
Optimal Decision Trees for Nonlinear Metrics

Emir Demirović,1 Peter J. Stuckey 2

1 Delft University of Technology, The Netherlands
2 Monash University and Data61, Australia

e.demirovic@tudelft.nl, peter.stuckey@monash.edu

Abstract

Nonlinear metrics, such as the F1-score, Matthews correla-
tion coefficient, and Fowlkes–Mallows index, are often used
to evaluate the performance of machine learning models, in
particular, when facing imbalanced datasets that contain more
samples of one class than the other. Recent optimal deci-
sion tree algorithms have shown remarkable progress in pro-
ducing trees that are optimal with respect to linear criteria,
such as accuracy, but unfortunately nonlinear metrics remain
a challenge. To address this gap, we propose a novel algo-
rithm based on bi-objective optimisation, which treats mis-
classifications of each binary class as a separate objective. We
show that, for a large class of metrics, the optimal tree lies on
the Pareto frontier. Consequently, we obtain the optimal tree
by using our method to generate the set of all nondominated
trees. To the best of our knowledge, this is the first method to
compute provably optimal decision trees for nonlinear met-
rics. Our approach leads to a trade-off when compared to op-
timising linear metrics: the resulting trees may be more desir-
able according to the given nonlinear metric at the expense of
higher runtimes. Nevertheless, the experiments illustrate that
runtimes are reasonable for majority of the tested datasets.

Introduction
Decision trees are amongst the most explainable machine
learning models. There has been recent interest in building
trees that, given a dataset, are optimal with respect to some
metric, e.g., trees that minimise misclassifications (Nijssen
and Fromont 2007) or sparse trees that trades off misclassi-
fications for size (Bertsimas and Dunn 2017). In the follow-
ing, we focus on binary classification using decision trees.

Metrics considered in previous works are linear, i.e., the
objective is a linear sum over the misclassifications of each
class. This allows solving the problem by separately opti-
mising the left and right subtree and joining the results. Such
a decomposable structure is key in efficient algorithm design
and is one of the main advantages of dedicated decision tree
approaches over general-purpose optimisation methods.

Nonlinear metrics, such as the F1-score, establish a non-
linear relationship between the misclassifications of each
class. This is preferred over linear metrics in many applica-
tions, especially if the dataset is heavily skewed towards one

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

class. For example, a trivial classifier that classifies all in-
dividuals as healthy may result in high accuracy since most
data points correspond to healthy individuals, but bears no
significance in detecting early signs of an illness. In these
cases, a nonlinear metric may be more appropriate.

The challenge with nonlinear metrics is that foundational
principles of previous works, which were important for
the success of the methods, no longer hold. Dedicated ap-
proaches rely on the independence of the left and right sub-
tree, which is not the case for nonlinear metrics. Integer pro-
gramming cannot be employed as the objective is nonlinear.
Therefore, new techniques are required.

We propose a novel approach to address the problem of
nonlinear metrics by viewing the problem as a bi-objective
problem, where the misclassifications of each binary class
corresponds to one objective. We show that, for most ma-
chine learning metrics, the optimal classifiers lie on the
Pareto frontier, i.e., the set of nondominated trade-offs be-
tween the two objectives. After computing all Pareto opti-
mal trees, the optimal tree may be selected according to the
desired metric. Our bi-objective algorithm is able to take ad-
vantage of the unique structure of decision trees by gener-
alising previous dedicated decision tree approaches to the
bi-optimisation setting, using techniques based on dynamic
programming and search. The bi-objective view allows us
to optimise for a wide range of metrics at the expense of
runtime and provides a trade-off: linear metrics are easier to
optimise but may be less appropriate for a given application,
whereas our approach provides the provably optimal tree for
any desired metric albeit a higher runtime.

The rest of the paper is organised as follows. In the next
section, we discuss preliminary notions and give details on
previous decision tree algorithms. Afterwards, we describe
our approach, which consists of showing that Pareto opti-
mal trees lie on the frontier, generalising decision tree con-
cepts to the bi-objective case, and generalising algorithmic
enhancement that improve the efficiency of the algorithm.
The value of our method is given in a dedicated experimen-
tal section, where we consider 75 publicly available datasets.
We end by discussing related work and give a conclusion.

Preliminaries
An instance is a pair I = (fv, class), where fv ∈ R is a
feature vector and class ∈ N. We consider binary classifi-

cation problems, i.e., class ∈ {0, 1}. We denote the feature
vector and class of an instance I as fv(I) and class(I), re-
spectively. A dataset is a set of instances. Datasets D+ and
D− are the sets of positive and negative instances. A binary
classifier is a mapping f : fv → {0, 1}. Given a dataset D
and a binary classifier f , an instance I ∈ D is a false neg-
ative if the classifier f incorrectly classifies instance I as a
negative class, i.e., f(fv(I)) = 0 and class(I) = 1. False
positives are defined analogously. Learning a classifier cor-
responds to selecting a function f from a family of functions
aiming to maximise a given metric. We consider learning
decision trees (see further).

Decision trees are binary trees, where each node is either
a predicate node, which is assigned a predicate, or a classifi-
cation node (leaf node), which is assigned a class. A classi-
fication tree classifies an instance according to the following
recursive procedure starting with the root node: if the node
is a classification node, return the class assigned to the node,
otherwise recurse on the left or right child node depending
on the result of applying the instance to the node predicate.
A common predicate choice is to evaluate whether a particu-
lar feature of the instances exceeds a threshold. The depth of
a tree is maximum number of predicates from the root node
to any leaf node. We define the size of a tree as the number of
predicate nodes in the tree. Note that a tree with n predicate
nodes has n+ 1 leaf nodes.

In our setting, the set of possible predicates are given up-
front. As a result, instances are represented as binary feature
vectors, where each feature corresponds to the outcome of
a predicate. We say a feature fi or its negation fi is in the
feature vector if the i-th feature is true or false. The set of
features is denoted as F . As predicates operating on binary
features are identify functions, we say that a (binary) feature,
rather than a predicate, is assigned to a predicate/feature
node. For a dataset D, we denote D(f) the set of instances
that contain feature f .

In light of the previous discussion, given a dataset which
contains nonbinary features, the predicates must be deter-
mined through a binarisation process of the dataset. Note
that every decision tree algorithm, implicitly or explicitly,
binarises feature vectors through predicates. In future text,
we assume binary datasets are given.

We consider the following metrics for evaluating decision
trees. Linear metrics: Accuracy is the ratio between correctly
classified instances and the size of the dataset, equivalently
the misclassification score is the number of misclassifica-
tions. Weighted accuracy/misclassifications weighs individ-
ual classes differently, e.g. wp × fp + wn × fn for weight
w. Nonlinear metrics establish a nonlinear relationship be-
tween true positives (tp), true negatives (tn), false positives
(fp), and false negatives (fn): F1-score: tp/(tp + 0.5(fp +
fn)), Matthiews correlation coefficient: (tp × tn − fp ×
fn)/

√
(tp+ fp)(tp+ fn)(tn+ fp)(fn+ fn), Fowlkes-

Mallows index:
√
tp2/((tp+ fp)(tp+ fn)). For datasets

with one dominant class, e.g., detecting illness amongst a
mostly healthy population, nonlinear metrics may be more
appropriate, since even trivial classifiers achieve seemingly
high accuracy but do not carry useful information. To avoid

overfitting, standard practice in machine learning is to par-
tition the given dataset into a training and testing set, and
then construct a tree using the training set, and evaluate the
quality on the testing set.

Bi-objective optimisation aims to simultaneously opti-
mise two (competing) objective functions with respect to a
set of constraints. Solutions are represented as pairs (x, y),
where x and y are the objective values of the two objec-
tives, respectively. Given a bi-objective problem P where
the aim is to minimize both objectives we say that one solu-
tion (a, b) dominates another (a′, b′), written (a, b) / (a′b′),
iff a ≤ a′ ∧ b ≤ b′ ∧ (a, b) 6= (a′, b′). Given a set of pairs of
objective values S define:

nondom(S) = {(a, b) ∈ S | ¬∃(a′, b′) ∈ S, (a′, b′)/(a, b)}.

The Pareto front of a bi-objective problem P with solutions
S is exactly the set nondom(S). Given a set of pairs U
and another set of pairs L we say that L > U if ∀(a, b) ∈
L,∃(a′, b′) ∈ U where (a′, b′) / (a, b).

Dynamic Programming and Search for Trees
We describe previous work on dynamic programming and
search for constructing decision trees with minimal misclas-
sifications in more detail (Aglin, Nijssen, and Schaus 2020;
Nijssen and Fromont 2007; Demirović et al. 2020), as we
generalise these methods.

A crucial property of a decision tree is its decompos-
able structure: the misclassifications of a parent node is ob-
tained as the sum of the misclassifications of its children,
allowing the left and right subtrees to be optimised indepen-
dently. This leads to the dynamic programming formulation
to compute the minimum misclassification score T (D, d) for
a dataset D and a tree of depth d given the set of features F :

T (D, d) =

 min{|D+|, |D−|} d = 0
min{T (D(f), d− 1) d > 0

+ T (D(f), d− 1) : f ∈ F}
(1)

The base case in Eq. 1 defines the misclassification score
for classification nodes. The general case states that comput-
ing the optimal misclassification score amounts to examin-
ing all possible feature splits. For each feature, the optimal
misclassification is computed recursively as the sum of the
optimal misclassifications of its children. See (Demirović
et al. 2020) for a formulation that additionally allows con-
straining the number of nodes, however such a formulation
is not necessary for understanding our main contributions.
We proceed with techniques that speed-up the computation.

Specialised bi-objective algorithm for trees of depth two
(Demirović et al. 2020). Optimal decision trees of depth
two may be constructed based on the pairwise-feature fre-
quency counts, leading to a more efficient method for
depth two trees compared to a direct applications of Eq.
1. The positive/negative frequency count FQ+/− of two
(possibly negated) features is given as the number of pos-
itive/negative instances that contains both features. Given
a tree of depth two, a root node with feature froot, and a
right child node with feature fright, the misclassification

score of the right-most classification node can be computed
as min{FQ+(froot, fright), FQ

−(froot, fright)}. The mis-
classification score of the other classification nodes can be
computed analogously. Iterating through all pairs of fea-
tures allows us to compute the best left and right subtrees
for each feature, and then the optimal tree is selected as the
tree that minimises the misclassification score. The bene-
fit of this approach is that it requires work proportional to
square of the maximum number of features occuring in an
instance, rather than the square of the total number of fea-
ture (see (Demirović et al. 2020) for details).

Caching (Nijssen and Fromont 2007). A subtree may be
considered multiple times when using Eq. 1. For example,
consider the depth three right-most subtree with f1 and f2
as the features of the root and right child nodes. Swapping
f1 and f2 does not change the considered subtree. Following
this observation, each optimal subtree is stored in a cache,
and when a new subtree is considered, computation may be
avoided if the subtree has already been stored in the cache.

Pruning based on lower and upper bounds. For each node
an upper and lower bound is computed. If the lower bound
exceeds the upper bound, the node is pruned since further
processing it cannot lead to an improving tree. Initially triv-
ial bounds are used for nodes and are refined during the
search as follows. Bounds by (Aglin, Nijssen, and Schaus
2020): (A) Given a parent node, its optimal left subtree with
misclassification cost α, and the best incumbent for the par-
ent node found so far is β misclassifications, then an upper
bound of β − α − 1 misclassifications may be imposed on
the right subtree, and (B) if no tree with UB misclassifica-
tions could be found, then UB + 1 is stored in the cache
as the lower bound for the subtree. Bounds by (Demirović
et al. 2020): (C) a lower bound for a node can be computed
by considering every possible split and computing the sum
of the lower bounds of the left and right subtrees and tak-
ing the minimum, and (D) similarity-based lower bounding
computes a bound for a given dataset D2 based on the op-
timal misclassification score α of another dataset D1 using
set difference operations. The intuition is as follows: opti-
mistically assume that instances D2 \ D1 will be perfectly
classified and pessimistically assume that each instance from
D1 \ D2 was misclassfied. Based on this extreme reasoning,
we arrive at a misclassification bound α− |D1 \D2| for D2.

Algorithm for Pareto Optimal Decision Trees

Nonlinear metrics, such as the F1-score, are a challenge for
decision tree algorithms since these types of metrics cannot
be optimised using the dynamic programming formulation
(Eq. 1). Notably, it no longer holds that the parent node can
be solved by independently optimising its child nodes and
summing the results. To address nonlinear metrics, we pro-
pose an approach based on bi-objective optimisation. This
leads to a generic approach that benefits from exploiting the
decision tree structure.

We consider classification metrics of the form f(fp, fn),
where fp and fn are the number of false positives and false
negatives, that satisfy the following montonicity property:

∀fp, fn, fp′, fn′ (2)

fp ≤ fp′ ∧ fn ≤ fn′ =⇒ f(fp, fn) � f(fp′, fn′)
where � is ≥ (maximisation) or ≤ (minimisation). Intu-
itively, monotonicity states that given a classifier, it is always
beneficial to further improves its classification. Most popular
classification metrics satisfy Eq. 2, e.g., accuracy, F1-score,
Matthiews correlation coefficient. We are not aware of prac-
tical metrics that do not satisfy Eq. 2.

The key observation is that Eq. 2 implies the optimal point
for f(fp, fn) is a point on the Pareto front, the set of non-
dominated trade-offs between the number of false positives
and false negatives (proof by contradiction). Therefore, op-
timising f(fp, fn) may be done by computing the Pareto
front and selecting the best tree according to the metric. Note
that while such an approach works for any monotonic met-
ric, linear metrics such as misclassifications are best opti-
mised with a less expensive single-objective approach.

To the best of our knowledge, there is no other approach
that can produce provably optimal trees with respect to non-
linear metrics. (Lin et al. 2020) noted the difficulty of the
F1-score and proposed to linearise the problem by changing
the node classification criteria, however this does not address
the optimisation problem. In remaining text, we describe our
bi-objective tree algorithm for computing the Pareto front.

Bi-Objective Optimisation
We start by lifting definitions from the single- to the bi-
objective case to arrive at the bi-objective dynamic program-
ming formulation to compute the Pareto front, and after-
wards discuss additional algorithmic techniques.
Definition 1. (Bi-Misclassification) The bi-misclassification
of a tree T on a dataset D is a pair (fp, fn), where fp
and fn are the number of false positives and false negatives
misclassified by the tree T on the dataset D.

The decomposable structure of decision trees remains im-
portant in the bi-objective case, but when combining the op-
timal result of the left and right child, a generalised merge
operation needs to be employed:
Definition 2. (Merge) Given a parent node p with feature
f and Pareto fronts of its children PFleft and PFright,
the Pareto front PFp,f = merge(PFleft, PFright) of the
parent node p with feature f is computed as PFp,f =
nondom({(x1 + x2, y1 + y2) : (x1, y1) ∈ PFleft ∧
(x2, x2) ∈ PFright}).

We now state our bi-objective dynamic programming for-
mulation, which provides a high-level view of our algorithm.
Given a datasetD and the depth d of the tree, the Pareto front
can be computed as follows:

T (D, d) =

{(|D+|, 0), (0, |D−|)} d = 0
nondom(

⋃
f∈F merge(d > 0

T (D(f), d− 1), T (D(f), d− 1))])
(3)

Eq. 3 generalises Eq. 1 to the bi-objective case. The base
case, representing a leaf node (d = 0), returns a Pareto front

representing two classification nodes, one for each class.
The general case is similar to the single-objective version
(Eq. 1), but the general merge operation (Def. 2) is per-
formed to aggregate the Pareto fronts of the child nodes, and
the filter operator is used to remove dominated points. Lim-
iting the size of the tree is possible as in the single-objective
case (see (Demirović et al. 2020) for details), but we do not
discuss it for brevity of presentation.

Algorithmic Enhancements
We generalised several algorithmic components to the bi-
objective case to improve the computational efficiency when
implementing Eq. 3, namely the specialised bi-objective
algorithm for trees of depth two, similarity-based lower
bounding, and caching overlapping subproblems. Note that
caching optimal subtrees is the same as in the single-
objective case.

Upper and Lower bounds. Each node is assigned an up-
per bound and lower bound, which are in our bi-objective
setting a set of nondominating pairs of integers rather than
a single value as in the single-objective case. Initially, the
upper and lower bound of the root node is set to the trivial
bounds {(∞,∞)} and {(0, 0)}, respectively, and will be re-
fined during the algorithm. The bounds play a role in defin-
ing infeasibility and pruning.
Definition 3. (Bi-Objective Lower Bound) Given a dataset
D, a set of nondominated pairs of integers is a lower bound
LB if for every decision tree there is at least one element of
the lower bound that dominates or equals it.

Definition 4. (Bi-Objective Upper Bound) Given a dataset
D, a set of nondominated pairs of integers is an upper bound
UB if for every decision tree there is at least one element of
the upper bound it dominates or is equal to.

Definition 5. (Infeasible Node) Given a dataset D and a
node, a lower bound LB, and an upper bound UB, the node
is called infeasible if every element of the upper bound is
dominated by at least one element of the lower bound, i.e.,
LB > UB.

Infeasible nodes are pruned during the search since ex-
panding them cannot produce any tree that belong to the op-
timal Pareto front.

We may now present the generalisation of the techniques
to compute upper and lower bounds (see preliminaries).

(A) Upper bound computation. Given a parent node with
UB as an upper bound on its solutions, and an optimal left
subtree with Pareto front PFleft, an upper bound for the
right subtree may be computed as:

UBright = nondom({(x1 − x2, y1 − y2) :
(x1, y1) ∈ UB ∧ (x2, y2) ∈ PFleft}). (4)

(B) Lower bounds based on infeasibility. After exhaus-
tively exploring a node, if no tree that dominates an ele-
ment of the upper bound UB could be computed, then UB
is stored in a cache as a lower bound for the subtree. Note
that in case at least one solution was computed, the lower
bound is not valid in general according to Def 3.

(C) Combining the lower bounds of child nodes. A lower
bound for the depth d > 0 subtree on the dataset D may be
computed by lookahead as follows:

LBlook(D) =
nondom(

⋃
f∈F

merge(LB(D(f)), LB(D(f))) (5)

where LB is any other lower bounding approach that is ap-
plicable.

(D) Similarity-based lower bounding. We extend the tech-
nique by reasoning on the maximum reduction for each ob-
jective. We may compute a lower bound LB for a dataset D
based on the Pareto front PFi of another dataset Di. Opti-
mistically assume that each D+ \ D+

i was misclassified by
every tree on the Pareto front PFi, i.e., b+ = |D+ \ D+

i | is
the maximum reduction possible for the misclassifications
of the positive class and analogously for b− and the negative
class. The lower bound for D may be computed as applying
the reduction on each element of the Pareto front PFi:

LBsim(D) = {(x− b+, y − b−) : (x, y) ∈ PFi}. (6)
Pareto front data structure and the Merge operator. The

Pareto front is represented as an array sorted by the first ob-
jective. The Merge operator (Def. 2) is implemented by lexi-
cographically sorting the the pairs (a, b), and them removing
dominated pairs in a linear pass: the element (a, b) removes
all pairs until reaching a pair (a′, b′) with b′ < b.

Specialised bi-objective algorithm for trees of depth two.
We modified the specialised algorithm to use the Merge op-
erator (Def. 2) and use two elements of the Pareto front for
classification nodes in the base case as given in Eq. 3. We
denote the specialized algorithm as T2(D, d) and extend it
to also handle depths 0 and 1 which are much easier.

Summary of the algorithm. Pseudo-code for the algorithm
is given in Figure 1, where details on bounding the size of the
tree in terms of numbers of nodes are elided for simplicity.
The call T (D, d, UB) returns a Pareto front of (false posi-
tive, false negative) values possible for decision trees for the
datasetD with depth d that are not dominated by a pair in set
UB. The algorithm caches both solutions, as 〈F, optimal〉,
and lower bounds, as 〈F, lb〉. An empty cache returns 〈∅,⊥〉.

The algorithm calls the specialized method for trees of
depth less than 2, otherwise it looks up the cache entry. If
the resulting frontier F (optimal or lower bound) is infeasi-
ble wrt to the upper bound it returns ∅. If the result is optimal
it returns it. Otherwise it considers each feature f in turn. It
calculates the lower bound for the tree split on this feature,
using the strongest available lower bounds on the left and
right subtrees, if that is incompatible with the upper bound
it moves to the next feature. It then recursively solves the
left child. If this has no solutions it skips to the next fea-
ture. Otherwise it refines the upper bound for the right tree,
and recursively solves the right child. Otherwise it merges
the result and updates the pareto frontier PF and the cur-
rent upper bound UB. When all features are examined if the
result is still incompatible with the upper bound it caches
this as a lower bound, and returns ∅. Otherwise it caches the
result and returns it.

T (D, d, UB)
if (d ≤ 2)
F := T2(D, d)
stat := optimal

else 〈F, stat〉 := cache[D, d]
if (F > UB) return ∅
if (stat = optimal) return F
PF := ∅
for(f ∈ F)
LBleft := LB(D(f)) % (D)
LBright := LB(D(f)) % (D)
LB := merge(LBleft, LBright) % (C)
if (LB > UB) continue
PFleft := T (D(f), d− 1, UB)
if (PFleft = ∅) continue
UBright := nondom({(x1 − x2, y1 − y2) % (A)

| (x1, y1) ∈ UB, (x2, y2) ∈ PFleft}
PFright := T (D(f), d− 1, UBright)
if (PFright = ∅) continue
F := merge(PFleft, PFright)
PF := nondom(PF ∪ F)
UB := nondom(UB ∪ F)

if (PF > UB)
cache[D, d] := 〈PF, lb〉 % (B)
return ∅

cache[D, d] := 〈PF, optimal〉
return PF

Figure 1: Pseudo-code for the bi-objective dynamic program
T . Comments mark where bounds optimizations are applied.

Experiments
The goal of this section is to show a) the individual impor-
tance of the components of our algorithm, and b) that we
can compute provably optimal trees with respect to nonlin-
ear metrics for a large number of datasets. Furthermore, we
show the difference in tree quality when comparing trees ob-
tained using a single-objective approach and our bi-objective
method, demonstrating the trade-off between quality and
runtime offered by our algorithm.

Benchmarks and experimental setting. We considered 75
binary classification datasets used in previous works (Ver-
wer and Zhang 2019; Aglin, Nijssen, and Schaus 2020;
Demirović et al. 2020; Narodytska et al. 2018; Hu, Rudin,
and Seltzer 2019). The experiments were run one at a time
on an Intel i7-3612QM@2.10 GHz with 8 GB RAM.

Public release. The code and benchmarks are available at
bitbucket.org/EmirD/murtree-bi-objective.

Individual Algorithmic Components
We experiment with variations of our approach to under-
stand the impact of each technique. The default configura-
tion of our algorithm uses all techniques as presented in Fig-
ure 1. We compare the default configuration with three varia-
tions, each excluding a single technique: (A) upper bounding
(B) infeasibility-based lower bound, (D) similarity-based
lower bounding. We use trees of depth four and observe the

runtime to compute optimality. In the interest of space, we
provide results for selected datasets (Table 1) and briefly dis-
cuss the rest. All three techniques consistently leads to run-
time improvements. The exception is similarity-based lower
bounding on two datasets, which is a caveat of our current
implementation, i.e., it recomputes the same lower bound
unnecessarily in certain scenarios. We note that the dataset
magic04 has an exceptionally large Pareto front compared,
resulting in large overheads for techniques that manipulate
the Pareto front. The significance of individual techniques
heavily depends on the dataset, but overall the techniques
synergise, since lower and upper bounds closely interact. We
note that, while the techniques provide improvements, their
advantage is not as pronounced as in the single-objective
case. In general, bi-objective problems are more difficult to
solve than their single-objective counterpart and we may ex-
pect weaker pruning mechanisms. Conditions for pruning
are harder to achieve, e.g., every element of the upper bound
must be dominated by the lower bound for upper bound (A)
pruning. The results on the remaining datasets is similar.

Comparison to Single-Objective Optimisation
The aim is to experimentally evaluate the generalisation
properties of optimal F1-score trees, i.e., do optimal F1-
score trees on the training set generalise to the test set? As
there are no other approaches that compute the Pareto front
or optimise nonlinear metrics, we compare with the base-
line algorithm MurTree (Demirović et al. 2020), a single-
objective approach that optimises misclassifications. We
consider F1-score as the nonlinear metric, but other metrics
satisfying monotonicity (Eq. 2) can be used without effect-
ing runtime as computing the Pareto front is the bottleneck.

We perform hyper-parameter tuning considering parame-
ters depth ∈ {1, 2, 3, 4} and size ∈ {1, 2, ..., 2depth − 1}.
Five-fold cross-validation is used to evaluate each combina-
tion of parameters and the parameters that maximises accu-
racy or F1-score on test set across the folds is selected. The
timeout is set to one hour for each benchmark. We consid-
ered 75 datasets and results are shown in Table 2. For brevity,
we removed datasets that were computed within a second,
and those that neither the single- or bi-objective technique
managed to fully tune within the time limit. There are three
main conclusions:

• There is value in computing optimal trees with respect to
a nonlinear metric. Indeed, trees computed by optimising
directly the F1-score have equal or higher scores on the
train and test sets that run within the time limit. The extent
of the benefit depends on the nature of the dataset. Natu-
rally, imbalanced datasets are more likely to benefit from
nonlinear metrics, e.g., fico, seismic bumps, bank conv,
IndiansDiabetes, appendicitis-un, german-credit. A prime
example of an imbalanced dataset is seismic bumps, i.e.,
170 positives instances compared to 2414 negative in-
stances, where the difference in F1 score among the tree
trained with accuracy and the tree train with F1 is signifi-
cant (e.g., 0.02 vs 0.31).

• The difference between tuning on accuracy and f1-score
is exemplified on the depth-three trees compared to depth-

name |D| |F| |D+| |D−| |PF | −(A) −(B) −(D) default
anneal 812 93 625 187 63 20 18 35 15
au-credit 653 125 357 296 54 85 85 90 78
breast-wis 683 120 444 239 8 28 28 38 25
diabetes 768 112 500 268 122 118 109 93 73
de-credit 1000 112 700 300 185 184 180 140 140
heart-c 296 95 160 136 27 26 27 29 24
kr-vs-kp 3196 73 1669 1527 72 17 16 18 13
yeast 1484 89 463 1021 296 232 250 130 156
bank 4521 26 521 4000 364 17 17 10 4
HTRU 2 17898 57 1639 16259 324 54 57 33 37
Iono. 351 143 225 126 7 79 91 110 61
magic04 19020 79 6688 12332 1408 98 100 104 905
spambase 4601 132 1813 2788 321 516 492 360 411

Table 1: Runtime (sec) of variations by disabling a single technique (similarity-based lower bounding, upper bounding, and
infeasibility lower bounds) on selected datasets. The size of the Pareto front is labelled as |PF |. Bold indicates the best result.

four trees. This is inline with expectations, as shallower
trees optimised with accuracy are more likely to be biased
towards the majority class, resulting in lower F1-scores
(depth-zero trees are the extreme example).

• The runtime is higher to compute optimal trees with re-
spect to a nonlinear metric than using accuracy. This is
expected given nonlinear problems are notably harder to
solve than problems with linear objectives.

Note that while the runtime of hyper-parameter tuning
and cross-validating may be high, classifying new samples
can be done quickly. Depending on the application, the high
training times may not be a considerable drawback. This
represents a trade-off that must be evaluated for a given ap-
plication. Our results show that for cases where a nonlinear
metric is desirable, provided there is enough time, it is ben-
eficial to optimise the metric directly using our approach.

Related Work
Decision trees are traditionally constructed using heuristic
algorithms, e.g., CART algorithm (Breiman et al. 1984).
While scalable, the resulting tree may not be the most ac-
curate tree. Optimal decision tree algorithms, which are the
focus of this work, combat this issue by exhaustively explor-
ing the space of decision trees, at the expense of runtime.

One research line for optimal decision tree uses generic
optimisation approaches. The main idea is that a decision
tree, together with the data, can be stated in terms of binary
variables and constraints as a mathematical program, such
that each feasible solution to the mathematical formulation
can be translated to a decision tree. The objective function
captures the desired metrics, e.g., accuracy.

Recently, Bertsimas and Dunn (2017) and Verwer and
Zhang (2017) proposed novel mixed-integer programming
formulations. The methods encode the optimal decision tree
by fixing the tree depth in advance, creating variables to rep-
resent the predicates for each node, and adding constraints to

enforce the decision tree structure. These approaches were
later improved by BinOPT (Verwer and Zhang 2019), a
binary linear programming formulation, that took advan-
tage of implicitly binarising data to reduce the number of
variables and constraints required to encode the problem.
Aghaei, Azizi, and Vayanos (2019) encoded fairness met-
rics within a mixed-integer programming formulation for
optimal decision trees in socially sensitive contexts, which
aims to deliver fair and accurate decision trees. Note that
while integer programming has been used to optimise accu-
racy, it is not straight-forward to modify integer program-
ming methods to include nonlinear metrics since the objec-
tive function is nonlinear.

Narodytska et al. (2018) used an encoding of decision
trees into propositional logic (SAT) to construct the small-
est tree in terms of the total number of nodes that perfectly
describes the given dataset, i.e., leads to zero misclassifica-
tions on the training data. An initial perfect decision tree is
constructed using a heuristic method, after which a series
of SAT-solver calls are made, each time posing the problem
of computing a perfect tree with one less node. The SAT
approach of (Avellaneda 2020) simplifies the encoding by
fixing the depth of the tree and employing an incremental
approach to gradually added instances to the formulation.

Verhaeghe et al. (2019) approached the optimal classi-
fication tree problem by minimising the misclassifications
using constraint programming. The approach captured the
decomposable structure of decision trees within an AND-
OR search framework, i.e., once a feature for a parent node
has been selected, the child nodes can be optimised indepen-
dently. Upper bounding on the number of misclassifications
was used to prune parts of the search space and their algo-
rithm incorporated an itemset mining technique to speed-up
the computation of instances per node and used a caching
technique similar to DL8 (see below).

Another stream of research develops tailored algorithms
for decision trees. Nijssen and Fromont (2007) introduced a

DEPTH = 3 DEPTH = 4
Accuracy-Tuned F1-Score-Tuned Accuracy-Tuned F1-Score-Tuned

name |D| |D+| |D−| |F| train test time train test time train test time train test time
compas-binary 6907 3196 3711 12 0.63 0.64 < 1s 0.67 0.68 23 0.67 0.67 3 — — > 1h
fico-binary 10459 5000 5459 17 0.69 0.69 1 0.71 0.72 69 0.72 0.72 11 — — > 1h
banknote 1372 610 762 16 0.91 0.92 < 1s 0.91 0.92 1 0.94 0.94 9 0.93 0.94 10
bank 4521 521 4000 26 0.50 0.52 < 1s 0.55 0.56 10 0.50 0.52 1 0.55 0.56 2262
biodeg 1055 356 699 81 0.76 0.77 < 1s 0.76 0.78 23 0.88 0.87 40 — — > 1h
HTRU 2 17898 1639 16259 57 0.87 0.87 3 0.87 0.87 69 0.98 0.98 143 — — > 1h
IndiansDiabetes 768 268 500 11 0.65 0.70 < 1s 0.68 0.73 1 0.65 0.70 1 0.68 0.73 55
Ionosphere 351 225 126 143 0.93 0.92 1 0.93 0.92 17 0.92 0.93 60 0.92 0.93 1247
magic04 19020 6688 12332 79 0.68 0.69 5 0.68 0.69 198 0.82 0.82 287 — — > 1h
messidor 1151 611 540 24 0.67 0.70 < 1s 0.70 0.71 7 0.69 0.71 2 0.72 0.72 1714
monk2 169 64 105 15 0.56 0.56 < 1s 0.67 0.68 1 0.56 0.56 1 0.78 0.69 20
monk3 122 60 62 15 0.93 0.94 < 1s 0.93 0.94 1 0.93 0.96 1 0.93 0.96 3
seismic bumps 2584 170 2414 10 0.02 0.04 < 1s 0.32 0.36 2 0.02 0.04 1 0.31 0.36 63
spambase 4601 1813 2788 132 0.86 0.87 4 0.86 0.87 110 0.91 0.91 314 — — > 1h
tic-tac-toe 958 626 332 18 0.62 0.64 < 1s 0.68 0.67 1 0.77 0.75 1 0.77 0.77 75
appendicitis-un 106 21 85 530 0.46 0.31 4 0.53 0.42 202 0.86 0.84 190 — — > 1h
cancer-un 683 239 444 89 0.95 0.94 < 1s 0.95 0.94 5 0.95 0.94 11 0.95 0.94 313
car-un 1728 518 1210 21 0.83 0.83 < 1s 0.83 0.84 1 0.85 0.86 2 0.86 0.87 58
cleve-un 303 138 165 395 0.82 0.82 3 0.83 0.83 236 0.86 0.83 221 — — > 1h
colic-un 368 232 136 415 0.80 0.82 7 0.80 0.82 304 0.86 0.85 670 — — > 1h
corral-un 160 70 90 6 0.94 0.92 < 1s 0.94 0.92 1 1.00 1.00 1 1.00 1.00 0.10
haberman-un 306 225 81 92 0.29 0.25 < 1s 0.49 0.54 8 0.29 0.25 7 0.49 0.55 1030
heart-statlog-un 270 120 150 381 0.81 0.83 3 0.84 0.84 202 0.87 0.86 183 — — > 1h
hepatitis-un 155 32 123 361 0.45 0.50 4 0.55 0.63 120 0.85 0.84 236 — — > 1h
house-votes-84-un 435 267 168 16 0.94 0.95 < 1s 0.94 0.95 1 0.94 0.95 1 0.94 0.95 6
hungarian-un 294 106 188 330 0.77 0.80 4 0.78 0.81 134 0.82 0.81 210 — — > 1h
mouse-un 70 29 41 45 0.96 0.90 < 1s 0.96 0.90 1 0.96 0.90 1 0.96 0.90 4
promoters-un 106 53 53 334 0.97 0.86 6 0.87 0.87 125 0.96 0.83 467 — — > 1h
spect-un 267 212 55 22 0.42 0.50 < 1s 0.59 0.66 1 0.42 0.48 1 0.58 0.66 37
anneal 812 625 187 93 0.64 0.66 < 1s 0.66 0.70 11 0.73 0.72 12 0.73 0.75 1397
audiology 216 57 159 148 0.91 0.93 < 1s 0.92 0.93 6 0.91 0.93 12 0.95 0.93 429
australian-credit 653 357 296 125 0.86 0.88 < 1s 0.87 0.88 29 0.86 0.88 50 0.87 0.88 3418
breast-wisconsin 683 444 239 120 0.96 0.96 < 1s 0.96 0.96 9 0.96 0.97 22 0.96 0.97 584
diabetes 768 500 268 112 0.68 0.71 < 1s 0.70 0.72 44 0.77 0.77 53 — — > 1h
german-credit 1000 700 300 112 0.54 0.57 < 1s 0.60 0.64 71 0.75 0.73 60 — — > 1h
heart-cleveland 296 160 136 95 0.82 0.82 < 1s 0.82 0.82 12 0.82 0.82 16 0.82 0.82 911
hepatitis 137 111 26 68 0.59 0.61 < 1s 0.55 0.67 2 0.59 0.61 3 0.55 0.67 100
hypothyroid 3247 2970 277 88 0.89 0.90 2 0.89 0.90 12 0.90 0.91 48 0.90 0.91 1070
kr-vs-kp 3196 1669 1527 73 0.93 0.93 2 0.93 0.93 8 0.95 0.95 38 0.95 0.95 849
lymph 148 81 67 68 0.90 0.86 < 1s 0.90 0.86 2 0.95 0.86 3 0.95 0.87 115
mushroom 8124 4208 3916 119 1.00 1.00 4 1.00 1.00 9 1.00 1.00 121 1.00 1.00 416
pendigits 7494 780 6714 216 0.96 0.97 47 0.97 0.97 134 1.0 1.0 2718 — — > 1h
primary-tumor 336 82 254 31 0.65 0.66 < 1s 0.64 0.68 2 0.65 0.66 1 0.64 0.68 100
segment 2310 330 1980 235 0.99 1.00 8 0.99 1.00 30 0.99 1.00 154 0.99 1.00 1832
soybean 630 92 538 50 0.81 0.88 < 1s 0.82 0.88 2 0.82 0.91 4 0.86 0.92 87
tic-tac-toe 958 626 332 27 0.61 0.63 < 1s 0.68 0.67 3 0.78 0.78 4 0.78 0.78 242
vehicle 846 218 628 252 0.93 0.94 8 0.93 0.94 70 0.97 0.97 600 — — > 1h
vote 435 267 168 48 0.94 0.96 < 1s 0.94 0.96 1 0.94 0.96 5 0.94 0.96 59
yeast 1484 463 1021 89 0.45 0.49 1 0.60 0.63 66 0.74 0.73 60 — — > 1h

Table 2: The F1-score is displayed for depth three and four trees with optimal accuracy and optimal F1-score and the time to
hyper-parameter tune with five-fold cross validation. Trees optimised with F1-score lead to better out-of-sample scores albeit at
higher runtime. Time limit is set to one hour. Timeouts denoted as −. For each dataset, we show the number of instances (|D|)
and number of binary features (F). Bold indicates the best result.

framework named DL8 for optimal decision trees that could
support a wide range of constraints. Their algorithm took
advantage that the left and right subtree of a given node can
be optimised independently, introduced a caching technique
to save subtrees computed during the algorithm in order to
reuse them at a later stage, and combined these with ideas
from the pattern mining literature to compute optimal deci-
sion trees. DL8 (Nijssen and Fromont 2007) laid important
algorithmic foundations for optimal decision trees.

Hu, Rudin, and Seltzer (2019) presented an algorithm that
computes the optimal decision tree by considering a balance
between misclassifications and number of nodes. They ap-
ply exhaustive search, caching, and lower bounding of the
misclassifications based on the cost of adding a new node
to the decision tree. Compared to other recent optimal de-
cision tree algorithms, the method relies on the number of
nodes playing an important role in the metric of optimality
and a limited number of binary features, e.g., the authors ex-
perimented with datasets with up to twelve binary features.
(Lin et al. 2020) improved the algorithm and added support
for additional metrics, however the F1-score was not directly
optimised but rather linearised.

Aglin, Nijssen, and Schaus (2020) developed DL8.5 by
combining and refining the ideas from DL8 and the con-
straint programming approach. The approach computes the
most accurate decision tree with respect to a constraint on
the depth of the tree and has been made available as a Python
library (?). The main addition was an upper bound pruning
technique, which limited the upper misclassification value
of a child node once the optimal subtree was computed for
its sibling, and a lowering bound technique, where the algo-
rithm stored information not only about computed optimal
subtrees but also pruned subtrees to provide a lower bound
on the misclassifications of a subtree. (Demirović et al.
2020) advanced the DL8.5 algorithm by adding support to
limit the number of nodes in the tree, an efficient procedure
to compute tree of depth two, and a novel similarity-based
lower bounding approach. Recall that these approaches have
been presented in the preliminary section.

The main lesson learned in previous works is that exploit-
ing properties specific to decision trees leads to substantial
gains in performance, regardless of whether it was applied
in a dedicated or generic optimisation approach.

For completeness, we note that there are other works that
follow a different but related research line, which use neural
networks to learn decision trees/forests (??), consider more
general tree structures (?), or end-to-end learning using de-
cision trees (??). Given that our aim diverges from these
works, we do not further discuss them.

Conclusion
Nonlinear metrics are generally agreed as better methods for
evaluating the performance machine learning models on im-
balanaced datasets. We provide the first approach to generate
decision trees which are optimal under a monotonic nonlin-
ear metric. We show that existing linear metric approaches
do not yield optimal decision trees under nonlinear metrics.
The approach can readily be extended to generating sparse
trees that tradeoff (linear) size versus the non-linear metric

by generating Pareto frontiers for each size and choosing the
best, though exploration of more efficient approaches seems
worthwhile, in particular, stronger bounding techniques.

References
Aghaei, S.; Azizi, M. J.; and Vayanos, P. 2019. Learning op-
timal and fair decision trees for non-discriminative decision-
making. In Proceedings of AAAI-19, volume 33, 1418–1426.
Aglin, G.; Nijssen, S.; and Schaus, P. 2020. Learning
Optimal Decision Trees Using Caching Branch-and-Bound
Search. In Proceedings of AAAA-20.
Avellaneda, F. 2020. Efficient Inference of Optimal Decision
Trees. In Proceedings of AAAI-20.
Bertsimas, D.; and Dunn, J. 2017. Optimal classification
trees. Machine Learning 106(7): 1039–1082.
Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C.
1984. Classification and regression trees. Cole Statis-
tics/Probability Series .
Demirović, E.; Lukina, A.; Hebrard, E.; Chan, J.; Bailey, J.;
Leckie, C.; Ramamohanarao, K.; and Stuckey, P. J. 2020.
MurTree: Optimal Classification Trees via Dynamic Pro-
gramming and Search. arXiv preprint arXiv:2007.12652 .
Hu, X.; Rudin, C.; and Seltzer, M. 2019. Optimal sparse de-
cision trees. In Advances in Neural Information Processing
Systems, 7265–7273.
Lin, J.; Zhong, C.; Hu, D.; Rudin, C.; and Seltzer, M. 2020.
Generalized and Scalable Optimal Sparse Decision Trees .
Narodytska, N.; Ignatiev, A.; Pereira, F.; and Marques-Silva,
J. 2018. Learning Optimal Decision Trees with SAT. In
Proceedings of IJCAI-18, 1362–1368.
Nijssen, S.; and Fromont, E. 2007. Mining optimal decision
trees from itemset lattices. In Proceedings of SIGKDD-07,
530–539.
Verhaeghe, H.; Nijssen, S.; Pesant, G.; Quimper, C.-G.; and
Schaus, P. 2019. Learning optimal decision trees using con-
straint programming. In Proceedings of CP-19.
Verwer, S.; and Zhang, Y. 2017. Learning decision trees
with flexible constraints and objectives using integer opti-
mization. In Proceedings of CPAIOR-17, 94–103. Springer.
Verwer, S.; and Zhang, Y. 2019. Learning optimal classifi-
cation trees using a binary linear program formulation. In
Proceedings of AAAI-19, volume 33, 1625–1632.

