — — 10.6 2,388 242 5.8 18 1,333 4.0 18 1,128
5-7-4 — — 54.8 5,494 616 67.5 0 3,054 48.2 0 2,476
5-8-3 12.0 2,229 2.1 19 761 10.3 0 2,046 10.9 0 2,192
6-4-3 — — 569.8 90,428 118 32.7 1,504 440 36.9 1,504 612
6-5-3 — — 3.9 495 159 2.7 34 441 2.1 34 414
6-6-3 8.0 1,462 — — — 3.6 7 699 2.9 7 709
7-5-3 — — — — — 37.8 528 1,058 31.2 528 1,082

7-5-5 — — — — — static fail

BDD sizes over the original domain solver, and so the extra calculation required
to maintain the split domain leads to poorer performance.

5.2 Social Golfers

Another common set benchmark is the “Social Golfers” problem, which consists
of arranging N = g × s golfers into g groups of s players for each of w weeks,
such that no two players play together more than once. Again, we use the same
model as Lagoon and Stuckey [6], using a w×g matrix of set variables vij where
1 ≤ i ≤ w and 1 ≤ j ≤ g. It makes use of a global partitioning constraint not
available in ECLiPSe but easy to build using ROBDDs.

Experimental results are shown in Table 2. These demonstrate the split do-
main solver is almost always faster than the standard domain solver, and requires
substantially less space. Note that the BDD size results are subject to the oper-
ation of a garbage collector and hence are only a crude estimate of the relative
sizes. This is particularly true in the presence of backtracking since Mercury has
a garbage collected trail stack.



As we would expect, in most cases the bounds solver performs worse than
the domain solvers due to weaker propagation, but can perform substantially
better (for example 4-9-4 and 5-8-3) where because of the difference in search it
explores a more productive part of the search space first (first-fail labelling acts
differently for different propagators). Note the significant improvement of the
ROBDD bounds solver over the ECLiPSe solver because of stronger treatment
of the global constraint.

6 Conclusion

We have demonstrated two novel ROBDD-based set solvers, a set bounds solver
and an improved set domain solver based on split set domains. We have shown
experimentally that in many cases the bounds solver has better performance than
existing set bounds solvers, due to the removal of intermediate variables and the
straightforward construction of global constraints. We have also demonstrated
that the split domain solver can perform substantially better than the original
domain solver due to a reduction in the size of the ROBDDs.

Avenues for further investigation include investigating the performance of a
hybrid bounds/domain solver using the split domain representation, and inves-
tigating other domain approximations in between the bounds and full domain
approaches.
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