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Abstract. Herbrand constraint solving or unification has long been un-
derstood as an efficient mechanism for type checking and inference for
programs using Hindley/Milner types. If we step back from the particular
solving mechanisms used for Hindley/Milner types, and understand type
operations in terms of constraints we not only give a basis for handling
Hindley/Milner extensions, but also gain insight into type reasoning even
on pure Hindley/Milner types, particularly for type errors. In this paper
we consider typing problems as constraint problems and show which con-
straint algorithms are required to support various typing questions. We
use a light weight constraint reasoning formalism, Constraint Handling
Rules, to generate suitable algorithms for many popular extensions to
Hindley/Milner types. The algorithms we discuss are all implemented as
part of the freely available Chameleon system.

1 Introduction

Hindley/Milner type checking and inference has long been understood as a pro-
cess of solving Herbrand constraints, but typically the typing problem is not first
mapped to a constraint problem and solved, instead a fixed algorithm, such as
algorithm W using unification, is used to infer and check types. We argue that
understanding a typing problem by first mapping it to a constraint problem gives
us greater insight into the typing in the first place, in particular:

– Type inference corresponds to collecting the type constraints arising from
an expression. An expression has no type if the resulting constraints are
unsatisfiable.

– Type checking corresponds to checking that the declared type, considered
as constraints, implies (that is has more information than) the inferred type
(constraints collected from the definition).

– Type errors of various classes: ambiguity, subsumption errors; can all be
explained better by reasoning on the type constraints.

Strongly typed languages provide the user with the convenience to signifi-
cantly reduce the number of errors in a program. Well-typed programs can be
guaranteed not to “go wrong” [22], with respect to a large number of potential
problems.



Typically type processing of a program either checks that types declared for
each program construct are correct, or, better, infers the types for each program
construct and checks that these inferred types are compatible with any declared
types. If the checks succeed, the program is type correct and cannot “go wrong”.

However, programs are often not well-typed, and therefore must be modified
before they can be accepted. Another important role of the type processor is to
help the author determine why a program has been rejected, what changes need
to be made to the program for it to be type correct.

Traditional type inference algorithms depend on a particular traversal of the
syntax tree. Therefore, inference frequently reports errors at locations which are
far away from the actual source of the problem. The programmer is forced to
tackle the problem of correcting his program unaided. This can be a daunting
task for even experienced programmers; beginners are often left bewildered.

Our thesis is that by mapping the entire typing problem to a set of con-
straints, we can use constraint reasoning to (a) concisely and efficiently imple-
ment the type processor and (b) accurately determine where errors may occur,
and aid the programmer in correcting them. The Chameleon [32] system imple-
ments this for rich Hindley/Milner based type languages.

We demonstrate our approach via three examples. Note that throughout the
paper we will adopt Haskell [11] style syntax in examples.

Example 1. Consider the following ill-typed program:

f ’a’ b True = error "’a’"

f c True z = error "’b’"

f x y z = if z then x else y

f x y z = error "last"

Here error is the standard Haskell function with type ∀a.[Char] → a. GHC
reports:

mdef.hs:4:

Couldn’t match ‘Char’ against ‘Bool’

Expected type: Char

Inferred type: Bool

In the definition of ‘f’: f x y z = if z then x else y

What’s confusing here is that GHC combines type information from a number
of clauses in a non-obvious way. In particular, in a more complex program, it
may not be clear at all where the Char and Bool types it complains about come
from. Indeed, it isn’t even obvious where the conflict in the above program is. Is
it complaining about the two branches of the if-then-else (if so, which is Char
and which Bool?), or about z which might be a Char, but as the conditional
must be a Bool?

The Chameleon system reports:1

1 The currently available Chameleon system (July 2005) no longer supports these more
detailed error messages, after extensions to other parts of the system. The feature
will be re-enabled in the future. The results are given from an earlier version.
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multi.hs:1: ERROR: Type error - one error found

Problem : Definition clauses not unifiable

Types : Char -> a -> b -> c

d -> Bool -> e -> f�� ��g -> g -> h -> i

Conflict: f ’a’ b True = error "’a’"

f c True z = error "’b’"����f ����x ����y z = if z
�� ��then

����x �� ��else
����y

Note we do not mention the last definition equation which is irrelevant to the
error.

If we assume the actual error is that the True in the second definition should
be a ’b’ through some copy-and-paste error, then it is clear that the GHC error
message provides little help in discovering it. The Chameleon error certainly
implicates the True in the problem and gives type information that should direct
the programmer to the problem quickly.

As part of the diagnosis the system “colours” both the conflicting types and
certain program locations. A program location which contributes to any of the
reported conflicting types is highlighted in the same style as that type. Locations
which contribute to multiple reported types are highlighted in a combination of
the styles of the types they contribute to. (There are no such locations in the
case above.)

The above example illustrates the fundamental problems with any traditional
Hindley/Milner type inference like algorithmsW [22]. The algorithms suffer from
a bias derived from the way they traverse the abstract syntax tree (AST). The
second problem is that being tied to unification, which is only one particular
implementation of a constraint solving algorithm for tree constraints, they do
not treat the problem solely as a constraint satisfaction problem.

The problems of explaining type errors are exacerbated when the type system
becomes more complex. Type classes [34] are an important extension to Hind-
ley/Milner types, allowing principled (non-parametric) overloading. But the ex-
tension introduces new classes of errors and complicates typing questions. Type
classes are predicates over types, and now we have to admit that type processing
is a form of reasoning over first order formulae about types.

Example 2. Consider the following program which is typical of the sort of mis-
take that beginners make. The base case sum [] = [] should read sum [] = 0.
The complexity of the reported error is compounded by Haskell’s overloading of
numbers.

sum [] = []

sum (x:xs) = x + sum xs

sumLists = sum . map sum

GHC does not report the error in sum until a monomorphic instance is re-
quired, at which point it discovers that no instance of Num [a] exists. This means
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that unfortunately such errors may not be found through type checking alone
– it may remain undiscovered until someone attempts to run the program. The
function sumLists forces that here, and GHC reports:

sum.hs:4:

No instance for (Num [a]) arising from use of ‘sum’ at sum.hs:3

Possible cause: the monomorphism restriction applied to the following:

sumLists :: [[[a]]] -> [a] (bound at sum.hs:3)

Probable fix: give these definition(s) an explicit type signature

In the first argument of ‘(.)’, namely ‘sum’

In the definition of ‘sumLists’: sumLists = sum . (map sum)

The error message is completely misleading, except for the fact that the
problem is there is no instance of Num [a]. The probable fix will not help.

For this program Chameleon reports the following:

sum.hs:4: ERROR: Missing instance

Instance:Num [a]: sum [] = []

sum (x:xs) = x + sum xs

This indicates that the demand for this instance arises from the interaction
between [] on the first line of sum and (+) on the second. The actual source of
the error is highlighted.

The advantages of using constraint reasoning extend as the type system be-
comes even more complex. Generalized Algebraic Data Types (GADTs) [3, 36]
are one of the latest extensions of the concept of algebraic data types. They have
attracted a lot of attention recently [24–26]. The novelty of GADTs is that the
(result) types of constructor may differ. Thus, we may make use of additional
type equality assumptions while typing the body of a pattern clause.

Example 3. Consider the following example of a GADT, using GHC style no-
tation, where List a n represents a list of as of length n. Type constructors Z
and S are used to represent numbers on the level of types.

data Z -- zero

data S n -- successor

data List a n where

Nil :: List a Z

Cons :: a -> List a m -> List a (S m)

We can now express much more complex behaviour of our functions, for example

map :: (a -> b) -> List a n -> List b n

map f Nil = Nil

map f (Cons a l) = Cons (f a) (map f l)

which guarantees that the map function returns a list of the same length as its
input.

GADTs introduce more complicated typing problems because different bodies
of the same function can have different types, since they act under different
assumptions. This makes the job of reporting type errors much more difficult.

4



Example 4. Consider defining another GADT to encode addition among our
(type) number representation.

data Sum l m n where

Base :: Sum Z n n

Step :: Sum l m n -> Sum (S l) m (S n)

We make use of the Sum type class to refine the type of the append function.
Thus, we can state the desired property that the length of the output list equals
the sum of the length of the two input lists.

append2 :: Sum l m n -> List a l -> List a m -> List a n

append2 Base Nil ys = Nil -- wrong!! should be ys

append2 (Step p) (Cons x xs) ys = Cons x (append p xs ys)

For this program GHC reports

append.hs:17:22:

Couldn’t match the rigid variable ‘n’ against ‘Z’

‘n’ is bound by the type signature for ‘append2’

Expected type: List a n

Inferred type: List a Z

In the definition of ‘append2’: append2 Base Nil ys = Nil

For this program Chameleon currently reports:

ERROR: Polymorphic type variable ‘n’ (from line 13, col. 56) instantiated by

append2 :: Sum l m n -> List a l -> List a m -> List a n

append2 Base Nil ys = Nil -- wrong!! should be ys

Here we can determine the actual locations that cause the subsumption error to
occur. We could also give information on the assumptions made, though presently
Chameleon does not. We aim in the future to produce something like:

append.hs:10: ERROR: Inferred type does not subsume declared type

Problem: The variable ’m’ makes the declared type too polymorphic

Under the assumptions l = Z and m = n arising from

append2 Base Nil ys = Nil

Declared: Sum Z m m -> List a Z -> List a m -> List a m

Inferred: Sum Z m m -> List a Z -> List a m -> List a Z

append2 Base Nil ys = Nil -- wrong!! should be ys

Our advantage is that we use a constraint-based system where we main-
tain information which constraints arise from which program parts. GHC effec-
tively performs unification under a mixed prefix, hence, GHC only knows which
’branch’ failed but not exactly where.

As the examples illustrate, by translating type information to constraints
with locations attached we can use constraint reasoning on the remaining con-
straint problem. The constraint reasoning maintains which locations caused any
inferences it makes, and we can then use these locations to help report error
messages much more precisely. In this paper we show how to translate complex
typing problems to constraints and reason about the resulting typing problems.
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The rest of the paper is organized as follows. In Section 2 we introduce our
language for constraints, and the CHR formalism for constraint reasoning. We
show how constraint algorithms for satisfiability and inference are expressible
using CHRs. In Section 3 we show how we map a functional program to a CHR
program defining the type constraints. We then in Section 4 examine typing in
Hindley/Milner using our system, before considering reporting errors in Hind-
ley/Milner in Section 5. We add type classes in Section 6, and show how that
changes type inference and checking, and introduces new kinds of type errors.
We then briefly consider further extensions such as functional dependencies, pro-
grammed type extensions and GADTs in Section 7. We conclude with a brief
discussion of related work. Much of the technical underpinnings to material in
this paper has appeared previously, and so we leave the presentation as quite
informal. For more details the reader is referred to [6, 28–31, 35].

2 Constraints and CHRs

In this section we introduce constraints with location annotations, and our frame-
work for constraint reasoning, Constraint Handling Rules.

We use notation ō to refer to a sequence of objects o, usually types or vari-
ables. Out type language is standard, we assume type variables a, function types
t → t and user definable data types T t̄. We use common Haskell notation for
writing function, pair, list types, etc.

We make use of two kinds of constraints – equations and user-defined con-
straints. An equation is of the form t1 = t2, where t1 and t2 are types that
share the same structure as types in the language. User-defined constraints are
written U t̄ or f(t). We use these two forms to distinguish between constraints
representing type class overloading and those arising from function definitions.

Conjunctions of constraints are sometimes written using a comma separator
instead of the Boolean connective ∧. We often treat conjunctions as sets of con-
straints. We assume a special (always satisfiable) constraint True representing
the empty conjunction of constraints, and a special never-satisfiable constraint
False. If C is a conjunction we let Ce be the equations in C and Cu be the
user-defined constraints in C. We assume the usual definitions of substitution,
most general unifier (mgu), etc. see e.g. [20]. We define mgu(C) to return a most
general unifier of the equations C.

We will make use of justified constraints which have a list of labels repre-
senting program locations attached. The justification of a constraint refers to
the program locations from which the constraint arose. We shall denote justi-
fied constraints using a subscript list of locations, and typically write singleton
justified constraints C[i] as simply Ci. We write J1 ++ J2 to represent the result
of appending justification J2 to the end of J1. For our purposes, we can safely
remove any repeated location which appears to the right of another occurrence
of that location. e.g. [1, 2, 1, 3, 2] becomes [1, 2, 3].

In addition to the Boolean operator ∧ (conjunction), we make use of ⊃ (im-
plication) and ↔ (equivalence) and quantifiers ∃ (existential) and ∀ (universal)
to express conditions in formal statements, typing rules etc. We assume that
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fv(o) computes the free variables not bound by any quantifier in an object o. We
write ∃̄o.F as a short-hand for ∃fv(F )−fvo.F where F is a first-order formula and
o is an object. Unless otherwise stated, we assume that formulae are implicitly
universally quantified. We refer to [27] for more details on first-order logic.

Constraint Handling Rules with Justifications We will translate typing
problems to a constraint problem where the meaning of the user-defined con-
straints is defined by Constraint Handling Rules (CHRs) [8]. CHRs manipulate
a global set of primitive constraints, using rewrite rules of two forms

simplification (r1) c1, . . . , cn ⇐⇒ d1, . . . , dm

propagation (r2) c1, . . . , cn =⇒ d1, . . . , dm

where c1, . . . , cn are user-defined constraints, d1, . . . , dm are constraints, and r1
and r2 are labels by which we can refer to these rules. We will often omit rule
labels when they are not necessary. A CHR program P is a set of CHRs.

In our use of the rules, constraints occurring on the right hand side of rules
have justifications attached. We extend the usual derivation steps of Constraint
Handling Rules to maintain and extend these justifications.

A simplification derivation step applying a (renamed apart) rule instance
r ≡ c1, . . . , cn ⇐⇒ d1, . . . , dm to a set of constraints C is defined as follows. Let
E ⊆ Ce where θ = mgu(E). Let D = {c′1, . . . , c′n} ⊆ Cu, and suppose there exists
substitution σ on variables in r such that {θ(c′1), . . . , θ(c′n)} = {σ(c1), . . . , σ(cn)},
i.e. a subset of Cu matches the left hand side of r under the substitution given
by E. The justification J of the matching is the union of the justifications of
E ∪D. Note that there may be multiple subsets of Ce which satisfy the above
condition and allow matching to occur. For our purposes, however, we require
the subset E to be minimal. i.e. no strict subset of E can allow for a match. An
algorithm for finding such an E is detailed later in this section.

Then we create a new set of constraints C ′ = C − {c′1, . . . , c′n} ∪ {θ(c′1) =
c1, . . . , θ(c′n) = cn, (d1)J+, . . . , (dn)J+}. Note that the equation θ(c′i) = ci is
shorthand for θ(s1) = t1, . . . , θ(sm) = tm where c′i ≡ p(s1, . . . , sm)J′ and ci ≡
p(t1, . . . , tm).

The annotation J+ indicates that we add the justification set J to the begin-
ning of the original justification of each di. The other constraints (the equality
constraints arising from the match) are given empty justifications. Indeed, this is
sufficient. The connection to the original location in the program text is retained
by propagating justifications to constraints on the right hand side only.

A propagation derivation step applying a (renamed apart) rule instance r ≡
c1, . . . , cn =⇒ d1, . . . , dm is defined similarly except the resulting set of con-
straints is C ′ = C ∪ {θ(c′1) = c1, . . . , θ(c′n) = cn, (d1)J+, . . . , (dn)J+}.

A derivation step from global set of constraints C to C ′ using an instance
of rule r is denoted C −→r C ′. A derivation, denoted C −→∗

P C ′ is a sequence
of derivation steps using rules in P where no derivation step is applicable to
C ′. The operational semantics of CHRs exhaustively apply rules to the global
set of constraints, being careful not to apply propagation rules twice on the
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same constraints (to avoid infinite propagation). For more details on avoiding
re-propagation see e.g. Abdennadher[1].

Example 5. Consider the following CHRs.

g(t4) ⇐⇒ (t1 = Char)1, f(t2)2, (t2 = t1 → t3)3, (t4 = t3)4
f(t7) ⇐⇒ (t5 = Bool)5, (t6 = Bool)6, (t7 = t5 → t6)7

A CHR derivation from the goal g8 where 8 stands for a hypothetical program
location, is shown below. To help the reader, we underline constraints involved
in rule applications.

g(t)8
−→ t = t4, (t1 = Char)[8,1], f(t2)[8,2], (t2 = t1 → t3)[8,3], (t4 = t3)[8,4]

−→ t = t4, (t1 = Char)[8,1], t2 = t7, (t5 = Bool)[8,2,5], (t6 = Bool)[8,2,6],
(t7 = t5 → t6)[8,2,7], (t2 = t1 → t3)[8,3], (t4 = t3)[8,4]

Note that we have not bothered to rename any of the new constraints, since all
the variables are already distinct, and no rule is applied more than once. In the
first step, the constraint g(t)8 matches the left hand side of the first CHR. We
replace g(t)8 by the right hand side. In addition, we add the matching equation
t = t4. Note how the justification from g(t)8 is added to each justification set.
Thus, by propagating justifications we retain the connection constraints and
the program locations from which these constraints were originating from. In
the final step, the constraint f(t2)[8,2] matches the left hand side of the second
CHR. Hence, we add [8, 2] to the constraints on the right hand side of g’s CHR.

Because of the highly nondeterministic operational semantics, an important
property of a CHR program is confluence, which demands that each possible
order of rule applications leads to the same results (modulo renaming). That is, if
C −→ C ′ and C −→ C ′′, then C ′ −→∗

P D and C ′′ −→∗
P D′ where ∃̄CD ↔ ∃̄CD′.

We will demand that the CHR programs we use are confluent. Another important
property is termination. A set P of CHRs is terminating iff for each C we find
D such that C −→∗

P D. Again we will demand that the CHR programs we use
are terminating.

A common restriction on a CHRs C ⇐⇒ D or C =⇒ D is range restric-
tion, that is, fv(φ(D)) ⊆ fv(φ(C) where φ = mgu(De). Usually it holds because
fv(D) ⊆ fv(C). Range restrictedness essentially prevents new variables from be-
ing introduced by rules. We will also restrict attention to CHR programs where
simplification rules are single-headed, that is, of the form c ⇐⇒ d1, . . . , dm.

Given a CHR program P which is confluent, terminating, range-restricted
and only includes single-headed simplification rules, we can define a number of
constraint operations.

Satisfiability We use an open world assumption for satisfiability of CHR con-
straints, that is, we assume we can always add a new rule making a new fixed
type constraint hold. In that case unsatisfiability can only result from the equa-
tions. We can check that C is satisfiable by determining C −→∗

P D and checking
that De is satisfiable.
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min unsat(D)

M := ∅
while satisfiable(M) {

C := M
while satisfiable(C)
{ let e ∈ D − C; C := C ∪ {e} }

D := C; M := M ∪ {e} }
return M

min impl(D,∃ā.F)

M := ∅
while ¬implies(M,∃ā.F ) {

C := M
while ¬implies(C,∃ā.F )
{ let e ∈ D − C; C := C ∪ {e} }

D := C; M := M ∪ {e} }
return M

(a) (b)

Fig. 1. Constraint manipulation algorithms.

Minimal Unsatisfiable Subsets Given an unsatisfiable constraint D, we will
be interested in finding a minimal subset E of De such that E is unsatisfiable.
An unsatisfiable set is minimal if the removal of any constraint from that set
leaves it satisfiable. The Chameleon system simply finds an arbitrary minimal
unsatisfiable subset. An algorithm is shown in Figure 1(a)

Example 6. Consider the final constraint of Example 5. It is unsatisfiable, ap-
plying min unsat to this constraint yields.

(t1 = Char)[8,1], t2 = t7, (t5 = Bool)[8,2,5], (t7 = t5 → t6)[8,2,7], (t2 = t1 → t3)[8,3]

Ultimately, we are interested in the justifications attached to minimal unsat-
isfiable constraints. This will allow us to identify problematic locations in the
program text.

We can straightforwardly determine which constraints e ∈ M must occur in
all minimal unsatisfiable subsets, since this is exactly those where D − {e} is
satisfiable. The complexity (for both checks) is O(|D|2) using an incremental
unification algorithm. A detailed analysis of the problem of finding all minimal
unsatisfiable constraints can be found in [9].

Implication Testing Given the restrictions on CHR programs defined above,
we can show that they provide a canonical normal form (see [28] for details), that
is, every equivalent constraint is mapped to an equivalent (modulo renaming)
result. We can use an equivalence check to determine implication of ∃̄V C ⊃ ∃̄V C ′,
where we assume C and C ′ are renamed apart except for V , as follows. We
execute C −→∗

P D and C,C ′ −→∗
P D′, then check that φ(Du) is a renaming of

φ′(D′
u), where φ = mgu(De) and φ′ = mgu(D′

e).

Minimal Implicants We are also interested in finding minimal systems of
constraints that imply another constraint. Assume that C −→∗

P D where |= D ⊃
∃ā.F . We want to identify a minimal subset E of D such that |= E ⊃ ∃ā.F . The
algorithm for finding minimal implicants is highly related to that for minimal
unsatisfiable subsets.

The code for min impl is identical to min unsat except the test satisfiable(S)
is replaced by ¬implies(S,∃ā.F ). It is shown in Figure 1(b)

The test implies(M,∃ā.F ) can be performed as follows. If F is a system
of equations only, we build φ = mgu(Me) and φ′ = mgu(Me ∧ F ) and check
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Expressions e ::= fl | xl | (λxl.e)l | (e e)l | (case e of ([(pi → ei)l]i∈I)l)l

Patterns p ::= xl | (K p...p)l

Types t ::= a | t → t | T t̄
Primitive Constraints at ::= t = t | TC t
Constraints C ::= at | C ∧ C
Type Schemes σ ::= t | ∀ā.C ⇒ t
Fun Decls fd ::= f :: (C ⇒ t)l | fl = e
Data Decls dd ::= data T a = K t
Type Class Decls tc ::= class (C ⇒ TC ā)l where m :: (C ⇒ t)l | instance C ⇒ (TC t̄)l

Programs FP ::= ε | fd FP | dd FP | tc FP

Fig. 2. Syntax of Programs

that φ(a) = φ′(a) for all variables except those in ā. If F includes user defined
constraints, then for each user-defined constraint ci ∈ Fu we nondeterministically
choose a user-defined constraint c′i ∈ M . We then check that implies(M,∃ā.(Fe∧
ci = c′i) holds as above. We need to check all possible choices for c′i (although we
can omit those which obviously lead to failure, e.g. ci = Eq a and c′i = Ord b).

3 Type Processing

Our approach to type processing follows [5] by translating the typing problem
into a constraint problem and inferring and checking types by constraint op-
erations. We map the type information to a set of Constraint Handling Rules
(CHRs) [8], where the constraints are justified by program locations.

3.1 Expressions, Types and Constraints

The syntax of programs can be found in Figure 2. Using case expressions we can
easily encode multiple-clause definitions: and if-then-else expressions which we
will make use of in our examples. For brevity we omit nested function definitions
and recursive functions. They are straightforward to handle, but messy; for a
complete treatment see [35].

Note that our expressions are fully labeled, i.e. we label program locations
with unique numbers. We indicate these labels by a subscript l following the
expression, as can be seen in the language description above. Labels will become
important when generating constraints from a source program.

We assume that K refers to constructors of user-defined data types. As usual
patterns are assumed to be linear, i.e., each variable occurs at most once. In
examples we will use pattern matching notation for convenience. Note that
each pattern/action has a location, as well as a location for the list of all pat-
tern/actions and a location for the case.

We assume data type declarations data T ā = K t1 · · · tn are preprocessed
and the types of constructors K : ∀ā.t1 → · · · → tn → T ā are recorded in the
environment E.
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Type schemes have an additional constraint component which allows us to
restrict the set of type instances. We often refer to a type scheme as a type for
short. Note that we consider ∀ā.t as a short-hand for ∀ā.T rue ⇒ t.

We also ignore the bodies of instance declarations for brevity, they don’t add
any significant extra complication.

3.2 Constraint Generation from Expressions

The basic idea of our translation is that we map a functional program FP to a
CHR program P . For each function f defined by the program FP we introduce
a unary predicate f in P such that the solutions of f(t) are the types of f .

Constraint generation is formulated as a logical deduction system with clauses
of the form E,Γ, e `Cons (F t) where the environment E of all pre-defined
functions, environment Γ of lambda-bound variables, and expression e are input
parameters and constraint C and type t are output parameters.

Each individual sub-expression gives rise to a constraint which is justified
by the location attached to this sub-expression. See Figure 3 for details. In rule
(Var-x) we simply look up the type of a λ-bound variable in Γ . The rule (Var-x)
creates a renamed apart copy of the type of a predefined let-bound function. In
rule (Var-f) we generate an “instantiation” constraint, to represent the type of a
let-defined function, we use the notation [b/a] to define a substitution replacing
each a ∈ ā by the corresponding b ∈ b̄. In rule (Case) we first equate the types
of all pattern/actions, and then treat the remainder like an application. In rule
(Pat) we make use of auxiliary judgments of the form p `Cons ∀b̄.(C t Γp)
which we use to generate types and constraints from patterns, as well as to
extend the type environment with newly bound variables. The other rules are
straightforward.

4 Hindley/Milner Types

We begin by restricting ourselves to programs without type classes or instances.
This leaves us in the case of pure Hindley/Milner types. Generation of CHRs
is straightforward by iteration over the program. The function definition f =
e generates the rule f(t) ⇐⇒ C where E, ∅, e `Cons (C, t). This defines the
predicate f encoding the type of function f . The function declaration f : (C ⇒
t)l generates the rule fa(t′) ⇐⇒ Cl ∧ (t = t′)l. This defines the predicate fa

encoding the annotated type of f .

Example 7. For example the (location annotated) program

(g = (f2 ’a’1)3)4

(f True5 = True6)7

is translated to (after some simplification2):

g(t4) ⇐⇒ (t1 = Char)1, f(t2)2, (t2 = t1 → t3)3, (t4 = t3)4
f(t7) ⇐⇒ (t5 = Bool)5, (t6 = Bool)6, (t7 = t5 → t6)7

2 The desugared definition of f is f = λx.(case x of True → True) creating a much
bigger but equivalent set of constraints.
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(Var-x)
(x : t) ∈ Γ tl fresh

E, Γ, xl `Cons ((tl = t)l t′)

(Var-p)
f : ∀ā.C ⇒ t ∈ E b̄,tl fresh

E, Γ, fl `Cons ([b/a]C)l ∧ (tl = [b/a]t)l t′)

(Var-f)
f : σ 6∈ E tl fresh

E, Γ, fl `Cons (f(tl)l tl)

(Abs)
E, Γ.x : tl1 , e `Cons (C t) tl1 , tl2 , t′ fresh

E, Γ, (λxl1 .e)l2 `Cons (C ∧ (tl2 = t′ → t)l2 ∧ (tl1 = t′)l1 tl2)

(App)
E, Γ, e1 `Cons (C1 t1) Γ, e2 `Cons (C2 t2) tl fresh

E, Γ, (e1 e2)l `Cons (C1 ∧ C2 ∧ (t1 = t2 → tl)l tl)

(Case)

E, Γ, e `Cons (Ce te)

E, Γ, (pi → ei) `Cons (Ci ti) for i ∈ I

C ≡
V

i∈I((tl1 = ti)l1 ∧ Ci) ∧ (tl1 = te → tl2)l2 tl1 , tl2 fresh

E, Γ, (case e of ([pi → ei]i∈I)l1)l2 `Cons (C tl2)

(Pat)

p `Cons (Cp tp Γ ′) E, Γ ∪ Γ ′, e `Cons (Ce te)

C ≡ Cp ∧ Ce ∧ (tl = tp → te)l tl fresh

E, Γ, (p → e)l `Cons (C tl)

(Pat-Var)
t fresh

xl `Cons (True tl {x : tl})

(Pat-K)

pi `Cons (tpi Cpi Γpi) for i = 1, ..., n

K : ∀ā.tK Γp = Γ ∪
S

i=1,...,n Γpi tl fresh

C′ ≡ (tK = tp1 → ... → tpn → tl)l ∧
V

i∈{1,..,n} Cpi

(K p1 ... pn)l `Cons (C′ tl Γp)

Fig. 3. Justified Constraint Generation

Example 8. The (location annotated) program

h :: (Int -> (Int,Int))1

(h x2 = (x3, x4)5)6

is translated to

ha(t1) ⇐⇒ (t1 = Int → (Int, Int))1
h(t6) ⇐⇒ (t2 = tx)2, (t3 = tx)3, (t4 = tx)4, (t5 = (t3, t4))5, (t6 = t2 → t5)6

In this framework it is now easy to see the correspondences between typing
questions and constraint algorithms.
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Type Inference Type inference for an expression e corresponds to building a
canonical normal form of the constraint generated from e. Type inference of a
function f simply involves executing the goal f(t) −→∗

P C. The type of f is ∃̄tC.

Example 9. For the program of Example 7, if we wish to infer the type of g,
we determine C such that g(t) −→∗

P C. The generated constraint is shown in
Example 5. Since the resulting constraints are not satisfiable g has no type.

Example 10. Consider the program in Example 8. The goal h(t) −→∗
P C1 gen-

erates the constraint

C1 ≡ t = t6∧(t2 = tx)2∧(t3 = tx)3∧(t4 = tx)4∧(t5 = (t3, t4))5∧(t6 = t2 → t5)6

which is satisfiable. A simplified equivalent constraint to ∃̄tC1 is ∃tx.t = tx →
(tx, tx) which we report as the type of h as h : ∀tx.tx → (tx, tx).

Type Checking Type checking of a function definition f = e with respect
to its declared type f : C ⇒ t requires us to test implication. Since we have
two constraints defining the inferred and declared type we simply need to check
implication. Let f(t) −→∗

P C and fa(t) −→∗
P C ′. Then the declared type is

correct if ∃̄tC
′ ⊃ ∃̄tC. We can use the implication checking algorithm discussed

in Section 2.

Example 11. Consider the program in Example 8. The goal ha(t) −→∗
P C2 gen-

erates
C2 ≡ (t = Int → (Int, Int)1

C1 ∧ C2 ≡ (t = Int → (Int, Int))1 ∧ C1

The corresponding substitutions are identical on t. Hence the declared type is
correct.

5 Type Error Reporting

The most important insight we gain from understanding typing problems as
constraint problems in the case of pure Hindley/Milner types is what to do when
it goes wrong! Since we have mapped typing questions to constraint questions,
we immediately have more insight into why failure occurred. In this section we
consider what it means about the corresponding constraint problem when type
inference or type checking fails. We then use this to define better error messages.

5.1 Failure of Type Inference

A program is ill-typed if the constraints on its type are unsatisfiable. Before the
program can be run, it must be modified, but obviously any such modification
must actually fix the problem at hand. Our task then, is to report the type
error in such a way that the programmer is directed towards the locations in
the source code which are potentially the source of the error, and if modified
appropriately, would fix the program.

Suppose type inference fails for a function f , then we have an unsatisfiable
set of constraints C arising from f(t) −→∗

P C. The key insight we obtain from
the constraint view is this:
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A type error results from a minimal unsatisfiable set of constraints.

We dont need to consider all constraints in C to have a type error. Hence we
should report errors as minimal unsatisfiable sets of constraints. Note there are
many possible minimal unsatisfiable sets, and different sets will generate different
error reports (see [35] for examples).

We can find M a single minimal unsatisfiable subset of C, employing the
algorithm of Section 2 (we will just take the first generated). Such a set represents
a “smallest” type error, and the corresponding locations give a smallest collection
of program locations which caused the error. The simplest scheme for reporting
an error is simply to highlight all the locations of the source text which make
up a type error.

Example 12. When we try to infer a type for g in Example 7 we obtain the
constraints shown in Example 5. Since these are unsatisfiable we find a minimal
unsatisfiable subset as shown in Example 6. The set of locations involved are
{1, 2, 3, 5, 7, 8} The type error can be reported as

g = f ’a’

f True = True

This indicates a conflict between the application of f to ’a’ in g, and f’s pat-
tern. Importantly, because we have used a minimal unsatisfiable subset of the
inconsistent constraints, we have only highlighted the locations which are actu-
ally involved in the error; the True in the body of f is not part of the conflict,
and therefore not highlighted.

Note that we do not highlight applications since they have no explicit tokens
in the source program. We leave it to the user to understand when we highlight
a function position we may also refer to its application.

To remain efficient, we only consider a single minimal unsatisfiable subset
of constraints at a time. Given the number of constraints generated during in-
ference, calculating all minimal unsatisfiable subsets is simply not feasible. As
mentioned in Section 2, however, it is inexpensive to find any constraints which
appear in all minimal unsatisfiable subsets.

For type error reporting purposes, finding a non-empty intersection of all
minimal unsatisfiable subsets is significant, since those constraints correspond
to source locations which are part of every type conflict present. These common
locations are much more likely to be the actual source of the mistake.

Example 13. The following simple program, where functions toUpper and toLower
are standard Haskell functions both with type Char → Char, is ill-typed.

(f x2 = (if3 x4 then5 (toUpper6 x7)8 else9 (toLower10 x11)12)1

It’s plain to see that there is a conflict between the use of x at type Bool in
the conditional, and at type Char in both branches of the if-then-else. Hence,
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there are two minimal unsatisfiable subsets of the above constraints. Common
to both of these are the (location annotated) constraints listed below.

(t3 = Bool)3, (t4 = t1)4,

This strongly suggests that the real source of the mistake in this program lies at
location 3 or 4. We might report this by highlighting the source text as follows.

f x = (if x then (toUpper x) else (toLower x))

Indeed, changing the expression at location 4 to something like x > ’m’ would
resolve both type conflicts, whereas changing either of the two branches would
only fix one.

Just highlighting the locations causing a type error is not very informative.
Usually type errors are reported as an incompatibility of two types, an expected
type and an inferred type. Given our much more detailed constraint viewpoint
we can do better. Our algorithm for generating text error messages with type
information, from a minimal unsatisfiable set of justified constraints, is as follows:

1. Select a location from the minimal unsatisfiable set to report the type conflict
about

2. Find the types that conflict at that location
– Assign each a colour and determine which locations contribute to it

3. Diagnose the error in terms of the conflicting types at the chosen location.
Highlight each location involved in the colours of the types it contributes to.

Although we can pick any location, we have found that usually the highest
location in the abstract syntax tree occuring in the minimal unsatisfiable subset
leads to the clearest error messages. If l is the highest location appearing in M ,
we remove all equations added by location l to obtain M ′. Now M ′ is satisfiable
(since we have removed at least one equation from a minimal unsatisfiable set)
and we can use it to determine the types reported. We will choose locations
l′ to report the types of depending on the kind of location l. Importantly if
φ = mgu(M ′) and φ(tl′) = t′ we report the type of location l′ as t′ and highlight
the locations from M ′ of a minimal implicant of tl′ = t′.

We can define a specific type error for each different kind of location. For
brevity we just give an example, see [31, 35] for more details.

Example 14. For a location corresponding to incompatible types for pattern/actions
in a case ([pi → ei]i∈I)l we remove all the constraints of the form (tl = ti)l oc-
curing in M . We now report the types ti of each pattern/action entry pi → ei

as defined by M ′.
Example 1 is an example of incompatible types of a pattern/actions (in

the desugared version). For this example, we remove the equations forcing each
clause for f to have the same type. We then determine the type of each clause
independently, and find minimal implicants of these types. By highlighting each
type and its implicant locations in the same color we can see why the types
arose.
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Note that the types only consider constraints in the minimal unsatisfiable
subset, so that the type of the first alternative is reported as Char -> a -> b
-> c rather than Char -> a -> Bool -> c which we might expect.

5.2 Failure of Type Checking

When type checking fails for f : C → t; f = e we have that f(t) −→∗
P C and

fa(t) −→∗
P C ′ and its not the case that ∃̄tC

′ ⊃ ∃̄tC. If ∃̄tC is False we have a
failure of type inference and can report a problem as in the previous subsection.
Otherwise we can choose any constraint in ∃̄tC not implied by ∃̄tC

′.
There are choices in how to do this. Currently Chameleon chooses in the

following way. We consider the substitutions φ = mgu(C ′) and φ′ = mgu(C∧C ′).
Choose a variable a ∈ φ(t) where φ′(a) 6= a. We then determine the minimal
subset D of C such that D ∧ C ′ ⊃ a = φ′(a). We make use of the min impl
algorithm described in Section 2 to find D. This describes a minimal reason why
the variable a was bound in the inferred type.

Example 15. Consider the following modification of the program in Example 8

h :: (a -> (a,b))1

(h x2 = (x3, x4)5)6

is translated to

ha(t1) ⇐⇒ (t1 = (a → (a, b)))1
h(t6) ⇐⇒ (t2 = tx)2, (t3 = tx)3, (t4 = tx)4, (t5 = (t3, t4))5, (t6 = t2 → t5)6

We find that φ = {t 7→ a → (a, b)} while φ′ = {t 7→ a → (a, a), tx 7→ a, b 7→ a}.
We find φ′(b) 6= b. We determine a minimal implicant of C ∧C ′ for b = a, which
is {(t1 = (a → (a, b)))1, (t6 = t2 → t5)6, (t5 = (t3, t4))5, (t2 = tx)2, (t4 = tx)4, }.
The resulting set of locations are highlighted.

h.hs:2: ERROR: Inferred type does not subsume declared type

Declared: forall a,b. a -> (a,b)

Inferred: forall a. a -> (a,a)

Problem : The variable ‘b’ makes the declared type too polymorphic

h x = (x, x)

The GHC error message explains the same problem in inferred and declared type
but can’t point us at any location that caused the problem.

6 Type Class Overloading

Type classes and instances are a popular extension of Hindley/Milner types that
give controlled overloading. We now extend our notion of constraints to incor-
porate classes and instances. Again we use CHRs to encode their meaning. We
then revisit the typing questions once more. The class declaration and instance
declaration generate the following CHRs:
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class (C ⇒ TC ā)l1 where m :: (D ⇒ t)l2 TC ā =⇒ Cl1

ma(t) ⇐⇒ t = tl2 , Dl2 , (TC ā)l2

instance E ⇒ (TC t̄)l3 TC t̄ ⇐⇒ El3

The first rule ensures the super-class constraint hold, that is if TC ā then the
super class constraints C also hold. The location annotation ensure we see they
arise from the class declaration. The second rule defines the type of the method
m. The third rule encodes the proof that an instance is available through the
instance rules. We omit instance method declarations for simplicity, they simply
create more type checking.

Example 16. The table below shows class and instance declarations below and
their translation (where we ignore instance method declarations for brevity).

class (Eq a)1 where Eq a =⇒ True1

(==) :: (a -> a -> Bool)2 (==)(t2) ⇐⇒ (t2 = a → a → Bool)2, (Eq a)2
class (Eq a => Ord a)3 where Ord a =⇒ (Eq a)3

(>) :: (a -> a -> Bool)4 (>)(t4) ⇐⇒ (t4 = a → a → Bool)4, (Ord a)4
instance (Ord a => Ord [a])5 Ord [a] ⇐⇒ (Ord a)5
instance (Ord Bool)6 Ord Bool ⇐⇒ True6

Note that the super-class relation encoded by the CHR states that each oc-
currence of Ord a implies (Eq a)3. Note that right hand sides of CHRs generated
are justified, so we can keep track which rules were involved when inspecting jus-
tifications attached to constraints.

Our assumptions on CHRs require that the CHRs generated from class and
instance declarations are confluent, terminating, range-restricted and single-
headed simplification. The last two properties are easy to check, and, fortunately,
the first two properties are guaranteed by the conditions imposed on Haskell type
classes. An in-depth discussion can be found in [6].

Type inference in the presence of type classes and instances works as follows.
To infer the type of f we determine f(t) −→∗

P C and give the inferred type of f
as f :: φ(Cu) ⇒ φ(t) where φ = mgu(Ce).

6.1 Failure of Type Inference

As in the pure Hindley/Milner case a failure of type inference can give an unsat-
isfiable set of constraints C. Unsatisfiability of a set of constraints can only arise
through an unsatisfiable set of term equations, since the assumption is that the
classes and instances follow an open world assumption, another instance could
be added at any time in order to satisfy any remaining class constraints. Hence
we can use the same mechanisms as for pure Hindley/Milner.

But there are two new kinds of type error that can now occur.

Missing Instance Error In Haskell 98, type classes are single-parameter and
each argument of a type class appearing within a functions type φ(Cu), must be
a single variable (a). A non-conforming constraint is one whose arguments have
not been reduced to this form, indicating that there is a missing instance error.
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For a missing instance error to occur a class constraint T a must occur in
C such that φ(a) is not a variable. We can determine the reason this constraint
occurs in C using minimal implications. Let L be the set of locations occurring
on the constraint (T a)L. Now φ(a) is not a variable (or variable applied to
arguments) so it is a term with top level type constructor K of arity n say. We
determine the minimal implicants in C of ∃ȳ.a = K ȳ. Collecting the locations
L′ of this minimal implicant with the locations L introducing T a we have the
reasons why the missing instance is involved.

Example 17. Re-examining Example 2 from the introduction: the inferred type
is sum :: Num [a] ⇒ [[a]] → [a]. The missing instance Num [a] arise from an
initial class constraint Num b introduced by + and b = [a] which is implied by
the result of sum in the first definition arising from the [] on the right of the
equality. Hence we obtain error message shown in Example 2.

Ambiguity Error An important restriction usually made on types is that they
are unambiguous. A type ∃̄tC is unambiguous if fixing t fixes all the existen-
tially quantified variables in ∃̄tC. Programs with ambiguous types can lead to
operationally nondeterministic behaviour.

We can use CHRs to check unambiguity as follows. A type ∃̄tC is unambigu-
ous if ρ is a renaming of fv(C) we determine C ∧ ρ(C) ∧ t = ρ(t) −→∗

P D. If
D ⊃ a = ρ(a) for all a ∈ fv(C) then f is unambiguous.

In reporting ambiguity we highlight the locations where the ambiguous vari-
able is part of the type, since each such location could be improved to re-
move the ambiguity. For ease of reporting we only consider only a variable
a ∈ ā = fv(φ(Cu)) where φ = mgu(Ce). If the type ∃̄tC is ambiguous, then
the test must fail for one of these variables. Examining a location variable tl we
can see if a occurs in its type, if a ∈ fv(φ(tl)). We highlight all locations where
this test succeeds.

Example 18. Consider the following program, where read :: Read a ⇒ [Char] →
a and show :: Show a ⇒ a → [Char],

f x y z = show (if x then read y else read z)

The inferred type is ambiguous since the type a of read y and read z does not
appear in the type of f . GHC reports the error as follows

amb.hs:3:26:

Ambiguous type variable ‘a’ in the constraints:

‘Read a’ arising from use of ‘read’ at amb.hs:3:26-29

‘Show a’ arising from use of ‘show’ at amb.hs:3:10-13

Probable fix: add a type signature that fixes these type variable(s)

Chameleon highlights the positions where the type variable a appears as part of
the type:

ambig.ch:9: ERROR: Inferred type scheme is ambiguous:

Type scheme: forall a. (Read a, Show a) => Bool -> [Char] -> [Char] -> [Char]

Suggestion: Ambiguity can be resolved at these locations

f x y z = show (if x then read y else read z)
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illustrating that the ambiguity can be removed by type annotations on either call
to read, or on the if-then-else. Note how effectively GHC picks just one instance
of read to concentrate on.

6.2 Failure of Type Checking

Now type checking can fail in a new way, since the types are no longer simply
sets of equations. We now have to consider that a type class constraint is not
implied. This ends up actually easier than the case for equations.

Recall that f(t) −→∗
P C and fa(t) −→∗

P C ′. Let φ = mgu(C ′
e) and φ′ =

mgu(Ce∧C ′
e). Suppose we have a constraint φ′(T ā) ∈ φ′(Cu) such that φ′(T ā) 6∈

φ(Cu). Suppose (T ā)L is the location annotated version of this constraint in
Cu, we highlight the locations L which causes the unmatched class constraint to
arise.

Example 19. Consider the following program

notNull :: Eq a => [a] -> Bool

notNull xs = xs > []

The inferred type is Ord a ∧ Eq a ⇒ a → Bool, while the declared type is
Eq a ⇒ a → Bool. We determine the locations that cause the Ord a class
constraint to arise, and highlight them.

We report the following.

notNull.hs:2: ERROR: Inferred type does not subsume declared type

Declared: forall a. Eq a => [a] -> Bool

Inferred: forall a. Ord a => [a] -> Bool

Problem : Constraint Ord a, from following location, is unmatched.

notNull :: Eq a => [a] -> Bool

notNull xs = xs > []

It should be noted that GHC also seems to do well at reporting this sort of
error; it appears to record the source location of each user constraint, so it can
then report where any unmatched constraints come from.

GHC raises the following error:

notNull.hs:2:

Could not deduce (Ord a) from the context (Eq a)

arising from use of ‘>’ at notNull.hs:2

Probable fix:

Add (Ord a) to the type signature(s) for ‘notNull’

In the definition of ‘notNull’: notNull xs = xs > []

Other Haskell systems such as Hugs [16] and nhc98 [23], however, report the
error without identifying the program locations responsible.

7 Extended Type Systems

We now consider further extensions to Hindley/Milner types and how they can
be incorporated. Chameleon [32] supports all the features we discuss below.
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7.1 Functional Dependencies

Functional dependencies [17] are an important extension for multi-parameter
type classes. They allow the programmer to specify depencies between arguments
of multi-parameter type classes, and hence improve type inference. Classes with
functional dependencies are translated using additional CHRs for each functional
dependency, and for each instance and functional dependency.

Example 20. The following type class models a collection relationship ce is a
collection of es.

class (Collects ce e)1 | (ce -> e)2 where

empty :: ce

insert :: e -> ce -> ce

instance (Collects Integer Bool)3 where ...

instance Eq a => (Collects [a] a)4 where ...

The functional dependency ce → e states that there is at most one element type
e for each collection type ce. Without this empty is ambiguous.

The additional CHRs are

Collects ce e1, Collects ce e2 =⇒ (e1 = e2)2
Collects Integer b =⇒ (b = Bool)[2,3]

Collects [a] b =⇒ (b = a)[2,4]

The first enforces the functional dependency on two Collects constraints with
the same collection type. The last two are improvement rules for each instance.
Once we know the collection type is Integer, we know the element type is Bool,
and once we know the collection type is [a] we know the element type is a.

We can show (see [6]) that Haskell programs with functional dependencies
satisfying the restrictions in [17] lead to confluent, terminating, range-restricted
and single-headed simplication programs, so our type framework is usable with-
out modification. The only new difficulty arises in error reporting. Functional
dependencies can create unsatisfiable constraints where the location l occuring
in a justification but tl does not appear in the constraints. We overcome this by
reporting the error on the usage of the functional dependency.

Example 21. The function

f ce = insert ’a’ (insert True c)

is incorrect since we cannot have a Bool and Char in the same collection. GHC
declares:

collects.hs:5:

Couldn’t match ‘Bool’ against ‘Char’

Expected type: Bool

Inferred type: Char

When using functional dependencies to combine

Collects ce Bool, arising from use of ‘insert’ at collects.hs:7

Collects ce Char, arising from use of ‘insert’ at collects.hs:7

When generalizing the type(s) for ‘f’
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We report:

collects.hs:5: ERROR: Functional dependency causes type error

Types : Char�� ��Bool

Problem : class Collects ce e | ce -> e ...

Enforces: Collects ce e1, Collects ce e2 ==> e1 =
�� ��e2

On constraints:

Collects ce Char (from line 5, col. 7)

Collects ce Bool (from line 5, col. 19)

Conflict: f c = insert ’a’ (
�� ��insert

�� ��True c)

Note here we have multiple “colour” highlighting. The calls to insert both
generate Collects constraint and define the types of variables e1 and e2 so they
are highlighted in both ways.

The advantage of our error report is that we are not limited to identifying just
the locations of the Collects constraints above, we can straightforwardly point
out all of the other complicit locations, and identify which of the conflicting
types they contribute to.

7.2 Adhoc type improvements

In Chameleon the user is allowed to write their own CHRs, which become part
of the program P . This can be used to improve type inference and checking.

Example 22. Consider the following class and instance building a zip-like func-
tion zipall for zipping an arbitrary number of arguments:

class Zip a b c | c -> b, c -> a where

zipall :: [a] -> [b] -> c

instance Zip a b [(a,b)] where zipall = zip

instance Zip (a,b) c e => Zip a b ([c]->e) where

zipall as bs cs = zipall (zip as bs) cs

As it stands type inference for

e = head (zipall [’a’,’b’] [True,False] [’c’])

will return e :: ∀a.Zip (Char, Bool) Char [a] ⇒ a. We can add an improving
propagation rules to enforce that whenever the third argument of a Zip con-
straint is a list type, rather than a function type, it is a list of pairs of the first
two. In Chameleon format this is

rule Zip a b [c] ==> c = (a,b)

With this rule we infer e :: ((Char, Bool), Char) as expected.

Arbitrary rule additions may break confluence, termination, range-restrictedness
and single-headed simplification (the last two of which we can check). Currently
we assume the user enforces confluence and termination. We can handle type
error reporting with adhoc rules using the same approach as for functional de-
pendencies, choosing the last rule fired. This does highlight the future need for
better error reporting by explaining a sequence of CHR rule firings.
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7.3 Extended Algebraic Data Types

Guarded algebraic data types illustrated in Example 4 significantly complicate
type processing. Chameleon supports GADTs through a more generalized form,
Extended Algebraic Data Types (EADTs) [33] which also generalizes existen-
tial types. EADTs extend the translation to constraints to include quantified
implication constraints of the form

ImpConstraints F ::= C | ∀b̄.(C ⊃ ∃ā.F ) | F ∧ F

This makes type inference in general impossible, since there may be an in-
finite number of maximal types, so we concentrate on type checking. Essen-
tially the type checking procedure must check that the implication constraint
∀b̄.(C ⊃ ∃ā.F ) is implied by the declared type C ′. In checking this implication
we effectively check if C∧C ′ ⊃ ∃ā.F . If the implication fails we have a subsump-
tion error like that illustrated in Example 4. See [35] for an extended discussion
of type errors for EADTs.

8 Related Work

The starting point for this work was [5] which translated Hindley/Milner types
to a set of Horn clauses rather than CHRs. The advantage of CHRs is that we can
easily accommodate more advanced type extensions like type classes. Another
difference to [5] is that we attach justifications to constraints to keep track of
program locations.

Despite recent efforts [4, 21, 15, 10], we believe there remains a lot of scope
for improving the quality of type error diagnoses. For example, almost all other
work we are aware of has focused on the plain Hindley/Milner type system and
excludes features like type-class overloading [34] which are critical in languages
like Haskell and Clean (the one exception is the recent paper by Heeren and
Hage [13]).

The standard algorithm, W, tends to find errors too late in its traversal
of a program [18, 37]. W has been generalised [18] so that the point at which
substitutions are applied can be varied. Despite this, there are cases where it is
not clear which variation provides the most appropriate error report. Moreover,
all of these algorithms suffer from a left-to-right bias when discovering errors
during abstract syntax tree (AST) traversal.

One way to overcome this problem, as we have seen, is to avoid the stan-
dard inference algorithms altogether and focus directly on the constraints in-
volved. Although our work bears a strong resemblance to [12, 14, 15], our aims
are different. We attempt to explain errors involving advanced type system fea-
tures, such as overloading, whereas the Helium system [15], which is based on a
beginner-friendly variant of Haskell, omits such features by design. Their focus
has been on inventing heuristics which allow them to present type errors from
a more useful perspective, as well as automatically suggesting “probable fixes.”
More recently [13] they propose extending their source language with so-called
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‘type class directives’, which provide restrictions on certain forms of type classes
(such as making Num [a] illegal). These can be straightforwardly encoded using
Chameleon rules.

Closest to our work is probably that of Haack and Wells [10] who also, in-
dependently, propose using minimal unsatisfiable subsets of typing constraints
to identify problematic program locations. The main difference between their
work and ours is that they focus entirely on the standard Hindley/Milner sys-
tem, limiting their constraint domain to equations, and only report errors by
highlighting the locations involved. Another limitation of their proposal is that
it lacks any way to generate type explanations, which we do by finding minimal
implicants. Such a facility is necessary for explaining subsumption errors.

Another related research direction is error explanation systems [7, 2], which
allow the user to examine the process by which specific types are inferred for
program variables. By essentially recording the effects of the inference procedure
on types a step at a time, a complete history can be built up. Unfortunately,
a common shortcoming of such systems is the excessive size of of explanations.
Although complete, such explanations are full of repetitive and redundant infor-
mation which can be a burden to sort through. Furthermore, since these systems
are layered on top of an existing inference algorithm, they suffer from the same
left-to-right bias when discovering errors.

9 Conclusion

We have presented a flexible type processing system for Hindley/Milner types
and extensions which naturally supports advanced type error reporting and rea-
soning techniques. The central idea of our approach is to translate the typing
problem to a constraint problem, i.e. a set of constraints where function rela-
tions are expressed in terms of CHRs. Individual constraints are justified by the
location of their origin. During CHR solving we retain these locations. CHRs are
a sufficiently rich constraint language to encode the typing problem for a wide
range of extensions of the Hindley/Milner system such as type-class overload-
ing and functional dependencies. The techniques explained in this paper have all
been implemented as part of the Chameleon system [32] which is freely available.

The basic machinery we use here can also be used in an interactive type
debugging framework (see [29, 30]). Clearly as type systems become more and
more complicated these interactive forms of type debugging, which for example
can explain why a function has an inferred type of a certain shape, become
much important. We can also straightforwardly extend our approach to create
specialised error messages for library functions or CHR rules in the manner of
Helium (see [35] for details).

By lifting type algorithms from adhoc specialized algorithms to generic con-
straint reasoning algorithms our approach offers the advantages of uniformity
(allowing easier handling of extensions) as well as a clear semantics (which for
example allowed us to give the first proof of the soundness and completeness
of Jones functional dependency restrictions [6]). As types become more compli-
cated, we need to make use of the existing deep understanding of constraints and

23



first order predicate logic, in order to handle them correctly. Typing problems
will also inevitably push us to develop new constraint algorithms, for example
constraint abduction [19] seems required for inference of GADTs.
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