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Abstract

Tree ensembles (TEs) denote a prevalent machine learning
model that do not offer guarantees of interpretability, that rep-
resent a challenge from the perspective of explainable artifi-
cial intelligence. Besides model agnostic approaches, recent
work proposed to explain TEs with formally-defined explana-
tions, which are computed with oracles for propositional sat-
isfiability (SAT) and satisfiability modulo theories. The com-
putation of explanations for TEs involves linear constraints
to express the prediction. In practice, this deteriorates scala-
bility of the underlying reasoners. Motivated by the inherent
propositional nature of TEs, this paper proposes to circum-
vent the need for linear constraints and instead employ an
optimization engine for pure propositional logic to efficiently
handle the prediction. Concretely, the paper proposes to use
a MaxSAT solver and exploit the objective function to deter-
mine a winning class. This is achieved by devising a propo-
sitional encoding for computing explanations of TEs. Fur-
thermore, the paper proposes additional heuristics to improve
the underlying MaxSAT solving procedure. Experimental re-
sults obtained on a wide range of publicly available datasets
demonstrate that the proposed MaxSAT-based approach is ei-
ther on par or outperforms the existing reasoning-based ex-
plainers, thus representing a robust and efficient alternative
for computing formal explanations for TEs.

1 Introduction
Tree ensembles (Zhou 2012), including random
forests (Breiman 2001) and gradient boosted trees (Fried-
man 2001), are one of the most successful machine learning
(ML) approaches. Unfortunately, although often succinct
in representation, their decisions are not necessarily easy
to explain, since they involve aggregating information over
many trees.

Besides applying intrinsically interpretable ML mod-
els (Rudin 2018; Molnar 2020), there are two major ap-
proaches to explaining ML models on demand (Miller 2019;
Guidotti et al. 2019): model-agnostic approaches do not
make any use of the ML model representation that they
are explaining, relying on querying the ML model (Chen
and Guestrin 2016; Lundberg and Lee 2017; Ribeiro, Singh,
and Guestrin 2018); and model-precise explanations, which
make use of the structure of the ML model (Shih, Choi, and
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Darwiche 2018; Ignatiev, Narodytska, and Marques-Silva
2019a; Audemard, Koriche, and Marquis 2020). Despite a
number of advantages, model-agnostic approaches are by
definition inexact with respect to the actual ML model since
they only examine a small proportion of the possible outputs.
Model-precise explanations, in contrast, can make precise
statements about the ML model being explained, although
their operation relies on formal reasoning and often suffers
from scalability issues.

In this paper, we give explanations of tree ensembles us-
ing a model-precise method, which returns provably min-
imal explanations for Boosted Tree classifications. This is
achieved by encoding the tree ensemble in propositional
logic. One of the key difficulties in reasoning about tree en-
sembles is reasoning about the aggregation over the many
trees in the tree ensemble. Previous approaches to tackling
the large linear constraints that arise in reasoning over the
aggregation of the many trees in the ensemble either used
SAT Modulo Theory (SMT) solvers (Ignatiev, Narodytska,
and Marques-Silva 2019b) or Mixed Integer Programming
(MIP) solvers (Chen et al. 2019; Kanamori et al. 2021; Par-
mentier and Vidal 2021) to directly handle large linear con-
straints, or encoded the linear constraints to SAT (Izza and
Marques-Silva 2021), which is costly.

In this paper, we use the optimisation capabilities of
modern core-guided MaxSAT solvers (Biere et al. 2021,
Chapter 24) to avoid encoding the linear constraint, instead
mapping the aggregation reasoning to a suite of MaxSAT
queries. This new approach is much more efficient than com-
peting approaches since the underlying (OLL) MaxSAT op-
timisation procedure introduces new literals that allow us to
learn about the large linear constraints effectively (Morgado,
Dodaro, and Marques-Silva 2014).

2 Preliminaries
SAT and MaxSAT. We assume standard definitions for
propositional satisfiability (SAT) and maximum satisfiabil-
ity (MaxSAT) solving (Biere et al. 2021). A propositional
formula is said to be in conjunctive normal form (CNF) if
it is a conjunction of clauses. A clause is a disjunction of
literals. A literal is either a Boolean variable or its negation.
Whenever convenient, clauses are treated as sets of literals.
A truth assignment maps each variable to {0, 1}. Given a
truth assignment, a clause is satisfied if at least one of its lit-



T1 (setosa)

petal.length< 2.45?

0.42762 -0.21853

yes no

T2 (versicolor)

sepal.width< 2.95?

petal.width< 1.7? petal.length< 3?

0.36131 -0.18947 -0.21356 -0.03830

yes no

yes no yes no

T3 (virginica)

petal.length< 4.75?

petal.width< 1.7?-0.21869

0.08182 0.42282

yes no

yes no

T4 (setosa)

petal.length< 2.45?

0.29522 -0.19674

yes no

T5 (versicolor)

sepal.width< 2.95?

petal.length< 4.85? petal.length< 3?

0.27994 -0.11330 -0.18999 -0.02829

yes no

yes no yes no

T6 (virginica)

petal.length< 4.75?

petal.width< 1.7?-0.19776

0.08067 0.30170

yes no

yes no

Figure 1: Example of a simple boosted tree model (Chen and Guestrin 2016) generated by XGboost on the well-known Iris classification
dataset. Here, the tree ensemble has 2 trees for each of the 3 classes with the depth of each tree being at most 2.

erals is assigned value 1; otherwise, it is falsified. A formula
is satisfied if all of its clauses are satisfied; otherwise, it is
falsified. If there exists no assignment that satisfies a CNF
formula, then the formula is unsatisfiable.

In the context of unsatisfiable formulas, the maximum
satisfiability (MaxSAT) problem is to find a truth assign-
ment that maximizes the number of satisfied clauses. A num-
ber of variants of MaxSAT exist (Biere et al. 2021, Chap-
ters 23 and 24). Hereinafter, we will be mostly interested
in Partial Weighted MaxSAT, which can be formulated as
follows. The formula φ is represented as a conjunction of
hard clauses H, which must be satisfied, and soft clauses
S, each with a weight, which represent a preference to sat-
isfy those clauses, i.e. φ = H ∧ S . Whenever convenient, a
soft clause c with weight w will be denoted by (c, w). The
Partial Weighted MaxSAT problem consists in finding an as-
signment that satisfies all the hard clauses and maximizes the
total weight of satisfied soft clauses.

Classification problems. We consider a classification
problem, characterized by a set of featuresF = {1, . . . ,m},
and by a set of classes K = {c1, . . . , cK}. Each feature
j ∈ F is characterized by a domain Dj . As a result, feature
space is defined as F = D1×D2×. . .×Dm. A specific point
in feature space represented by v = (v1, . . . , vm) denotes an
instance (or an example). Also, we use x = (x1, . . . , xm) to
denote an arbitrary point in feature space. In general, when
referring to the value of a feature j ∈ F , we will use a vari-
able xj , with xj taking values from Dj . A classifier imple-
ments a total classification function τ : F→ K.

Tree ensembles. Decision trees (Hyafil and Rivest 1976;
Breiman et al. 1984; Quinlan 1986, 1993) are one of the old-
est forms of ML model, and are very widely used, but they
are known to suffer from bias if the tree is small, and tend
to overfit the data if the tree is large. They are commonly
deemed to have a significant advantage over most ML mod-
els in that their decisions appear easy to explain to a human,
although Izza, Ignatiev, and Marques-Silva (2020) show that
this does not hold in general.

In order to overcome the weaknesses of decision trees,
tree ensembles were introduced, which generate many deci-
sions trees and rely on aggregating their decisions to come
to an overall decision. Two popular ensemble methods are
random forests (RFs) (Breiman 2001) and gradient boosted
trees (BTs) (Friedman 2001). Here, we focus on BT models
trained with the use of the XGBoost algorithm (Chen and
Guestrin 2016). In general, BTs are a tree ensemble that re-
lies on building a sequence of small decision trees. In each
stage, new trees are built to compensate for the inaccuracies
of the already constructed tree ensemble. Consider multi-
class classification problems, i.e. K > 2, and let a BT be
an ensemble E of decision trees. Hereinafter, we say that
ensemble E computes a classification function τ(x). Each
class i ∈ [K] in E is represented by n ∈ N>0 trees TKj+i,
j ∈ {0, . . . , n−1}. Therefore, each decision tree is attached
to a particular class i and contributes to the weight class i.
The overall decision of a BT is made by evaluating the total
weight assigned by the trees for each class and selecting the
class with largest total weight. Let wi : F → R, i ∈ [K],
denote the total weight of class i computed by ensemble E
for instance x ∈ F. Similarly, each individual tree TKj+i
can also be seen as computing a function TKj+i : F → R
s.t. the total weight of a class i is computed as

wi(x) =
∑

j∈{0,...,n−1}
TKj+i(x), ∀i∈[K] (1)

When the context does not explicitly refer to a specific class,
we use Ti ∈ E to denote an arbitrary decision tree. Also,
whenever convenient, we will use notation Pi to denote the
set of all paths in tree Ti, and Pr ∈ Pi to denote an indi-
vidual path, which can be associated with the corresponding
leaf (or terminal) node tr ∈ Ti. Similarly, a non-terminal
node of a tree is denoted by n ∈ Ti, and each such n repre-
sents a condition on the value of some feature j ∈ F in the
form xj < d s.t. d ∈ Dj , where d is the splitting threshold.
Example 1 An example of a BT trained by XGBoost for
the Iris dataset is shown in Figure 1. The dataset includes
4 numeric features: sepal.length, sepal.width, petal.length,
petal.width, and 3 classes: class1 = “setosa”, class2 =



“versicolor”, and class3 = “virginica”. Each class i ∈ [3]
is represented in the BT by 2 trees T3j+i, j ∈ {0, 1}.
This way, given an input instance (sepal.length = 5.1) ∧
(sepal.width = 3.5)∧ (petal.length = 1.4)∧ (petal.width =
0.2), the scores of classes 1–3 are w1 = T1+T4 = 0.72284,
w2 = T2+T5 = −0.40355, andw3 = T3+T6 = −0.41645.
Hence, the model predicts class 1 (“setosa”) as it has the
highest score. The path taken by this instance in tree T2 is
defined as {sepal.width ≥ 2.95, petal.length < 3}. ut
Interpretability & explanations. Interpretability is gen-
erally accepted to be a subjective concept, without a for-
mal definition (Lipton 2018). In this paper we measure in-
terpretability in terms of the overall succinctness of the
information provided by an ML model to justify a given
prediction. Moreover, and building on earlier work, we
equate explanations with the so-called abductive explana-
tions (AXps) (Shih, Choi, and Darwiche 2018; Ignatiev,
Narodytska, and Marques-Silva 2019a; Darwiche and Hirth
2020; Audemard, Koriche, and Marquis 2020), i.e. subset-
minimal sets of feature-value pairs that are sufficient for the
prediction. More formally, given an instance v ∈ F, with
prediction c ∈ K, i.e. τ(v) = c, an AXp is a minimal subset
X ⊆ F such that,

∀(x ∈ F).
∧

j∈X
(xj = vj)→(τ(x) = c) (2)

Another name for an AXp is a prime implicant (PI) expla-
nation (Shih, Choi, and Darwiche 2018; Darwiche and Hirth
2020). For simplicity, we will use abductive explanation and
the acronym AXp interchangeably.

Example 2 Consider the BT from Example 1 and the same
data instance. By examining the model, one can observe that
it suffices to specify petal.length = 1.4 to guarantee that
the prediction is “setosa”. The weight for “setosa” will be
0.72284 as before, and the maximal weight for “versicolor”
will be 0.36131 + 0.27994 = 0.64125, and the weight for
“virginica” will be -0.41645 as before. Therefore, an abduc-
tive explanation for this prediction includes a single feature.
Furthermore, it is the only AXp for the given instance. ut

3 MaxSAT As Entailment Oracle
3.1 Propositional Encoding of a Tree
The propositional encoding described here builds on the
original SMT encoding for XGBoost models (Ignatiev, Nar-
odytska, and Marques-Silva 2019b). However, as proposi-
tional logic cannot offer the expressive power of SMT and
can deal with Boolean variables only, one has to handle the
domain and the possible values of a (continuous) numeric
feature xj ∈ Dj utilized by the classifier, with the use of
some kind of additional encoding, an example of which is
also detailed below.

Concretely, the encoding of a non-terminal node of a tree
Ti ∈ E is organized as follows. As each non-terminal node
n ∈ Ti checks the condition xj < d, d ∈ Dj for a feature
j ∈ F , we can examine the complete TE E to identify all
the splitting thresholds sj,k ∈ Dj used for feature j in all the
trees of E (in sorted order); then considermj+1,mj ∈ N>1,
disjoint intervals I1 ≡ [min(Dj), sj,1), I2 ≡ [sj,1, sj,2),

. . ., Imj+1 ≡ [sj,mj
,max(Dj)]. Next, we can “name” these

mj +1 intervals with the use of auxiliary Boolean variables
lj,k, j ∈ F and k ∈ [mj + 1] s.t. lj,k = 1 iff xj ∈ Ik. These
variables can be used to represent concrete feature values of
a data instance v ∈ F, i.e. with a slight abuse of notation
we can use l[[xj = vj ]] ≡ lj,k iff v′j ∈ Ik. Furthermore,
let us use additional Boolean variables oj,k for each of the
threshold values sj,k, k ∈ [mj ], for feature j, i.e. variable
oj,k = 1 iff xj < sj,k. Then the domainDj can be expressed
using the following constraints

oj,k → oj,k+1, ∀k∈[mj−1] (3)

lj,k+1 ↔ (¬oj,k ∧ oj,k+1), ∀k∈[mj−1] (4)

lj,mj+1 ↔ ¬oj,mj
(5)∨

k∈[mj+1]
lj,k (6)

Note that in the case of one threshold value d for a feature
j ∈ F , two distinct intervals exist and it suffices to consider
a single Boolean variable oj to represent it. Also note that
the encoding above can be related to the order encoding of
integer domains studied in the context of mapping CSP to
SAT (Ansótegui and Manyà 2004). Finally, to enforce the
“yes” and “no” branches of the node xj < sj,k, one can use
literals oj,k or ¬oj,k, respectively.

Example 3 In the BT model shown in Figure 1, there are
4 thresholds for feature petal.length, namely, values 2.45, 3,
4.75, and 4.85. Assuming petal.length is a 3rd feature, let us
introduce variables o3,k for k ∈ [4], and l3,k for k ∈ [5].
As an example, o3,4 ↔ (x3 < 4.85) and l3,5 ↔ ¬o3,4 ↔
(xj ≥ 4.85). The following constraints can be used to ex-
press the domain of the possible values for feature 3:

o3,1 → o3,2, o3,2 → o3,3, o3,3 → o3,4
l3,2 ↔ (¬o1,1 ∧ o3,2), l3,3 ↔ (¬o2,2 ∧ o3,3)

l3,4 ↔ (¬o3,3 ∧ o3,4), l3,5 ↔ ¬o3,4
(l3,1 ∨ l3,2 ∨ l3,3 ∨ l3,4 ∨ l3,5) 2

A leaf node tr ∈ Ti can be encoded by a Boolean variable
tr s.t. tr = 1 iff node tr is reached. Each leaf node tr ∈
Ti corresponds to a path Pr ∈ Pi. Thus, we can encode
each path Pr ∈ Pi as a conjunction of literals over variables
oj,k representing the conditions xj < d on the features j
appearing in Pr, and relate it with the corresponding leaf
node tr using the following constraint:(∧

(xj<sj,k)∈Pr

oj,k ∧
∧

(xj≥sj,k)∈Pr

¬oj,k
)
↔ tr (7)

Together with the above constraints, we must ensure that ex-
actly one path in each tree Ti is executed at a time. This can
be enforced by using constraint

∑
Pr∈Pi

tr = 1.

Example 4 As shown in Example 3, feature 3 (petal.length)
has 5 intervals and so 4 associated variables o3,k, k ∈ [4],
e.g. o3,1 = 1 iff x3 < 2.45. As tree T1 has 2 paths and so 2
leaf nodes, they can be represented using the constraints:

o3,1 ↔ t1, ¬o3,1 ↔ t2, t1 + t2 = 1

where the corresponding leaf nodes t1 and t2 have weights
w1 = 0.42762 and w2 = −0.21853, respectively. ut



Now, let us denote the CNF formula encoding the paths
and the leaf nodes of a tree Ti in ensemble E, by HTi , fol-
lowing (7). Also, let us denote the CNF formula encoding
the domain of each feature j ∈ F including constraints (3)–
(6) byHDj

. Finally, in the following, we will use

H =
∧

Ti∈E
HTi ∧

∧
j∈F
HDj (8)

to represent the hard part of the MaxSAT encoding of TE E.

3.2 Dealing with Classifier Predictions
In order to formally reason about TEs, one has to addition-
ally encode the process of determining the prediction of the
model obtained for an input data instance according to (1).
For this, when using the language of SMT (Ignatiev, Nar-
odytska, and Marques-Silva 2019b), it suffices to introduce
a real variable for each tree TKj+i as well as for the total
weight wi of class i, and relate them with a linear constraint
(1). As a result, entailment queries (2) boil down to deciding
whether a misclassification is possible for the classifier τ(x)
given a candidate explanation X , i.e. whether there is a data
instance v′ that complies with X such that wι(v′) ≥ wi(v′)
for some class ι 6= i.

In contrast to SMT, in the case of propositional logic one
has to represent the linear constraints (1) integrating all indi-
vidual leaf-node variables tr multiplied by the correspond-
ing weight, i.e. summands wr · tr, to determine the total
weights of the classes. Namely, the total weight for a class
i can be computed as

∑
i =

∑
TKj+i∈E

∑
tr∈TKj+i

wr · tr.
(This is valid as we use

∑
Pr∈Pi

tr = 1 to enforce exactly
one path to be taken in each tree.) This involves using ei-
ther cardinality (if all the weights are 1) or pseudo-Boolean
(if the weights are arbitrary real numbers) encodings, which
may be quite expensive in practice. What is worse, checking
if a given candidate explanation X for τ(v) = ci entails the
prediction requires to efficiently reason about pairwise in-
equalities comparing the total weight of i’th class, with the
total weights of all the other classes ι 6= i, each computed
using the above cardinality or PB constraints, i.e.

∑
ι ≥

∑
i.

Example 5 For our running example, consider class 1 (“se-
tosa”), represented by trees T1 and T4. Assume that the leaf
nodes of T1 are encoded as t1 with weight 0.42762 and t2
with weight -0.21853. Observe that variables t1 and t2 can
be reused to encode the leaves of T4 with weights 0.29522
and -0.19674, respectively. Hence, the total weight of class
“setosa” can be expressed as

∑
1 = 0.42762 ·t1−0.21853 ·

t2+0.29522 · t1−0.19674 · t2 = 0.72284 · t1−0.41527 · t2.
By applying similar reasoning, we can assume that the to-
tal weight of class 3 (“virginica”) can be computed as∑

3 = −0.41645 · t3 + 0.16249 · t4 + 0.72452 · t5. ut
We observe that in order to avoid the bottleneck of dealing

with hard clauses H together with inequalities
∑
ι ≥

∑
i

one can consider optimizing objective function
∑
ι−
∑
i

subject to hard clausesH defined in (8).

Proposition 1 The optimal value of the objective function
above is non-negative iff there is a data instance (which can
be extracted from the corresponding optimal solution) that
is classified by the model as class ι instead of class i. ut

Also, note that if there are K > 2 classes, one has to deal
withK−1 optimization problems. In general, in the context
of computing an AXp for TE models, the following holds:

Corollary 1 Given a data instance v ∈ F s.t. τ(v) = ci,
a subset of features X ⊆ F is an AXp for v iff the optimal
values of the objective functions of the optimization prob-
lems for all classes cι ∈ K, cι 6= ci:

maximize Si,ι =
∑

ι
−
∑

i
(9)

subject to H ∧
∧

j∈X
l[[xj = vj ]] (10)

are negative. ut
Example 6 The objective function to replace inequality∑

3 ≥
∑

1 from Example 5 is
∑

3−
∑

1 = −0.41645 · t3 +
0.16249 · t4 + 0.72452 · t5 − 0.72284 · t1 + 0.41527 · t2. In
MaxSAT, it can be written as a set of weighted soft clauses:

S1,3 =

{
(¬t1, 0.72284), (t2, 0.41527),
(¬t3, 0.41645), (t4, 0.16249), (t5, 0.72452)

}
3.3 Computing AXps with MaxSAT
As soon as the formulas (9)–(10) are constructed for all
classes cι 6= ci, a MaxSAT solver can be applied to check
if feature subset X is an AXp for τ(v) = ci. This entail-
ment check is detailed in Algorithm 1. Concretely, given a
candidate explanation X for τ(v) = ci made by a TE E en-
coded into the setH of hard clauses and a number of sets of
weighted soft clauses S, the procedure iterates over all the
relevant objective functions (see line 1), each represented
by a set Si,ι of soft clauses, and checks if another class
cι can get a higher total score given the literals enforcing∧
j∈X (xj = vj). This is done by making a single MaxSAT

call. If such a misclassification is possible, i.e. when the op-
timal value of the objective function is non-negative, X does
not entail prediction ci. Otherwise, it does. The overall ex-
planation procedure is depicted in Algorithm 2 and follows
the standard deletion-based AXp extraction (Ignatiev, Naro-
dytska, and Marques-Silva 2019a). It receives a TE model E
computing function τ(x), a concrete data instance v and the
corresponding prediction ci = τ(v). First, Algorithm 2 en-
codes the classifier (see line 1), as described in Section 3.1.
Then it iterates through the features j ∈ X (initially set to
F) and checks ifX\{j} entails the prediction ci by invoking
Algorithm 1. If it does, feature j is irrelevant and is removed.
Otherwise, it must be kept in X . Algorithm 2 proceeds until
all features are tested, and reports the updated X .

An immediate observation to make here is that instead
of a simple deletion-based algorithm for AXp extraction,
one could apply the ideas behind the QuickXplain algo-
rithm (Junker 2004), which in some cases may help reducing
the number of MaxSAT oracle calls.

Incremental MaxSAT with assumptions. Although any
off-the-shelf MaxSAT solver (Morgado et al. 2013;
Ansótegui, Bonet, and Levy 2013; Davies and Bacchus
2011) can be exploited in Algorithm 1 as is (assuming that
the chosen MaxSAT solver can cope with Partial Weighted
CNF formulas with real weights), computing a single AXp



Algorithm 1: Entailment check with MaxSAT
Function ENTCHECK(〈H, S〉, v, ci, X)

Input: H: Hard clauses, S: Objective functions,
v: Input instance, ci: Prediction, i.e. τ(v) = ci,
X : Candidate explanation

Output: true or false

1 foreach Si,ι ∈ S: # all relevant objective functions for ci
2 µ← MAXSAT(H ∧∧j∈X l[[xj = vj ]],Si,ι)
3 if OBJVALUE(µ) ≥ 0: # non-negative objective?
4 return false # misclassification reached

5 return true # X indeed entails prediction ci

Algorithm 2: Standard deletion-based AXp extraction
Function EXTRACTAXP(E, v, ci)

Input: E: TE computing τ(x), v: Input instance,
ci: Prediction, i.e. τ(v) = ci

Output: X : abductive explanation

1 〈H,S〉 ← ENCODE(E) # MaxSAT encoding s.t. S , ∪Si,ι
2 X ← F # X is over-approximation
3 foreach j ∈ X :
4 if ENTCHECK(〈H,S〉,v, ci,X \{j}): # j unneeded?
5 X ← X \ {j} # If so, drop it
6 return X # X is AXp

may involve quite a large number of oracle calls, and invok-
ing a new MaxSAT solver from scratch at each iteration of
Algorithm 2 may be computationally expensive. An alter-
native is to create all the necessary MaxSAT oracles once,
at the initialization stage of the explanation approach, and
reuse them incrementally as needed with varying sets of as-
sumptionsA , {l[[xj = vj ]] | j ∈ X}— in a way similar to
the well-known MiniSat-like incremental assumption-based
interface used in SAT solvers (Eén and Sörensson 2003).

A possible setup of a generic incremental core-guided
MaxSAT solver is shown in Algorithm 3 where the flow
of a (non-incremental) core-guided solver is augmented
with several highlighted parts, which briefly overview the
changes needed for incrementality. (Please ignore lines 2–5
and 10 for now.) In general, a core-guided solver operates as
a loop iterating as long as the formula it is dealing with is
unsatisfiable (line 6).1 (At the beginning, the solver aims at
satisfying all the hard and soft clauses of the input formula
φ.) Each iteration of the loop extracts an unsatisfiable core
κ (line 7) and processes it by relaxing the clauses in κ and
adding new constraints allowing some of the clauses in κ to
be falsified. The weight of κ contributes to the total cost of
the MaxSAT solution. As soon as the formula gets satisfi-
able, the solver stops and reports its satisfying assignment.

Given the above, incrementality in a core-guided solver
with the use of the set A of assumptions can be made to
work by handingA over to the underlying SAT solver at ev-
ery iteration of the MaxSAT algorithm (see the highlighted

1The reader is referred to (Morgado et al. 2013; Ansótegui,
Bonet, and Levy 2013) for details on core-guided MaxSAT.

Algorithm 3: Incremental core-guided MaxSAT solver
Function MAXSAT(φ, A)

Input: φ: Partial CNF formula (hard and soft clauses),
A: Set of assumption literals

Output: µ: MaxSAT model

1 cost ← 0 # initially, cost is 0

2 C ← VALIDCORES(φ,A) # get valid unsatisfiable cores
3 foreach κ ∈ C: # iterate over known cores κ
4 cost ← cost + COREWT(κ) # add its weight to cost
5 φ← PROCESS(φ, κ) # process κ and update φ

6 while SAT(φ, A) = false: # iterate until φ gets satisfiable
7 κ← GETCORE(φ) # new unsatisfiable core
8 cost ← cost + COREWT(κ) # add its weight to cost
9 φ← PROCESS(φ, κ) # process κ and update φ

10 RECORD(φ,A, κ) # record κ for the future

11 return GETMODEL(φ) # φ is now satisfiable

modification made in line 6). This way all the clauses learnt
by the SAT solver during the entire MaxSAT oracle call can
be reused later in the following MaxSAT calls.

Moreover, as each call to Algorithm 1 “equates” to an
entailment query (2), where a reasoner aims at refuting a
given input formula, one may want to extract a subset of
assumptions inA that are deemed responsible for the entail-
ment (2) to hold. This can be done by aggregating all the
subsets A′ ⊆ A appearing in individual unsatisfiable cores
κ extracted by the underlying SAT solver (see line 7), i.e.
A′ = κ ∩ A, such that the union of alls such subsets A′,
i.e. A∗ = ∪A′, is guaranteed to be responsible for the en-
tailment (2) to hold. Notice that this is similar to the core ex-
traction mechanism of SAT solvers. It can be used in practice
to avoid iterating over all features in F (see line 3 of Algo-
rithm 2) and instead focus on those features that “matter”.

Reusing unsatisfiable cores. To further improve the
MaxSAT oracle, we can reuse unsatisfiable cores detected
in the previous MaxSAT calls, similar to core caching stud-
ied in the context of MCS enumeration (Previti et al. 2017).
Indeed, Algorithm 2 provides all the MaxSAT solvers deal-
ing with objective Si,ι with exactly the same formula φ ≡
H ∧ Si,ι but a varying set of assumptions A. Hence, some
of the cores extracted from φ for assumptions A1 may be
reused with assumptionsA2, s.t.A1∩A2 6= ∅, thus saving a
potentially large number of SAT oracle calls in Algorithm 3.

Although implementations of core reuse may vary, a high-
level view on the corresponding changes in the solver are
shown in lines 2–5 and 10 of Algorithm 3.2 Namely, each
core κ is recorded for future use (line 10). Next time Algo-
rithm 3 is called, it starts by examining the set of recorded
cores and determining, which of them may be reused in the
current call (see line 2). All of such cores are processed the
standard way (lines 3–5), each saving a single SAT call. Af-
terwards, the MaxSAT solver proceeds as normal.

2The pseudocode and the description of core reuse omit the
low-level details and provide a basic overview of the general idea.



Let us recall that each core κi found at iteration i of a
MaxSAT algorithm comprises a subset S ′ of soft clauses S
that are unsatisfiable together with the hard clauses H ⊆ φ.
In our incremental MaxSAT solver, κi may also include
a subset A′ of the assumption literals A. Additionally, in
the case of the algorithms based on soft cardinality con-
straints (Morgado, Dodaro, and Marques-Silva 2014), κi
may include literals “representing” some other (previously
found) unsatisfiable cores κj , j < i. This way, each core
κi can be seen as depending on (1) the corresponding sub-
set S ′ of soft clauses, (2) assumptions A′, and (3) cores κj ,
j < i. As a result, thanks to the fact that each of these are
represented by Boolean literals,3 it is this dependency of κi
that can be recorded for future use. Namely, let Di be the
set of all such literals that κi depends on. Then we can use
a separate SAT solver to store the dependency in the form
of a clause

(∧
l∈D l

)
→ ζi, where ζi is a Boolean variable

introduced to represent κi. This way, detecting which cores
can be reused for formula φ under assumption literals A,
i.e. a call to VALIDCORES(φ,A), can be done by applying
unit propagation in the external SAT solver given all the soft
clauses S ⊆ φ and assumptions A. Note that there is no
need to make a full-blown SAT call here as literals ζi for all
reusable cores κi will be propagated in the right order, i.e.
ζj will precede ζi for j < i, given S and A.

Distance-based stratification. In practice, weighted for-
mulas are challenging for core-guided MaxSAT algorithms
as they often suffer from making too many iterations 6–10.
As a result, a number of heuristics were proposed to ad-
dress this problem, namely Boolean lexicographic optimiza-
tion (BLO) (Marques-Silva et al. 2011) and diversity-based
stratification (Ansótegui et al. 2013). Both techniques aim
at splitting the set of soft clauses into multiple levels, based
on their weight, and solving a series of MaxSAT problems,
each time adding into consideration the clauses of the next
(smaller weighed) level. Although powerful in general, both
techniques often fail in the setting of TE explainability. 4

As a result, we developed an alternative heuristic to strat-
ify soft clauses referred to as distance-based stratification.
The idea is to (1) construct a stratum L ⊆ S by traversing
the weights from highest to lowest and (2) associate weight
w with the current stratum L if it is closer to the mean
of clause weights already in L than to the mean of clause
weights smaller than w, i.e. when∣∣∣∣∣w −

∑
(ci,wi)∈L wi

|L|

∣∣∣∣∣ <
∣∣∣∣∣w −

∑
(cj ,wj)∈S∧wj<w

wj

|{(cj , wj) ∈ S ∧ wj < w}|

∣∣∣∣∣
Example 7 Consider the set S1,3 of soft clauses from
Example 6. Diversity-based heuristic (Ansótegui et al.
2013) fails to stratify them since all of them have unique
weights. Distance-based stratification makes 3 strata: L1 =
{(t5, 0.72452), (¬t1, 0.72284)}, L2 = {(¬t3, 0.41645),
(t2, 0.41527)}, and L3 = {(t4, 0.16249)}. ut

3Practically, each soft clause c ∈ S is represented by a unique
selector literal s, i.e. we use clause c ∨ ¬s instead of c.

4The BLO condition is too strict while diversity-based stratifi-
cation fails because the diversity of the weights of soft clauses is
too high, i.e. each soft clause often has a unique real-valued weight.

Early termination. Although core-guided MaxSAT sol-
vers are quite effective in practice, the proposed approach
may invoke a MaxSAT engine a significant number of times.
As solving optimization problems to optimality is often ex-
pensive, it makes approximate solutions to these problems
a viable and efficient alternative. Motivated by these obser-
vations, each MaxSAT call in the proposed approach can be
terminated before an exact optimal solution is computed.

Consider again Algorithm 3 and recall that the objective
function in each MaxSAT call is of the form

∑
ι−
∑
i. This

means that as soon as the cost of the solution is updated in
line 4 or 8 and its new value exceeds the maximum value of∑
ι, the optimal value of the objective function is guaran-

teed to be negative, i.e. the entailment (2) holds. In this case,
the MaxSAT solver can terminate immediately. On the other
hand, recall that our solver applies stratification to handle
weighed soft clauses efficiently. Therefore, each stratifica-
tion level once solved is finished with the working formula φ
being satisfiable (this corresponds to line 11 in Algorithm 3).
Its satisfying assignment can serve to calculate an under-
approximation of the value of the objective function. If the
approximate solution is non-negative, the MaxSAT solver
can terminate immediately because this solution is evidence
that the entailment (2) does not hold.

4 Experimental Results
Here we report on the experimental results obtained when
testing the proposed ideas in practice in the context of com-
puting explanations for some of the widely studied datasets.

Experimental setup. The experiments are performed on a
MacBook Pro with a Dual-Core Intel Core i5 2.3GHz CPU
with 8GByte RAM running macOS Big Sur. The results re-
ported do not impose any time or memory limit.

Prototype implementation. A prototype implementa-
tion5 of the proposed approach was developed as a Python
script. It builds on (Ignatiev, Narodytska, and Marques-
Silva 2019b) and makes heavy use of the latest versions
of the PySMT and PySAT toolkits (Gario and Micheli
2015; Ignatiev, Morgado, and Marques-Silva 2018). To our
best knowledge, only two MaxSAT solvers support formu-
las with real weights: LMHS (Saikko, Berg, and Järvisalo
2016) and RC2 (Ignatiev, Morgado, and Marques-Silva
2019), and only the latter is core-guided. Thus the proto-
type of the MaxSAT-based explainer builds on Glucose 3 as-
sisted (Audemard, Lagniez, and Simon 2013) RC2 and aug-
ments it with all the proposed heuristics. The SMT-based
counterpart taken directly from (Ignatiev, Narodytska, and
Marques-Silva 2019b) and uses Z3 (de Moura and Bjørner
2008) as the underlying SMT engine. Both competitors sup-
port the computation of one AXp and also their enumera-
tion (Ignatiev et al. 2020). Although both explainers sup-
port QuickXplain-like AXp extraction (Junker 2004), it did
not prove helpful in our initial results, and so the standard
deletion-based Algorithm 2 was applied instead.

5The prototype’s source code will be released upon publication.
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Figure 2: Scalability of MaxSAT- and SMT-based explainers on the considered benchmarks.

Benchmarks. The experiments consider a selection of 21
publicly available datasets, which originate from UCI Ma-
chine Learning Repository (UCI) and Penn Machine Learn-
ing Benchmarks (PennML). The number of features (data
instances, resp.) in the benchmark suite vary from 7 to 60
(59 to 58000, resp.) with the average being 26.95 (4684.47,
resp.). All BT models are trained with XGBoost (Chen and
Guestrin 2016) having 50 trees per class, each of depth at
most 3–4 and using 80% of the dataset samples (20% used
for test data). Also, the number of variables and constraints
in the SMT (MaxSAT, resp.) encoding vary from 104 to
2292 variables and 129 to 5771 assertions (4 to 10183 vari-
ables and 304 to 102611 clauses, resp.).

For each of the considered datasets, we randomly picked
200 instances to explain (if a dataset has a fewer number
of instances, we used all available instances). Both explain-
ers are set to compute a single AXp per data instance from
the selected set of instances. (Note that both deal with the
same data instances, and compute the same AXp given an
instance.) Enumeration of explanations turned out to be too
time consuming for the SMT-based reasoner to complete
with a reasonable amount of computing resources.

Results. Figure 2 shows the results of the conducted ex-
periment. As can be observed in the cactus plot of Fig-
ure 2a, the MaxSAT-based explainer outperforms the SMT
approach by a large margin. In particular, it is able to explain
each of the considered instances with the runtime per in-
stance varying from 0.001 to 41.843 seconds and the average
runtime being 3.183 seconds. The runtime of the SMT-based
approach varies from 0.01 to 1481.708 seconds with the av-
erage runtime being 16.672 seconds. The detailed instance-
by-instance performance comparison of the two competitors
is provided in the scatter plot shown in Figure 2b. We should
note that on average the MaxSAT approach is 5–10 times
faster than its SMT-based rival, which makes it a viable and
scalable alternative to the state of the art. Another observa-
tion we made is that in general the harder the benchmarks

get, the larger the gap becomes between the performance of
the two approaches, e.g. texture dataset has 11 classes and
we observe that the SMT method may take 24 minutes to de-
liver an explanation while MaxSAT terminates in less than 1
minutes in all tested instances. This may be found somewhat
surprising given that the MaxSAT reasoner has to deal with
much larger encoding (in terms of the number of clauses
and variables) and has to make a much larger number of de-
cision oracle calls. Finally, the MaxSAT approach proves to
be more robust in terms of the average performance whilst
the performance of the SMT-based explainer is somewhat
unstable, even when explaining the predictions made by the
same classifier for different instances of the same dataset.
The details on the benchmarks used as well as additional
runtime statistics per benchmark is shown in Appendix A.

5 Conclusions

This paper proposes a novel MaxSAT approach to explain-
ing boosted tree classifications. It avoids directly encoding
the large linear constraints required to enforce this condi-
tion, by mapping them to optimisation questions. This sig-
nificantly improves the state-of-the-art compared to compet-
ing model-precise approaches. In order to achieve these re-
sults, we need to make use of incremental MaxSAT, where
we reuse cores from one question to another, develop a new
approach to stratification in MaxSAT, and extend our ap-
proach to recognise when we can terminate early.

Several lines of future work can be envisioned. First of all,
applicability of the proposed ideas to other ML models ad-
mitting propositional encodings should be investigated. Sec-
ond, the proposed heuristics, which aim at improving core-
guided MaxSAT solving, may turn out to be beneficial in
other settings where (incremental) MaxSAT engines are of
use. Finally, our work exemplifies the need for a generic and
efficient incremental interface for MaxSAT solvers similar
to what has been done and widely used in the area of SAT.
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A Detailed Table of Results

Dataset (#F #C #I) BTs SMT MaxSAT

D %A Enc max min avg Enc max min avg c %w
ann-thyroid (21 3 200) 3 100 ( 213 504) 2.78 0.04 0.13 ( 566 2780) 0.49 0.06 0.11 3 20
appendicitis ( 7 2 106) 3 91 ( 157 428) 0.44 0.02 0.10 ( 475 2348) 0.11 0.03 0.04 7 80
biodegradation (41 2 200) 3 87 ( 352 914) 234.08 0.33 14.70 ( 1331 5990) 5.28 1.02 2.31 29 69
divorce (54 2 150) 3 100 ( 132 186) 0.39 0.04 0.05 ( 107 602) 0.02 0.01 0.01 8 100
ecoli ( 7 5 200) 3 85 ( 445 1499) 8.68 0.16 1.39 ( 2189 11 404) 1.30 0.33 0.84 6 63
glass2 ( 9 2 162) 4 88 ( 217 699) 2.39 0.03 0.35 ( 927 4550) 0.63 0.13 0.22 8 58
ionosphere (34 2 200) 3 93 ( 267 650) 22.65 0.28 2.20 ( 886 3932) 1.04 0.28 0.62 25 82
pendigits (16 10 110) 3 99 (1470 4499) 125.78 6.48 29.45 ( 8037 60 198) 5.57 2.75 3.99 17 100
promoters (58 2 106) 3 100 ( 104 129) 0.08 0.03 0.03 ( 4 304) 0.00 0.00 0.00 1 100
segmentation (19 7 200) 3 95 ( 592 1175) 22.98 0.45 3.55 ( 1420 10 187) 1.62 0.15 0.67 16 100
shuttle ( 9 7 200) 3 100 ( 509 1358) 4.52 0.20 0.58 ( 1498 10 081) 0.47 0.10 0.30 6 77
sonar (60 2 200) 3 86 ( 295 631) 12.50 0.31 2.01 ( 847 3652) 1.03 0.46 0.69 33 96
spambase (57 2 200) 4 96 ( 489 1338) 439.87 1.61 42.78 ( 2015 9652) 41.87 3.03 10.13 41 81
texture (40 11 200) 3 98 (2073 4576) 1481.71 12.77 150.86 ( 8093 82 625) 40.57 9.77 24.68 37 96
threeOf9 ( 9 2 200) 3 100 ( 108 153) 0.02 0.01 0.01 ( 10 392) 0.00 0.00 0.00 1 100
twonorm (20 2 200) 3 97 ( 463 1135) 52.86 0.20 4.27 ( 1750 7844) 1.97 0.96 1.49 20 70
vowel (13 11 200) 4 93 (2292 5771) 464.07 6.53 60.50 (10 183 102 611) 17.62 6.31 11.94 13 97
wdbc (30 2 200) 4 97 ( 269 654) 2.85 0.20 0.66 ( 894 4060) 0.58 0.29 0.42 22 80
wine-recognition (13 3 178) 3 97 ( 241 454) 0.43 0.04 0.11 ( 491 2468) 0.14 0.05 0.09 9 54
wpbc (33 2 194) 4 74 ( 302 784) 33.54 0.34 5.24 ( 1101 5090) 5.15 0.44 1.69 25 85
zoo (16 7 59) 4 83 ( 386 651) 2.07 0.20 0.63 ( 196 2157) 0.08 0.01 0.02 8 100

Table 1: Detailed performance evaluation of computing AXps for BTs. Columns #F, #C and #I report, respectively, the number
of features, number of classes and the number of tested instances, in the dataset. (Note that for each dataset, we randomly pick
200 instances to be tested, and if a dataset has a fewer number of instances, we use all available instances.) Columns D and %A
report, respectively, the maximum tree depth and test accuracy of the trained BT. Sub-columns max, min and avg of column
SMT (resp., MaxSAT) show, respectively, the maximum, minimum and average time in second to find an explanation. Sub-
column Enc reports the SMT (resp. MaxSAT) encoding size: number of variables and number of asserts (clauses for MaxSAT).
Sub-column c reports the average number of entailment oracle calls. The percentage of won instances by the MaxSAT approach
is given as %w.


