SuperStack: Superoptimization of Stack-Bytecode via Greedy,
Constraint-Based, and SAT Techniques

ELVIRA ALBERT, Complutense University of Madrid, Spain

MARIA GARCIA DE LA BANDA, Monash University, Australia

ALEJANDRO HER NANDEZ-CEREZO, Complutense University of Madrid, Spain
ALEXEY IGNATIEV, Monash University, Australia

ALBERT RUBIO, Complutense University of Madrid, Spain

PETER J. STUCKEY, Monash University, Australia

Given a loop-free sequence of instructions, superoptimization techniques use a constraint solver to search
for an equivalent sequence that is optimal for a desired objective. The complexity of the search grows
exponentially with the length of the solution being constructed and the problem becomes intractable for large
sequences of instructions. This paper presents a new approach to superoptimizing stack-bytecode via three
novel components: (1) a greedy algorithm to refine the bound on the length of the optimal solution; (2) a
new representation of the optimization problem as a set of weighted soft clauses in MaxSAT; (3) a series of
domain-specific dominance and redundant constraints to reduce the search space for optimal solutions. We
have developed a tool, named SUPERSTACK, which can be used to find optimal code translations of modern
stack-based bytecode, namely WebAssembly or Ethereum bytecode. Experimental evaluation on more than
500,000 sequences shows the proposed greedy, constraint-based and SAT combination is able to greatly increase
optimization gains achieved by existing superoptimizers and reduce to at least a fourth the optimization time.

CCS Concepts: » Software and its engineering — Automatic programming; Compilers.
Additional Key Words and Phrases: Superoptimization, Program Synthesis, SAT, EVM, WebAssembly

ACM Reference Format:

Elvira Albert, Maria Garcia de la Banda, Alejandro Hernandez-Cerezo, Alexey Ignatiev, Albert Rubio, and Peter
J. Stuckey. 2024. SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT
Techniques. Proc. ACM Program. Lang. 8, PLDI, Article 205 (June 2024), 26 pages. https://doi.org/10.1145/3656435

1 INTRODUCTION

Program optimization is one of the pillars of software system development and a key component of
green software. Superoptimization [42] is a powerful but expensive form of program optimization
that can achieve results unattainable by pre-cooked transformations (such as peephole optimizations
[43]). It was originally defined as a compilation technique that searches for an optimal sequence
of instructions semantically equivalent to a given loop-free sequence. It can hence be classified
as a synthesis technique, where the original sequence acts as a specification of the semantics for
the optimal code and the search is automated often using a constraint solver (e.g., an SMT [10]

Authors’ addresses: Elvira Albert, Complutense University of Madrid, Madrid, Spain, elvira@sip.ucm.es; Maria Garcia de
la Banda, Monash University, Melbourne, Australia, maria.garciadelabanda@monash.edu; Alejandro Hernandez-Cerezo,
Complutense University of Madrid, Madrid, Spain, aleher06@ucm.es; Alexey Ignatiev, Monash University, Melbourne,
Australia, alexey.ignatiev@monash.edu; Albert Rubio, Complutense University of Madrid, Madrid, Spain, alberu04@ucm.es;
Peter J. Stuckey, Monash University, Melbourne, Australia, peter.stuckey@monash.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART205

https://doi.org/10.1145/3656435

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0003-0048-0705
HTTPS://ORCID.ORG/0000-0002-6666-514X
HTTPS://ORCID.ORG/0000-0003-2109-8863
HTTPS://ORCID.ORG/0000-0002-4535-2902
HTTPS://ORCID.ORG/0000-0002-0501-9830
HTTPS://ORCID.ORG/0000-0003-2186-0459
https://doi.org/10.1145/3656435
https://orcid.org/0000-0003-0048-0705
https://orcid.org/0000-0002-6666-514X
https://orcid.org/0000-0002-6666-514X
https://orcid.org/0000-0003-2109-8863
https://orcid.org/0000-0002-4535-2902
https://orcid.org/0000-0002-0501-9830
https://orcid.org/0000-0003-2186-0459
https://doi.org/10.1145/3656435

205:2 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

or SAT [41] engine). Recent advances in constraint solving have fostered the development of
successful superoptimization tools and their application to real programs using state-of-the-art
SMT solvers, as it is the case for the superoptimizers developed for LLVM [32, 44, 55], Ethereum
VM (EVM) [3, 46], and WebAssembly (Wasm) [15]. While the original and most common objective
function so far has been program length reduction, EVM superoptimizers use other criteria relevant
in the blockchain context, namely gas and size-in-bytes reduction [66].

Superoptimizers yield code that is always correct (i.e., semantically equivalent to the original) and
not just effective (i.e., its performance wrt. the objective function is improved if possible) but optimal.
However, they are not widely adopted in practice, because their search for optimality can make
them so inefficient as to become impractical. In particular, the complexity of the optimality search
grows exponentially with the length of the solution being constructed, and becomes intractable for
large sequences of instructions. State-of-the-art approaches use the length of the original sequence
as a bound on the length of the solution, and rely on SMT solvers to carry out the search.

Contributions: The challenge we face is to devise a scalable approach to the superoptimization
of stack-bytecode that is correct, effective and efficient. More precisely, the problem we tackle can
be described as follows: given a sequence b of operation codes (or opcodes) that produces output state
S, the superoptimizer searches for a sequence o that also produces S and is optimal regarding stack and
register manipulation opcodes. The next three insights have led to the development of three novel
components to solve this problem. To the best of our knowledge, these components have not been
used in superoptimization before and constitute our main contributions:

(1) Insight: tight bounds on the maximal length of the solution can critically improve the search.
Contribution: we propose a greedy algorithm which, given output state S, generates a sequence
of opcodes o’ whose length is often smaller than that of the original sequence b. If smaller, it
is used to bound the length of the optimal code o, and as the initial solution (to be improved
upon). This is particularly relevant when optimizing large code blocks.

(2) Insight: domain-specific constraints can help solvers speed up the search significantly. Con-
tribution: we present new powerful constraints specific to the stack-bytecode domain that
allow solvers to eliminate areas of the search that (almost) always lead to failure (referred
to as redundant constraints), or to remove solutions whose objective value is known to be
dominated - i.e., equal or worse — than those not eliminated (dominance constraints).

(3) Insight: the target synthesis problem can be reduced to MaxSAT. Contribution: we propose an
efficient propositional encoding for the specification, the dominance and redundant constraints
above, and any of the objective functions used. In addition to the ability to directly handle the
objective functions by reducing the problem to Weighted Partial Maximum Satisfiability [7],
we also propose a bespoke method to effectively cope with program length minimization via a
series of pure SAT oracle calls.

Impact: As stack-based bytecode is used by modern compilers (e.g., WebAssembly [65], Ethereum
bytecode [66], and JVM [36] rely on stack machines), our proposal has wide applicability. To assess
its efficiency and impact in a real setting we have developed a new tool, named SUPERSTACK, that
can be used for both EVM and Wasm superoptimization. For Wasm code, reducing its length has a
significant impact on the time to respond to requests. Our experiments show SUPERSTACK achieves
9% code length reduction over existing Wasm superoptimization [15]. For Ethereum bytecode, we
consider not only code size reduction but also gas consumption, which measures the computational
and storage cost of executing the EVM instructions. Reducing gas consumption has a direct impact
on the transaction costs and allows processing more transactions in the overall Ethereum ecosystem.
We experimentally compared SUPERSTACK with GASOL [4], an existing MaxSMT-based tool for
superoptimizing EVM bytecode [66]. The experiments use more than 1,000 deployed smart contracts

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:3

Table 1. A General Stack Bytecode Language with Registers and Heap

POP removes the topmost element;

(1) | swAPx | swaps the topmost element with the one in position x+1;

DUPx | duplicates the element in position x and adds it as the new topmost element;

SETx | stores the topmost element in register with index x and removes it from the stack;

(2) | TEEx | stores the topmost element in register with index x without modifying the stack;

GETx | adds the value stored in register with index x as the new topmost;

modifies the memory location given by the topmost element with the value

STORE .
3) given by the next stack element, and removes both elements from the stack;
LoAD copies the value at the memory location given by the topmost element onto
the old topmost element;
@ | ur any other instruction in the language (e.g., arithmetic, bit-wise, etc) will be

considered as an uninterpreted opcode

(including the 100 contracts with more transactions received so far). Our results show our approach
multiplies the optimization gains by at least two (depending on the objective function), while
reducing optimization time to at least a fourth.

Organization: The rest of the paper is organized as follows. Section 2 describes the stack-
bytecode language we use to formalize our approach and outlines a general algorithm for superopti-
mization of stack-bytecode. Section 3 introduces our greedy algorithm which returns a sequence of
opcodes that is shorter than the original one while producing the same (symbolic) state. Section 4
describes our SAT-encoding for searching for an optimal solution and introduces new dominance
and redundant constraints for stack-bytecode optimization that can improve solver performance.
Section 5 reports the results of our thorough experimental evaluation which prove the practical
impact of our approach. Lastly, Section 6 overviews related work and concludes.

2 SUPEROPTIMIZATION OF STACK BYTECODE

This section introduces the bytecode language considered in this paper, as well as an algorithmic
description of the superoptimization technique for such language. The algorithm is then used to
give an overview of the basic components used by the state-of-the-art superoptimization tools.

2.1 The General Stack Bytecode Language

We consider a general stack bytecode language that stores data in three different regions: the
stack, for which we assume a standard stack-based architecture with words of fixed size and an
associated stack-based bytecode language with the opcodes shown at row (1) of Table 1; the registers,
which are virtual and used to store temporary values accessed using the opcodes shown at row
(2) (opcode TEEx is unique to Wasm; we include it as part of the language due to its pivotal role in
optimization); and the memory, for which we assume a standard volatile heap accessed using the
opcodes at row (3). Any other opcode in the language whose actual semantics is not encoded for
superoptimization falls into the UF (Uninterpreted Function) category, and we are only interested
in the arity of its opcode (denoted ar(UF)), its commutative/noncommutative behavior and its cost.
In addition, opcodes that may have side-effects must be taken into account when producing the
sequences to which superoptimization will be applied. In particular, to ensure we maintain the
same semantics, we superoptimize separately the sequence up to the instruction with side-effects
and the sequence from that instruction to the end.

This general stack bytecode language allows us to represent languages such as EVM, which hold
all intermediate values in the operand stack, and manage it directly by swapping and duplicating its

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

205:4 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

elements through specific opcodes. Their instruction set encompasses rows (1), (3) and (4). It also
allows us to represent languages such as Wasm, which declare virtual registers to store intermediate
values that can be accessed afterwards, and use them to perform swaps and duplication of stack
elements. Their instruction set encompasses (2), (3), (4) and POP from (1). Other stack bytecode
languages represented lie in-between, e.g., JVM combines stack manipulation opcodes and registers.

2.2 An Overview of the Superoptimization Algorithm

Algorithm 1 shows the superoptimization algorithm implemented in SUPERSTACK. The instructions
displayed in black instantiate it into existing algorithms implemented in state-of-the-art super-
optimization tools. Our new components are displayed in gray. This section focuses on the black
components, leaving the new gray ones for Secs. 3 and 4. The algorithm receives as input (line 2) the
bytecode program b to be superoptimized, an objective function f to be minimized and optionally a
timeout time to end up the search. We assume the cost f(b’) of any bytecode program b’ is defined
as the sum of the cost f(i) of each instruction i in b’, and that the cost of any instruction is known
statically. As mentioned before, the original f used in superoptimization computes the bytecode
program’s length [9, 32, 55] measured by its number of operations. However, other objectives
have been introduced by new programming environments. In particular, ebso [46], SYRUP [4] and
GASOL [2] minimize the program’s gas, while GASOL can also minimize its size-in-bytes. The former
aims to measure the price to pay for executing its instructions, thus assigning larger gas cost to
instructions that require more computation or storage. The latter differs from program length only
in the size of the opcode PUSH(v) which varies according to the size in bytes of the pushed value v
(the PUSH opcode is handled as an uninterpreted opcode UF within our framework and is hence not
included in row (1) of Table 1). A precise definition of both criteria appears in [66]. Our SAT-based
approach in Sec. 4 and the experimental evaluation in Sec. 5 use these three objective functions.
One can also express other objective functions based on metrics like data locality or number of
clock cycles in an instruction pipeline. In the first case, we will need to reduce the distance between

1: procedure SUPERSTACK(b,f,[time,]c)
2. Input: bytecode program b, objective function f, optional timeout time, dominance/redundant
constraints c
Output: optimized bytecode o
Ensures: if time not used then f(o) = min{f(o’) | o’ = b} else f(o) < f(b)
seqs «— sequences(b)
result «[]
for (seq,ini,ry) € seqs do
(fin,nmax gmax pmaxy ¢ symbolic(seq,ini,rf)
(g™ ;seqGrd) « GrREEDY(ini,fin)
10: (isOptimal,seqSAT) «— SEARCHSAT (c.f,ini,fin,s™%,r™ min(gm* n™®) seqGrd[,time])
11: result « result.append((min(f,seq,seqGrd,seqSAT),isOptimal))

R B AR L

12: return o « rebuild(result)

Algorithm 1. A novel greedy and SAT-based superoptimization algorithm. Initially, jump-free sequences are
identified in the sequences procedure. For each sequence seq, ini represents the initial symbolic state, and rg
the number of registers that live-out. This information is used for the symbolic execution of seq, resulting in
the symbolic state fin, which is employed in both GreEDY and SEARCHSAT. GREEDY generates an equivalent
sequence seqGrd to refine the bounds, while SEARCHSAT produces the equivalent sequence seqSAT and the
variable isOptimal to indicate the optimality status. s™%*, r™@* n™% and g** denote parameters utilized in
SEARCHSAT: the maximum stack depth allowed, the maximum number of registers, and an upper bound on
the number of opcodes determined by the initial sequence and Greedy, resp.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:5

memory instructions that work on close positions. This can be expressed using constant weights
on the decisions since we consider a bounded known number of instructions and hence the cost of
having two instructions at distance d can be expressed with a constant value that depends on d
(for all possible distances in the given number of instructions). For the instruction pipeline, the
approach would be, roughly, to assign to each instruction the clock cycle it starts and additionally
encode all restrictions on which operations can be handled in parallel in a given cycle. Then, we
just need to minimize the needed number of cycles instead of the number of operations.

The algorithm returns as output (line 3) an optimized bytecode o. If a given timeout (optional
parameter time in line 10) is not reached by the solver, o is ensured to be optimal (line 4), i.e., it has
minimal cost wrt. f and is semantically equivalent (denoted =) to b. The remainder of this section is
devoted to describe the procedures sequences and symbolic invoked in lines 5 and 8, resp. Procedure
SEARCH in line 10 is assumed to use constraint-solving techniques to perform a complete search
for an optimal solution within the bounds given. Thus, optimality is always up to the considered
bounds (see Sec. 4). As constraint solvers are often able to produce solutions while searching for an
optimal one, SEARCH also yields a boolean isOptimal to indicate whether the solution found (if any)
is known to be optimal. This is used in line 11 to ensure the result returned is the best (according
to objective function f) between the original sequence and those found by the GREEDY and SEARCH
procedures (if any). Note that if the timeout is reached, we can only ensure the sequence o returned
by the superoptimizer is equal or better than the original b (else condition in line 4), rather than
optimal. The final step uses rebuild (line 12), a standard procedure to reconstruct executable code
from optimized sequences (e.g., jump addresses might need to be recomputed).

2.3 Generation of Jump-free Sequences

As superoptimization is applied to loop-free sequences, the first step for all superoptimizers is to
build a control flow graph (CFG) from the bytecode program that allows detection of its loops
and branching. A common approach is to generate one sequence per block of the CFG; hence, the
sequence is not only loop-free but also jump-free. This is done, for example, by the superoptimizers
ebso [46], SYRUP [4], and Souper [55]. In this first step one can also statically compute, for each
block, the number k of elements needed in the operand stack before the block, and the number r of
registers that are relevant before or after the block, i.e., those registers whose first access in the
block or in a trace after the block, respectively, is a read. The k is used to create an initial stack
with k variables istack=[sy, ..., Sg—1]. Stacks are represented from top to bottom, with istack[0]
representing the topmost element sy. The r is used to renumber the registers from 0 tor — 1 (a
mapping to the original numbers is kept to reconstruct the code) with the rf registers that live-out,
i.e., they are relevant after the block, taking the initial (i.e., 0 to re— 1) numbers. It is also used to
create a list with r variables iregs=[s, ..., Sk+r—1] for the registers. Regarding memory, we use “[]”
to denote that no information is known about the memory contents when starting the analysis of
the sequence. The initial state is made up of the initial stack, registers and an unknown memory.

Definition 2.1 (sequences). Given bytecode program b, procedure sequences(b) returns a set of tu-
ples (seq, ini, rf) with all the jump-free sequences of b, where seqis the sequence, ini=(istack,iregs,
[1) contains the initial state, and r¢ is the number of relevant registers after the sequence.

The longer the sequence, the more potential for optimization but the longer the search in general.
This is why some approaches, e.g., unbounded optimization [32], generate the longest possible
loop-free sequences while others, e.g., GASOL [2], even split the jump-free sequences when their
number of instructions is larger than a given threshold to avoid search timeouts. Our framework
admits any such implementation of the sequences procedure. Our current implementation works
with jump-free sequences and allows splitting them into smaller subsequences if requested. Working

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

205:6 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

(stack, regs,mem) —pp.pop (stack[1 : n], regs, mem)

(stack, regs,mem) —po.swapx (stack’, regs, mem), stack’[0] = stack([x], stack’[x] = stack[0],
stack’[i] = stack[i] Vi > 0,i # x

(stack, regs,mem) —popupx ([stack[x —1] | stack], regs, mem)

(stack, regs,mem) —,.5ETx (stack[1 : n], regs[x > stack[0]], mem)

(stack, regs,mem) — . TEEX (stack, regs[x — stack[0]], mem)

(stack, regs,mem) —pp.GETx ([regs[x] | stack], regs, mem)

(stack, regs,mem) —p,sToRe (stack[2 : n], regs, mem ++ [STORE,, (stack[0], stack[1])]))

(stack, regs,mem) —pp10ap ([LOADpp(stack[0]) | stack[1 : n]], regs, mem ++ [LOAD, (stack[0])]))

(stack, regs,mem) —pp.uF ([UF (stack[0], ..., stack[§ — 1]) | stack[§ : n]], regs, mem), § = ar(UF)

Fig. 1. Symbolic Execution of Opcodes

Table 2. EVM (1) and Wasm (2) sequences, greedy (seqGrd,) and SAT (seqSAT..) optimized and their lengths

seq PUSH(64) LOAD PUSH(7) DUP3 STORE PUSH(@) PUSH(128) LOAD SWAP4 POP SWAP4 SWAP1 DUP3 STORE SWAP1 POP | 16
seqGrd; || PUSH(@) SWAP3 SWAP1 PUSH(64) LOAD PUSH(7) DUP3 STORE PUSH(128) LOAD SWAP4 POP SWAP1 STORE 14
seqSAT; || DUP1 PUSH(7) PUSH(64) LOAD SWAP3 STORE PUSH(128) LOAD SWAP3 POP STORE PUSH(@) SWAP2 13

seqy LOAD* SET2 PUSH(@) PUSH(1) STORE GET2 GET1 I32.REM PUSH(2) I32.SHL SET@ PUSH(1) SET2 13
seqGrd; || LOAD* GET1 I32.REM PUSH(2) I32.SHL SET@ PUSH(@) PUSH(1) TEE2 STORE 10
seqSAT;, || PUSH(@) PUSH(1) TEE2 LOAD* GET1 I32.REM PUSH(2) I32.SHL SET@ STORE 10

with loop-free rather than jump-free sequences simply requires adding jump-instructions to the
language and merging blocks within the CFG to propagate known information from the caller
block to the callee (e.g., propagating the conditions in jump instructions) to build the sequences.

2.4 Symbolic Execution

Before the search, most superoptimization approaches symbolically execute the jump-free se-
quence being optimized to obtain and simplify the resulting symbolic state. The search is then done
using this state as input, rather than the sequence. We use (stack, regs, mem) —p,.op (stack’, regs’,
mem’) to represent the symbolic execution of opcode OP at program point pp over a symbolic state
with operand stack stack, registers regs and memory accesses mem, which results in a symbolic
state with operand stack stack’, registers regs’ and memory accesses mem’. We use — ¢, rather than
—pp:0p to abbreviate the symbolic execution of the opcodes in jump-free sequence seq. Figure 1
defines the symbolic execution of the opcodes in our language. Memory opcodes are labeled with
their program point pp for distinguishing them later. The subindex pp is omitted when there is
no need to use it. We follow standard notation for lists and its operations: a list L of n elements is
denoted as L[0 : n—1], L[k] denotes the element in position k, [a | L] denotes the list resulting from
adding a to the beginning of L, L[x + v] indicates the value for position x in L is now v (i.e., L[x
— v][x] = v) while the rest remains unchanged, and operator ++ concatenates two lists. For every
(seq,ini, 7r) in sequences(b) of bytecode program b, we symbolically execute ini=(istack, iregs,
[1) —seq fin=(stack, regs, mem) where stack and regs are the resulting final stack and registers and
mem the list of memory accesses within seq.

Example 2.2. We illustrate our approach using an EVM sequence (seq; in Table 2) and a Wasm
sequence (seqy) found in real code from our benchmarks in Sec. 5. Opcodes in the sequences that are
handled as UF in our framework are underlined. Also, LOAD* in seq; denotes a variant of opcode LOAD
that consumes no element from the stack instead of the topmost; Sec. 2.5 discusses why LOAD (and
STORE) instructions with different arity are introduced in some cases when applying our framework
to Wasm. The following shows some steps of the symbolic execution of seq; for istack = [so, s1, s2]
and iregs = [], as well as the final state fin;:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:7

ini; = ([s0,51,82], [1, [1) —e:pusuceay ([PUSH(64), 50,81, 2], [, [1) —1:10m0
([LOAD1 (PUSH(64)), S0, $1, S2], [1, [LOAD; (PUSH(64))]) —* ... —15.p0p
([s2, LOAD7(PUSH(128)), PUSH(®)], [], [LOAD; (PUSH(64)), STORE4 (s, PUSH(7)),
LOAD7 (PUSH(128)), STORE3(sg, LOAD1 (PUSH(64)))]) = fin;
For seqy with istack = [] and iregs = [so, s1,52], some steps of its symbolic execution are as
follows:
inip, =

—~

[1, [0, 515521, [1) —e:L000" ([LOADS], [s0 51, 521, [LOADS]) —1.ser2 ([1, [50, 51, LOADS], [LOADE])
* .. —=12ser2 ([, [132.SHL(PUSH(2), I32.REM(s1, LOAD)), s1, PUSH(1)],
[LOAD?, STORE4(PUSH(1), PUSH(@))]) = fin,

1

During symbolic execution, one can obtain upper bounds on the number of opcodes (denoted
n™a) on the size of the stack (denoted s™%*), and on the number of the registers (denoted r™%~)
allowed in a solution (see, e.g., [4, 32]). These bounds will be used in the next steps.

2.4.1 Memory Dependencies. A dependency analysis can be used to infer (in)dependencies among
the memory accesses. A dependency of the form x < y indicates that memory access x must happen
before y. In the absence of a dependency analysis, one must keep the order in which memory
accesses appear in seq. However, more advanced approaches (see e.g. [2, 9]) may be able to detect
independence among accesses. For instance, read access LOAD; does not have to depend on former
write access STORE; if they access different memory locations. Other types of independencies are
described in [2, 9]. Our framework works for any correct analysis that provides such a dependency
list. For the sake of generality, we assume mem contains the list of memory accesses performed
during the symbolic execution and, optionally, a dependency list referred to as deplist(mem), whose
elements provide partial orders indicating the order in which the accesses must happen.

Example 2.3. In the absence of a dependency analysis, or if the dependency analysis can-
not prove independence between any of the accesses in seq;, the dependency list would be
deplist(mem)=[LOAD; < STORE4 < LOAD; < STORE;3], which provides a total order among the accesses
(and is assumed for the next examples in the paper). If the analysis infers that LOAD; is independent
from the remaining accesses, the dependency list would instead be [STORE4 < LOAD; < STOREjs],
thus providing more freedom to place LOAD;. If the analysis infers that LOAD; must happen before
STORE4, LOAD; must happen before STORE 3, and the order among the two pairs is irrelevant, the
dependency list would be [LOAD; < STORE4, LOAD; < STORE;s].

2.4.2 Peephole Optimizations. The final symbolic state can be optionally (rule-based) optimized
before starting the search. This enables optimizing the arithmetic and bit-wise opcodes (abstracted
by means of UF) that are left out of the SMT- or SAT-encodings (see Sec. 5). For example, the
following are peephole optimizations involving opcode MUL:

MUL(PUSH(v1), PUSH(V2)) = vy - vV, MUL(X, PUSH(@)) > PUSH(@),
MUL(X, PUSH(1)) — X, MUL(SHL(PUSH(1), X), Y) > SHL(Y, X),

where, for example, the first rule replaces the multiplication of constants by its result. A peep-
hole optimization phase achieves most optimizations on these opcodes without threatening the
applicability of superoptimization (see comparison with ebso superoptimizer in Sec. 6).

2.4.3 Flattening and Notation. To formalize the method, it is convenient for the final symbolic state
(stack, regs, mem) to be flattened by introducing new fresh variables Siir, Skir+1, - - - » Sm after the last
element sy.,—; in the initial registers iregs, and creating a mapping map for each fresh element to a
shallow term, i.e., to an expression built by a function symbol and fresh elements as arguments. We
assume the minimal number of fresh elements needed to describe stack, regs and mem via shallow
expressions is introduced. This is achieved by using the same element if some subterm occurs more

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

205:8 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

than once, and by taking into account the commutativity properties of UF opcodes to avoid creating
unnecessary elements. Let StackElems = {s, . .., Sk4+r—15 Sk+rs - - -» Sm} denote the full set of elements
either initial or fresh. Then, after flattening, stack and regs contain only elements in StackElems,
mem contains only shallow terms whose arguments are in StackElems, and map denotes the mapping
of elements in {Sg4y, ..., Sm} to shallow terms formed by either an uninterpreted function or LOAD,,
applied to elements in StackElems. Note that opcodes POP, SWAPx, DUPx, SETx, TEEx, GETx and STORE
are never added to the stack. The following simplified grammar characterizes the flattened symbolic
state as assumed in the remaining sections, where superindex * denotes any number of instances
and subindex ; identifies the number of elements created:

stack-elem = s;, wheres; € istack U iregs U dom(map)

map-elem = s; > UF(stack-elemy, ..., stack-elemayur)-1) | si — LOADpp (stack-elemy)
where s; ¢ istack U iregs

map = {map-elem*}

stack = [stack-elem™]

regs = [stack-elemy,...,stack-elem,_{]

mem-elem = LOADp,(stack-elemg) | STORE,, (stack-elemy, stack-elem;)

mem = [mem-elem*]

In what follows, we use Terms to denote the set of terms mapped by stack, regs and mem (i.e., the
image of map), as well as all terms of mem that correspond to store elements. From any flattened
symbolic state st, we can access st.stack, st.regs, st.mem, st.map, st.StackElems and st.Terms.

Example 2.4. States fin; and fin, are flattened into ([sg, s3, 4], [], [LOAD;(ss), STORE4(So, S7),
LOAD7(s5), STORE;3(50, $3)]) and ([], [ss, $1, $5], [LOAD;, STORE4 (S5, 54)]) resp., with

fing.map = {s3 +> LOAD7(ss), S4 +> PUSH(@), s5 > PUSH(128),
Sg > PUSH(64), s7 > PUSH(7), s3 > LOAD1(s¢)}
finy.map = {s3 — LOADS, s4 > PUSH(@), s5 +— PUSH(1),
S¢ > I32.REM(sy, s3), 7 > PUSH(2), sg > I32.SHL(s7,56)}

Definition 2.5 (symbolic). Given the jump-free sequence seq, the initial state ini, and the number
of relevant final registers e, the generic procedure symbolic(seq, ini, rf) returns (fin, N, s
r’méx), as the result from flattening and (rule-based) optimizing the symbolic state obtained from
applying ini —7,, (possibly using a memory dependency analysis) and taking from fin.regs only
the first r¢ elements, as well as the bounds obtained during symbolic execution for the length (n™),

stack size (s™%) and registers size (r"™%) of the solution.

We can now specify the semantic equivalence relation that forces the stack and the memory
accesses obtained by two different sequences given the same initial state to match, but allows extra
registers to store intermediate values and allows any order of memory accesses as long as they are
coherent with the list of dependencies.

Definition 2.6 (semantic equivalence). Two jump-free sequences seq, seq’ are semantically equiv-
alent up to n registers (denoted =,) iff for every symbolic state ini, if ini —¢.q fin ini -, fin’
and assuming the shallow terms shared in fin.map and fin’.map are assigned to the same element s;,
then fin.stack = fin’.stack, fin.regs[x] = fin’.regs[x] Vx € {0,...,n — 1}, fin.map = fin’.map
and fin’.mem satisfies the dependencies in deplist(fin.mem) and vice versa. If deplist is not provided,
then fin.mem = fin’.mem.

In what follows, the relation = refers to =, s where re corresponds to the inferred number of
registers that are relevant after the sequence we are trying to optimize.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:9

2.5 Instantiation of the Framework to EVM and Wasm

Adapting the presented superoptimization framework to EVM and Wasm requires additional
considerations regarding their respective architectures and data structures. In the case of EVM, the
set of SWAPx and DUPx opcodes ranges from x = 1 to 16. Furthermore, EVM employs two distinct
data regions in addition to the operand stack: the storage, which stores persistent data between
external function calls; and a local volatile memory used to allocate dynamic local data. Both data
structures are concrete cases of the broader concept of memory, and two corresponding functions
manage the dependencies for each type of access. In the case of Wasm, three data regions are used:
the local variables or locals, which are registers used to hold temporary values within the scope
of a function; the global variables or globals, which are global registers; and a linear memory. In
our framework, locals correspond to the registers, while both globals and the linear memory are
concrete types of memory. Globals are considered as memory because external functions can be
invoked in the middle of the block and change their contents, thus enforcing dependencies among
accesses to globals. In general, opcodes that have dependencies with other instructions are treated
similarly to LOAD or STORE, depending on whether they introduce values in the stack or not. Function
deplist provides an abstraction for handling such dependencies.

Example 2.7. Sequence seq, corresponds to the Wasm sequence “call $rand local.set 4 i32.
const @ i32.const 1 i32.store local.get 4 local.get 2 i32.rem_s i32.const 2 i32.shl local
.set @ i32.const 1 local.set 47, where $rand is an external function (i.e., not declared in the
Wasm program) that receives no parameters and returns a value as a result (represented by the
opcode LOAD* in our framework). Instructions call $rand and i32.store are dependent (written as
LOAD; < STORE4(ss, s4) in deplist), as $rand can modify the linear memory.

3 THE GREEDY ALGORITHM

The GREEDY procedure invoked by Algorithm 2 aims to, given the initial symbolic state ini and its
corresponding final state fin obtained by symbolic in line 8, quickly return a sequence of opcodes
seqGrd that is shorter than seq such that seqGrd = seq. Starting with ini, the algorithm determines
the necessary operations to transform it into fin. The process is quick because seqGrd is obtained by
making greedy (i.e., locally optimal) decisions rather than globally optimal ones. The key idea is to
minimize the number of stack operations and register accesses by prioritizing operations that place
the top of the stack in its final position at each step when possible. This is achieved by removing
unnecessary stack elements as soon as they reach the top of the stack and placing the element in its
final position (given by fin.stack and fin.regs) when possible. When neither step can be taken,
either a new stack element is computed and moved to its final position in the subsequent step; or a
memory access is performed in a compatible order with the memory dependencies. This process
is repeated until the current state becomes a permutation of fin. A permutation of a symbolic
state st is any symbolic state st’ such that the stack elements in st.stack and st.regs appear either
in st’.stack or in st’.regs, and vice versa. Further, st’.mem must be a permutation of st.mem, thus
ensuring the same memory accesses have been performed although not necessarily in the same
order. The greedy algorithm invokes function uses(s;, st’, st), which counts the minimal number of
times a stack element s; is needed to go from st’ to st. It indicates how many times a stack element
must be computed and/or duplicated to produce st and can be obtained by counting the minimal
number of occurrences of s; needed to compute the elements in the (multiset) difference between
the union of st.stack, st.regs and the store elements in st.mem, and those in st’.

The algorithm proceeds as follows. Variables current and seqGrd, initialized in lines 5 and 6, rep-
resent the current state and the operations computed so far, resp., and satisfy invariant ini—?

seqGrd
current at each step. The loop started in line 7 modifies current and seqGrd until current is a

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

205:10 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

1: procedure GREEDY(ini, fin)

2 Input: initial and final states from the symbolic execution of a sequence seq
3: Output: greedy sequence seqGrd and its length

4. Ensures: seqGrd = seq

5. current < ini

6: seqGrd « []

7. while current # permutation(fin) do

8. if length(current.stack) > 0 A uses(current.stack[0],current,fin) = 0 then
9: current.stack < pop(current.stack)

10 seqGrd < seqGrd.append(POP)

11: else if length(current.stack) > 0 A misplaced(current.stack[0],fin)

12: A canBePlaced(current,fin) then

13: (current, ops) «— moveTopToPosition(current)
14: seqGrd « seqGrd.append(ops)

15 else

16: v <« chooseNextElement(current,fin)

17: (ops,current) «— computeElement(v,current,fin)

18: seqGrd « seqGrd.append(ops)
19: seqGrd « solvePermutation(current,fin,seqGrd)
20: return (length(seqGrd),seqGrd)

Algorithm 2. A greedy algorithm for stack-bytecode optimization

permutation of fin (condition in line 7). This condition can be assessed in O(1) by tracking which
computations have yet to be completed. Once this happens, fin can be obtained from current by
reordering its elements. This is achieved (line 19) by solvePermutation(current,fin,seqGrd), which
performs the minimum number of instructions in current to yield fin and adds those instructions
to seqGrd. Its time complexity is O(|fin.stack| + |[fin.regs|), as it rearranges elements in both
structures. If a loop iteration is performed instead, one of the following three cases is followed
depending on the topmost element of the current stack (if the stack is empty, case (iii) is chosen):

(i) If current. stack[0] does not appear in fin (line 8), it must be popped and opcode POP added to
seqGrd (lines 9 and 10). To verify this, the algorithm checks if uses(current.stack[0], current, fin) =
0, which means it does not appear in fin and must be removed.

(ii) If current.stack[0] appears in fin though is misplaced in current (according to fin), and
can be put in its final position (line 12), then it is placed there (line 13) and the opcodes used are
added to seqGrd (line 14). An element is already placed in its final position in current if it appears in
fin.stack, there is no register in fin.regs in which it must appear and its position wrt. the bottom
of current.stack is the same as it is to the bottom of fin.stack. Intuitively, this notion of order
works because stacks can only grow and decrease from the top element. For the EVM, a SWAPx
instruction is used to place the element in its final position in the stack. For Wasm, either a SETx or
a TEEx instruction is used to place the value in a register, depending on whether the element is used
in another computation or not. This is discussed in the next subsections in further detail. Once an
element is placed in its final position from the bottom, the number of elements deeper cannot vary.
This also means that computed terms in fin.stack cannot be placed directly in their final position
when current.stack does not contain enough elements to access the corresponding index.

(iii) Otherwise (line 15), we first call chooseNextElement(current, fin) to select an element
v from fin.stack or fin.regs (line 16) that does not occur in current the needed number of
times (uses(v,current, fin) > 0), or is an operation of fin.mem that satisfies the dependency

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:11

constraints in deplist (i.e., must happen according to deplist, has been computed). Then, pro-
cedure computeElement(v, current, fin) returns the sequence of opcodes that must be applied
to current to compute v and updates current. If v corresponds to a stack element that already
appears in current.stack or current.regs, then it is duplicated or loaded from a register. Other-
wise, computeElement computes the corresponding term by placing all its arguments at the top
of the stack (potentially triggering the computation of additional elements), and then applying
its associated instruction. In the EVM, this process may entail swapping and duplicating existing
elements in the stack; in Wasm, it may involve retrieving values from registers or storing values
within them (see Sec. 3.1 and 3.2 for more details). Examples 3.1 and 3.2 illustrate this scenario for
EVM and Wasm, resp. Importantly, there can be several sequences that achieve this goal due to
commutative operands. Choosing a suitable order in this step is crucial to take advantage of the
current state of the stack and thus avoid unnecessary stack manipulation operations or moving
stack elements to registers.

Generality: Our greedy algorithm is general as it provides a universal strategy for efficient stack
management. In particular, its heuristic for selecting the next element is the same for EVM and
Wasm: it favours memory instructions and computations that either reuse topmost stack elements
or can be placed in their final position directly. Only its implementation differs due to the EVM
and Wasm stack management. EVM prioritises elements with values about to become unreachable
by DUP/SWAP. Instead, WASM avoids computing elements with values deep within the stack as this
would require moving higher stack values into registers. Other stack-based languages can easily
implement the same heuristic with minor tweaks. Sec. 3.1 and 3.2 discuss this adaptation to the
EVM and Wasm architectures, resp., by describing how the (purposefully) generic algorithm can be
applied to both different stack-based architectures with specific instantiations of steps (ii) and (iii).

Soundness and Optimality Results: The greedily optimized sequences are sound but may not be
optimal. Soundness and termination follow from the fact that current undergoes a transformation
that brings it closer to fin in every step: it either removes an element that is not used, places an
element in its position in fin, or computes a needed element while satisfying the dependencies in
deplist. Optimality is empirically proven only when the SAT solver (in Sec. 4) returns the same
optimal value. Our experiments show this happens often in practice.

3.1 Implementation of EVM Greedy in SUPERSTACK

The implementation of GREEDY for the EVM focuses on minimizing the number of SWAPx operations
used to produce fin.stack. The key idea is in step (ii), which places the stack elements according to
their position wrt. the bottom of fin.stack when possible: once an element appears in this position,
it does not need to be swapped further. To detect if current.stack[0] is misplaced but canBePlaced
in fin, we compute its corresponding position x in current.stack according to fin.stack. We
distinguish two cases: (a) If x = 0, then it is already placed in its position and the misplaced
check fails. As a small example, consider the initial sequence SWAP1 SWAP2 SWAP1 PUSH(®), with the
symbolic states ini = ([s, s1, 2], [], []) and fin = ([s3, o, s2, 1], [], [1), along with fin.map = {s3
PUSH(@) }. The greedy algorithm starts with current set to ini and checks if sy is misplaced. Using
the formula x = length(current.stack) — length(fin.stack) + pos(fin.stack,sp) =3 -4+1=0
(where pos indicates the position of sy in fin.stack), it determines that s, is correctly positioned,
being the third element from the bottom in both current.stack and fin.stack. Consequently, the
greedy algorithm falls into case (iii) and computes PUSH(@). (b) The second case is when x > 0.
Then, we can place it in its final position with a SWAPx operation. Otherwise, there are not enough

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

205:12 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

Table 3. Execution of EVM Greedy for ini; and fin; in Example 2.4. The table shows the state before the
corresponding iteration I, followed by the case selected based on this state and the resulting sequence of
instructions. When the algorithm falls into case (iii), we first show the term chosen by chooseNextElement
and then the steps followed by computeElement to compute it. When the computation is straightforward,
both procedures are combined into a single step.

I current.stack | current.mem Case | Action seqGrd

1 [s0,s1,82] | [] (iii) | Compute s4 > PUSH(@) | [PUSH(@)]

2 [s4, 50,51, 82] | [] (i) | Swap to position 3 [..., SWAP3]

3 [s2, 80,81, 84] | [] (ii) | Swap to position 1 [..., SWAPT]

4 [s0, 82,81, 84] | [] (iii) | Compute sg — LOAD;(sg) | [..., PUSH(64),L0AD;]
Term: STORE4(so, $7)

5 [ss, S0, $2, $1, 84] | [LOAD1(s6)] (iii) Compute s7 > PUSH(7) | [..., PUSH(7)]

[57, s85 S0 S2, 1, 84] | [...] Duplicate s, [..., DUP3]
[S0, 57, S8 S0, S2, 515 84] | [---] Compute STORE4 (s, $7) [..., STORE4]

6 [ss5 S0, S2, $1,84] | [---» STORE4 (80, s7)] | (iil) | Compute s3 > LOAD7(ss) | [..., PUSH(128),L0AD;]

7 [53, S8, S0, $2, $1, S4] | [..., LOAD7(s5)] (ii) | Swap to position 4 [..., SWAP4]

8 [s1, 88, S0, $2, 83, 4] | [...] (i) | Pop element [..., POP]
Term: STORE13(so, Sg)

9 [ss, S0, $2, 83, 84] | [...] (iii) | Swap arguments [..., SWAP1]

[s0, S35 2, 83, S4] | [..-] Compute STORE13(so, s3) | [..., STORE13]
10 [52, S3, 54] [, STORE13(S(), Sg)]

stack elements to place the topmost element in its final position and we must choose another
computation.

Another key aspect of GREEDY is dealing with the limitation of the maximum stack depth that can
be accessed. This issue is inherent to the design of the EVM instruction set and also occurs in EVM
compilers [47]. It is mitigated at step (iii) with procedure chooseNextElement, which prioritizes
computing those terms whose operands depend on values that are at the bottom of the stack when
they are about to become unreachable. Using this strategy, our experimental evaluation in Sec. 5
only encountered stack-too-deep errors in 36 sequences out of more than 500,000. In addition,
procedure computeElement needs to perform extra operations to ensure correctness. Any element
in ini.stack needed to obtain v (including v itself, if in ini.stack) must be part of current and
be duplicated the number of times given by uses(v, current, fin), since such elements cannot be
computed. Similarly, every LOAD, once computed and added to current, is treated as an element of
ini.stack, since recomputing it could contradict the dependencies. Hence, it should be duplicated
when needed. The implementation for step (iii) combines heuristics based on the ideas above.

Example 3.1. Consider the execution of GREEDY on the ini; and fin; states from Example 2.4.
We assume deplist forces a strict order among accesses (see deplist(mem) in Example 2.3). Lines 5
and 6 initialize current.stack to [so, s1, s2] and seqGrd to [], resp. Table 3 shows the evolution of the
stacks of current and seqGrd during execution. The algorithm finishes with the state shown for
I=10 and all memory operations done in the correct order. While the original sequence seq; had 16
opcodes, the greedy one seqGrd (displayed as seqGrd; in Table 2) has 14.

3.2 Implementation of Wasm Greedy in SUPERSTACK

In the context of Wasm, GREEDY aims to reduce the number of instructions in a sequence by
replacing SETx and GETx by TEEx or by avoiding storing intermediate computations in registers.
These situations typically arise when a term v is computed and stored in a register using SETx, even
though it will be used later. These optimizations become complex when v has dependencies with
other instructions that must be satisfied before v can be used. Another crucial aspect affecting the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:13

Table 4. Execution of Wasm Greedy for iniz and finy in Example 2.4. It follows the same format as Table 3.

I | current.stack | current.regs | current.mem Case | Action seqGrd
1 [T [so0s$1,82] [1] (iii) | Compute s3 — LOAD; [LoAD;]
Term: sg > 132.SHL(s7, Sg)
Subterm: sg > I32.REM(sy, s3)
2 [s3] | [s0»s1,52] [LoAD;] (iii) Retrieve s; [..., GET1]
[s1,83] | [So0,51, 2] [...] Compute sg — I32.REM(sq,s3) | [..., I32.REM]
[s6] | [s05s1552] [..] Compute s7 = PUSH(2) [..., PUSH(2)]
[s7,86] | [S0, 51, 2] [..] Compute sg — I32.SHL(s7,S5) | [.... I32.SHL]
3 [ss] | [0, s1,52] [...] (ii) | Place sg in reg. 0 with SET® [..., SETO]
Term: STORE4(Ss, Sq)
[0/ [ssss15821 [..] Compute s4 > PUSH(@) [..., PUSH(@)]
4 [s4] | [ss51,52] [..] (iii) Compute s5 — PUSH(1) [..., PUSH(1)]
[s5,84] | [ss551,52] [...] Place ss in reg. 2 with TEE2 [..., TEE2]
[s5,84] | [Ss»51,55] [..] Compute STORE4(ss, sq4) [..., STORE4]
5 []] [ss51,55] [-.STORE4(s5, 54)]

design of GREEDY is that Wasm uses the operational stack for direct computation or returning values
in a function. Thus, ini.stack is usually empty, and fin.stack contains at most one element (to be
returned or checked in a conditional jump). As a result, our main focus is to compute fin.regs and
fin.mem, while the selection of elements in fin.stack is delayed in chooseNextElement.

The key for the Wasm implementation is to only apply step (ii) when current.stack[0] is in reg-
ister x in fin.regs and x is free, i.e. its value is not needed (formally, current.regs[x] # fin.regs[x]
and uses(current.regs(x], current, fin) = 0), which is checked by procedure canBePlaced. Oth-
erwise, we move to step (iii) where chooseNextElement prioritizes selecting elements that use
current.stack[0] and, as said, considers first elements in fin.regs and fin.mem. Additionally, once
the element is chosen, computeElement checks if there is some order of operands in commutative
terms that could use the topmost element directly. It also examines if v uses a stack element in
current.stack with depth > 1. If so, it accesses the corresponding element by placing the elements
in-between in (auxiliary) registers. On top of that, computeElement stores any intermediate stack
element s; in a register immediately after its computation if it has not been previously stored in a
register and must be used elsewhere (i.e. uses(s;, current, fin) > 1). In those cases, a TEEx instruc-
tion is always applied to maintain s; in the stack for the computation of v. Lastly, solvePermutation
places any element in the stack that should be in a register directly, since all such registers must be
free now, and reorders the stack if needed.

Example 3.2. Consider the execution of GREEDY on the ini; and fin; states from Example 2.4. As
discussed in Ex. 2.7, we assume deplist = [LOAD; < STORE4(ss, 54)]. Table 4 depicts the execution of
the greedy algorithm. The algorithm finishes in state I=5, as there is no need to reorder values with
solvePermutation. The algorithm returns seqGrd, in Table 2 which manages to save 3 instructions:
SET2 and GET2 are saved by avoiding storing the result of LOAD] in an intermediate register; the
second time PUSH(1) is computed in the initial sequence is saved thanks to TEE2 both updating the
corresponding register in fin.regs and placing the element in the stack to be used afterwards.

4 TACKLING THE SYNTHESIS PROBLEM WITH SAT

While state-of-the-art methods in bytecode superoptimization [2, 32, 44, 46] typically use SMT
engines [2, 3], the structure of the problem naturally fits propositional satisfiability (SAT) reason-
ing. Indeed, SAT is known to be a good choice to tackle well-defined and constrained synthesis
problems [21, 25, 30, 39, 48, 67], as the required decisions are intrinsically Boolean. For example,
a Boolean variable can represent whether a specific opcode is applied at a given step or not; and
whether a specific value is stored in a stack cell at a given step. Moreover, the transition step from one

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

205:14 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

symbolic state to another, which is defined by the semantics of the opcode applied at that step, can
be easily encoded using Boolean logic connectives. This suitability has been recognized by a number
of recent successful applications of SAT and MaxSAT to the efficient synthesis of minimal repre-
sentations of systems as well as planning problems [16, 21, 25, 26, 29, 30, 39, 40, 48, 52, 59, 60, 67].
The main differences between our SAT approach and existing SMT encodings of the problem (e.g.,
[4, 32, 46]) are: (1) a redefinition of the problem using the (SAT) encoding described in Sec. 4.1
which incorporates in its definition dependencies among operations not considered in the previous
frameworks, (2) a new objective function for length minimization proposed in Sec. 4.2 which turns
out to be very relevant in practice, and (3) new dominance and redundant constraints proposed in
Sec. 4.3 and exploited by our implementation.

This section details the procedure SEARCHSAT called in line 10 of Alg. 1 with the following input
arguments: a flag ¢ indicating which dominance and redundant constraints should be enabled; the
selected objective function f; the initial state ini; the final state fin obtained by executing ini —¢,,
and which has associated sets finmap, fin.Terms, and fin.StackElems; an upper bound s™% on the
length of the stack needed to execute an optimal sequence; an upper bound r”** on the number
of registers required; an upper bound 1% = min(g"™** ,n™%) on the length of an optimal sequence
(where g™ is the length of the solution found by the greedy algorithm); and the optimal sequence
found by the greedy algorithm seqGrd. SEARCHSAT returns a solution seqSAT if found, and a value
isOptimal indicating whether seqSAT has been proven optimal. The value of 1% significantly
affects the encoding size and, hence, the difficulty of the SAT oracle calls. Note that since the greedy
solution seqGrd is fed to the SAT solver, it does not have to find a solution of the given size. In the
remainder of the section we first overview the Boolean variables used in the propositional encoding
of the problem as well as exemplify how the high-level constraints can be translated to the clausal
level of formulas in CNF. Second, we demonstrate how the objective function f can be naturally
represented as a set of weighted soft clauses, thus reducing the synthesis problem to weighted
partial MaxSAT, and we explain how program length minimization can be efficiently handled with
the use of iterative SAT solving. Lastly, we present the dominance and redundant constraints.

4.1 Propositional Encoding

We use the standard definitions in propositional satisfiability (SAT) and maximum satisfiability
(MaxSAT) solving [7, 41]. SAT and MaxSAT formulas are assumed to be propositional. Propositional
formula ¢ is in conjunctive normal form (CNF) if it is a conjunction of clauses, where a clause is
a disjunction of literals, and a literal is either a Boolean variable b or its negation —=b. Whenever
convenient, a clause is treated as a set of literals. A truth assignment u is a mapping from the set
of variables in ¢ to {0, 1}. A clause is satisfied by truth assignment p if y assigns value 1 to one of
its literals; and falsified otherwise. If all clauses of formula ¢ are satisfied by assignment p then y
also satisfies ¢; otherwise, ¢ is falsified by p. Formula ¢ is satisfiable if there is an assignment y
satisfying ¢; otherwise, ¢ is unsatisfiable. In the context of unsatisfiable formulas, the maximum
satisfiability problem is to find a truth assignment that maximizes the number of satisfied clauses.
We use a variant of MaxSAT called Partial (Weighted) MaxSAT [7]. Formula ¢ in MaxSAT is a
conjunction of hard clauses H, which must be satisfied, and soft clauses S, each with a numeric
weight representing a preference to satisfy it, i.e. ¢ = H A S. When convenient, soft clause c
with weight w is denoted by (¢, w). The aim is to find a truth assignment that satisfies H while
maximizing the total weight of satisfied soft clauses.

Let OP = {op(term)|term € fin.Terms} U {POP} U {SWAPx | 1 < x < s"™* -1} U{DUPx |1 < x <
s™ax} U {GETx, SETx, TEEx | 0 < x < r™® — 1} be the set of all opcodes available (op returns the
opcode associated to term). We add the NOP instruction to the encoding to allow for some steps in a
sequence not to have an opcode. This is needed for building solutions shorter than 1"%: those with

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:15

NOPs at the end. For every symbolic execution step i € {1,...,1™*}, we introduce Boolean variables
Xio» 0 € {0,1,...,|OP|} with 0 = 0 reserved for NOP and 1 < o < |fin.Terms| reserved for the opcodes
of fin.Terms, to indicate whether the opcode with the corresponding o-index is applied at step i
(xio = 1) or not (x;, = 0). As a slight abuse of notation, we will use x;o,,.,,: to represent the fact
that a specific OPCODE is applied at step i and, thus, appears at position i in opt. We also introduce
Boolean variable y;j,, i € {0,1,...,1™*}, j € {0,...,s™* —1},and v € {0,1,..., [fin.StackElems|}
with v = 0 reserved for value nil, to indicate whether the j’th position of the stack at step i of
the symbolic execution (where i = 0 corresponds to ini.stack) contains the value represented
by index v (y;j, = 1) or not (y;j, = 0). By an abuse of notation, we also denote the nil value
by vpi1. We introduce Boolean variable wij,,, i € {0,1,...,1™*} r € {0,1,...,r™* — 1}, and
v € {0,1,...,|fin.StackElems|} to represent the value v stored in register r after step i. We use x;,,
Yijo and wjy, to define the following constraints:

S o =1, i€ {1,...,1mx) (1)

[finstackelenl) 1 je{0,...,1m) € {0,..., s~ 1) (2)

=0
y i stackBlensl =1, i€ {0,...,1m*} r € {0,...,rm 1} (3)

which ensure each step i of the symbolic execution uses exactly one available opcode (Eq.1) - the
one appearing at position i of opt; and each cell j of the stack and each register at each step i
contains exactly one possible value v (Eqs.2-3). Note that these constraints are easy to represent in
CNF by applying any of the well-known encodings of cardinality constraints [5, 8, 20, 50, 54, 58].
We ensure the y;j, variables correctly represent the values in ini.stack and fin.stack as follows:

Yojini.stack[j]=1, 0 < j < [|ini.stack|] A Yojo=1, |ini.stack| < j <™

Y1max jein seack[j]=1 0 < J < |fin.stack| A ypmax jo=1, [fin.stack| < j < s™**

Note we use nil (v = 0) as filler once all stack values are enforced. The operational semantics
of each opcode is encoded in CNF by, for every step (stack,regs, mem)— .o (Stack’,regs’mem’),
imposing the appropriate constraints. For example, NOP is encoded as:

Xioww = Ui-1jo © Yijo) i €{0,..., 1™ =1}, j € {0,...,s™* —1},0 € {0,...|fin.StackElems|}
Xioyoy = (Wi1ro € Wirp),i € {0,..., 1™ —1},r € {0,...,r™* —1},0 € {0,...|fin.StackElems|}

which enforces stack’ and regs’ to be the same as stack and regs whenever OPCODE is NOP. Since
we only want NOPs to occur at the end of the optimized sequence, we add the clauses:
Xioww = Xitloyops L€ {L....,1M* =1} (4)

As only SETx and TEEx modify the registers, the encoding of any other instruction includes
the second set of clauses for NOP (changing the first literal), thus keeping the registers unchanged.
Similarly, POP is encoded by the following clauses (plus those needed to keep registers unchanged):

Xiowe = (Yim1jo © Yij-10),i € {1,..., 1™}, j € {1,...,s™* - 1},0 € {0,...|fin.StackElems|}
Jie{1,..., 1mey
which enforces stack’ to have all values of stack shifted by one towards the topmost (thus removing
the topmost in stack), and nil at the bottom. As yet another example, SETx can be encoded as a
copy of the POP stack manipulation clauses together with:

Xioger, — (Yi=100 € Wixo), i € {1,..., 1"}, 0 € {0,...|fin.StackElems|}

Xioger, = (Wic1ro © Wirg), 1€{1,...,1™*} ref{0,1,...,r™* — 1}\{x},0€{0,. .. [fin.StackElems|}

Xiopop ™ Yis™I* _14..,

As a final example, the PUSH(k) stack manipulation operations are encoded as:
Xiopyss — (Yi=1jo © Yij+10) -0 € {1,..., 1™}, j € {0,...,s™* — 2}, 0€{0,. .. [fin.StackElems|}
Xiopysy — Yiow, Where fin.map(s,) = k, i.e. the element created by PUSH(k)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

205:16 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

All other opcodes can be encoded similarly from their operational semantics. If the clauses
encoding the specification of the problem are aggregated into a CNF formula ¢, a SAT solver can be
used to decide ¢’s satisfiability and compute an assignment satisfying ¢. Reconstructing opt and the
associated symbolic states from this assignment and variables x;o, y;j, and w;,, is straightforward.

Example 4.1. The optimal sequences seqSAT; and seqSAT, resp., found by procedure SEARCHSAT
described in this section for seq; and seq; appear in Table 2. Note that the SAT search has managed
to reduce the solution found by GREEDY (seqGrd;) to 13 by cleverly using a single swap operation
to both place s3 in its final position and leave on top of the stack the right arguments for the final
STORE;3(s0, S3) computation. For seqy, it finds a different solution than GREEDY (seqGrd;) but of the
same length since this length is already optimal.

4.2 Objective Functions

The standard way to minimize a cost function is to add a set of soft clauses that represent our
preferences to satisfy them. Let us assume each available opcode with index o € {1,...,|OP|} has
associated cost w, € R.. The objective is to minimize cost 216{1

to ¢ constructed as described above. This is reduced to a MaxSAT problem with hard clauses ¢ and
weighted soft clauses {(=x;j0, o) | i € {1,...,1™*} 0 € {1,...,|0P|}}. Any off-the-shelf MaxSAT
solver can be applied to this MaxSAT formulation to get a sequence of opcodes satisfying the
specification and minimizing the cost function.

The objective function above contains 1% x |0P| weighted components, which can make the
MaxSAT call quite expensive in practice. While this may be unavoidable in general, it is for program
length minimization, where w, = 1 for all 0. Namely, instead of stating a preference for opcodes
o € {1,...,|0P|} not to be used at each step i € {1, ...,1™*} (causing it to minimize their use when
possible), we simply state the preference to apply NOP at step i. This can be seen as maximizing
the objective function 3, (1,..,1M@%} Xioye, Which can be represented as a set of unweighted unit
soft clauses {(xXiop) | i € {1,...,1™*}}. Further, thanks to the NOP propagation constraints (4), we
avoid using a full-blown MaxSAT solver and instead use a series of pure-SAT oracle calls deciding
the satisfiability of ¢ A (xiey,,) With the gradually decreasing value of step i while the oracle reports
the formula to be satisfiable. If the oracle reports satisfiability for step i* but not for i*—1, the
optimal problem length is proven to be i*.

4.3 Dominance and Redundant Constraints

Let ¢ be a constraint, C a set of constraints interpreted as their conjunction, sol(C) the set of
solutions of C, and f an objective function over C’s variables. Constraint ¢ is redundant for C if
sols(C) = sols(C U {c}). Redundant constraints will speedup the search if they help solvers detect
failure earlier. Constraint ¢ is said to be a dominance constraint for C and f if adding ¢ to C only
removes solutions whose objective value is equal or worse than that of others not eliminated, i.e.,
Vs € sols(C) \ sols(C U {c}),3s” € sols(C U {c}) s.t. f(s) is equal or worse than f(s"). Dominance
constraints will speedup the search if they help solvers eliminate search areas that do not lead to
better solutions. The following constraints for stack-bytecode already appear in related work:

a. POP must be preceded by an instruction that creates no fresh stack element [3];

b. Every expensive op(term), with term € fin.Terms, must appear at most once in seqSAT [3];

c. Every op(term), with term € fin.Terms, must appear at least once in seqSAT [4];

d. Opcodes creating fresh stack elements that appear as arguments of terms in fin.Terms must
be placed earlier than the opcodes of those terms [2].

Since a is a dominance constraint while ¢ and d are redundant, they all ensure optimality, i.e.,
guarantee an optimal solution is kept. While b does not, in practice the loss of optimality is

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:17

compensated by enabling the optimization of larger blocks (thanks to the extra pruning it achieves),
thus having an overall beneficial effect [3]. All four are included in our implementation.

The following presents our four new constraints (parameter c in Alg. 1 enables/disables con-
straints a-h selectively). Their definition imposes constraint seqSAT; = op(term), which holds if the
opcode associated to term € fin.Terms is the opcode at step j in solution seqSAT. It also calls function
uses(s;, ini, fin) defined in Sec. 3, to count how many times stack element s; € fin.StackElems is
needed to compute fin from ini.

e. POP unused stack tops (non-optimal): If ini.stack contains elements that are not in fin,
pop them as soon as they are on top. Let UNUSED be the set of such stack elements, i.e., {s; | s; €
ini.stack, uses(s; ini, fin) = 0}. The constraint is: /o< ;<jengen—1 Stack;[0] € UNUSED = seqSAT
= POP, where stack; denotes the contents of the stack after the j’th operation. This is optimal unless
the unused element can be swapped with others to get them into a better position, before being
popped.

f. Create arguments of unary terms exactly where needed (optimal under certain conditions):
As some elements are created de novo by terms with nullary opcodes, e.g. PUSH, we can insert them in
the stack wherever needed if their cost is reasonably low.! We denote the set of fresh stack elements
that are used exactly once by SINGLE = {s; | s; € fin.StackElems, k < j < m, uses(sj, ini, fin) = 1},
and the set of elements created by a nullary opcode cheaply by CHEAP@. If the argument s; of unary
term UF(s;) € fin.Terms is only used once, or can be created cheaply with a nullary opcode, then
we force its opcode (i.e., op(fin.map(s;))) to appear directly before that of the unary operation
(i-e., op(UF(s;))). The constraint is: /\i<;j<jengen S€ASAT; = op(UF(s;))As; € SINGLE U CHEAPO =
seqSAT;_; = op(fin.map(s;)). Optimality is preserved if s; € SINGLE, as this would then be a
dominance constraint.

g. Create arguments of binary terms exactly where needed (non-optimal): If the first
argument sy of a binary term UF(sg, s1) € fin.Terms, or the second if UF is commutative, is used only
once or can be created cheaply with a nullary operation, we similarly force the creating opcode to
appear directly before the binary operation. The constraint is defined as:

Na2<j<length SEASAT j=0p (UF (S0, 51)) AsgESINGLE U CHEAP@ = seqSAT;_;=op(fin.map(so))

Na2<j<length SEASAT j=0p(UF (S0, s1)) Acommutative(UF) As; ESINGLE U CHEAP@As)€SINGLE U CHEAPQ
= seqSAT;_;=op(fin.map(s1))
Note that if both s, s; € SINGLE U CHEAP®, only sy is created immediately before the binary operation.
We can do better by working with the two positions immediately before the binary operation:
N3<j<iength S€ASAT j=op (UF (so, s1)) Acommutative(UF) Aso€SINGLEAs1 €SINGLE
= seqSAT;_;€{op(fin.map(so)), op(fin.map(s1))}
/\SSjslength seqSATj:op(UF(so, $1))AsoECHEAPOAs; ECHEAPQ

= seqSAT;_;=op(fin.map(so)) ASeqSAT j_,=op(fin.map(s1))

This constraint is non-optimal for the same reason as e and because it enforces an order on the
creation of the arguments of the binary operation.

h. Propagate the stack elements for predecessor and successor stacks (optimal): Each
operation can add o elements to the top of the stack or remove § elements from it, where § is the
max arity of any opcode and ¢ is the maximum number of stack elements an opcode can introduce.
Note that o might be > 0 for call instructions in Wasm. Thus, any element in position j > 0 of the

current stack must come from positions j —o,...,j—1,j,j+1,...,j+ 6 or 0 (by SWAP operation)
in the previous stack (ensuring they must be > 0). Similarly, any element in position j > § of the
current stack will end up in position j —6,...,j—1,j,j+1,...,j+ o or 0 in the next stack.

IFor the EVM objective size-in-bytes, if PUSH(1) is expensive it is better to use it once and then duplicate its value.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

205:18 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

Importantly, most of the dominance and redundant constraints discussed above are expressed
in CNF either directly as clauses with no auxiliary variables, or as cardinality constraints. The
constraints enforcing each opcode from fin.Terms to be used at most (b) and at least once (c) are
encodable as cardinality constraints Zilznzax Xio =1,0 € {1,...,|fin.Terms|}, similar to (1) and (2).
This may require the introduction of auxiliary variables, depending on the cardinality encoding to
use. The only constraint that requires the explicit introduction of additional variables is the one
enforcing precedences (d). For this, we introduce the variables z;,, such that z;, = 1 iff opcode o
has been applied before or at symbolic execution step i, as follows:

Z10 > X0, o€d{1,...,|oP|}
Zio © (Xio V zi—10), o0€{l,...,|0P|},i€ {2,..., 1M}

Then, we can easily express a dependency that requires opcode o’ to precede opcode o as:

Zio = Zi—10r, 1 € {2,..., 1M},

5 EXPERIMENTAL EVALUATION

SUPERSTACK can optimize a Wasm or EVM bytecode program b to reduce its length if b is written
in Wasm, and to reduce its length, gas, or size-in-bytes if b is in EVM. Its implementation follows
Alg. 1 and includes components for sequences, symbolic and GREEDY, all programmed in Python.
For SEARCHSAT it makes incremental use of the Glucose 3.0 SAT solver [6] interfaced through
the well-known PySAT toolkit [27]. This choice is motivated by the incrementality features of
Glucose 3.0 and the fact they are well supported in PySAT, in contrast to some of the more recent
SAT solvers like Kissat [12] or Intel(R) SAT Solver [45]. For the objective functions, it uses either
the RC2 MaxSAT solver [28] or a series of pure-SAT calls. This section reports on its experimental
evaluation and the comparison with competing systems: GASOL for EVM [2] and the WebAssembly
superoptimizer [15] (abbreviated as wsouper). Our experimental evaluation aims at answering the
following questions:

Q1: Which are the gains and time savings obtained by the greedy algorithm?

Q2: Which are the gains and time savings obtained by the dominance and redundant constraints?
Q3: What is the effectiveness and efficiency of SUPERSTACK compared to GASOL and wsouper?
Q4: How does our SAT approach scale? Is it efficient enough to be used in a compiler?

Q5: What is the real impact of the optimization achieved?

To answer them we considered five sets of Taple 5. Distribution on the number of instructions per
benchmarks: (1) For a fair comparison with sequence and the total number of instructions, where
wsouper, we use the benchmarks set and the Q; denotes the i-th quartile.
results from their paper (no optimization times [Set [mean | std | min | 0; | Os | 05 | max | # Instructions
were given, marked as “-” in the table),? i.e, 11 [()| 949 [4780 3] 5| 111458 10,680

1
. . (2) | 2690|1595 | 1| 10| 40| 40| 40 5.05M

.C programs compiled t.o Wasm by first COIIl.pll @) | 945 |1602| 1| 3| 6] 111370 151k
ing them to LLVM using the Clang compiler | (4) | 861| 997| 1| 3| 5| 10| 1286 5.17M
1| 3] 6|10] 745 586k

with aggressive optimizations on, and then us- [) | 884]11.18
ing the LLVM to Wasm backend to optimize and generate Wasm code. We have excluded the
Baggage program because it was optimized using global analysis, namely dead code elimination,
which is outside the scope of superoptimization (see Sec. 6). The number of sequences in this set is
947. (2) We also use a set of 47 programs® from the library of Circom [11], a DSL to create arithmetic
circuits for zero-knowledge proofs, used by many projects in production. They are compiled into

ZSource code available at https://github.com/ASSERT-KTH/slumps/tree/master/superoptimizer
3Source code available at https://github.com/iden3/circomlib/tree/master/test/circuits

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

https://github.com/ASSERT-KTH/slumps/tree/master/superoptimizer
https://github.com/iden3/circomlib/tree/master/test/circuits

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:19

Table 6. Experimental results and comparison to GASOL/Wasm-Souper (k in Sy denotes more than 1,000).
Three SUPERSTACK configurations are studied: (1) Greedy standalone optimizer; (2) Basic SAT, the Pure-SAT
approach without constraints e-h in Sec. 4.3; and (3) Enhanced SAT, with all constraints. Each configuration
showcases the optimization time in minutes (Time), the gains for the corresponding objective (Gains), the
percentage over the total cost of the original code (%Gains), the number of sequences that reach the time limit

with no solution (#timeout) and the avg. number of instructions in these sequences (Seq sz). Columns Speedup
Timeyg and 100 = Gainsss —Gainsyg

and Boost depict SUPERSTACK’s improvement over the competing systems as

Timess Gainsyg
Benchmark Set wsouper / GASOL (wG) SUPERSTACK (SS) wG vs SS
(Language/Criteria) || Time | Gains | %Gains | #timeout | Seq sz || Configuration | Time | Gains | %Gains | #timeout | Seq sz || Speedup | Boost
(1) wsouper’s Greedy 1 95 0.89 0 - - -14.41
benchmark - 111 1.04 - - Basic SAT 164 119 1.11 9 204.44 - 7.21
(Wasm/length) Enhanced SAT 97 121 1.13 3 512.33 - 9.01
(2) Circom Greedy 12 737k 14.68 0 - -
library - - - - - Basic SAT 47k 1,179k | 2347 7,301 40
(Wasm/length) Enhanced SAT | 4,752 | 1,218k | 24.25 230 40 - -
(3) GASOL’s Greedy 2 21k 0.24 0 - 604.5 94.05
benchmark 1,209 11k 0.12 1,143 35.47 Basic SAT 413 23k 0.28 295 43.97 2.93 129.72
(EVM/gas) Enhanced SAT 212 26k 0.29 17 73.64 57 140
(4) 1,000 most Greedy 150 777k 0.26 0 - 249.64 86.7
recent deployed 37,378 | 416k 0.14 36,316 | 32.96 Basic SAT 13,610 | 910k 03 10,279 | 41.13 2.75 118.7
(EVM/gas) Enhanced SAT | 6,089 947k 0.31 241 68.78 6.14 127.59
(5) 100 most Greedy 11 214k 1.17 0 - 361.25 | 188.17
called 3,748 74k 0.41 3,923 34.1 Basic SAT 1,785 231k 1.26 1,770 41.8 2.1 210.57
(EVM/gas) Enhanced SAT 961 234k 1.28 343 57.4 3.9 214.59
(3) GASOL’s Greedy 2 4k 2.09 0 - 663.5 9.8
benchmark 1,327 4k 191 1,141 35.87 Basic SAT 413 6k 3.09 295 43.97 2.98 61.78
(EVM/size) Enhanced SAT | 212 6k 2.86 17 73.64 6.26 50.08
(4) 1,000 most Greedy 150 194k 2.48 0 - 277.87 22.95
recent deployed 41,605 | 158k 2.01 35,822 33.38 Basic SAT 13,610 | 269k 3.43 10,279 41.13 3.06 70.3
(EVM/size) Enhanced SAT | 6,089 253k 3.22 241 68.78 6.83 60.03
(5) 100 most Greedy 11 50k 5.12 0 - 398.83 47.32
called 4,138 33k 3.47 3,883 34.3 Basic SAT 1,785 58k 5.97 1,770 41.8 2.32 71.77
(EVM/size) Enhanced SAT 961 57k 5.88 343 57.4 4.3 69.24

Wasm by the Circom compiler which, as it was recently created does not incorporate aggressive
optimizations such as those of Clang and the LLVM to Wasm backend. Since these sequences can
have up to 15k opcodes, we split them in subsequences of at most 40, which we have experimentally
determined as the upper limit of tractability for SEARCHSAT in Wasm. Thus, we work with a weaker
notion of optimality by applying superoptimization to smaller sequences, see Sec. 6. The resulting
set has 181,806 sequences. (3) For a fair comparison with GASOL, we use the benchmark set from
its latest paper? [2], i.e., the last 30 verified smart contracts (downloaded using Etherscan [61])
compiled using some 0.8.x version of solc and whose source code was available as of June 21,
2021. The number of sequences in this set is 12,927. (4) To further increase our testbed, on the
14th of March 2023 we used Etherscan to download the 1,000 most recent deployed and verified
contracts compiled using some 0.8.x version of solc, with source code in Solidity [63]. We then
compiled them using version 0.8.19 of solc with flag —optimize on (default bytecode optimizer)
to measure the extra optimizations gained by our approach. We have 476,974 sequences in this
set. (5) We downloaded the deployed code of the 100 most-called contracts on Ethereum (hence
the most relevant ones to be optimized) that were compiled with some version 0.8.x of solc, using
BigQuery [22] and Etherscan. The number of sequences in this set is 51,682. Therefore, in total we
have optimized 724,336 sequences. More information on the benchmark sets is provided in Table 5.

Table 6 details the results for the five sets, obtained using an AMD Ryzen Threadripper PRO
3995WX 64-cores and 512 GB of memory, running Debian 5.10.7. As the SAT solvers used are
deterministic, the evaluation corresponds to a single execution, with multiple runs yielding similar
times. To ensure a fair comparison, we established a time limit based on the competing systems.
GASOL gives a larger timeout to larger sequences, while the experiments for wsouper in [15] assign

4Source code available at https://github.com/costa-group/gasol-optimizer/tree/main/examples/solidity

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

https://github.com/costa-group/gasol-optimizer/tree/main/examples/solidity

205:20 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

300 s per sequence. We use 300 s for set (1) and assign the same timeout as GASOL for the others.
When the timeout is reached, the SAT solver might have been able to find a solution but optimality
has not been proven, or it might have not found any solution. This solution found might be even
optimal, but the solver has not been able to prove its optimality within the time limit. Moreover,
for set (2) we have not been able to use wsouper since it can only be applied to C/C++ code
through the compilation pipeline described above. Another relevant aspect of the evaluation is that
configurations Basic SAT and Enhanced SAT use the pure-SAT based approach due to its superior
performance for gas and bytes-size optimization compared to the MaxSAT approach (even though
the pure-SAT approach only minimizes program length). It is important to note how gains and
costs are determined for each objective function. While the gains for length and size-in-bytes can
be easily computed, those for gas can only be approximated statically. We measure such gains as
GASOL does: counting once the gas of each instruction in the program and using an average gas
cost for storage instructions.

Q1 is answered by comparing Speedup and Boost columns in Greedy configurations, for sets
3-5. This shows reductions in search time by up to 3 orders of magnitude, and increases in gains
by up to 3 times by the greedy algorithm on its own wrt. GASOL. Q2 is answered by comparing
configurations Basic SAT and Enhanced SAT, which shows the time decreases by half when using
dominance/redundant constraints while the gains are roughly the same. Importantly, we have only
found 82 sequences for EVM for which the objective value obtained with the new constraints is
worse than without them and 0 for Wasm. For EVM, the loss of optimality is negligible and clearly
compensated by their important time reduction. Q3 is answered by comparing wsouper/GASOL
with Enhanced SAT. This shows our proposal integrating all components significantly outperforms
GASOL (sets 3-5) for both objective functions. In particular, for the largest sample (4), we improve
GASOL savings by 127.59 % for gas and 60.03 % for size while reducing the overall time to more
than one sixth (for both objectives). For Wasm, the gains for set (1) are not as large as for set (2)
because the code in (1) is already highly optimized, not leaving much room for improvement. Still,
we outperform wsouper by 9.01 % for set (1) and achieve great optimizations (over 24 % of length
reduction, see %Gains for Enhanced SAT) for code which is not so optimized in set (2).

Q4 is answered by noting that GASOL generally timeouts when optimizing sequences of >30
instructions, while SUPERSTACK doubles this threshold. This is a huge improvement because the
time overhead in superoptimization grows exponentially when the sequence size is increased. In
regards to its practical adoption, the results show that using all components proposed in this paper
is indeed the best option for achieving optimality with the support of the greedy algorithm for
large sequences. To estimate how this combination behaves, we have measured the overall gains
and overhead for the largest dataset (4) by applying GREEDY alone for sequences of >60 instructions.
This subset consists of 1,344 sequences for which SEARCHSAT reaches #tout in 92.56 % of the
cases and does not return any solution in 8.04 %. GREEDY reduces the time spent optimizing these
sequences by 95 % (from 1.836 min to 10 min), while maintaining 98.56 % of the gains for (4), (from
60,681 to 59,809) and 97.05 % for (4), (from 11,818 to 11,470). Overall, we argue both approaches
(full approach, or only greedy for large sequences) could be included in a compiler, depending on
the tradeoff between savings and overhead users want to achieve.

To answer Q5 we focused on set (5), as these popular contracts manage hundred of thousands and
even millions of transactions. We first downloaded all transactions from the set’s 100 contracts as a
block 17,226,487° using Etherscan’s Python API [35], consisting of 41,106,276 transactions. Then
we combined the transaction fee information with the price per Eth in dollars in the corresponding
day (downloaded from [62]), resulting in $656.25M spent in transaction fees. Finally, we have

5Produced on 2023-05-10 12:36:23 AM +UTC

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:21

removed the costs inherently tied to the transactions (default 21,000 units of gas fee plus the fee
for sending the transaction data), which results in a total of $509.1M of execution costs. Assuming
these contracts were deployed using the setting all which has average gas savings 1.28 (data in
Sau for set (5),), and that these gas savings affect all transactions uniformly, this translates to
savings of $6.51M just on these 100 contracts, while the average optimization time is around 10 min,
which is a reasonable time in the EVM context. Overall, we argue our experimental results prove
the significant impact of our approach in the Ethereum ecosystem and the improved scalability
wrt. previous SMT-based superoptimization. Although not experimentally evaluated by us here, it is
known that optimizing Wasm also has significant impact on its performance (see, e.g., [23, 31, 37]).

6 RELATED WORK AND CONCLUSIONS

We have proposed a seamless integration of greedy, constraint-based and SAT techniques within the
superoptimization framework that achieves optimality by minimizing the number of movements
within the stack for EVM, and between registers and the stack for Wasm. Denali [33] pioneered
the use of theorem proving and SAT solving as effective tools for superoptimization. The use of
theorem proving focuses on finding equivalences among what we referred to as uninterpreted
functions (e.g., arithmetic and bit-wise operations), while that of SAT focuses on considering
common subexpressions and other specific features of the architecture. Note that Denali is designed
for registered-based ALU operations rather than for a stack-based language. Thus, its propositional
encoding is different from ours and considers neither our generic encoding of objective functions
using soft clauses, nor our efficient approach to length minimization. The first to propose using an
SMT solver was the unbounded superoptimization [32] approach for LLVM, later extended within
the Souper superoptimizer [44, 55]. As the target architecture of the LLVM superoptimizers is not
stack-based, their SMT encodings again differ significantly from ours. In particular, the representa-
tion and manipulation of the stack and the associated dominance constraints are not applicable to
LLVM. However, some of our ideas developed for stack-manipulating opcodes could be adapted to
the LLVM context, such as the use of a greedy algorithm to find tighter bounds for the length of
the optimized code. We believe the gains could be very important as well. Another difference of our
framework is that it handles uninterpreted functions in the symbolic analysis phase via peephole
optimizations, instead of as part of the encoding. We only lose local opportunities in computations
that are semantically equivalent to a cheaper computation but not captured by simplification rules.
For instance, assume PUSH is encoded by 1 byte. Then, PUSH(0x2540be40000000) takes 8 bytes and is
equivalent to PUSH(@x10) PUSH(@x28) EXP which takes 5. Our approach does not find this because
constant 0x2540be40000000 in our symbolic state can only be computed using PUSH. Handling these
(rarely applicable) optimizations is costly: ebso [46] encoded them and resulted in 80% timeouts
(using 1 hour per sequence). The Souper LLVM superoptimizer has been applied to stack-bytecode
(namely Wasm) by pipeline of transformations (and associated optimizations) from C/C++ to
LLVM and then from LLVM to Wasm. This pipeline misses optimization opportunities that can be
achieved using our approach. GreenThumb [51] is a framework for constructing superoptimizers
in different ISAs, integrating multiple search techniques and proposing different approaches to
scale existing superoptimization techniques. Notably, it introduces the LENS algorithm, which
performs a bidirectional enumerative search with selective refinements. Integrating this algorithm
into our framework is not feasible since we rely on internal search mechanisms within SAT solvers.
However, GreenThumb also introduces a context-aware decomposition technique to scale the
search which consists in randomly selecting fixed-length code fragments of the original program
for optimization until no further improvement is possible. The idea is to provide the superoptimizer

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

205:22 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

with preconditions and postconditions for the optimized fragment’s execution, that allow incorpo-
rating context information and relaxing the notion of correctness. This technique can be adapted to
our approach by encoding the context information as part of the initial and final symbolic states.

Despite the above advances, scalability is still a limiting factor of superoptimization, since the
search for optimality is exponential in the size of the solution being constructed and becomes
intractable for complex code. A practical approach is to give up on optimality and move to more-
efficient (possibly non-optimal) code, i.e., to make superoptimization incomplete. Different ways
of introducing incompleteness are found in the literature: (1) using a timeout in the search, (2)
splitting jump-free sequences into even smaller sequences, (3) using weaker notions of optimality
(e.g., not handling memory), (4) using stochastic techniques [56] or machine learning [57] to prune
the search process in a possibly incomplete way, and (5) using dominance constraints that can lose
optimality in unusual situations but considerably accelerate the process. GASOL uses 1, 2, 3, and
optionally 5; Souper uses 1 and 3 (as memory operations are not handled); GreenThumb uses 1, 2, 3
and 4; and SUPERSTACK uses 1 and 3 (non-stack operations are uninterpreted), and optionally 5.
We argue our experimental evaluation shows this combination leads to a practical while still very
accurate approach. There are other techniques to improve the scalability based on reducing the
enumerative search space, which cannot be adopted in our framework for the same reasons as for
the LENS algorithm. For instance, [44] introduces a technique that combines different dataflow
analyses to prune synthesis candidates before trying to instantiate them with specific values.

The generation of optimal code has been studied since the early days of stack machines [14].
The closest to our greedy algorithm would be the stack scheduling technique in [38] developed
for the JVM. This technique aims at removing load accesses to registers by replacing them with
stack duplication and manipulation opcodes, which differs from our optimization goal. It uses code
analysis to detect pairs of program points in which load opcodes could be substituted, and then
tries to perform as many replacements as possible. The only related idea to our algorithm is that it
follows a greedy strategy to decide the order in which these pairs are traversed.

Superoptimization is complementary to other more traditional optimization techniques. In the
context of smart contracts, the importance of optimizing them is noted in [13, 46, 49, 68] and
guidelines for writing more efficient code have been provided for smart contract developers [17, 18,
34]. It is hence not surprising for optimization of EVM smart contracts to be an active research
topic, and to find optimization approaches applied on the (Solidity) source-code level (e.g., [19]).
EVM bytecode optimization is also performed by the standard Solidity compiler solc [64] which is
able to perform certain types of inlining, of dead code elimination, etc. As regards to Wasm, it is
an increasingly important low-level language that can be run in modern browsers and to which
multiple source languages can be compiled. Wasm optimization is hence a highly relevant problem
[23, 24, 53]. Recent work [37] explores missed optimizations in Wasm optimizers and identifies
performance deficiencies [31]. The type of optimizations in [37] require global transformations and
analysis; thus they are outside the scope of superoptimization. Summarizing, superoptimization is
complementary to all mentioned approaches based on source-level and/or on global transformations
(for both EVM and Wasm), and it is usually applied after having enabled them as a final code
optimization stage, as we have done in our experiments.

As future work, we are exploring different strategies to enhance the performance of our approach
such as the context-aware decomposition method mentioned earlier and more suitable formulas for
setting the time limit based on the blocks obtained after partitioning. Additionally, we plan to apply
the greedy algorithm without prior partitioning. This could uncover (with minimal computational
cost) additional savings that may be missed due to partitioning. This strategy is supported by our
findings in Sec. 5, where we demonstrated that, for larger sequences, the greedy algorithm alone
achieves most gains consuming a fraction of the time spent by the SAT solver.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:23

ACKNOWLEDGMENTS

Part of this research was done while Elvira Albert and Albert Rubio were visiting the University of
Monash funded by the CM project S2018/TCS-4314. The work is also funded partially by the Spanish
project PID2021-1228300B-C41 and the GREEN project AOC-1662 by the Ethereum Foundation.

DATA AVAILABILITY STATEMENT

SUPERSTACK’s source code and the benchmarks used for the experimental evaluation are available
in Zenodo [1].

REFERENCES

[1] Elvira Albert, Maria Garcia de la Banda, Alejandro Hernandez-Cerezo, Alexey Ignatiev, Albert Rubio, and Peter J.
Stuckey. 2024. Artifact for "SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-based, and SAT
Techniques”. https://doi.org/10.5281/zenodo.10801691
Elvira Albert, Pablo Gordillo, Alejandro Hernandez-Cerezo, and Albert Rubio. 2022. A Max-SMT Superoptimizer
for EVM handling Memory and Storage. In Tools and Algorithms for the Construction and Analysis of Systems - 28th
International Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13243), Dana
Fisman and Grigore Rosu (Eds.). Springer, 201-219. https://doi.org/10.1007/978-3-030-99524-9 11
[3] Elvira Albert, Pablo Gordillo, Alejandro Hernandez-Cerezo, Albert Rubio, and Maria Anna Schett. 2022. Super-
optimization of Smart Contracts. ACM Trans. Softw. Eng. Methodol. 31, 4 (2022), 70:1-70:29. https://doi.org/10.1145/
3506800
[4] Elvira Albert, Pablo Gordillo, Albert Rubio, and Maria Anna Schett. 2020. Synthesis of Super-Optimized Smart Contracts
Using Max-SMT. In Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July
21-24, 2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12224), Shuvendu K. Lahiri and Chao Wang
(Eds.). Springer, 177-200. https://doi.org/10.1007/978-3-030-53288-8_10
[5] Roberto Asin, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodriguez-Carbonell. 2011. Cardinality Networks: a
theoretical and empirical study. Constraints 16, 2 (2011), 195-221. https://doi.org/10.1007/s10601-010-9105-0
[6] Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. 2013. Improving Glucose for Incremental SAT Solving with
Assumptions: Application to MUS Extraction. In SAT (Lecture Notes in Computer Science, Vol. 7962). Springer, 309-317.
https://doi.org/10.1007/978-3-642-39071-5_23
[7] Fahiem Bacchus, Matti Jarvisalo, and Ruben Martins. 2021. Maximum Satisfiabiliy. In Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, Vol. 336. IOS Press, 929-991. https://doi.org/10.3233/FAIA201008
[8] Olivier Bailleux and Yacine Boufkhad. 2003. Efficient CNF Encoding of Boolean Cardinality Constraints. In CP. 108-122.
https://doi.org/10.1007/978-3-540-45193-8_8
[9] Sorav Bansal and Alex Aiken. 2006. Automatic generation of peephole superoptimizers. In Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2006,
San Jose, CA, USA, October 21-25, 2006, John Paul Shen and Margaret Martonosi (Eds.). ACM, 394-403. https:
//doi.org/10.1145/1168857.1168906
[10] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2021. Satisfiability Modulo Theories.
In Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, Vol. 336. IOS Press, 1267-1329.
https://doi.org/10.3233/FAIA201017
[11] Marta Bellés-Mufioz, Miguel Isabel, Jose Luis Mufioz-Tapia, Albert Rubio, and Jordi Baylina. 2023. Circom: A Circuit
Description Language for Building Zero-Knowledge Applications. IEEE Trans. Dependable Secur. Comput. 20, 6 (2023),
4733-4751. https://doi.org/10.1109/TDSC.2022.3232813
[12] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger. 2020. CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT Competition 2020. In SAT Competition. 51-53.
[13] Tamara Brandstatter, Stefan Schulte, Jiirgen Cito, and Michael Borkowski. 2020. Characterizing Efficiency Optimizations
in Solidity Smart Contracts. In IEEE International Conference on Blockchain, Blockchain 2020, Rhodes, Greece, November
2-6, 2020. IEEE, 281-290. https://doi.org/10.1109/Blockchain50366.2020.00042
[14] John L. Bruno and T. Lassagne. 1975. The Generation of Optimal Code for Stack Machines. J. ACM 22, 3 (1975),
382-396. https://doi.org/10.1145/321892.321901
[15] Javier Cabrera-Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas Satabin, Benoit Baudry, and Martin Monperrus.
2020. Superoptimization of WebAssembly bytecode. In Programming’20: 4th International Conference on the Art, Science,
and Engineering of Programming, Porto, Portugal, March 23-26, 2020, Ademar Aguiar, Shigeru Chiba, and Elisa Gonzalez
Boix (Eds.). ACM, 36-40. https://doi.org/10.1145/3397537.3397567

—
Do
—

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

https://doi.org/10.5281/zenodo.10801691
https://doi.org/10.1007/978-3-030-99524-9_11
https://doi.org/10.1145/3506800
https://doi.org/10.1145/3506800
https://doi.org/10.1007/978-3-030-53288-8_10
https://doi.org/10.1007/s10601-010-9105-0
https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1145/1168857.1168906
https://doi.org/10.1145/1168857.1168906
https://doi.org/10.3233/FAIA201017
https://doi.org/10.1109/TDSC.2022.3232813
https://doi.org/10.1109/Blockchain50366.2020.00042
https://doi.org/10.1145/321892.321901
https://doi.org/10.1145/3397537.3397567

205:24 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

[16]
[17]

[18]
[19]

[20]

[21

—

[22
[23

=

[24]

[25

—

[26

—

[27

—

[28

[t

[29

—

[30

—

(31

—

[32]

[33]
[34]
[35]

[36
[37]

—

[38]

Martin Capek and Pavel Surynek. 2021. DPLL(MAPF): an Integration of Multi-Agent Path Finding and SAT Solving
Technologies. In SOCS. AAAI Press, 153-155. https://doi.org/10.1609/SOCS.V1211.18567

Ting Chen, Youzheng Feng, Zihao Li, Hao Zhou, Xiapu Luo, Xiaoqi Li, Xiuzhuo Xiao, Jiachi Chen, and Xiaosong Zhang.
2021. GasChecker: Scalable Analysis for Discovering Gas-Inefficient Smart Contracts. IEEE Trans. Emerg. Top. Comput.
9,3(2021), 1433-1448. https://doi.org/10.1109/TETC.2020.2979019

Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized smart contracts devour your money. In
SANER. IEEE Computer Society, 442-446. https://doi.org/10.1109/SANER.2017.7884650

Yanju Chen, Yuepeng Wang, Maruth Goyal, James Dong, Yu Feng, and Isil Dillig. 2022. Synthesis-powered optimization
of smart contracts via data type refactoring. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 560-588. https://doi.org/
10.1145/3563308

Niklas Eén and Niklas Sérensson. 2006. Translating Pseudo-Boolean Constraints into SAT. JSAT 2, 1-4 (2006), 1-26.
https://doi.org/10.3233/SAT190014

Bishwamittra Ghosh and Kuldeep S. Meel. 2019. IMLIL: An Incremental Framework for MaxSAT-Based Learning of
Interpretable Classification Rules. In AIES. ACM, 203-210. https://doi.org/10.1145/3306618.3314283

Google. 2023. BigQuery. https://cloud.google.com/bigquery.

WebAssembly Group. 2017. Binaryen Optimizations. https://github.com/WebAssembly/binaryen#binaryen-
optimizations.

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and]. F. Bastien. 2017. Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23,
2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 185-200. https://doi.org/10.1145/3062341.3062363

Marijn Heule and Sicco Verwer. 2010. Exact DFA Identification Using SAT Solvers. In ICGI (Lecture Notes in Computer
Science, Vol. 6339). Springer, 66-79. https://doi.org/10.1007/978-3-642-15488-1_7

Alexey Ignatiev, Edward Lam, Peter J. Stuckey, and Joao Marques-Silva. 2021. A Scalable Two Stage Approach to
Computing Optimal Decision Sets. In AAAL AAAI Press, 3806-3814. https://doi.org/10.1609/AAAILV3515.16498
Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. 2018. PySAT: A Python Toolkit for Prototyping with SAT
Oracles. In SAT (Lecture Notes in Computer Science, Vol. 10929). Springer, 428-437. https://doi.org/10.1007/978-3-319-
94144-8_26

Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. 2019. RC2: an Efficient MaxSAT Solver. J. Satisf. Boolean
Model. Comput. 11, 1 (2019), 53-64. https://doi.org/10.3233/SAT190116

Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and Joao Marques-Silva. 2018. A SAT-Based Approach to Learn
Explainable Decision Sets. In IJCAR (Lecture Notes in Computer Science, Vol. 10900). Springer, 627-645. https://doi.org/
10.1007/978-3-319-94205-6_41

Alexey Ignatiev, Alessandro Previti, and Joao Marques-Silva. 2015. SAT-Based Formula Simplification. In SAT (Lecture
Notes in Computer Science, Vol. 9340). Springer, 287-298. https://doi.org/10.1007/978-3-319-24318-4_21

Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. 2019. Not So Fast: Analyzing the Performance of
WebAssembly vs. Native Code. login Usenix Mag. 44, 3 (2019). https://www.usenix.org/publications/login/fall2019/
jangda

Abhinav Jangda and Greta Yorsh. 2017. Unbounded superoptimization. In Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, Onward! 2017,
Vancouver, BC, Canada, October 23 - 27, 2017. 78-88. https://doi.org/10.1145/3133850.3133856

Rajeev Joshi, Greg Nelson, and Yunhong Zhou. 2006. Denali: A practical algorithm for generating optimal code. ACM
Trans. Program. Lang. Syst. 28, 6 (2006), 967-989. https://doi.org/10.1145/1186632.1186633

Queping Kong, Zi-Yan Wang, Yuan Huang, Xiangping Chen, Xiao-Cong Zhou, Zibin Zheng, and Gang Huang. 2022.
Characterizing and Detecting Gas-Inefficient Patterns in Smart Contracts. J. Comput. Sci. Technol. 37, 1 (2022), 67-82.
https://doi.org/10.1007/s11390-021-1674-4

P.C. Kotsias. 2020. pckol/etherscan-python. https://doi.org/10.5281/zenodo.4306855

Tim Lindholm and Frank Yellin. 1997. The Java Virtual Machine Specification. Addison-Wesley.

Zhibo Liu, Dongwei Xiao, Zongjie Li, Shuai Wang, and Wei Meng. 2023. Exploring Missed Optimizations in
WebAssembly Optimizers. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2023, Seattle, WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.). ACM, 436-448.
https://doi.org/10.1145/3597926.3598068

Martin Maierhofer and M. Anton Ertl. 1998. Local Stack Allocation. In Compiler Construction, 7th International
Conference, CC’98, Held as Part of the European Joint Conferences on the Theory and Practice of Software, ETAPS’98,
Lisbon, Portugal, March 28 - April 4, 1998, Proceedings (Lecture Notes in Computer Science, Vol. 1383), Kai Koskimies (Ed.).
Springer, 189-203. https://doi.org/10.1007/BFB0026432

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

https://doi.org/10.1609/SOCS.V12I1.18567
https://doi.org/10.1109/TETC.2020.2979019
https://doi.org/10.1109/SANER.2017.7884650
https://doi.org/10.1145/3563308
https://doi.org/10.1145/3563308
https://doi.org/10.3233/SAT190014
https://doi.org/10.1145/3306618.3314283
https://cloud.google.com/bigquery
https://github.com/WebAssembly/binaryen#binaryen-optimizations
https://github.com/WebAssembly/binaryen#binaryen-optimizations
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1609/AAAI.V35I5.16498
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.3233/SAT190116
https://doi.org/10.1007/978-3-319-94205-6_41
https://doi.org/10.1007/978-3-319-94205-6_41
https://doi.org/10.1007/978-3-319-24318-4_21
https://www.usenix.org/publications/login/fall2019/jangda
https://www.usenix.org/publications/login/fall2019/jangda
https://doi.org/10.1145/3133850.3133856
https://doi.org/10.1145/1186632.1186633
https://doi.org/10.1007/s11390-021-1674-4
https://doi.org/10.5281/zenodo.4306855
https://doi.org/10.1145/3597926.3598068
https://doi.org/10.1007/BFB0026432

SuperStack: Superoptimization of Stack-Bytecode via Greedy, Constraint-Based, and SAT Techniques 205:25

[39]

Dmitry Malioutov and Kuldeep S. Meel. 2018. MLIC: A MaxSAT-Based Framework for Learning Interpretable
Classification Rules. In CP (Lecture Notes in Computer Science, Vol. 11008). Springer, 312-327. https://doi.org/10.1007/978-
3-319-98334-9_21

[40] Joao Marques-Silva, Mikolas Janota, and Anton Belov. 2013. Minimal Sets over Monotone Predicates in Boolean

Formulae. In CAV (Lecture Notes in Computer Science, Vol. 8044). Springer, 592-607. https://doi.org/10.1007/978-3-642-
39799-8_39

[41] Joao Marques-Silva, Ines Lynce, and Sharad Malik. 2021. Conflict-Driven Clause Learning SAT Solvers. In Handbook of

[42]

[43]
[44]

[45]
[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Satisfiability. Frontiers in Artificial Intelligence and Applications, Vol. 336. IOS Press, 133-182. https://doi.org/10.3233/
FAIA200987

Henry Massalin. 1987. Superoptimizer - A Look at the Smallest Program. In Proceedings of the Second International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS II). 122-126. https:
//dl.acm.org/citation.cfm?id=36194

William M. McKeeman. 1965. Peephole optimization. Commun. ACM 8, 7 (1965), 443-444. https://doi.org/10.1145/
364995.365000

Manasij Mukherjee, Pranav Kant, Zhengyang Liu, and John Regehr. 2020. Dataflow-based pruning for speeding up
superoptimization. Proc. ACM Program. Lang. 4, OOPSLA (2020), 177:1-177:24. https://doi.org/10.1145/3428245
Alexander Nadel. 2022. Introducing Intel(R) SAT Solver. In SAT. 8:1-8:23. https://doi.org/10.4230/LIPICS.SAT.2022.8
Julian Nagele and Maria A Schett. 2019. Blockchain Superoptimizer. In Preproceedings of 29th International Symposium
on Logic-based Program Synthesis and Transformation (LOPSTR 2019). https://arxiv.org/abs/2005.05912.

Sand Nallani. 2020. Issue in Solidity’s repository reporting stack too deep errors. https://github.com/ethereum/solidity/
issues/13158.

Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva. 2018. Learning Optimal Decision Trees with
SAT. In IJCAL ijcai.org, 1362-1368. https://doi.org/10.24963/IJCAL2018/189

Keerthi Nelaturu, Sidi Mohamed Beillahi, Fan Long, and Andreas G. Veneris. 2021. Smart Contracts Refinement for Gas
Optimization. In 3rd Conference on Blockchain Research & Applications for Innovative Networks and Services, BRAINS
2021, Paris, France, September 27-30, 2021. IEEE, 229-236. https://doi.org/10.1109/BRAINS52497.2021.9569819

Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, and Hiroshi Fujita. 2013. Modulo Based CNF Encoding
of Cardinality Constraints and Its Application to MaxSAT Solvers. In ICTAIL 9-17. https://doi.org/10.1109/ICTAI.2013.13
Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. 2016. Scaling up Super-
optimization. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016, Tom Conte and Yuanyuan Zhou
(Eds.). ACM, 297-310. https://doi.org/10.1145/2872362.2872387

Jussi Rintanen. 2021. Planning and SAT. In Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications,
Vol. 336. IOS Press, 765-790. https://doi.org/10.3233/FAIA201003

Andreas Rossberg, Ben L. Titzer, Andreas Haas, Derek L. Schuff, Dan Gohman, Luke Wagner, Alon Zakai, J. F. Bastien,
and Michael Holman. 2018. Bringing the web up to speed with WebAssembly. Commun. ACM 61, 12 (2018), 107-115.
https://doi.org/10.1145/3282510

Olivier Roussel and Vasco M. Manquinho. 2021. Pseudo-Boolean and Cardinality Constraints. In Handbook of
Satisfiability. Frontiers in Artificial Intelligence and Applications, Vol. 336. IOS Press, 1087-1129. https://doi.org/10.
3233/FAIA201012

Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Jubi Taneja, and John Regehr. 2017. Souper:
A Synthesizing Superoptimizer. CoRR abs/1711.04422 (2017). arXiv:1711.04422 http://arxiv.org/abs/1711.04422

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization. In Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2013, Houston, TX, USA, March 16-20, 2013, Vivek Sarkar and
Rastislav Bodik (Eds.). ACM, 305-316. https://doi.org/10.1145/2451116.2451150

Shikhar Singh, Mengshi Zhang, and Sarfraz Khurshid. 2019. Learning Guided Enumerative Synthesis for Superop-
timization. In Model Checking Software - 26th International Symposium, SPIN 2019, Beijing, China, July 15-16, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11636), Fabrizio Biondi, Thomas Given-Wilson, and Axel Legay
(Eds.). Springer, 172-192. https://doi.org/10.1007/978-3-030-30923-7_10

Carsten Sinz. 2005. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In CP. 827-831. https:
//doi.org/10.1007/11564751_73

Martin Suda. 2014. Property Directed Reachability for Automated Planning. 7. Artif. Intell. Res. 50 (2014), 265-319.
https://doi.org/10.1613/JAIR.4231

Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. 2016. Efficient SAT Approach to Multi-Agent Path Finding
Under the Sum of Costs Objective. In ECAI (Frontiers in Artificial Intelligence and Applications, Vol. 285). 10S Press,
810-818. https://doi.org/10.3233/978-1-61499-672-9-810

Etherscan team. 2018. Etherscan. https://etherscan.io.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

https://doi.org/10.1007/978-3-319-98334-9_21
https://doi.org/10.1007/978-3-319-98334-9_21
https://doi.org/10.1007/978-3-642-39799-8_39
https://doi.org/10.1007/978-3-642-39799-8_39
https://doi.org/10.3233/FAIA200987
https://doi.org/10.3233/FAIA200987
https://dl.acm.org/citation.cfm?id=36194
https://dl.acm.org/citation.cfm?id=36194
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/3428245
https://doi.org/10.4230/LIPICS.SAT.2022.8
https://arxiv.org/abs/2005.05912
https://github.com/ethereum/solidity/issues/13158
https://github.com/ethereum/solidity/issues/13158
https://doi.org/10.24963/IJCAI.2018/189
https://doi.org/10.1109/BRAINS52497.2021.9569819
https://doi.org/10.1109/ICTAI.2013.13
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.3233/FAIA201003
https://doi.org/10.1145/3282510
https://doi.org/10.3233/FAIA201012
https://doi.org/10.3233/FAIA201012
https://arxiv.org/abs/1711.04422
http://arxiv.org/abs/1711.04422
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1007/978-3-030-30923-7_10
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/11564751_73
https://doi.org/10.1613/JAIR.4231
https://doi.org/10.3233/978-1-61499-672-9-810
https://etherscan.io

205:26 E. Albert, M. Garcia de la Banda, A. Hernandez-Cerezo, A. Ignatiev, A. Rubio and P. J. Stuckey

[62] Milk Road team. 2023. EthereumPrice. https://ethereumprice.org/history/?start=2019-02-28&end=2023-05-10&
currency=USD.

[63] Solidity team. 2022. Solidity documentation. https://docs.soliditylang.org/en/v0.8.17/.

[64] Solidity team. 2023. Optimizer of Solidity compiler. https://docs.soliditylang.org/en/latest/internals/optimizer.html.

[65] W3C. 2016. WebAssembly. https://webassembly.org/.

[66] Gavin Wood. 2019. Ethereum: A secure decentralised generalised transaction ledger.

[67] Jinqiang Yu, Alexey Ignatiev, Peter]J. Stuckey, and Pierre Le Bodic. 2021. Learning Optimal Decision Sets and Lists
with SAT. J. Artif. Intell. Res. 72 (2021), 1251-1279. https://doi.org/10.1613/JAIR.1.12719

[68] Ziyi Zhao, Jiliang Li, Zhou Su, and Yuyi Wang. 2023. GaSaver: A Static Analysis Tool for Saving Gas. IEEE Trans.
Sustain. Comput. 8, 2 (2023), 257-267. https://doi.org/10.1109/TSUSC.2022.3221444

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 205. Publication date: June 2024.

https://ethereumprice.org/history/?start=2019-02-28&end=2023-05-10¤cy=USD
https://ethereumprice.org/history/?start=2019-02-28&end=2023-05-10¤cy=USD
https://docs.soliditylang.org/en/v0.8.17/
https://docs.soliditylang.org/en/latest/internals/optimizer.html
https://webassembly.org/
https://doi.org/10.1613/JAIR.1.12719
https://doi.org/10.1109/TSUSC.2022.3221444

	Abstract
	1 Introduction
	2 Superoptimization of Stack Bytecode
	2.1 The General Stack Bytecode Language
	2.2 An Overview of the Superoptimization Algorithm
	2.3 Generation of Jump-free Sequences
	2.4 Symbolic Execution
	2.5 Instantiation of the Framework to EVM and Wasm

	3 The Greedy Algorithm
	3.1 Implementation of EVM Greedy in SuperStack
	3.2 Implementation of Wasm Greedy in SuperStack

	4 Tackling the Synthesis Problem with SAT
	4.1 Propositional Encoding
	4.2 Objective Functions
	4.3 Dominance and Redundant Constraints

	5 Experimental Evaluation
	6 Related Work and Conclusions
	Acknowledgments
	References

