
A Stochastic Non-CNF SAT Solver

Rafiq Muhammad and Peter J. Stuckey

NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Victoria 3010, Australia
[mrmu, pjs]@cs.mu.oz.au

Abstract. Stochastic local search techniques have been successful in
solving propositional satisfiability (SAT) problems encoded in conjunc-
tive normal form (CNF). Recently complete solvers have shown that
there are advantages to tackling propositional satisfiability problems in
a more expressive natural representation, since the conversion to CNF
can lose problem structure and introduce significantly more variables to
encode the problem. In this work we develop a non-CNF SAT solver
based on stochastic local search techniques. Crucially the system must
be able to represent how true a proposition is and how false it is, as
opposed to the usual stochastic methods which represent simply truth
or degree of falsity (penalty). Our preliminary experiments show that
on certain benchmarks the non-CNF local search solver can outperform
highly optimized CNF local search solvers as well as existing CNF and
non-CNF complete solvers.

1 Introduction

Modern propositional satisfiability (SAT) solvers are usually designed to solve
SAT formula encoded in conjunctive normal form (CNF). CNF solvers can be
disadvantageous for problems which are more naturally encoded as arbitrary
propositional formula. The conversion to CNF form may increase the size of the
formula exponentially, or significantly reduce the strength of the formulation.
The translation may introduce many new variables which increases the size of
the raw valuation space through which the solver must search.

Recently, interest has arisen in designing non-clausal satisfiability algorithms.
In 1993, Armando and Giunchiglia [1] introduced PTAUT, which was a general-
ization of Davis-Putnam-Logemann-Loveland (DPLL) algorithm [6], a complete
CNF SAT algorithm, to work on non-CNF formula. The primary drawback of
their implementation was the performance which was far below current imple-
mentations of CNF solvers based on the DPLL algorithm, because it failed to
exploit clever techniques and efficient data structures used in manipulating CNF
formulae, e.g.. [2, 3]. This work was improved by Giunchiglia and Sebastiani [4]
who devised a non-CNF approach able to exploit all the present and future
sophisticated technology of DPLL implementations. They converted the input
formula to CNF, but ensured that the DPLL procedure would not backtrack on

new variables introduced in CNF conversion hence maintaining the search space
of the original non-CNF formulae.

More recently, Thiffault et al. [5] generalized the DPLL to work directly on
non-CNF formulae. They argued that conversion to CNF is unnecessary and re-
sults in the drawback of losing structural information and increase in the search
space. They implemented a complete non-CNF DPLL like solver that is capable
of achieving an efficiency very similar to that of modern highly optimized CNF
solvers using techniques very similar to these solvers. They exploited the ad-
ditional structural information presented in non-CNF propositional formula to
achieve significant gains in solving power, to the point where on various bench-
marks their non-clausal solver outperforms the CNF solver it was based on.

Local search based SAT solvers can typically solve problems an order magni-
tude larger than those that can be handled by a complete solver. For CNF prob-
lems, GSAT [7] demonstrated that an incomplete SAT solver can solve many
hard problems much more efficiently than traditional complete solvers based on
DPLL. The success of GSAT gave birth to several variants based on stochastic
local search techniques, see [8]. Several authors have attempted to generalize
these techniques to non-CNF formula. Sebastiani [9] suggested how to modify
GSAT to be applied to non-CNF formula but the idea was not implemented.
Kautz et al. [10] introduced DAGSat, an improvement of WalkSAT in term of
handling of variable with dependencies. DAGSat still required formula in CNF,
but allowed handling of non-CNF formula without an increase in size. Later,
Stachniak [11] introduced polWSAT an evolution of WalkSAT [12] to handle
non-clausal formula, although it was restricted to formula using ∧, ∨ and ¬ in
negation normal form (where all negations appear on literals).

In this paper, we present a pure non-clausal solver based on stochastic local
search techniques. It works directly on arbitrary non-clausal formulae including
psuedo-Boolean constructs and other extended Boolean operators. The contri-
butions of this paper are:

– We present a new way of expressing the scoring function for evaluating a
valuation. We are not only able to define the “falsity” (or penalty) of a non
solution, but also the “truthfulness” of an assignment, that is, how true it
makes the result. This is required since we need to negate “truthfulness” to
obtain “falsity”. This complex scoring is necessary since we don’t restrict
ourselves to negation normal forms. It provides more accurate heuristic in-
formation to assist the local search process.

– We tested our solver on non-CNF benchmarks and demonstrate experimen-
tally that on some benchmarks, our incomplete non-clausal solver can out-
perform current incomplete clausal solvers as well as current complete non-
clausal solvers.

2 A Stochastic Non-Clausal Solver

Let φ be a propositional formula, our aim is to decide if φ is satisfiable. The
propositional formula is represented as a Boolean DAG where each internal node

ONMLHIJK∧[−2]

||
||

||
||

||
|

��
��
��
��
��
��
��
��
��
��ONMLHIJK⊕[−1]

PPPPPPPP

ONMLHIJK∧[+1]

nnnnnnnn

BB
BB

BB
BB

BB
B

ONMLHIJK∨[+3]

BB
BB

BB
BB

BB
B

ONMLHIJK∧[+1]

66
66

66
66

66
66

66
66

ONMLHIJK∨[+1]

PPPPPPPP

nnnnnnnn
ONMLHIJK∨[+1]

nnnnnnnn

ONMLHIJK¬[−1] ONMLHIJK¬[+1] ONMLHIJK¬[−1] ONMLHIJK¬[+1] ONMLHIJK¬[+1] ONMLHIJK¬[−1]

ONMLHIJKA[+1] ONMLHIJKB[−1] ONMLHIJKC[+1] ONMLHIJKD[−1] ONMLHIJKE[−1] ONMLHIJKF [+1]

Fig. 1. The propositional formula φ = (((¬A∨¬B∨¬C)∧¬D∧(¬E∨¬F))∧¬C∧((¬D∨
A ∨ ¬E)⊕ (C ∧ F))) with scores for the valuation {A,¬B, C,¬D,¬E, F} bracketed.

represents an (extended) Boolean operator and its children are sub-trees repre-
senting its operands. For example, Figure 1 represents the Boolean formula φ as
a DAG.

The aim of our algorithm is to find values for the variables such that will
result in the satisfiability of the propositional formula. For each assignment, a
score is computed for each node in the DAG to represent the state of satisfiability
of the corresponding propositional (sub-)formula.

2.1 Score

The notion of score plays a key role in determine the “distance” from the current
valuation to a satisfying one. We allow our scoring function to take positive and
negative values in order to enable our algorithm to express the “truthfulness” as
well as the “falsity” of the state of the truth assignment. All Boolean variables
(leaf nodes) have a score of either 1 (true) or (−1) false. For each internal
node we calculate the score as defined below. The calculations are such that: if
the Boolean DAG were a tree then a score of +n means that n variables must
change their value for the corresponding (sub-)formula to become false, while if
the score is −n then n variables must change their value for the corresponding
(sub-)formula to become true. Of course in practice the DAG is never a tree.

We will determine the score s0 for a node φ0, in terms of the scores s1, . . . sn

of its n children φ1, . . . φn.

NOT(¬) φ0 = ¬φ1

Not is the negation of the truth value of a variable, therefore the score for a
negated node, s0, is the negation of the score of its child: s0 = −(s1).

?>=<89:;∧
ooooooooo

��
��

PPPPPPPPP

::
::

[−6]

?>=<89:;+5 ?>=<89:;−2 ?>=<89:;−3 ?>=<89:;−1

?>=<89:;∧
ooooooooo

��
��

PPPPPPPPP

::
::

[+1]

?>=<89:;+5 ?>=<89:;+1 ?>=<89:;+2 ?>=<89:;+8

(a) (b)

Fig. 2. AND score (a) where the node is false and (b) where it is true

AND(∧) φ0 = φ1 ∧ · · · ∧ φn

An AND node (with n children) can only be true if all its children are true,
therefore, if the node is currently false, the score of the node is the sum of
negative children (Fig. 2(a)) and if the node is true, the score of the node is the
score of the child with minimum value (Fig. 2(b)).

s0 =
{∑

{si|1 ≤ i ≤ n, si < 0} ∃1 ≤ i ≤ n si < 0 (false)
min{si|1 ≤ i ≤ n} otherwise (true)

For example, in order to change the node in Fig. 2(a) to be true, we have to
change the nodes with [−2], [−3] and [−1] to have a positive score, hence the
score of the parent is [−6]. On the other hand, the score of the node in Fig. 2(b)
is [+1] because the minimum change to turn the node to false, is by turning the
truth value of the child with score [+1] to false.

OR(∨) φ0 = φ1 ∨ · · · ∨ φn

An OR node becomes true when any one of its children is true, and false if
all of its children are false, therefore, if the node is false, the score of the node
is the score of the child with maximum value and if the node is true, the score
of the node is the sum of positive children.

s0 =
{

max{si|1 ≤ i ≤ n} ∀1 ≤ i ≤ n si < 0 (false)∑
{si|1 ≤ i ≤ n, si > 0} otherwise (true)

XOR(⊕) φ0 = φ1 ⊕ · · · ⊕ φn

An XOR φ0 is true if the parity of the total number of true children is odd.
Simply flipping the truth value of any one of the children of φ0 will change the
parity from odd to even and vice versa. Hence the XOR node that is false has
a score equal to the negative of the smallest absolute value of any child score,
while if its true, the score is the smallest absolute value of the child score.

s0 =
{
−min{|si| |1 ≤ i ≤ n} |{si|1 ≤ i ≤ n, si > 0}| mod 2 = 0 (false)
+min{|si| |1 ≤ i ≤ n} otherwise (true)

For example, the XOR node in Fig. 3(a) is false because 2 of the children
are true (an even number). In order to make the node to be true, we have to
flip the truth value of one of the children. The least change required is to change
the [+2] child to be false, hence the score is [−2]. Fig. 3(b) shows the score of
an XOR node that is true.

?>=<89:;⊕
ooooooooo

��
��

OOOOOOOOOO

::
::

[−2]

?>=<89:;−5 ?>=<89:;+4 ?>=<89:;−3 ?>=<89:;+2

?>=<89:;⊕
ooooooooo

��
��

OOOOOOOOOO

::
::

[+2]

?>=<89:;−2 ?>=<89:;+4 ?>=<89:;+3 ?>=<89:;+5

(a) (b)

Fig. 3. XOR score (a) where the node is false and (b) where it is true

IFF(⇔) φ0 = φ1 ⇔ · · · ⇔ φn

Equivalent (IFF) is the opposite of XOR. An IFF node φ0 is true if the parity
of the total number of true children is even. The resulting score function is then:

s0 =
{
−min{|si| |1 ≤ i ≤ n} |{si|1 ≤ i ≤ n, si > 0}| mod 2 = 1 (false)
+min{|si| |1 ≤ i ≤ n} otherwise (true)

IMPLIES(⇒) φ0 = φ1 ⇒ φ2

Implication is a simple binary operator. An implication formula is false if
and only if the left operand is true and right operand is false. If the implication
node is false, then flipping either operand will turn the implication node to be
true. If the implication node is true, the cost of turning the node to false is the
sum of the cost of turning the left operand to true and the cost of turning the
right operand to false.

s0 =
{

max{−s1,+s2} s1 > 0 ∧ s2 < 0 (false)
max{s2, 0} −min{s1, 0} otherwise (true)

ATMOST(≤ k) φ0 = (φ1 + · · ·+ φn ≤ k)
An ATMOST formula φ0 with parameter k (≤ k) is true if at most k of its

n inputs are true. If the node is false, and currently k′ > k children are true,
we need to make false k′ − k more variables, so the score is negative of the
minimum sum required to do this. Similarly, if the node is true, and currently
k′ ≤ k children are true, we need to turn k − k′ + 1 children true to make it
false.

s0 =


−

∑
mink′−k T T = {si | 1 ≤ i ≤ n, si > 0},

k′ = |T |, k′ > k (false)
−

∑
maxk−k′+1{si | 1 ≤ i ≤ n} − T T = {si | 1 ≤ i ≤ n, si > 0},

k′ = |T |, k′ ≤ k (true)

where minl S returns the minimal l elements of S, that is a subset M of S of
cardinality l such that ∀x ∈ S − M.∀y ∈ M.x ≥ y. Similarly maxl returns the
maximal l elements of S.

For example, in Fig. 4(a), to change the node to be true, we need to change
two children to be false. The cheapest way of doing this is with the [+1] and
[+2] children. T = {+6,+4,+1,+2}, k′ = 4 and min2 T = {+1,+2}. Hence
the resulting score is [−3]. In Fig. 4(b), to change the node to be false, we
would need to make at least two more children true. T = {+6}, k′ = 1 and
max2{−4,−3,−2} = {−2,−3}. Hence the score is [+5].

GFED@ABC≤ 2

ooooooooo

��
��

PPPPPPPPPP

>>
>>

>
[−3]

?>=<89:;+6 ?>=<89:;+4 ?>=<89:;+1 ?>=<89:;+2

GFED@ABC≤ 2

ooooooooo

��
��

PPPPPPPPPP

>>
>>

>
[+5]

?>=<89:;+6 ?>=<89:;−4 ?>=<89:;−3 ?>=<89:;−2

(a) (b)

Fig. 4. ATMOST 2 score (a) where the node is false and (b) where it is true

ATLEAST(≥ k) φ0 = (φ1 + · · ·+ φn ≥ k)
The ATLEAST operator is similar to the ATMOST operator. The resulting

scoring function is thus a mirrored form.

s0 =


∑

maxk−k′{si | 1 ≤ i ≤ n} − T T = {si | 1 ≤ i ≤ n, si > 0},
k′ = |T |, k′ < k (false)∑

mink′−k+1 T T = {si | 1 ≤ i ≤ n, si > 0},
k′ = |T |, k′ ≥ k (true)

COUNT(≡ k) φ0 = (φ1 + · · ·+ φn = k)
The COUNT operator is simply a combination of the ATMOST and ATLEAST

operators, but it ends up with a slightly different form of scoring function, after
simplifying. If the node is false to make it true we need to flip truth values to
bring the count either up or down to k. To make it false from true we only have
to flip one truth value.

s0 =



∑
maxk−k′{si | 1 ≤ i ≤ n} − T T = {si | 1 ≤ i ≤ n, si > 0},

k′ = |T |, k′ < k (false)
−

∑
mink′−k T T = {si | 1 ≤ i ≤ n, si > 0},

k′ = |T |, k′ > k (false)
min{|si||1 ≤ i ≤ n} otherwise (true)

Other Operators There are also other operators defined in DIMACS non-clausal
style [13] such as NAND, NOR, and XNOR. These operators are the negation
of operators we have already defined. We can generate their scoring functions by
simply negating the corresponding versions: NAND = − AND, NOR = − OR,
and XNOR = − IFF.

2.2 Searching for a Solution

All local search based solvers work in essentially the same way. A candidate val-
uation for the variables is determined, and then the search looks for a “neighbor-
ing” valuation which is better. In SAT solvers the usual definition of neighboring
valuations, is those obtained by flipping the value of one Boolean variable. A val-
uation is considered better if it satisfies more clauses, or satisfies a greater sum
of weighted clauses. In the non-clausal solver the situation is the same. We have
a current valuation and its score for the overall formula. We look at neighboring

valuations which improve the score, attempting to drive the score to be positive
(and hence satisfying the root propositional formula).

We consider a search strategy similar to the approach used by WalkSAT [12]
and its extension to non-clausal solvers [11]. WalkSAT works by first selecting
an unsatisfied clause, and then selecting a variable in that clause for flipping.
A CNF formula is simply a root AND node above many OR nodes relating
to literals (variables or NOT variables sub trees). How do we generalize the
WalkSAT approach to an arbitrary formula? We consider it in this way. The
WalkSAT approach begins at the root and considers which child nodes could
improve the root score (a false child has a score of −1, and changing it will
improve the score of the AND parent) and randomly selects one. It then does
the same for the OR node (although in this case all children can improve the
score). Hence the generalization is clear. At node n we randomly select a child
node, for which flipping the truth value would move the nodes score towards
the opposite sign it has now. We continue this process until we reach a variable
node. This is the variable we then flip in the search process. Note that the
children that can improve a node are implicitly readable from the definition of
the scoring function. We flip the variables truth value and with probability p
accept the change if it is downhill (improves the score at the root), and with
probability 1− p accept the move whether it is downhill, uphill or flat. For our
experiments we found a value of p = 0.9 was best and use this value throughout
our experiments.

Examining the DAG shown in Figure 1. At the root the score of [−2] is the
sum of the negative children of [−1], so we randomly select one of them, say the
XOR node. Its score is as a result of both children being positive so we randomly
select one, say the OR node on the right. Its score is positive because of all three
children so we randomly choose one say ¬E. This is positive because of its child
E. So this is our variable for flipping.

3 Preliminary Experimental Results

We implemented our stochastic non-clausal SAT solver in C++ using the tech-
nology of one way constraints or invariants [14]. We compare our stochastic non-
CNF solver (SNCNFS) with WalkSAT [12] (an incomplete CNF solver), MiniSat
[15] (a complete CNF solver), and NoClause [5] (a complete non-CNF solver)
on several test suites. Since our solver is incomplete, we only considered formula
that is satisfiable. For the incomplete solvers (WalkSAT and SNCNFS) we used
a maximum flips of 250,000 and repeated each test 100 times. The initial starting
valuations were uniformly randomly generated. We used the Random strategy of
WalkSAT most similar to the search strategy defined above for SNCNFS. Since
flips in WalkSAT are substantially faster than those in SNCNFS, whenever SNC-
NFS solved a larger percentage of problems we increased the maximum flips for
WalkSAT to 10,000,000. The benchmarks where this occurred are marked as †.
For the complete solvers, we aborted if no solution is found after running for

Table 1. Comparative results for solvers on hard random formula

CNF Non-CNF

WALKSAT MiniSat SNCNFS NoClause

R #
Clause

%
Succ

Mean
Flips

Mean
Time(s)

Mean
Time(s)

#
Nodes

%
Succ

Mean
Flips

Mean
Time(s)

Mean
Time

1.6 8327 100 153 0.0009 0.0600 8743 100 434 0.2020 2.994
1.8 9333 100 219 0.0014 0.4100 9801 100 2448 1.0364 22.121
2.0 10388 100 700 0.0040 29.0000 10837 100 3256 1.7596 71.352
2.2 11494 100 1975 0.0116 — 11791 100 5282 3.2681 —
2.4 12508 100 9519 0.0406 — 12749 100 19596 13.4205 —
2.6 13491 100 56517 0.3773 — 13907 92 64783 51.0984 —

2.8† 14545 7 4543650 70.3112 — 14942 38 42775 37.3086 —
3.0† 15577 0 — — — 15904 0 — — —

— Max flips or max time exceeded.

two hours. In the tables, where solutions are found, we give the averages over
the successful runs only.

3.1 Hard Random Non-CNF Formulas

Randomly generated formulae provide a good test bed for evaluating the per-
formance of satisfiability algorithms. We used the random formula generator of
Navarro and Voronkov [16] which is based on a fixed shape model. The generator
is capable of generating formulae with different level of difficulty in non-CNF
as well as CNF format hence making it an ideal choice to test our stochas-
tic non-CNF solver. The difficulty and the satisfiability of the output formulae
is controlled by r the ratio of formulae-to-variables. Small r produces formu-
lae that are satisfiable and under-constrained, while large r results in formulae
that are unsatisfiable and over-constrained. The hardest problems appear in the
transition region where there are just enough constraints to make the problem
potentially unsatisfiable, but not too many to make it easy for a solver to de-
termine. We generated 200-variable random formulae of shape 〈3, 3, 2〉 with r
increasing by 0.2 within the range from 1.6 to 3.0.

The comparative results are shown in Table 1. For these problems the size
of the non-CNF formula is not substantially small than the CNF form, so there
is no advantage to the non-CNF solver in size. Clearly the the execution time
of SNCNFS are much longer than WalkSAT for the same number of flips, il-
lustrating the highly optimized implementation of WalkSAT. But SNCNFS is
capable of solving harder problems than WalkSAT, illustrating there is an ad-
vantage in treating the formula in the non-CNF form. For this class of problems
the complete solvers are unable to tackle the more difficult cases.

Table 2. Comparison of results on the CNF and Non-CNF encoding of MDP problem

CNF Non-CNF

WalkSAT Minisat SNCNFS

Problem #
Vars

Cls %
Succ

Mean
Flips

Mean
Time(s)

Time #
Vars

#
Nodes

%
Succ

Mean
Flips

Mean
Time(s)

par8-1† 350 1149 2 2988720.149 0.02 8 441 100 3227 0.1782
par16-1† 1015 3310 0 — — 0.1 16 1649 90 57471 7.0971
par32-1† 3176 10277 0 — — — 32 6369 — — —
par8-1-c 64 254 100 8516 0.0054 0.01 8 36 100 3123 0.0572
par16-1-c† 317 1264 0 — — 0.06 16 66 100 32284 1.1499
par32-1-c† 1315 5254 0 — — — 32 131 — — —

The trailing ‘c’ in the problem is the compressed version of the instance.
— Max flips or max time exceeded.

3.2 Minimal Disagreement Parity Problem

The Minimal Disagreement Parity (MDP) Problem [17] is a well-known class
of hard satisfiability problem. The advantage of a non-CNF encoding for these
problems is that we can maintain the encoding of XOR and use the ATMOST
gate to determine the correctness of the parity function, hence reducing the prob-
lem size significantly. We compare the non-CNF encoding versus the standard
CNF encoding. Table 2 shows the results of SNCNFS compared to WalkSAT
and MiniSat (we cannot apply NoClause since it does not support the AT-
MOST gate). Although we are unable to beat Minisat, SNCNFS can solve 16
bit instances which are beyond the capability of WalkSAT.1

4 Conclusions and Future Work

We have introduced an incomplete non-clausal solver based on stochastic lo-
cal search. This is the first work we are aware of which uses both negative and
positive scores for evaluating the degree of “truthfulness” or “falsity” of a propo-
sitional formula. Our experiments demonstrate that on certain benchmarks, our
stochastic local search non-clausal solver can out perform existing incomplete
CNF solver as well as complete CNF and non-CNF solvers. The results of our
preliminary experiments are very promising.

It would be interesting to find more complex non-clausal benchmarks to
experiment on, almost all SAT benchmarks are presently in CNF. The advantage
of a non-clausal solver should be more evident on large difficult benchmarks
that appear in non-clausal form. There remains a great deal of scope to explore
different strategies for selecting a neighborhood move. We could take into account
the magnitude of the children scores in weighting the random choice of child to
1 Systematic methods are known to work well on this class of problem. WalkSAT using

the Novelty strategy can solve the compressed version of 16 bits instance, but not
the uncompressed version [18].

take. We could also extend the approach to generate a candidate set of variables
to flip by keeping more than one child that can change the truth value, and
then picking the variable whose flipping leads to the best overall score for the
root node. We could add penalties to nodes, and learn penalties when we find
ourselves in local minima (as in DLM [20]). Finally, it would be worthwhile
reimplementing the algorithm in Comet [19] which provides efficient and built
in evaluation of invariants.

References

1. Armando, A., Giunchiglia, E.: Embedding complex decision procedures inside an
interactive theorem prover. Ann. Math. Artif. Intell. 8(3-4) (1993) 475–502

2. Crawford, J., Auton, L.: Experimental results on the crossover point in random
3-SAT. Artif. Intell. 81(1-2) (1996) 31–57

3. Zhang, H., Stickel, M.: Implementing the Davis-Putnam method. J. Autom. Rea-
soning 24(1/2) (2000) 277–296

4. Giunchiglia, E., Sebastiani, R.: Applying the Davis-Putnam procedure to non-
clausal formulas. In: AI*IA. (1999) 84–94

5. Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL
search. In: CP. (2004) 663–678

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7) (1962) 394–397

7. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: AAAI. (1992) 440–446

8. McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for invariants in local search.
In: AAAI/IAAI. (1997) 321–326

9. Sebastiani, R.: Applying GSAT to non-clausal formulas (research note). J. Artif.
Intell. Res. (JAIR) 1 (1994) 309–314

10. Kautz, H., Selman, B., McAllester, D.: Exploiting variable dependency in local
search. In Abstracts of the Poster Session of IJCAI-97 (1997)

11. Stachniak, Z.: Going non-clausal. In 5th International Symposium on Theory and
Applications of Satisfiability Testing (2002)

12. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In:
AAAI. (1994) 337–343

13. Bacchus, F., Walsh, T.: A non-CNF DIMACS style. Available from
http://www.satcompetition.org/2005/ (2005)

14. Van Hentenryck, P., Michel, L.: Localizer. Constraints 5 (2000) 41–82
15. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT. (2003) 502–518
16. Navarro, J.A., Voronkov, A.: Generation of hard non-clausal random satisfiability

problems. In: AAAI. (2005) 436–442
17. Crawford, J., Kearns, M., Schapire, R.: The minimal disagreement parity problem

as a hard satisfiability problem. unpublished manuscript (1995)
18. Hoos, H.H., Stützle, T.: Systematic vs. local search for sat. In: KI. (1999) 289–293
19. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press (2005)
20. Wah, B.W., Shang, Y.: A discrete lagrangian-based global-search method for solv-

ing satisfiability problems. J. of Global Optimization 12 (1998)

