Noname manuscript No.
(will be inserted by the editor)

Compiling CP Subproblems To MDDs and d-DNNF's

Diego de Una - Graeme Gange - Peter
Schachte - Peter J. Stuckey

the date of receipt and acceptance should be inserted later

Abstract Modeling discrete optimization problems is not straightforward. It is
often the case that precompiling a subproblem that involves only a few tightly
constrained variables as a table constraint can improve solving time. Nevertheless,
enumerating all the solutions of a subproblem into a table can be costly in time
and space. In this work we propose using Multivalued Decision Diagrams (MDDs)
and formulas in Deterministic Decomposable Negation Normal Form (d-DNNFs)
rather than tables to compute and store all solutions of a subproblem. This, in
turn, can be used to enhance the solver thanks to stronger propagation via specific
propagators for these structures. We show how to precompile part of a problem
into both these structures, which can then be injected back in the model by sub-
stituting the constraints it encodes, or simply adding it as a redundant constraint.
Furthermore, in the case of MDDs, they can also be used to create edge-valued
MDDs for optimization problems with an appropriate form. From our experiments
we conclude that all three techniques are valuable in their own right, and show
when each one should be chosen over the others.

1 Introduction

Even when using modern high level constraint programming modeling approaches
such as IBM OPL [58], MINIZINC [45] or Essence [26], building a good model of a
discrete optimization problem is challenging. Although a modeler may be able to
easily write a model that correctly captures the problem at hand, the efficiency of
this model may be far from the best possible. Hence model improvement meth-
ods are valuable. Approaches such as detecting symmetries [43] or missing global
constraints [41] are highly advantageous, but for many problems these refinements
may not be applicable. Precompilation [9, 23, 40], where the model is improved
during compilation, is an effective approach to model improvement.

Diego de Unia! - Graeme Gange! - Peter Schachte! - Peter J. Stuckey!»?

1. University of Melbourne

2. Data61 CSIRO

Email: {d.deunagomez@student.,gkgange@ schachte@,pstuckey@}unimelb.edu.au

2 Diego de Una et al.

One simple precompiling technique is to replace a subproblem by a table con-
straint representing the solutions of this subproblem [20, 21]. We say the sub-
problem is tablified. This can be highly effective both in improving naive models
and in improving models where some subproblem over a few variables is highly
constrained.

Although tablifying a model has a lot of value, and can be the best way of
precompiling part of a problem, it comes with limitations. An obvious one is that
the table can be huge, simply because there are too many solutions to the part of
the problem being precompiled. Furthermore, tables can contain a lot of repeated
“suffixes”. For example, many rows of a 100-column table could contain identical
values for the last 90 columns, and only the 10 first columns differ between those
rows. In that case, finding a data structure that can compress all those rows into
an object with only one common “suffix” for all the combinations of the first 10
columns could save up to 90% of memory. The problem with tables in this example
is twofold. First, there is a clear redundant use of memory, and second, a solver
would actually need to generate all those almost-identical rows, which is slower
than a data structure where rows could point to “commonly shared sub-rows”.

This prompts the question of what better data structure can be used. In this
paper we investigate alternatives to using tables as solution stores for precompil-
ing parts of Constraint Programming models. We choose to compare with Multi-
valued Decision Diagrams (MDD), which are well known in the CP community,
and Deterministic Decomposable Negation Normal Forms (d-DNNFs), which are
widespread in model counting for SAT to store solutions and then perform model
counting using these structures. We say that we mddify or d-dnnffy part of a model.
The goal of this compilation is to produce models with constraints that lead to
stronger propagation without the user needing to construct these complex struc-
tures manually. Note that our approach compiles part of a model directly into an
MDD or d-DNNF, and no intermediate data structures are needed. It is a general
CP model precompilation technique for arbitrary subproblems.

The contributions of this work are:

— The use of problem equivalence detection techniques to a new purpose: model
compilations. This is described in Section 3.4.

— A new caching key for the tree constraint. This is described in Section 3.4.

— A new way of handling fixed variables when compiling (cost-)MDDs from CP
models, compared to previous work. This is described in Section 4.1.

— An new algorithm to construct d-DNNF's from CP models that involve globals.
This is described in Section 4.3.

— Subsequently, a new approach to split globals, exemplified by an algorithm we
introduce to split tree to reduce the size of the d-DNNF's. This is described in
Section 4.4.

— An extensive set of experiments comparing tablification with compilation into
MDDs and d-DNNFs, as well as the use of Cost-MDDs, where we show the
value of this technique. (Section 5).

The paper is organized as follows. Section 2 presents relevant work on com-
pilation of CP (sub)problems in the form of Decision Diagrams (DDs) as well as
compilation of mostly SAT problems into Negation Normal Forms (NNFs). Sec-
tion 3 familiarizes the reader with MDDs, d-DNNF's and subproblem-equivalence
detection by hashing, which is a key component of the approach we use to compile

Compiling CP Subproblems To MDDs and d-DNNF's 3

subproblems into these structures. Section 4 presents the algorithms to compile
(parts of) problems into MDDs or d-DNNFs. Finally Section 5 presents a set of
experiments we performed to compare the different precompilation approaches.

2 Related Work
2.1 Precompilation Techniques

As announced in the introduction, Constraint Programming models sometimes
lack good modeling choices, and tools can be developed to automatically enhance
these models before they are solved, by detecting some features and converting
them into a better model for the solver. These are called precompilation techniques.

A good example of these techniques is the idea of detecting symmetries to
generate symmetry breaking constraints, by Puget [54] and later implemented
and improved by Mears et al [43]. This method allows finding symmetries on the
variables or values of a CSP, and is applicable either to individual CSP instances
or to models (regardless of the data that will be used for the model). Of course,
the latter is preferred, as this precompilation effort would only need to be done
once. Without entering in details, the method works by creating a novel graph
representation, called the full assignment graph, of the problem. This representation
is then pruned by establishing n-ary arc-consistency across the constraints and by
reducing the arity of constraints (using equivalent constraints of smaller arity).
It is proven in the paper that every graph automorphism on the full assignment
graph corresponds to symmetry in the original problem.

From the same research group comes the idea of globalizing models developed
by Leo et al [41]. In their paper, the authors develop a MINIZINC “Globalizer”, a
tool that allows the MINIZINC compiler to detect missed opportunities to use global
constraints in models. For example, it is able to detect that a set of dis-equalities
can be converted into an alldifferent constraint. This technique is nonetheless
non-automatic: it does not substitute parts of the model with global constraints,
it suggests global constraints that may or may not capture part of the problem
to the user through a GUI. For this method to work, the user must provide some
data files and the system will solve them to find properties on the solutions that
match some global constraints.

Later, the same researchers integrated whole-program optimization to their MINIZ-
INC compiler [40]. This is not so much a precompilation technique but rather a
precompilation framework. Nowadays, CP is turning towards high-level languages
such as IBM OPL [58], MiN1ZINC [45] or Essence [26] because of their natural mod-
eling approach. Nonetheless, compilers for modeling languages usually perform op-
timizations of the model while converting the model into a low-level representation
ready for the back-end solvers (such as FLarZinc). For that reason, only partial
information of the model is known at each step of the low-level model generation.
Leo and Tack [40] develop a framework to improve this by allowing whole-program
optimizaton in the MINIZINC compiler by compiling in multiple passes. The infor-
mation gained at each of the passes is used in later passes to improve the model.
Ideally, any precompilation technique can be used at each of these passes.

Another precompilation technique is variable elimination [23], where variables
that are not used or can be subsumed by other variables are eliminated from the

4 Diego de Una et al.

model in a precompilation effort. This showed to be beneficial in the experiments
by the authors, although this was only tested on SAT problems, to our knowl-
edge. Common expression elimination [16] is also consistently used in precompiling
CSPs, although it comes from the general compilers research area.

The most closely related work to this paper is the work on tablifying parts of
models by Dekker et al. [20, 21]. In this work, the authors introduce annotations
to the MINIZINC language to allow the user to convert a MINIZINC predicate into a
table constraint. In MINIZINC, predicates are a tool to capture complex constraints
in an abstract manner. They are the equivalent to a procedure in imperative
programming. They allow the modeler to capture a constraint that is, conceptually,
only one constraint but due to its complexity needs to be written as a composition
of multiple constraints.

We will mainly compare with this work by Dekker et al. [20, 21], because
our framework has the same goal, but uses alternative data structures to store
the contents of those tables. In that work, a predicate is solved (all its solutions
are determined) and converted into a table constraint that is then injected into
the model at each call of the predicate. Their results clearly show how compiling
predicates can yield better solving times for the model. While for the examples they
examine, building the tables does not require much time, we will show examples
where tablifying blows up, and hence the use of more compact representations can
be crucial.

We will also see that the idea of converting a table into an MDD [9] is also
inapplicable in many cases because building the table is impractical, and compiling
directly into an MDD (without intermediate structure) is much more efficient.

2.2 MDD Compilation

The idea of compiling subproblems or entire CP problems into decision diagrams
(whether they are BDDs or MDDs) is not new. Indeed, the book by Bergman
et al [6] already discusses this idea. In this subsection we discuss several works
that are related to compilation of subproblems as Decision Diagrams and we show
the differences between their systems and ours.

Perez et al. [51, 49] presented efficient algorithms for MDD-operations with
the goal of reducing the time to build MDDs. They show that using MDDs built
with these operations can be competitive with dedicated algorithms. This moti-
vates the idea of modeling complex constraints, as we will do in this paper, with
MDDs (or d-DNNFs) rather than having to create a specific propagator to achieve
good propagation for some constraint. Additionally, the aforementioned authors
summarize some approaches for building MDDs. These include building MDDs
from a table constraint (originally presented by Cheng and Yap [11]), from an au-
tomaton (i.e. a regular constraint), a pattern or a trie. None of these approaches
are what we are after because we want something as modular as table creation,
but more robust in memory consumption (as we will see in the experiments, it not
particularly hard to make the table approach explode in size). These papers by
Perez et al., although related, do not solve the problem we are tackling: we want
to build the MDD from a set of basic constraints that any modeler could write in
a modeling language like MINIZINC, not from a specific form of constraint like the
regular.

Compiling CP Subproblems To MDDs and d-DNNF's 5

The work presented by Koriche et al [38] is much more closely related to our
own work here. Indeed, their algorithm for compiling constraint networks into their
custom Multivalued Decomposable Decision Graphs (MDDG) language is quite
similar to the algorithms we present in this paper. There are some important differ-
ences though. Their cn2mddg compiler does not generalize to all global constraints.
As they mention the paper, they only support three globals (alldifferent, lin-
ear constraints and element). Arguably this limitation can be solved by extending
their compiler to other globals but this is a task that needs to be done every
time a new global is defined and, as we have seen in recent times, the number of
global constraints defined in the literature is constantly growing. In our case, we
only need to update the caching capabilities for new globals. Another difference
with that work, as we will see later in Section 4.1, is the way variables fixed by
propagation are treated compared to their algorithm. We believe our approach for
compiling parts of problems into MDDs is more flexible, and we provide a larger
number of experiments and comparisons with more competitive approaches (like
tables and d-DNNFs, rather than just the original models).

Cheng and Yap [10] introduced a representation for general n-ary constraints
called Constrained Decision Diagrams (CDDs). As they mention in their pa-
per, their approach aims for compact representations (even more than canonical
MDDs). The use they make of their data structure is to store solutions that can
then be presented to a user to filter manually. A good example of this would be to
solve a problem for a client, show the solutions and then the client can filter them
out based on some criteria that may not have been present in the original model.
Their compilation into CDDs is not intended as a precompilation that can be used
to enhance search like our work or that of Dekker et al [21]. Although it could be
used in this way, it would require a fair amount of work since we would need to
create a propagator for this CDD representation in our solver. Sadly, there are no
efficient algorithms known for propagating these data-structures.

On the other hand, MDD, cost-MDD and d-DNNF propagators (with expla-
nations) are well understood [27, 28, 29] so we decided to limit our scope to these
representations.

Hoda et al [32] create a pure MDD-based CP solver. Given a problem, they
construct an MDD that takes all the variables of the problem. Initially that MDD
is of width 1 (i.e., a “stick”) that allows more solutions than the problem permits.
Then, each constraint is propagated through the MDD to remove arcs that are
inconsistent with the constraints. This provides a tractable data structure that
models the original problem. The focus of their paper was the construction of the
MDD by propagating constraints in the MDD. This technique is presented under
the name compilation by separation by Bergman et al [6]. Note that constraints are
not propagated to a fixed point in that work; only two passes for each constraints
are performed. Because they were mapping an entire problem into an MDD, the
size of the latter could explode easily. For that reason, they consider approximate
MDDs where nodes are merged to keep a predefined width. This of course al-
lows for more solutions in the MDD than there are in the original problem. The
approximate MDD is then used as a “domain store”.

Earlier work by Andersen et al [1] constructs an MDD constraint store, much
like Hoda et al [32]. The main difference between these two approaches is that
Andersen et al [1] do not construct a pure MDD-based solver, but a hybrid one
where the MDD starts by being of width one and as the search advances the MDD

6 Diego de Una et al.

is refined by vertex splitting. Similarly, the MDD is always approximated to avoid
size explosion.

Our approach differs from these two papers in that we do not build an MDD
as a constraint store to capture an entire problem. Rather we focus on a subset
of variables to be compiled in the form of MDD or d-DNNF with the hope of en-
hancing the solving process. The goals are completely different. Our construction
method for the MDD is also substantially different, as we do not use construc-
tion by separation. Furthermore, our resulting MDD is exact (although it only
represents a part of the problem).

Work by Hadzic et al [31] and Bergman et al [3] also investigated compiling
problems into MDDs. The initial algorithms used to construct the MDDs in these
papers are very similar to the algorithm we use. In both those papers and the
present one, the MDD is built top-down using caching to detect equivalence of
nodes. The caching used by Hadzic et al [31] is specific to linear constraints and
the alldiff global (and detects fewer equivalences than the caching we use). The
authors propose alternative ways of subsuming this problem with incremental
algorithms and vertex-splitting approaches. The resulting MDD is approximated
to avoid size explosion as well. Bergman et al [3] apply the same algorithm to the
specific case of Set-Covering, where the caching is properly constructed to detect
more node equivalences for that specific problem. Even with efficient caching, the
MDD needs to be approximated due to its size.

The main difference between these two publications and the current paper is the
caching technique. We use the technique for subproblem dominance presented by
Chu et al [13]. This generalization solves several problems encountered in previous
research. Specifically, it can be applied to any problem, rather than only problems
with linear and alldiff or set-covering constraints. The combination of using
this caching technique and a reordering of the variables in our algorithms (as we
will see) allows detecting much more equivalence than their work. Another major
difference is that our MDDs are exact, and not approximate.

Other less closely related work [5, 15, 36] builds MDDs to use in Lagrangian
Decompositions, or specifically for scheduling problems and bin-packing problems.
The MDDs are not built in a generic way that could serve our purpose. We will
see examples of where compilation of cost-MDDs can be helpful for problems
where Lagrangian Decomposition is appropriate. Binary Decision Diagrams have
also been used [2, 4, 7], but either no generic automatic compilation was used, or
the compiled BDD was approximate and used only as a bounding technique for
branch-and-bound.

2.3 NNF Compilation

Deterministic Decomposable Negation Normal Forms (d-DNNFs), as well as other
forms of NNFs, are well known and widely used in model counting (#SAT prob-
lems) and knowledge compilation work, but unlike MDDs they have had much
less attention from the CP community. There is, nonetheless, a propagator for d-
DNNF constraints with explanations [27] available in the CHUFFED solver, which
we will be using.

Darwiche [17] worked on compiling CNF to d-DNNF. The algorithm presented
in his paper is somewhat similar to ours for d-DNNF's, but it is much simpler as

Compiling CP Subproblems To MDDs and d-DNNF's 7

its scope is limited to CNF formulae. Later on, Huang and Darwiche [33] worked
on compiling propositional theories (again CNF formulae) into different tractable
target languages, including d-DNNF's. This work differs from their previous work in
that they used the exhaustive version of the DPLL algorithm from SAT solvers in
order to construct a Free Binary Decision Diagram (FBDD) that is then converted
into a d-DNNF. This research yielded the c2d compiler from CNFs into d-DNNFs.
The work by Muise et al [44] starts from that research and further improved it,
yielding the Dsharp compiler.

Sang et al [56] published an improvement to model counting using the ZCHAFF
solver where they used caching and clause learning, just like we do (since CHUFFED
also implements clause learning, and we used caching). With an extra effort, their
work could be converted in a precompilation technique like ours, but this was not
their goal: their objective was to perform model counting, so the solutions were
never stored in a data structure. Furthermore, their model counting and caching
was targeted to SAT problems, and not to Constraint Programming, therefore it
could not have been used directly to achieve our task, due to the presence of global
constraints in CP models.

Another interesting application of knowledge compilation by Jha and Suciu [34]
looked into compiling database queries into d-DNNFs. Work in knowledge com-
pilation has also been used for probabilistic reasoning and inference via model
counting using d-DNNFs or related languages [39, 8.

A common component in all these works in knowledge compilation is the use
of caching very similar to the one we use ourselves [13]. Nonetheless, because all
this work is directed to propositional formulae and SAT, they did not need to deal
with global constraints as we have to. Furthermore, we have not found any work
that uses this compilation into d-DNNF's for the purpose we are using them, that
is, precompilation to enhance the solving process of a CP solver.

3 Preliminaries

Let = denote logical entailment and vars(O) the set of variables of object O. A
constraint problem P is a tuple (C, D), where D, the domain, is a set of unary
constraints, and C is a set of constraints such that vars(C) C vars(D). Each set
D and C is logically interpreted as the conjunction of its elements. We define Dy,
the restriction of D to a set of variables V, as {¢ € D|vars(c) C V}. We note
D(z) ={d | = d = Dy, } the set of values that « can take in domain D.

A vmap of P = (C,D) is of the form z + d, where d € D(z). A valuation 0 of
P over set of variables V C vars(D) is a set of vmaps of P with exactly one vmap
per variable in V. It is a mapping of variables to values.

The projection of valuation 6 over a set of variables U C vars(6) is the valuation
0y = {z — 6(z) | * € U}. We denote by fized(D) the set of fixed variables in
D and by fz(D) the associated valuation. We define fized(P) = fized(D) and
fz(P) = fz(D) when P = (C, D).

A valuation 6 is a solution of a constraint c if 6(c) holds, that is replacing the
variables in ¢ with the values given by 6 gives a true statement. A solution of P
is a valuation over vars(P) that satisfies every constraint in C. We let solns(P) be
the set of all its solutions.

8 Diego de Una et al.

Finally, we use 3y .F to denote Jvi.3vg---Jv,.F where F is a formula and
V is the set of variables {vi,v2,...,vn}. We define Vy .F similarly. Formally, a
predicate p(x) is a “macro” for a constraint formula which has a meaning defined
by Va.(p(x) < Jyars(r)\e-F) for some formula F. We assume (for the paper) that
fixing all variables & will cause propagation to fix the remaining variables. This
restriction is not required in the implementation but simplifies the algorithms.

3.1 Multivalued Decision Diagrams

Multivalued Decision Diagrams [6, 57] can be thought of as “compressed” decision
trees. An MDD m is a connected directed acyclic graph where nodes are layered
by their depth from the root. An MDD node n is either one of the terminals
TRUE or FALSE, or is of the form (z,[(v1,n1),..., (vg,nk)]) where = is a variable,

v1,...,v are integer values and ni,...,n; are MDD nodes. This represents k
labeled edges n =g, o, n = ny,. We let ¢ define the semantics of an MDD

node as ¢((z, [(vi,n1), .y (Vi n)])) = (x =v1 Ad(n1)) V-V (z = v A p(ny)) and
¢(TRUE) = true and ¢(FALSE) = false.

We will restrict attention to layered MDDs where each node n is in layer i (the
shortest path from the root to n) and each edge in a given layer is labeled by the
same variable. Each path from the root r of an MDD to TRUE represents a solution
of ¢(r). To simplify the presentation, we elide the FALSE node and all edges to it.

Ezample 1 Figure 1 shows an example of an MDD that captures the constraints
21+ 222 <5 Az 4+ 22 + 223 < 8 for {z1,z2,23} C1..3. O

The valuation

{z1— 1,22 — 1,23 — 2}

is a solution but

{z1— 1,22 — 2,23 — 3}

is not a solution, for example.

Fig. 1: Example of an MDD.

Global propagation algorithms for constraints represented by MDDs are well
understood (see e.g. [9, 48, 50, 52]) including versions with explanations [28].

3.2 Edge-valued MDDs

Cost-MDDs (or edge-valued MDDs, or weighted-MDDs) are a variation of MDDs
where each edge has a weight associated with it. The cost of the solution to an
MDD is the sum of the weights on the edges representing the path from the root
to TRUE. Cost-MDDs allow better branch-and-bound search when the cost is part

Compiling CP Subproblems To MDDs and d-DNNF's 9

of the objective since paths that cannot lead to better solutions can be pruned.
An example of cost-MDD is provided in Figure 2.

Similarly to regular MDDs, propagation algorithms for cost-MDDs already
exist (see e.g [22, 29]).

1 —
xr2 — The valuation
1[4] {xl — 1,&22'—)1,:03'—)2}

is a solution of cost 34+4+1=28

3 = ()
1[

Fig. 2: Example of a cost-MDD (costs are indicated in brackets).

3.3 Deterministic Decomposable Negation Normal Form Formulae (d-DNNF's)

d-DNNFs are a less common data structure in the CP community, but widely used
in solution counting literature [44].

A formula is considered to be in Negational Normal Form (NNF) if the only logic
operators used are A, V and — and the latter (logical negation) is only applied to
elementary variables (rather than sub-formulas).

An NNF is decomposable (DNNF) if, for all A operators, no variable appears
in both operands. That is, a formula Fjep A Frigny is DNNF if, and only if, both
formulas Fi.p and Frigpe are DNNF and vars(Fiep) N vars(Fright) = 0.

A DNNF is deterministic (-DNNF) if, for all v operators, the conjunction of
its operands is unsatisfiable. That is, a formula Fy.p V Fyigp,, is d-DNNF if, and only
if, both formulas Fier and Fpigp; are d-DNNF and Fiep A Fryigpe is unsatisfiable.

For clarity, d-DNNFs are often represented as diagrams. Figure 3 gives an
example of one.

Fig. 3: Example of an d-DNNF (formula (a Ab) V (ma Ab) A (¢ V (=c A d))).

10 Diego de Una et al.

Propagators for this type of formulae exist in CP. In our experiments we use
the one presented by Gange and Stuckey [27].

3.4 Detecting Subproblem Equivalence by Hashing

A key component of the algorithm to build structures that can store all the so-
lutions to a CSP efficiently is equivalence detection: we will need to detect when
we reach a state where the “remaining subproblem” is equivalent to a previously
seen “remaining subproblem”. If we detect this we can re-use parts of the data
structures we constructed previously.

As far as we are aware, the state of the art in subproblem dominance detection
in CP is the method of Chu et al [13]. In their paper, the authors describe how to
map a subproblem into a concise key that can be used to compare two subproblems.
The goal of their work was detecting dominance between subproblems, in order
to avoid exploring a subproblem that was already proved to contain no solutions.
We use their dominance detection to efficiently construct our solution stores.

The key definition and proposition we use are as follows. A subproblem P =
(C, D) dominates a subproblem P’ = (C,D’) if fized(D) = fized(D') = F and
3rCAD = 3pC AD. We say that P and P’ are equivalent if they dominate each
other.

Proposition 1 (from [13]) If P is equivalent to P’ then 6 € solns(P) iff 0,qys(p)\ fized(P)V
f2(P") fizeacpy € solns(P'). O

Hence if we build an MDD /d-DNNF encoding P, we can reuse the same struc-
ture to encode P’. In order to efficiently check that 3pC A D = 3pC A D', we use
Theorem 1.

Theorem 1 (from [13]) Let P = (C,D) and P’ = (C,D’) be subproblems where
fized(D) = fized(D') = F and U = vars(C) \ F, Then if Vc € C we have that
IpcAD' = 3pcA D and Db = Dy then P dominates P'. O

What this means is that to detect that two remaining subproblems are equiv-
alent we need to make sure that:

— The fixed variables are the same on both. We do not care about their value,
only whether they are fixed.

— The domains of the unfixed variables in both problems need to be the same.

— The projection of each constraint onto the unfixed variables has to be the same
in both problems.

Thus, any subproblem P can be projected into a key (F, [key(c, D) | ¢ € C], Dy).
The construction of those keys is described in detail by Chu et al [13], and thus we
will only discuss here the ones that we will be using. In addition, we will present
our key for the tree constraint, as it did not exist in previous works.

3.4.1 Key Construction
The examples that we will see in the experiments in Section 5 will use three types

of constraints: binary, linear and the tree constraint. For the two first ones, Chu
et al [13] provided the keys as follows.

Compiling CP Subproblems To MDDs and d-DNNF's 11

Binary Constraints Assuming that the propagator used in the solver has the prop-
erty that once one of the two variables is fixed, the domain of the other variable is
modified in a manner that the constraint will always be satisfied, i.e. the propa-
gator enforces arc consistency, then no key is needed for these constraints. This is
the case because i) if neither variable is fixed, this information is already available
in the key) if neither variable is fixed, the binary constraint at hand is satisfied
(otherwise it would have caused a failure) and i) if at least one variable is fixed,
the constraint is satisfied (by the propagation rules). Thus, in all cases, the key
would be the same, and therefore, no key is needed.

Linear Constraints The key for linear constraints ¢ = Z?:l a;x; < ap is defined by
ag — ZieFC a;x; where F. is the fixed variables involved in c. The intuition behind
this is that the gap between the right-hand-side and the current partial sum is
what matters to detect equivalence between two subproblems. Thus, if the gap
between the right hand side is 5, for example, it does not matter how the left hand
side reached the value ag — 5, only the fact that it reached that value. Example 2
illustrates this.

Ezample 2 Consider the problem of Example 1. The key for the subproblem P =
(C,D) where D = {1 = 1,22 = 2} would be kp = ({z1,z2}, [true,8§ —1 -2 =
5], {x3 € 1..3}). Now consider the subproblem P’ = (C,D’) where D' = {z; =
2,x3 = 1}. The key for P’ is kp: = ({x1, 22}, [true,8 —2—1 = 5], {3 € 1..3}). Thus
P and P’ are equivalent, as it can be seen in Figure 1. O

Tree Constraint No key representation of this constraint was ever introduced, so
we will be presenting it here. The motivation for choosing this global constraint
to be represented as a key is that later on (in Section 4.4.2) we will see how we
can split globals and we will use the tree constraint to demonstrate the value of
this technique in the experimental section (Section 5).

Recall the tree constraint is given a graph G and intends to build a subgraph
G of G such that G is a tree. To represent G, two sets of Boolean variables are
used: one for the nodes (whether a node of G is selected or not to be in G) and
another for the edges (whether an edge of G is selected or not to be in G). Namely
the tree constraint is:

tree(vs, es, G)

where vs is the set of Boolean variables for the nodes, es the set of Boolean variables
for the edges and G is a graph (that can be represented in any arbitrary manner).

Following the notation by De Ufia et al [19], during search, some edges/nodes
will be in-nodes/edges if they are chosen to be in the tree, out-nodes/edges if they
are chosen not to be in the tree or unfized otherwise.

Let T1 and T> be two partial assignments for the Boolean variables of the tree
constraint. The subproblems in the search tree below these partial assignments are
called, respectively, P1 and P>. We want to create a key that allows us to identify
whether P; and P> are equivalent.

Intuitively, we need all the in-nodes to be part of the key. This is because if
T contains node n, and n is still unfixed in T», there may be solution of P, that
does not involve n, but those solutions will not appear in P;. So this information
needs to be in the key.

12 Diego de Una et al.

Furthermore, let 71 have a set of in-edges connecting some in-nodes (they have
to be in-nodes by the tree propagation [19]). This creates a connected component
of in-nodes C;. The edges involved in this connected component are irrelevant.
The intuition behind this claim is that if we compress C; into a “meta-node”,
the problem remains the exact same: the rest of the tree needs to be connected
regardless of what is inside C. For this reason in-edges do not need to appear in the
key. This implies that in-nodes should appear in the key, grouped by connected
components, to be able to identify the “meta-nodes” both in 77 and 7. Both
should have the same “meta-nodes” in order for P; and P» to be equivalent.
We need to carefully represent a “meta-node” in a canonical way: we choose to
represent each ‘meta-node” with a list (JA|) ++A where A is the list of nodes in the
connected component sorted by a unique integer identifier. ++ is the concatenation
operator for lists. The representation of each “meta-node” is then concatenated.
An example of this can be seen in 4a, where the three nodes labeled 1, 2 and 3
become a “meta-node” regardless of how they were connected. Node 4 remains
on its own. Clearly, the two problems on the left of subfigure 4a are equivalent.
Their keys are (3,1,2,3,1,4). The bold numbers correspond to the sizes of each
connected component, for clarity.

The tree propagator removes edges that could form a cycle if they were in-
edges. These edges do not need to be in the key. The reason is that, for an edge
e to potentially create a cycle, the extremities (a,b) of such an edge need to be
connected to each other via in-edges. That is, the a and b are in the same connected
component, which is already represented in the key. As we said before, we do not
care about what edges are used in a connected component, since we can regard it
as a “meta-node”. Following the same reasoning we do not care about which edges
are not in the connected component.

Nonetheless, if 71 has an out-edge e that would not have formed a cycle (this
edge could not have been removed by the tree propagator given the propagation
rules [19]), and T still has e available, there may be solutions to P» that do not
exist in P;. Therefore we need to keep this information in the keys. To represent
these edges in the key, we use unique identifiers for them (positive integers) that
we negate to distinguish them for the part of the key corresponding to nodes. For
example, in Figure 4b, the key for the top figure is (3, 1,2, 3, 1,4, —5), but for the
bottom one is (3,1,2,3,1,4, —6). So, even if the rest of the key is the same, these
two problems are deemed not to be equivalent.

To sum up, the final key follows is a list matching (((|A|) ++A4)*) ++((—=1)*)
where I are integer identifiers for edges, and A are sorted lists of integer identifiers
for nodes that are connected by in-edges.

4 Compiling Subproblems

Our goal is to compile part of a problem into a language (MDD or d-DNNF) which
represents all the solutions to this subproblem, much like the work by Dekker
et al [21] which converts subproblems into table constraints. Our thesis is that
using a tablification approach can be impractical in some applications because
the table can explode in size, and can be slower to build than other alternatives.
Our choice of structures can build a smaller representation of the solutions of the
subproblem, and using caching we can do this with less work.

Compiling CP Subproblems To MDDs and d-DNNF's 13

/

\\G
L

N 6Q

e

@
®

(a) Connected components need to be rep- (b) Removed edges (edge 5 or 6) that do
resented in the key through the nodes they not form a cycle need to appear in the key
contain, not the edges involved in them. to distinguish these two cases.

Fig. 4: Example of key for the tree constraint. (‘—",__ . 7, ‘@, O are in-

edges, unfixed edges, out-edges, in-nodes and unfixed nodes respectively.)

4.1 Compiling to an MDD

Given a subproblem P = (C, D), Algorithm 1 describes our compilation of an MDD
for that problem. The function MDDIFY takes three arguments. The first argument
C' is the set of constraints being considered for building the MDD. The second, D,
is the current domain of all variables. The third argument, X C vars(C), is a list of
the variables in the order in which they should appear in the MDD. The algorithm
returns an MDD which represents the formula 3,450\ x CAD. For clarity, assume
that the variable problem_store is a global hash-table (initially empty).

Algorithm 1 Constructing MDD via propagation.

1: procedure MDDIFY(C, D, X)

2 D <« propagate(C, D) > Propagate constraints C' to fixed point
3 if D is a false domain then return FALSE

4 fbp < fized(D)N X > Variables fixed by propagation at this level
5: p « key(C, D) > Hash the remaining subproblem
6: if p € problem_store then

7 m < problem_store[p] > MDD representing remaining subproblem
8 m < m & MDD(D gpp) > Conjoin m with a “stick” MDD of fixed variables
9: return m

10: Y« X\ fop > Remove fixed variables
11: if Y =[] then m < TRUE

12: else

13: z <+ head(Y), R < tail(Y), m < FALSE

14: for all d € D(x) do

15: m < m | (MDD(z = d) & MDDIFY(C, DU {z =d},R))

16: problem_store[p] < m > Associate the remaining subproblem with the MDD
17: m < m & MDD(Dgpp) > Conjoin fixed variables
18: return m

The operations & and | over MDDs are the classical conjoin and disjoin oper-
ations defined for this data structure. The constructor Mmpp for an MDD simply
takes a mathematical expression and builds an MDD for it.

14 Diego de Una et al.

The algorithm works by keeping a map from keys for subproblems into already
computed MDDs for the remaining subproblem, or filling that same map if the
remaining subproblem has never been encountered before.

First, it propagates the last decision made (or propagates root-level information
in the first call). If this propagation results in unsatisfiability, the corresponding
MDD is FALSE. Otherwise, the problem is mapped into a key. This is done by using
the domains of variables and the constraints; details of this are presented by Chu
et al [13]. If the key matches a problem in the table, then the MDD associated
to that remaining subproblem is returned (line 9). If the key does not match a
subproblem (line 10), then we choose the next unfixed variable z in X. If there
are no more unfixed variables, then the remaining subproblem is empty and we
return the MDD TRUE. If not, we branch on each possible value of x and create an
MDD is a disjunction of the MDDs corresponding to each assignment. Note that
the MDD returned by the recursive call only considers the variables in R.

After branching on all values for z we store the MDD encoding the remaining
subproblem in the map.

There is one important detail in the algorithm regarding fixed variables. The
cache key key(C, D) only considers which variables are fixed by D and not their
values (except how they affect the constraints C'). When variables are fixed by
propagation, they may be fixed out of the sequence of variables X we are using to
build the MDD, but eventually the MDDs returned must constrain these variables
to their fixed values, respecting the variable order (by the definition of an MDD).
The MDD m we attach to key(C, D) represents the solutions for the remaining
subproblem (and hence only considers the variable sequence Y that are not fixed).
To return an MDD that considers the whole sequence X we build a “stick” MDD
representing the fixed value for each newly fixed variable (line 17), and conjoin
this with the MDD for the remaining subproblem.

A more straightforward approach to constructing MDDIFY is to attach the re-
turned MDD to key(C, D). But if we do this we may miss opportunities to reuse
MDDs as we will see in Example 3.

Ezample 3 Consider a subproblem with C = {—z1 + z3 = 2} and Dy = {z1 €
1.2,x9 € 1..2,23 € 3.4, 24 € 1..2} using the order X = [x1,z2,x3, z4].

The initial call MDDIFY(C, Do, X) finds no propagation, and calculates key
(0,1, Do), because binary constraints have no key [13], which has no entry in
problem _store. We choose z1 = 1 and make a recursive call MDDIFY(C, {z1 = 1,22 €
1.2,z3 € 3.4,z4 € 1..2},[x2,23,74]). Now propagation computes D1 = {z1 =
lyo € 1.2,z3 = 3,24 € 1.2} and fbp = {z3}; the key is k1 = ({z1,23},[], {22 €
1..2,z4 € 1..2}) which again has no entry. The remaining unfixed variables are
Y = [z2,x4]. We then choose z2 = 1 and make a recursive call MDDIFY(C, {z1 =
1,20 = 1,23 = 3,74 € 1.2}, [24]). After examining both possibilities for z4 we build
the MDD shown in Figure 5a attached to key ko = ({z1,22,x3},[], {za € 1..2}).
We then choose z2 = 2 and the recursive call MDDIFY(C, {z1 = 1,22 = 2,23 =
3,74 € 1..2},[z4]) reuses the MDD attached to k. After exploring all values of
x2, the MDD of Figure 5b is attached to ki, but the returned one is shown
in Figure 5c¢, with the fixed value for 3 = 3. When trying z1 = 2, the re-
cursive call MDDIFY(C,{z1 = 2,22 € 1..2,z3 € 3.4,z4 € 1..2},[v2,73,74]) com-
putes Dy = {z1 = 2,220 € 1..2,23 = 4,24 € 1..2} by propagation. The key is

Compiling CP Subproblems To MDDs and d-DNNF's 15

z2 - (O
1 ' 2
z3 = ()
3
4 - O z4 > ()
112 1 . 2
TRUE
(a) MDD for [z4] (b) MDD for [z2, z4]. (¢) MDD for [z2,z3 = 3, z4].

Fig. 5: Construction of an MDD with caching.

({z1,z3},[], {z2 € 1..2,z4 € 1..2}), which matches k1, thus returning the MDD in
Figure 5b to which the value x3 = 4 is inserted (line 8, with fop = {z3}).

If we instead did not delay inserting the fixed variable x3 we would not discover
a cache hit, and indeed the MDD of sub-figure 5c is not reusable. O

The example clearly shows how delaying the insertion of propagated variables
is key to reuse MDDs. This optimization can result in important differences in
MDD construction (e.g. ~2481k vs. ~1 million search nodes for one instance).

Note that the algorithms by Bergman et al [3] and Hadzic et al [31] are not
able to exploit this equivalence. First, their keys for D1 and D2 would not have
matched unlike the ones we use, developed by Chu et al [13], because their linear
constraint keys could not match (since in the approach we use, linear constraints
do not have keys, this problem is avoided). Secondly, if they had used the more
effective keys we use, their algorithms would need to be modified as ours, since the
stored MDDs could not have been reused: they would have stored the MDD from
Figure 5c¢ which, because it contains the assignment x3 = 3, cannot be reused in
situations where x3 # 3 (when zs = 4 and we compute the key D2 in our example).

The key benefit of mddification compared to tablification [21, 20], is that we
have to explore much less search space because of caching. Indeed, to construct
a table, all solutions must be retrieved, thus a much broader region of the search
space (all regions leading to satisfiable solutions at least) must be explored. In our
approach, the stored MDDs represent parts of solutions that can be “plugged-in”
to other partial assignments. As we saw in Example 3 we never had to explore
x1 = 1Axzy =2 or 1 = 2 to retrieve the 6 solutions in those subspaces. In Section
4.3 we will see we also have this same advantage for the compilation of d-DNNFs.

It may not be obvious but Algorithm 1 does not require that X includes
all variables in vars(C). In this case the algorithm produces an MDD that en-
codes glvars(C)\XC A D, where 3 is the quasi-projection introduced by Chu and
Stuckey [12]. Now 34750\ xC A D = yarsoy\ xC A D, hence the resulting MDD
does not remove any solutions of the original problem, and hence can be safely
added to the original model. It is also guaranteed that évmw)\xc A D = ¢ for
all ¢ where vars(c) C X, so when adding the quasi-projection we can remove all
constraints all of whose variables appear in X since they will be made redundant
by the MDD of the quasi-projection.

16 Diego de Una et al.

4.2 Compiling a Cost-MDD

We can reuse Algorithm 1 for compiling a Cost-MDD under certain circumstances.
Given an objective expression o = 3~ - v 4e p(y)(Wza X (z = d)) if we build an MDD
for the problem (C, D) for variable sequence X, we can convert this to a cost-MDD
for calculating the value of o by adding weight w,4 to each edge labeled x = d in
the resulting MDD.

4.3 Compiling to d-DNNFs

The algorithm to build d-DNNF's from a set of constraints and variables is similar
to the one to build MDDs. The major differences is that a fixed order of variables is
not required (unlike in the case of MDDs). Therefore we do not need to worry about
reinserting the set of variables fbp in the data structure as we did in Algorithm 1.
The variables fixed by propagation will instead just be immediately added to the
d-DNNF.

Algorithm 2 provides pseudocode for the compilation of d-DNNFs from a set
of variables and constraints. The arguments are the same as for Algorithm 1.

Algorithm 2 Constructing d-DNNF via propagation.

1: procedure DDNNFFY(C, D, X)

2 node <— TRUE

3 D <« propagate(C, D) > Propagate constraints C' to fixed point
4 if D is a false domain then return FALSE

5: fbp < fized(D)N X > Variables fixed by propagation at this level
6: for all f € fbp do

7 node < node A [f = val(f)] > Append leaves enforcing propagated values
8 p « key(C, D) > Hash the remaining subproblem
9: if p € problem_store then

10: d < problem_store[p] > d-DNNF representing remaining subproblem
11: node < node N\ d

12: return node

13: Z — NEXTVAR(X) > Next variable to branch on
14: children < FALSE

15: if x = 1 then

16: return node

17: else

18: for all d € D(x) do

19: children < children V (DDNNFFY(C, D U {z = d}, X) A [z = d])
20: problem_store[p] < children
21: return node A children

The algorithm constructs a d-DNNF node and returns it. First, we propagate
the current decisions. If this produces a false domain, then there is no solution, and
the returned node is simply FALSE. If this was conjoined to some other formula,
then the conjoined formula would obviously become false as well. The variables
that have been fixed at the current decision level are then retrieved and directly
injected in the node d-DNNF. For MDDs we needed to inject them afterwards
(in lines 8 and 17 of Algorithm 1). Here, the propagated assignments are just
conjoined to the node in line 7.

Compiling CP Subproblems To MDDs and d-DNNF's 17

Similarly to the MDD compilation, a lookup is done in the problem cache, and
if found, the corresponding d-DNNF is returned, as it was already constructed.
Notice how the returned d-DNNF is first conjoined with the node d-DNNF, which
at this point may contain the assignments of variables fixed by propagation (in
line 11).

Otherwise, a new variable z is chosen to be branched on. The choice of variable
is wide open here, as there is no strict ordering in d-DNNF's. If no variable remains,
then node can be returned. Otherwise, we iteratively assign a different value to x
and recurse in the construction of the d-DNNF. The d-DNNF corresponding to the
disjunction of recursive calls is stored for possible reuse. The returned d-DNNF is
that same disjunction conjoint with the fixed variables (already in node).

Ezample 4 Consider the same problem as in 3: C = {—z1 + 23 = 2} and Dy =
{z1 €1.2,22 € 1.2,23 € 3.4,24 € 1..2}. For simplicity we will use the same order
X = [z1, 2,23, x4], but note that this is not necessary.

The initial call DDNNFFY(C, Do, X) finds no propagation, and calculates key
(@,[], Do), which has no entry in problem_store (just as earlier). We first branch on
x1 = 1 and make a recursive call DDNNFFY(C,{z1 = 1,22 € 1..2,2z3 € 3..4,24 €
1..2}, X). Now propagation computes D1 = {z1 = 1,29 € 1..2,z3 = 3,24 € 1..2}
and fbp = {x3}. The partially constructed d-DNNF is shown in Figure 6a (the
recursive call will attach d-DNNF's to the edge shown in dashes); the key is k1 =
({z1,2z3},[], {z2 € 1..2,xz4 € 1..2}) which again has no entry.

We then choose z2 = 1 and make a recursive call DDNNFFY(C, {z1 = 1,22 =
1,z3 = 3,4 € 1.2}, X). After examining both possibilities for x4 we build the d-
DNNF shown in Figure 6b attached to key k2 = ({1, 22,23}, [], {z4 € 1..2}). When
the recursive call ends, this d-DNNF is conjoined to [z2 = 1] yielding the circled
part of Figure 6¢. We then choose z2 = 2 and the recursive call DDNNFFY(C, {z1 =
1,m9 = 2,23 = 3,z4 € 1.2}, X) reuses the d-DNNF attached to k. This is shown
in Figure 6¢ by a gray dashed arrow. After exploring all values of z2, the d-
DDNF of Figure 6¢ is attached to ki, but the returned one is shown in Figure
6a, with the fixed value for z3 (the dashed line connects to the root of Figure
6¢). When trying z; = 2, the recursive call DDNNFFY(C, {z1 = 2,22 € 1..2,23 €
3.4,24 € 1.2}, [x2,73,74]) computes Dy = {z1 = 2,22 € 1.2,x3 = 4,24 € 1.2} by
propagation. The key is ({z1,z3},[], {z2 € 1..2,z4 € 1..2}), which matches k1, thus
returning the d-DNNF in Figure 6¢ to which the value z3 = 4 is conjoined.

The final d-DNNF will have a V root with two A children, each of them with
3 children, two of which are the values of 1 and z3 on each branch and the third
being the d-DNNF in Figure 6c¢.

Notice that similar behavior as for MDDs, where the d-DNNF stored for reuse
is not necessarily the same as the one returned by the algorithm. 0O

4.4 Splitting Subproblems for d-DNNFs

Because d-DNNF's are decomposable, it is natural to try to decompose the problem.
Imagine a CSP composed of two completely independent parts: then the solution
to the CSP is the conjunction of the solutions of all the parts. d-DNNFs are the
perfect structure for this kind of behavior, if we can detect this independence of
problems.

18 Diego de Una et al.

(a) Partial d-DNNF af- (b) d-DNNF for x4 (c) d-DNNF for [z2, z4] -
ter propagation of 3.

Fig. 6: Construction of d-DNNF with caching

D | e e e

Fig. 7: Example of d-DNNF when splitting subproblems.

Ezample 5 Looking back at Example 4, variables zo and x4 are completely inde-
pendent from the rest of the problem. Therefore there are 3 independent sets of
variables to this problem {z1,z3}, {z2} and {z4}. The d-DNNF we would want
for this would be as shown below in Figure 7. O

4.4.1 Detecting Independent Subproblems

A simple way to detect subproblems as being independent is to simply build the
Constraints Graph after each decision. The Constraints Graph is a graphical rep-
resentation of the Constraint Problem at hand. Nodes are variables of the problem,
and edges connect variables that are related through constraints in the problem.
This is commonly used in the compilation of d-DNNF's that we have seen in Section
2.

In our implementation, we consider all propagators and clauses to be keyable
objects. All keyable objects produce a key (possibly empty) for subproblem equiv-
alence (as seen in Section 3.4). In addition, we make all keyable objects update a
disjoint-set data structure (also known as union-find) of variables at the time of
producing a key. This introduces little overhead, since both tasks can usually be
performed at the exact same time. By default, all keyable objects will unite all
variables involved with the keyable itself. For instance, for a clause, all Boolean
variables involved in the clause are united. Similarly, all variables in each propaga-
tor are united. In addition, as our implementation is in the CHUFFED solver, which
implements no-good learning, integer variables are also united with the literals

Compiling CP Subproblems To MDDs and d-DNNF's 19

associated to them. Thanks to this, we build an internal Constraints Graph after
each decision.

The goal is to then consider each connected component of the Constraints
Graph separately, as they are indeed independent problems. The expected d-
DNNF's will look similar to the one in Figure 7, where the independent subproblems
are all children of an “A” node.

4.4.2 Splitting Global Constraints

Unlike CNF's or SAT problems, CP has global constraints. Sometimes, after some
decisions are made, it is possible that some global constraints can split their vari-
ables into independent connected components of the Constraints Graph. Because
these constraints are “opaque” they cannot be split directly as we do with other
constraints. That is, we can separate them from each other, but it is not obvious
how to split the inside of a global constraint.

Ezample 6 Consider the constraint alldifferent([a,b, c,d,€]) where D(a) = D(b) =
[0..5], D(d) = D(e) = [6..10] and D(c) = [0..10]. If we make the decision that
¢ < 5 then the constraint can be split into two globals: alidifferent([a,b,c]) A
alldifferent([d,e]). O

This is something that each global needs to implement, as it cannot be gener-
alized for all globals.

Fages et al [25] formalized the idea of splitting globals. They showed it is very
useful even simply for reducing the propagation time, arguing that propagating on
many “smaller” constraints is faster than propagating on few “big” constraints.
They showed how to split the alldifferent constraint as well as the cumulative
constraint. In their paper, though, their algorithm does not require that the split-
ting is into disjoint sets of variables. That is, they can split the variables involved
in an alldifferent in a set of sets G = {51, S2, ..., Sn} such that 3i,5,5; N S; # 0.
In our case we can’t have this, since the d-DNNF needs to split into independent
set of variables. But this is a minor difference.

We have implemented the global splitting for three globals, as follows.

1. alldifferent [25]: the variables are split into groups by overlapping domains.
That is, if the intersection of the domain of two variables is empty, then the
variables are not united at this stage (note that some other constraint may
unite them).

2. minimum: this constraint enforces that a variable y takes the value of the
smallest variable in an array = of integer variables. The split here is also trivial:
only the variables in z whose domain overlaps the domain of y are united.

3. tree [19]: this constraint enforces a graph to be a tree. An articulation node is a
node that, if removed, splits a graph into at least two “induced” disconnected
subgraphs. As shown by De Una et al [19], these nodes need to be in the
solution tree. The solution to a tree constraint with an articulation node is the
conjunction of the solutions to the tree constraint on each “induced” subgraph.
Therefore, the nodes in each “induced” subgraph are connected to each other,
but not across subgraphs.

20 Diego de Una et al.

As an anecdotal result, for one alldifferent constraint with 10 variables where
the domains of the even-numbered variables is 1..5 and the domain of the odd-
numbered variables is 6..10 except that the first variable had domain 1..10 we
saw a huge difference in size. The d-DNNF built using splitting had 635 nodes,
whereas the one without splitting the alldifferent global had 5461 nodes! In the
first case, the d-DNNF split in 4 rapidly (first in 2, depending on the value of
the 1..10 variable, and once that decision was made, there are two independent
conjoined d-DNNFs). In the second case, the d-DNNF was much more intricate
and hard to visualize.

Once we have this ability to split a problem into smaller subproblems, we can
also cache them independently, as shown in Algorithm 3. Notice in this version,
there is a loop through all the independent problems, and each one of them is
treated individually (each has a key and its own set of variables). The call to key
was changed to a call to a split function that, in turn, calls a function for each
propagator that produces a key and updates a union-find structure. We saw no
overhead from updating the union-find. The results section backs this claim.

Algorithm 3 Constructing d-DNNF via propagation.

1: procedure DDNNFFY(C, D, X)

2 node <— TRUE

3 D <« propagate(C, D) > Propagate constraints C' to fixed point
4 if D is a false domain then return FALSE
5: fbp < fized(D)N X > Variables fixed by propagation at this level
6: for all f € fbop do
7 node < node A [f = val(f)] > Append leaves enforcing propagated values
8 pbs «— split(C, D) > Split into independent subproblems
9: for all pb € pbs do

10: if pb.key € problem_store then

11: d <+ problem_store[pb.key]

12: node < node N\ d

13: continue

14: Z — NEXTVAR(pb.vars) > Next variable to branch on for this subproblem
15: if x = 1 then > No more variables
16: return node

17: else

18: children < FALSE

19: for all d € D(z) do

20: children < children V (DDNNFFY(C, D U {z = d}, X) A [z = d])

21: problem_store[p.key| < children

22: node < node A children

23: return node

4.4.8 Variable Selection

As said in the introduction, d-DNNFs are a well known data structure in the
fields of model counting. The notion of splitting the problem into independent
subproblems is also well known in that field. It is therefore natural that researchers
have investigated search strategies to be able to enhance this splitting of problems.

We implement the Variable State Aware Decaying Sum (VSADS) strategy,
which is a combination of Variable State Independent Decaying Sum (VSIDS)

Compiling CP Subproblems To MDDs and d-DNNF's 21

and Dynamic Largest Combined Sum (DLCS). It was introduced by Davies and
Bacchus [18] and a thorough explanation can be found there. All our experi-
ments used this strategy to generate the d-DNNFs (using the same strategy meta-
parameters as Davies and Bacchus [18]). The call to NEXTVAR() in Algorithm 2
uses this strategy.

5 Experiments Descriptions and Results

This section first describes the problem chosen to evaluate these precompilation
techniques, then follows the experimental results. The results are divided in three
major parts. First, we evaluate compilation time in Section 5.2.1, that is the time to
precompile part of a model as a table, MDD or d-DNNF. Section 5.2.2 studies the
benefits of splitting subproblems and globals as described in Section 4.4. Finally
we compare the net benefit of the three precompilation techniques in Section 5.2.3.
All instances are available online.!

For most of our experiments, we start with a MINIZINC model to which we
added an annotation mddify or ddnnffy in the declaration of the variables to be
precompiled. At this stage, this is an ad-hoc solution that is only supported in
Chuffed (since this is the solver we use in our prototype) which reads this annota-
tion in the generated FLATZINC file and will do precompilation rather than solving.
Ideally, this process will be automated with an annotation within the MINIZINC
compiler much like the work by Dekker et al [21].

Most of our test cases come from the paper by Dekker et al [21] and are a direct
comparison to their work. The “Shift Scheduling” and “Concert Hall” problems
(Section 5.1.6) were chosen as examples of scheduling problem, which is a typical
application of Constraint Programming. The “All-Trees” (Section 5.1.8) problem
was created to demonstrate the value of splitting globals. The instances, though,
are standard amongst the Steiner Tree problem instances. “Fox Geese Corn” and
Progressive Graph Coloring (Sections 5.1.3 and 5.1.5) were chosen to showcase
how for even simple problems, the use of tables can be inadequate.

5.1 Problems Description
5.1.1 Black-Hole

The well known Black-Hole [30, 47] problem can be stated as follows. We are given
17 piles of 3 cards, and the Ace of Spades as the starting point of the “black-hole”.
The player needs to move the top of a pile onto the black hole until all the cards
are on the black-hole. The card to be moved must be one less or one more than
the current top of the black-hole, regardless of suit. The predicate ensuring that
two cards are adjacent is shown in Figure 8.

For this problem, we separate the predicate from the problem and build an
MDD or d-DNNF that ensures two cards are adjacent. The variables of our so-
lution store are the parameters of the predicate. The body of the predicate is
then substituted by the call to the global corresponding to either encoding. The

1 https://people.eng.unimelb.edu.au/pstuckey/mdd_ddnnf_precomp/mdd_ddnnf_precomp.zip

22 Diego de Una et al.

predicate adjacent(uar 1..52: a, war 1..52: b) =
((a-b) in {13*i+1 | i in -4..3} union {13*i-1 | i in -3..4});

Fig. 8: MiN1ZINC Predicate for Black-Hole

MDD/d-DNNF has two variables of domains 1..52. We used 21 instances from
Dekker et al [21].

5.1.2 Block Party Metacube

The Block-Party Metacube Problem [21] can be defined as follows. Cubes have
icons on each corner of each side, which have 3 attributes: shape, color and pattern.
A metacube is an arrangement of 8 of these cubes that forms a cube (i.e. 2 x 2 x 2
cubes). A block-party metacube is formed when the 4 icons on the center of each
face of the metacube are all identical (in all 3 attributes) or have all attributes
different. The full model for this problem can be found in [20]. As part of the model,
a predicate is defined to link the identifier of each cube to the three icons of that
cube that are on the center of a face of the metacube, for all the possible rotations
of each cube. The predicate was presented and tablified by Dekker et al [21] and
is shown in Figure 9. The annotated variables are the arguments, so there will be
4 variables in the MDD /d-DNNF, each with a domain 0..63 (there are 64 possible
symbols). We used 14 instances from [21].

predicate link_cube_and_symbols(array [1..4] of war 0..63: cs) =
let { war 1..24: pos, war int: cube = cs[1],} in
forall (i in 1..3) (datalcube, pplpos, ill==cs[i+1]);

Fig. 9: MiN1ZINC Predicate for Block-Party

5.1.8 Fox Geese Corn (FGC)

This is a generalization of the famous Fox-Goose-Corn puzzle. In this version, a
farmer wants to transport f foxes, g geese and ¢ bags of corn from the west to the
east side of a river. She has a boat with a capacity available for her to move some
of the goods at once while the rest remain on shore. She can go back and forth to
bring as many goods as she wants to the east. Nonetheless, some rules apply to the
goods that are not being supervised on either side while the farmer is on the boat:
1) If only foxes and bags of corn are sitting on a shore, then a fox dies by eating
a bag of corn; i) If there are foxes and geese, and the foxes outnumber the geese,
one fox dies; i) On the other hand, if the geese are not outnumbered, each fox
kills one goose; iw) If there is no fox, and the geese outnumber the bags, a goose
dies and one bag is eaten; v) On the other hand, if the corn is not outnumbered,
each goose eats a bag.

Compiling CP Subproblems To MDDs and d-DNNF's 23

The farmer must maximize the profit (there is a price for each good) from the
surviving goods on the east. Although she could do any number of trips, there is
an optimal number of trips ¢ after which it is worth abandoning goods on the west
and continue her journey with the goods on the east. The natural way of modeling
this is by defining a predicate for the above rules and apply the predicate for trips
before ¢. It will update the number of foxes, geese and corn bags for the next
time slice. After time ¢, the predicate is not applied, as she is not crossing the
river anymore. Thus the predicate is reified by a condition dependent on ¢. This is
precisely the model we used. The precompiled predicate has 7 variables (3 for the
state before the travel, 3 for the state after the travel, and a Boolean to turn on
and off the constraint). Their domains will be highly dependent on the instances:
we use 11 instances with domains ranging between 5 and 27 for each variable. The
predicate’s definition is in Figure 10.

predicate alone(war bool: reif, war 0..f: fox0O, war O..f: foxl,
var 0..g: geese0, war 0..g: geesel, war O0..c: cormO,
var 0..c: cornl) =
if reif == true then
if fox0 = 0 /\ geese0 = 0
\/ fox0 = 0 /\ corn0 = 0
\/ geese0 = 0 /\ corn0 = 0
\/ fox0 < 0 \/ geese0 < O\/ corn0 < O then

foxl = fox0 /\ geesel = geeseO /\ cornl = corn0
elseif fox0 > 0 /\ geese0 > O then
cornl = corn0

/\ if fox0 > geese0 then
foxl = fox0 - 1 /\ geesel = geesel
else
foxl = fox0 /\ geesel = geese0 - fox0
endif
elseif geese0 = 0 /\ fox0O > O /\ corn0O > O then
foxl = fox0 - 1 /\ geesel = 0 /\ cornl = corn0 - 1

else
foxl =0
/\ if geese0 <= corn0O then
cornl = corn0 - geese0 /\ geesel = geesel
else
cornl = corn0 - 1 /\ geesel = geese0 - 1
endif
endif

else true endif;

Fig. 10: MiN1ZINC Predicate for Fox-Geese-Corn

5.1.4 Water Bucket

This is another classic puzzle. Given a set of buckets (or jars) of water (some
initially filled, some not), and a target water level for each bucket, transfer the
initially contained water into other buckets to reach the target levels. The difficulty
lies in the fact that we cannot stop pouring water anytime we please, but only when
either the receiving bucket is full or the pouring bucket is empty. The objective is
to achieve the final levels in as few transfers as possible.

24 Diego de Una et al.

The model uses a predicate that represents the transition of states of the
buckets at a given time when choosing which buckets to transfer, Figure 11. There
will be 2 x j 42 variables (where j is the number of buckets). The domains depend
on each instance, but the biggest domain for any variable across all 4 instances we
used is 0..12 with up to 4 buckets.

predicate transfer (array [BUCKET] of wvar PINT: state_b, array[BUCKET] of war
PINT: state_a, wvar BUCKET: from, wvar BUCKET: to) =
(state_b = final /\ state_a = final /\ from = 1 /\ to = 1) \/

(forall(b in BUCKET where b != from /\ b != to)
(state_al[b]l = state_b[bl) /\
[state_al[from],state_al[to]l]] = pour(state_b[from], capacity

[from], state_b[to], capacityl[tol));

function array[l..Q] of war PINT: pour(var int: from_b, wvar int: from_cap,
var int: to_b, wvar int: to_cap) =
let { war PINT: amount = min(from_b,to_cap - to_b); } in
[from_b - amount, to_b + amount];

Fig. 11: MIN1ZINC Predicate for Water-Bucket

5.1.5 Progressive Graph Coloring (PGC)

We introduced this problem for our tests. Given a graph of n nodes, an initial
coloring with ¢ colors and a target coloring, change the color of at most k nodes
at each step to reach the target coloring in as few steps as possible maintaining a
valid coloring at all times. A valid coloring is one where any two adjacent nodes
are not assigned the same color.

This is modeled with a “valid coloring” predicate, called at each step, shown
in Figure 12. The variables taken in the predicate will be one for each node, all
with domains 1..c. We build the graphs using Erdos-Rényi’s model [24] with the
probability of an edge existing being 0.5 for 15-node graphs, and 0.2 for 25-node
graphs.

predicate valid_coloring(array [NODES] of wvar COLORS: coloring,
array [EDGES] of NODES: xs,
array [EDGES] of NODES: ys) =
forall (e in EDGES) (coloringlxs[el] != coloringlys[ell);

Fig. 12: Min1Zinc Predicate for Valid Coloring

5.1.6 Shift Scheduling

This problem was first introduced by Demassey et al [22]. It consists in allocating
n workers in 15 minute shifts to a activities such that all activity has the minimum

Compiling CP Subproblems To MDDs and d-DNNF's 25

required number of workers at all times. The objective is to minimize the number
of shifts worked. The constraints are: i) Workers must work on a task at least 1
hour, and cannot switch tasks without a 15 minute break; i) Part-time workers
work between 3 and 5.75 hours, with one 15 minute break; i:) Full-time workers
work 6 to 8 hours, with one hour for lunch, and 2 breaks (one before and one
after lunch); iw) Workers can only be working after the first activity is started,
and before the last activity finishes.

This problem can be modeled using a grammar constraint as described by Gange
et al [29]. We used their exact same model, with 5 variations to it:

SHIFTREG uses regular constraints (implemented by MDD propagators) to en-
force the “shape” of a valid shift.

SHIFTDEC uses a decomposition into clauses to enforce valid shifts.

— SHIFTNNF and SHIFTGCC use grammar propagators [35] to enforce valid shifts.
— SHIFTWRG uses cost-regular constraints (implemented by cost-MDD propaga-
tors) to enforce the shape of shifts, and compute their costs (the objective).

SHIFTGCC uses a gcc constraint [55] to ensure the demand of workers is met at
each shift, whereas the other models simply use a linear for this. The cost function
is modeled with a linear constraint in all cases (except SHIFTWRG).

For this problem, we choose the variables of the MDD /d-DNNF to be the task
allocation of all workers in windows of 3 adjacent shifts. That is, one for each 45
minutes. The ordering of the variables puts first the allocations of the first worker
for three shifts, then the allocations of the second worker for the same three shifts,
and so on. We used 8 instances with up to 2 activities and 5 workers. In the original
paper by Gange et al [29], the instances were directly modeled in Chuffed. We also
worked directly on Chuffed for ease of implementation. The model is available on
the official release of Chuffed.?

5.1.7 Concert Hall Scheduling Problem

In this problem we have n concert halls and m concerts to schedule each in one of
the concert halls. Concerts can be chosen to not be scheduled by scheduling them
in a special hall numbered 0. Each concert has fixed start and end times and a
given profit that we acquire when we schedule the concert. The concerts need to
be scheduled such that they do not overlap. The goal is to minimize the set of
unscheduled concerts taking into account the profit they would have brought.

The MINIZINC model can be seen in Figure 13.

For this problem we use the Boolean variables indicating whether a concert
is scheduled or not as the variables for MDD/d-DNNF. Nonetheless, we do not
put all the variables into the same data structure of choice. Instead, we split them
evenly in 4 parts by start date. That is, in an instance with 40 concerts, we would
get 4 MDDs (or d-DNNFs), each with 10 variables, such that the first MDD (or
d-DNNF) would contain the 10 concerts with earlier starting date, the second one
would contain the next 10 concerts chronologically and so on. All constraints in
the model will eb active when doing the compilation.

We used 20 instances, all with n = 8 concert halls and m = 45 concerts. The
number of times slots ranges between 52 to 63.

2 https://github.com/chuffed /chuffed /blob/master /chuffed /examples /shift.cpp

26 Diego de Una et al.

int: n; 7 number of halls
int: m; 7 number of concerts
set of int: CONCERT = 1..m;
array [CONCERT] of int: profit;

int: o; 7 number of interesting times;
set of int: TIME = 1..0;

array [TIME] of set of CONCERT: starts;
array [TIME] of set of CONCERT: ends;

array [0..0] of war O0..n: usage;
array [CONCERT] of war 0..1: scheduled;

constraint usage[0] = 0;
constraint forall(t in 1..0) (usage[t] = usage[t-1]
+ sum(c in starts[t]) (scheduled[c])
- sum(c in ends[t]) (scheduled[c]));
var int: objective = sum(c in CONCERT) ((1 - scheduled[c]) * profitl[cl);

solve minimize objective;

Fig. 13: MiNn1ZINc Model for the Concert Hall Problem

5.1.8 All-Trees

To study whether splitting globals is worthwhile or not, we created a very simple
model to collect in a d-DNNF all the solutions to the Steiner Tree Problem in a
set of graphs.

Given a graph G = (V, E) and a set of nodes called terminals T C V, a Steiner
Tree is a tree S that is a subgraph of G and that contains at least the nodes in
T. That is, St spans the terminals. The Steiner Tree Problem consists in finding
the Steiner Tree of minimum cost given a weighting function w : E +— R.

Here we are not concerned with the Steiner Tree Problem, instead what we
want is to simply collect all the Steiner Trees of a graph given a set of terminals
into a d-DNNF. This will help us understand whether splitting the tree constraint
was worthwhile. The d-DNNF can then be used in a variety of problems involving
Steiner Trees.

We used instances from the SteinLib [37], from the dataset ES10FST and
ES20FST (15 instances each). The model is shown in Figure 14.

predicate all_trees (array [NODES] of war bool: in_nodes,
array [EDGES] of war bool: in_edges,
set of NODES: terminals,
array [NODES ,NODES] of bool: adjacency) =
forall(t in terminals) (in_nodes[t])
/\ tree(in_nodes,in_edges ,adjacency);

Fig. 14: MIN1ZINC Predicate for Steiner Tree without costs

Compiling CP Subproblems To MDDs and d-DNNF's 27

5.2 Experimental Results

We present here our results. The experiments were done on an Intel® Core'
i7-4770 CPU @ 3.40GHz running Linux 3.16, with the CP solver CHUFFED [14].

The table propagator implemented in CHUFFED is a decomposition in clauses of
the table. The propagators for MDDs, cost-MDDs and d-DNNFs were described
by Gange et al. [28, 29, 27]. Note that the results shown for tablification also
use CHUFFED for precompilation (that is building the table) and for solving the
problem.

5.2.1 Compilation

We first compare the results of the first 5 problems against the tablification ap-
proach [21]. Let us first compare the total precompilation time for each problem
(all instances summed up) in Table 1. For Black-Hole, the same compilation could
be recycled for all instances. All the others are instance dependent.

Problem | Instances | Table construction | MDD construction | d-DNNF construction
Black-Hole 21 0.01s 0.02s 0.02s
Block-Party 14 0.30s 0.28s 0.28s
FGC (reif) (11) 3 (+00) 9.06s (6.40s) 0.22s (6.65s) 0.19s
FGC (no reif) 11 0.60s 0.27s 0.21s
Water Bucket 4 173.15s 0.45s 0.44s
PGC (n =15,¢=6) 30 10.89s 7.06s 7.74s
PGC (n = 25,c = 5) (31) 25 (+00) 437.68s (90.24s) 77.67s (121.63s) 105.03s
Total | 122 | 636.1s | 85.97s | 113.93s

Table 1: Total time spent compiling Tables, MDDs or d-DNNFs. For problems
where the Table construction failed we srestrict to the instances where Table con-
struction succeeded. The statistics for all instances of these problems are given in
parentheses.

There are two things worth noting from this table. First building a table can
behave poorly when there are too many solutions to a problem. Indeed, building
a table requires finding all the solutions to a problem. We noticed how for some of
the instances of PGC with 25 nodes, there are 65k solutions, including an instance
with more than 13M solutions. That explains the result in the last row.

More importantly, we had to rewrite the model for FGC. In the original model,
with the reified predicate, building the table is simply impossible. For 8 of the
11 instances used, the compilation step ran out of memory in our machine. The
reason is simple: if the reifying Boolean is turned off, all valuations of the other
6 arguments are valid. The memory explosion happens even with relatively small
domains (6 to 8 fox, geese or corn bags), but it does not happen when building
MDDs or d-DNNFs. In the case of the MDD this is because the MDD under the
decision “turn off Boolean” is simply a multi-edged stick (much like the one in
Figure 5b) where all problems are equivalent. In the case of the d-DNNF, the part
under the “turn off Boolean” decision is compressed into multi-edged stick with
intermediate layers for the assignments of each variable. This can be seen in Figure
15.

28 Diego de Una et al.

boolean = false

Fig. 15: d-DNNF for the FGC example when the Boolean reif in the reification
is set to false (dashed lines link to other “A” nodes, not shown for lack of space)

The time to build the MDDs and d-DNNF's of the 3 instances of FGC that could
be tablified is shown in the table (the time for all 11 instances is in parenthesis).
The rewritten model for FGC is basically the same as the first one, except that
we remove the reification argument from the predicate and apply the constraint
to the leftover foxes, geese and corn after the optimal number of trips. The same
problem occurred with six of the bigger instances of the PGC problem.

This problem also arises if we construct our data structures without the use
of the equivalence keys shown in Section 3.4. For example, for a FGC instance
with domains 0..50, it took = 16.5 hours to construct the MDD without using
cache keys, but only 61 seconds when using them. Both yielded the same MDD,
of course. The same behavior happens for d-DNNFs.

From these experiments we see that building compact structures as MDDs
or d-DNNF's can be substantially faster than building the tables, and is rarely
slower. More importantly, it is safer in terms of resource consumption. This is why
compiling a table and then converting it into an MDD [9], for example, is not as
good as building an MDD via caching: the table needs to be built anyway, which
is the bottleneck in this case.

5.2.2 d-DNNF Independent Subproblems

Here we investigate whether the effort made for splitting subproblems is actually
worthwhile. Recall that, from what we saw in Section 4.3, this comes practically
for free, so we don’t expect any noticeable loss in time. Table 2 shows a comparison
of the construction of d-DNNFs.

Looking at each individual instance, the splitting was not useful for all in-
stances. In fact, for some instances, there were no independent subproblems found
at all. This is likely due to the order of the decisions. Indeed, how often a problem
can be separated into independent subproblems is very much determined by the
order in which decision are made (some decisions induce more splitting).

Compiling CP Subproblems To MDDs and d-DNNF's 29

Time Average d-DNNF Nodes

Problem Using Splitting ‘ No Splitting | Using Splitting No Splitting
Black-Hole 0.02s 0.02s 64.00 64.00
Block-Party 0.28s 0.42s 207.00 207.00
FGC (reif) 6.65s 8.18s 337.27 337.27
FGC (no reif) 0.21s 0.22s 273.63 273.63
‘Water Bucket 0.44s 0.44s 1599.25 1599.25
PGC (n=15,c=6) 7.74s 84.24s 6436.19 31281.20
PGC (n=25,c=5) 121.63s 280.67s 37778.80 139267.60
Total | 136.97s | 374.19s |

Table 2: Comparison of time spent to build and size of d-DNNFs with or without
splitting independent subproblems.

However, we can clearly see in the PGC problem how beneficial splitting can
be. This saved us around 65% of the time and produced d-DNNF's almost 4 times
smaller in average.

We could not identify any cue as to when splitting will or not happen, apart
from obvious cases where a single variable unites two very distinct problems. For
example, looking at one instance of the PGC problem with 25 nodes that takes
39s with splitting but 93s without it, we could not see anything special about
it compared to instances that took similar times with or without splitting. We
believe that the VSADS search can sometimes pick the right variables to branch
on to create more splits, but as usual with search strategies, they don’t always
work perfectly on all instances.

We look now at the task of collecting all Steiner Trees of a graph into a d-
DNNF (see Section 5.1.8). To do so, we write a MINIZINC model using the tree
constraint [19] and we d-dnnffy the binary variables corresponding to edges of the
graph. Table 3 shows the results for all the instances we tested.

The table does not show instances where the resulting d-DNNF's are identi-
cal and therefore splitting was not beneficial. In those instances times were al-
ways identical (and the construction was actually immediate). As can be seen,
there is never a loss from implementing this splitting technique within global con-
straints. For example, for the instance es10fst14 we saved 96% of the time, and
95% of nodes. Big gains can also be seen in other instances like es10fst{08,09}
or es20fst{09,13,14,15}. For instance es20fst07, the version with splitting the tree
global constraint took 14 minutes, whereas the non-splitting version does not ter-
minate within one hour.

This shows the value of implementing the independent subproblem detection
inside global constraints. We conclude this is a good implementation choice since,
when it pays off, it does so greatly, and when it does not, there is no loss.

5.2.8 Solving CSPs and COPs

We now compare how much having compiled subproblems helps in solving the
problem, depending on the data structure used. All instances ran with a time
limit of one hour.

Figure 16 shows a comparison in solving time between the original model and
having mddified or d-dnnffied a predicate (including compilation time). The plots
are split in two groups of problems for clarity. The right panels shows results for
the 4 sets of instances of PGC, and the left show the other tests.

30 Diego de Una et al.

Problem | Vars. Time d-DNNF Nodes Ratios
Splitting ‘ No Splitting | Splitting ‘ No Splitting | #Nodes ‘ Time
es10fst01 20 0.01s 0.01s 416 461 0.90 1.00
es10fst03 20 0.01s 0.01s 330 548 0.60 1.00
es10fst04 20 0.01s 0.01s 206 237 0.87 1.00
es10fst06 20 0.01s 0.02s 474 854 0.56 0.50
es10fst08 28 0.29s 2.97s 3277 56109 0.06 0.10
es10fst09 29 0.30s 13.38s 3087 162988 0.02 0.02
es10fst10 21 0.01s 0.01s 78 370 0.21 0.00
es10fst13 21 0.01s 0.01s 310 561 0.55 1.00
es10fst14 32 0.57s 13.85s 7419 157085 0.05 0.04
es10fst15 18 0.01s 0.01s 150 175 0.86 1.00

es20fst04 83 >3600.00s >3600.00s — — — —
es20fst05 7 >3600.00s >3600.00s — — — —

es20fst07 59 857.64s >3600.00s 664054 — — —
es20fst08 74 >3600.00s >3600.00s

es20fst09 42 1.84s 9.05s 22523 125954 0.18 0.20
es20fst10 67 >3600.00s >3600.00s — — — —
es20fst11 36 0.02s 0.03s 409 801 0.51 0.67
es20fst12 36 0.10s 0.14s 2657 3574 0.74 0.71
es20fst13 40 0.09s 0.47s 1284 7194 0.18 0.19
es20fst14 44 2.32s 371.01s 14795 758384 0.02 0.01
es20fst15 43 0.10s 1.30s 1072 17766 0.06 0.08

Table 3: Comparison of time spent to build and size of d-DNNFs with or without
splitting independent subproblems for a problem where the split is done in a tree
constraint.

For MDDs, as we see for the first 5 problems, compiling is clearly beneficial,
as the solving time is generally smaller. For the PGC problem we notice a more
scattered plot. An interesting point that we show is that there are two sets of
instances of 25 nodes. The first one (marked o) averages 184450 nodes for each
MDD, whereas the second averages 9402 nodes. This indicates that, despite a
fast compilation step (total of 23.3 seconds for all 11 instances on the o set), the
sizes of the MDDs are impractical for efficient propagation. This suggests that,
after compiling, the user may want to avoid using the resulting MDD if it is too
big. Since compiling takes less than ~ 3 seconds for each of these instances, it is
reasonable to try mddifying and then ignore the result if it is too big, or simply
abort the compilation. As a comparison, the number of nodes in d-DNNF's of the
PGC instances with 25 nodes were, on average 50835 and 2488 for “o” instances
and unmarked instances respectively.

Leaving aside these instances, most instances are solved quicker when the MDD
is added, and the ones that are not tend to be solved in under 1 second in any
case.

For d-DNNF's, the results are a bit less clear. For the first 5 problems, around
57% of the problems are solved faster using d-DNNFs. It is not clear that d-DNNFs
would actually be useful in this case. On the other hand, looking at the hardest
instances of PGC, we see that d-DNNF pays off compared to MDDs: most of
the hard instances are now solved within 10 seconds with d-DNNFs whereas the
original model would solve them in between 100 seconds and 1 hour. We conclude
that d-DNNF's are probably more practical for hard problems. Indeed it seems like
the biggest payoff (up to 3 orders of magnitude) appears only in the instances that
originally took the longest to solve.

Figure 17 compares the solving time (including compilation time) when using
an MDD or d-DNNF against using a table.

Compiling CP Subproblems To MDDs and d-DNNF's 31

LLLLLLL L LLL AL ALY AL LSLLLLLL L ALLL AL ALY

4 []]

o + Black-Hole E E

= 5 Block-Party T E
10 = =

=z O FGC (reif) o E E
“é’ 102 ||OFCC (o rein +] N
z A Water Bucket + 4 3 E
T E E
£ 10! = =
3 e e
B + : E
Y E E
8 E E
" E E
g10-t E E
E E E
" E E
5 10’2 = =
Z E E
£ . .
1073 = =

YT T T T T A AT S N AW YT T T 1) S T S A1 S WU AW

1073 1072 10=1 109 101 102 103 10% 1073 1072 10=! 109 10! 102 103 10%

Solving time for original models (s) Solving time for original models (s)

LBLILLALLL AL AL AL AL LLALLLLLY LU AL AL
- + Black-Hole § PGC e §
~ Block-Party AH+n=15,c =6,k =3 B
) - _
C O FGC (reif) E n=15c=6k=14 E
2 [JFGC (no reif) J[jOon=25,c=5k=3 B
o A Water Bucket qHOn=25,c=5k=3 E
9 - -
E E + + E
: £ S 1
v 1 + ﬁ. 1
© 100 = : + =
5 3 T ﬂ%—:@ + E!
< B O + T]
gro~! E E
3 B i
z E E
o — -
@103 = =

T T T YN TTT] S NN TTT| MM IV 11| R WYY AW T T 1 S R TIT S N IVTT| MM IV1T| R WOt M AWt

[
[

1073 1072 101 100 101 102 103 10 1073 1072 10=1 109 101 102 103 10
Solving time for original models (s) Solving time for original models (s)

Fig. 16: Time to solve mddified/d-dnnffied instances, including compilation time
(y-axis) vs. time to solve original models (x-axis).

We notice that for all the Block-Party instances, a table is better. Overall the
trend is that using an MDDs can save a lot of time, and occasionally lose little
time: when tablifying performs better, the gain is marginal or the instance was
solved rather quickly anyway (under 1 second). When the MDD wins, it can make
a difference of up to 3 orders of magnitude (c.f. Water Bucket, FGC and some of
the 25 node PGC instances).

The results for d-DNNF's are more scattered, but we still see a similar pattern
as before: for very big instances, d-DNNFs perform better than tables or original
models. This can be clearly seen in the biggest PGC instances, as they are solved
3 to 4 orders of magnitude faster with d-DNNF than with tables.

Let us now look at a direct comparison between MDDs and d-DNNFs in Figure
18. Once again, we notice that MDDs perform better in general, but d-DNNF's
seem to be more appropriate for very large instances (like the o instances of the
PGC problem).

Furthermore, out of the 122 instances, the mddified models solved 111, and
the d-dnnffied models solved 112. The tablified models solved only 87 (out of 108,
since 14 of the 122 could not be tablified). The original models solved 108.

Solving time for mddified models (s)

Solving time for d-dnnffied models (s)

32 Diego de Una et al.

LLLLLLL L LLL AL ALY AL LSLLLLLL L ALLL AL ALY

+ Black-Hole
Block-Party
O FGC (reif)
O FGC (no reif)
A Water Bucket

PGC

+n=15,c =6,k =3

n=15,c=6k=4
On=25,c=5,k=3
On=25c=5k=3

+
0]
10 =
D+
10— 1 $+ +
74 A

1072 +
103

YT T T T T A AT S N AW T T SRR TTT SN RIS I TET| SO WRTET| O RRTIT| MMM =

1073 1072 107! 109 10" 102 103 10% 1073 1072 10! 109 10" 102 103 104

Solving time for tablified models (s) Solving time for tablified models (s)

LLLLLLL L LLL AL ALY AL

+

LSLLLLLL L ALLL AL ALY

+ Black-Hole
Block-Party
O FGC (reif)
[0 FGC (no reif)
A Water Bucket

PGC
4+n=15,c=6,k =3
n=15,c=6,k =4
On=25c=5k=23
On=25c=5k=23

LR A
+
O +
109 Tt jﬂ*m
=+ +A o O X3
* 4
10-1
A
-2 X
A

T T T YN TTT] S NN TTT| MM IV 11| R WYY AW T T TS NI S NIV TT| MMM IV 11| AR WYY MR at
1073 1072 10=! 100 10! 102 103 10* 1073 1072 10=! 100 10' 102 103 10
Solving time for tablified models (s) Solving time for tablified models (s)

[
[

Fig. 17: Time to solve mddified/d-dnnffied instances, including compilation time
(y-axis) vs. time to solve tablified instances, including compilation time (x-axis).

Overall, we notice two main results. First, mddifying can yield big MDDs that
are impractical. Second, for easy instances, having the extra MDD propagators
can be overkill. This technique is therefore more tailored for hard problems that
do not result in huge MDDs. The user may also want to experiment with instance-
dependent ordering of the variables to achieve more compact MDDs. Interestingly
enough, it seems that the pitfall of MDDs is the strength of d-DNNFs: d-DNNF's
seem to perform better than the other alternatives when the set of solutions is
too big (> 100k). This brings the possibility of a more robust precompilation
technique, where one of the 3 approaches (tablifying, mddifying or d-dnnffying) is
used depending on an estimate of the size of the solution set for the subproblem to
compile. Such estimate could be obtained, for example, using a structural approach
[53].

w
w

Compiling CP Subproblems To MDDs and d-DNNF's

104 T T T T T T T T T T TTT T HHH\LE T T T T T HH\HLE
_ + Black-Hole E PGC E
< Block-Party A+ n=15,c=6,k=3 E
= 103 = =
2 O FGC (reif) E n=15,c=6,k=4 E
£ 102 L|OFGC (no reif) Jlon=25c=5k=3+ |t B
kel A Water Bucket dHO n=25,c=5k=3 E
2 1]
g 10! E 8
3 el e] Qo0 |
< 100 3 = =
& + & B B
©1q—1 + ;. |
£ 10 £ .
bel B Ei
+ A4 B B

®10—2 A - -
=10 E| E|
B A © E E
#10-3 E E
T T N YT N T A 1T 7| AR WU MR I I = BTETT W T AN N1 AR R AR R A AT M MATIIT MIMATIIN |

1073 1072 107! 109 10" 102 103 10% 1073 1072 10! 109 10" 102 103 104
Solving time for mddified models (s) Solving time for mddified models (s)

Fig. 18: Time to solve d-dnnffied instances, including compilation time (y-axis) vs.
time to solve mddified instances, including compilation time (x-axis).

5.2.4 Using MDDs as Cost-MDDs

In this section we investigate the advantage that cost-MDDs can have for specific
problems over other structures. To do so, we look at the Shift Scheduling and
Concert Hall problems.

Shift Scheduling We used 8 instances solved with the 5 models described earlier. We
ran the original models, mddified models and cost-mddified (using the same MDDs
as cost-MDDs) as well as d-dnnffied models. For the sake of brevity, we only show
geometric means of the ratios of conflicts, nodes and time of the compiled versions
over the original version, and the total solving time. The first 5 rows of both Tables
4a and 4b correspond to the use of MDDs constructed while all constraints were
active (i.e. a quasi-projection).

For the last 5 rows only the constraints ensuring the demand of workers is met
were active upon mddifying. Columns labeled “Time” correspond to solving time;
“Total” shows compilation plus solving time.

As can be seen, the use of the Cost-MDD completely dominates the other
options. The total solving time shown in 4b is enormously decreased, making
it worth paying the overhead of constructing the MDDs. For 5 instances where
SHIFTWRG performed extremely well (solved in < 3s), cost-mddifying was not
worth it (c.f. geometric means of “Total”), but it still paid-off when measuring the
time to solve all instances. This indicates, once again, that for individual instances
on which a given model performs well, this technique might not be so valuable. The
Cost-MDD version always solved all the instances, whereas the other two versions
failed to solve between 1 and 3 of them (depending on the model). Comparing the
first and last 5 rows of Tables 4a and 4b shows that building MDDs for the quasi-
projection reduces the solving time, although computing those MDDs is more
costly as there are fewer equivalences. Tablifying this problem produced tables
with more than a billion entries, making them impractical.

We believe this result to be very interesting. As we saw in the presentation of
the models we used earlier, the SHIFTWRG uses a cost-MDD to enforce the shape

34 Diego de Una et al.

Model MDD Cost-MDD d-DNNF

Confl. Nodes Time Total | Confl. Nodes Time Total | Confl. Nodes Time Total
SHIFTREG 87.4 87.3 97.9 146.7 0.6 0.7 1.3 11.2 95.7 95.7 116.2 441.6
SHIFTDEC 100.3 100.3 93.5 139.2 1.2 1.4 1.1 8.2 54.2 54.6 421.6 905.2
SHIFTNNF 90.3 83.7 96.5 144.5 2.7 3.5 4.7 31.0 88.9 88.72 108.1 613.7
SHIFTGCC 93.2 84.2 92.5 134.8 2.5 3.2 4.0 26.8 95.4 95.2 113.7 564.2
SHIFTWRG 52.1 64.9 68.1 1052.9 12.9 14.8 18.1 6749 57.9 77.6 103.5 13931.8
SHIFTREG 97.6 97.4 103.7 169.4 1.1 1.3 2.2 10.2 0.3 0.4 0.9 64.0
SHIFTDEC 98.1 98.1 93.6 151.4 2.2 2.7 2.2 9.1 0.7 0.7 7.3 203.3
SHIFTNNF 97.1 96.1 104.8 155.5 3.9 5.5 6.7 20.1 47.3 49.57 65.6 210.3
SHIFTGCC 93.5 93.2 99.8 146.4 3.6 5.2 6.2 18.0 3.8 5.15 6.8 123.7
SHIFTWRG 58.7 76.0 74.3 619.6 16.4 18.9 29.7 305.7 91.3 102.6 127.1 2886.0

(a) Geometric mean (%) when comparing to original models (> 100% indicates that the original
model is better)

Model Original MDD Cost-MDD d-DNNF
Time Total Time Total Time Total
SHIFTREG 9624.4 | 10617.6 11480.3 285.5 1148.2 | 10320.3 42732.0
SHIFTDEC 13160.1 | 12969.7 13832.3 522.5 1385.2 | 19169.8 51581.5
SHIFTNNF 7657 7785.7 8648.3 101.9 964.5 7707.6 40119.3

SHIFTGCC 7897.9 7910.1 8772.8 93.7 956.3 7913.9 40325.6
SHIFTWRG 3723.5 3726.3 4589.0 29.2 891.9 4526.2 36937.8

SHIFTREG 9624.4 | 112749 11360.5 549.7 635.3 4343.0 4980.0
SHIFTDEC 13160.1 | 13164.6 13250.2 | 1217.3 1302.9 | 14470.0 15107.0
SHIFTNNF 7657 7687.4 7773 117.9 203.6 7648.2 8285.3

SHIFTGCC 7897.9 7817.9 7903.5 126.5 212.1 3658.7 4295.7
SHIFTWRG 3723.5 3725.0 3810.6 82.5 168.1 3915.9 4553.0

(b) Sum of time to solve all instances in seconds.

Table 4: Comparison of conflicts, nodes and time for the shift scheduling problem.

of a shift. That is, there are already cost-MDDs present in that model, but one per
worker. Thanks to our approach, we could create (cost-)MDDs for sets of days,
across all workers. This is not trivial to do by hand, and it is not obvious that it
would produce such a big advantage as it does, so a modeler might decide to not
make that effort. Thanks to our approach, it was possible to build those MDDs
and we show that they have a huge value for the model when used as cost-MDDs.

Concert Hall To further confirm our findings, we used the Concert Hall Problem
described earlier as another benchmark for cost-MDDs. Table 5 presents the results
of such experiments. As it can be seen in the results, the use of MDDs or d-
DNNFs does not pay off, similarly to the Shift Scheduling problem. Nonetheless,
these experiments confirm our findings about cost-MDDs: they are about 11 times
faster than the original model and have 22 times less nodes to explore.

This, once again, shows the great value of cost-MDDs and the precompilation
technique shown in this paper. Furthermore, the compilation itself was almost
immediate, averaging 0.5s on each instance (for all 4 MDDs), and 1.3s for the
compilation of the d-DNNFs (for each instance).

It would be possible that this finding also translates to a weighted version of
d-DNNFs, but sadly we do not have such a propagator with explanations available
in CHUFFED. But this gives a very interesting direction for future work.

6 Conclusions and Future Work

Our experiments and those by Dekker et al [21] show that compiling part of a
problem to an MDD, d-DNNF or table can be beneficial for the total solving

Compiling CP Subproblems To MDDs and d-DNNF's 35

Instance Original MDD Cost-MDD d-DNNF
Confl. Nodes Time | Confl. Nodes Time | Confl. Nodes Time | Confl. Nodes Time

concert-01 18.9 21.7 2471.2 21.0 23.8 2746.8 0.79 0.84 201.3 22.0 25.1 2975.8
concert-02 21.1 24.5 2700.5 23.9 27.6 3255.4 1.52 1.71 368.5 21.1 24.6 2852.4
concert-03 28.4 31.8 3116.7 31.0 35.8 3600.4 1.64 1.86 347.5 31.3 35.6 3600.3
concert-04 11.5 13.6 1592.4 12.2 14.6 1447.6 0.62 0.66 187.2 8.19 9.79 1090.3
concert-05 8.35 9.86 1037.1 8.86 10.6 1100.9 0.61 0.70 139.4 9.96 11.7 1266.1
concert-06 32.8 35.7 4135.8 31.3 35.5 3653.2 1.66 1.82 375.9 31.3 34.8 3600.4
concert-07 14.3 17.0 1765.6 23.6 27.6 2981.4 0.33 0.38 69.8 17.4 20.5 2150.4
concert-08 24.5 28.8 3092.4 21.1 24.9 2721.1 2.20 2.34 668.8 21.0 24.8 2737
concert-09 14.5 16.9 1867.0 14.9 17.3 1939.3 0.30 0.34 65.5 13.0 15.2 1708.0
concert-10 2.47 2.99 307.8 1.03 1.21 123.9 0.36 0.40 85.2 1.57 1.90 197.5
concert-11 6.89 7.97 839.8 6.91 7.89 888.2 0.27 0.29 69.0 5.90 7.00 775.3
concert-12 15.4 17.9 1961.1 13.4 15.5 1729.3 1.94 2.07 527.3 9.06 10.5 1187.1
concert-13 27.2 30.5 3600.8 27.1 30.7 3600.9 0.40 0.45 81.5 27.4 31.3 3600.3
concert-14 25.8 30.9 3106.9 29.6 35.0 3600.4 0.36 0.40 76.0 27.5 31.9 3600.6
concert-15 4.41 5.24 524.1 8.76 10.1 1123.8 0.49 0.51 117.3 4.49 5.26 577.1
concert-16 16.2 18.8 2202.1 8.84 10.3 1167.8 0.54 0.58 134.9 24.1 27.5 3349.8
concert-17 14.3 16.2 1980.4 15.6 18.1 2193.4 0.46 0.53 106.8 15.9 18.3 2258.2

concert-18 6.85 8.12 926.1 5.41 6.55 729.3 0.90 1.00 246.8 6.43 7.90 859.8
concert-19 2.98 3.90 346.4 4.24 5.37 505.6 0.21 0.22 46.9 3.27 4.28 407.2
concert-20 19.6 23.0 2590.9 15.7 18.6 2064.5 0.28 0.31 52.8 14.8 17.2 1962.0
Average 15.8 18.3 2008.3 1.62 18.8 2058.7 0.79 0.87 198.4 1.58 18.2 2037.8
Total 317 365 40165.9 324 377 41174.1 15.9 17.5 3969.0 315 365 40756.6

Table 5: Number of conflicts (in millions), nodes (in millions) and solving time (in
seconds) for the Concert Hall Problem with different precompilation techniques.

time of the problem. Indeed, these compilations into some data structures can be
used by specific propagators (table, MDD and d-DNNF propagators) to produce
stronger propagation, thus reducing the search space. Using our choice of data
structures is not always better than using tables (there is certainly a role for
tablification), but can be substantially more efficient.

We have identified the limitations of using tables as the resource for compila-
tion, and proposed the use of precompilation with MDDs and d-DNNFs. We show
how this technique is flexible, since the MDDs can be reused as Cost-MDDs, as
well as robust. Indeed, our approaches never ran out of memory, and the com-
pilation times are better than with tables. One downside of our approach is the
amount of work needed in the solver. On the one hand, it is necessary to have an
MDD propagator, a cost-MDD propagator, or a d-DNNF propagator for the pre-
compilation to be used. On the other hand, in order to implement a precompiler
like the one described here, one needs to implement the caching technique by Chu
et al [13] which, for most constraints, is easy to implement (c.f. Section 6 of their
paper) but for more complex constraints like cumulative can be more intricate.
These keys must exist for all constraints that appear in the model provided by the
user.

The result shows that for small problems, building tables is the right choice.
For bigger problems, MDDs offer a scalable approach that, combined with a good
MDD propagator, can be beneficial to the solving time. For the biggest instances,
we saw that d-DNNF's are a better choice, as they are generally smaller. Cost-
MDDs showed their value through two scheduling instances. We showed that, when
it is possible to integrate an objective function in a cost-MDD, the improvements
in time are substantial.

These results open questions for more applications. We believe it would be
very valuable for the community to see more real applications of this prototypes
on industrial problems with real data.

36 Diego de Una et al.

We believe it would be interesting to explore the possibility of using the same
problem splitting from Section 4.4 with MDDs. When doing it for d-DNNF's, we
can take advantage of the inherent data-structure of d-DNNFs to conjoin inde-
pendent subproblems. It would also be worth investigating the possibility of using
the same splitting to separate a problem in different MDDs. It is rather obvious
how this can be achieved if a split is detected at the root level, but more intri-
cate algorithms would be needed if the split appears in some branch during the
construction of the MDD.

It would also be worthwhile to investigate the possibility of automatically de-
tecting which variables can benefit from these precompilation techniques (for ta-
bles, MDDs or d-DNNF's) and, in the case of MDDs, which variable ordering could
be the most adequate. Techniques similar to the ones used to pick solvers in port-
folio solvers may be an approach to this [42, 46, 59].

References

1. Andersen HR, Hadzic T, Hooker JN, Tiedemann P (2007) A constraint store
based on multivalued decision diagrams. In: International Conference on Prin-
ciples and Practice of Constraint Programming, Springer, pp 118-132

2. Bergman D, Cire AA (2016) Decomposition based on decision diagrams. In:
International Conference on Integration of Artificial Intelligence (AI) and Op-
erations Research (OR) Techniques in Constraint Programming, Springer, pp
45-54

3. Bergman D, van Hoeve WJ, Hooker JN (2011) Manipulating MDD relaxations
for combinatorial optimization. In: International Conference on Integration
of Artificial Intelligence (AI) and Operations Research (OR) Techniques in
Constraint Programming, Springer, pp 20-35

4. Bergman D, Cire AA, Hoeve WJv, Hooker JN (2013) Optimization bounds
from binary decision diagrams. INFORMS Journal on Computing 26(2):253—
268

5. Bergman D, Cire AA, van Hoeve WJ (2015) Improved constraint propagation
via lagrangian decomposition. In: International Conference on Principles and
Practice of Constraint Programming, Springer, pp 30-38

6. Bergman D, Cire AA, van Hoeve WJ, Hooker J (2016) Decision diagrams for
optimization. Springer

7. Bergman D, Cire AA, van Hoeve WJ, Hooker JN (2016) Discrete optimization
with decision diagrams. INFORMS Journal on Computing 28(1):47-66

8. Van den Broeck G, Taghipour N, Meert W, Davis J, De Raedt L (2011) Lifted
probabilistic inference by first-order knowledge compilation. In: Proceedings
of International Joint Conference on Artificial Intelligence, AAAI Press/Inter-
national Joint Conferences on Artificial Intelligence, pp 2178-2185

9. Cheng KC, HC YR (2008) Maintaining generalized arc consistency on ad hoc
r-ary constraints. In: International Conference on Principles and Practice of
Constraint Programming, Springer, pp 509-523

10. Cheng KC, Yap RH (2005) Constrained decision diagrams. In: Proceedings
of the National Conference on Artificial Intelligence, Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999, vol 20, p 366

Compiling CP Subproblems To MDDs and d-DNNF's 37

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Cheng KC, Yap RH (2010) An MDD-based generalized arc consistency algo-
rithm for positive and negative table constraints and some global constraints.
Constraints 15(2):265-304

Chu G, Stuckey PJ (2016) Lagrangian decomposition via subproblem search.
In: Quimper CG (ed) International Conference on Integration of Artificial In-
telligence (AI) and Operations Research (OR) Techniques in Constraint Pro-
gramming, no. 9676 in LNCS, pp 65-80

Chu G, De La Banda MG, Stuckey PJ (2012) Exploiting subproblem domi-
nance in constraint programming. Constraints 17(1):1-38

Chu GG (2011) Improving combinatorial optimization. PhD thesis, The Uni-
versity of Melbourne

Cire AA, van Hoeve WJ (2013) Multivalued decision diagrams for sequencing
problems. Operations Research 61(6):1411-1428

Cocke J (1970) Global common subexpression elimination. In: ACM Sigplan
Notices, ACM, vol 5, pp 20-24

Darwiche A (2002) A compiler for deterministic, decomposable negation nor-
mal form. In: Proceedings of the National Conference on Artificial Intelligence,
AAAT Press, pp 627-634

Davies J, Bacchus F (2007) Using more reasoning to improve #SAT solving.
In: Proceedings of the National Conference on Artificial Intelligence, Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, vol 22, p
185

De Ufia D, Gange G, Schachte P, Stuckey PJ (2016) Steiner tree problems
with side constraints using constraint programming. In: Proceedings of the
National Conference on Artificial Intelligence, AAAI Press, pp 3383-3389
Dekker JJ (2016) Sub-Problem Pre-Solving in MiniZinc, master’s thesis. Mas-
ter’s thesis, Uppsala Universitet

Dekker JJ, Bjordal G, Carlsson M, Flener P, Monette JN (2017) Auto-tabling
for subproblem presolving in MiniZinc. In: International Conference on In-
tegration of Artificial Intelligence (AI) and Operations Research (OR) Tech-
niques in Constraint Programming, vol 22, Springer, pp 512-529

Demassey S, Pesant G, Rousseau LM (2006) A cost-regular based hybrid col-
umn generation approach. Constraints 11(4):315-333

Eén N, Biere A (2005) Effective preprocessing in SAT through variable and
clause elimination. In: International conference on theory and applications of
satisfiability testing, Springer, pp 61-75

Erdés P, Rényi A (1959) On random graphs, I. Publicationes Mathematicae
(Debrecen) 6:290-297

Fages JG, Lorca X, Petit T (2014) Self-decomposable global constraints. In:
Proceedings of the European Conference on Artificial Intelligence, pp 297-302
Frisch AM, Harvey W, Jefferson C, Martinez-Herndndez B, Miguel I
(2008) Essence: A constraint language for specifying combinatorial prob-
lems. Constraints 13(3):268-306, DOI 10.1007/s10601-008-9047-y, URL
http://dx.doi.org/10.1007/s10601-008-9047-y

Gange G, Stuckey PJ (2012) Explaining propagators for s-DNNF circuits.
In: International Conference on Integration of Artificial Intelligence (AI) and
Operations Research (OR) Techniques in Constraint Programming, Springer,
pp 195-210

38

Diego de Una et al.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Gange G, Stuckey PJ, Szymanek R (2011) MDD propagators with explanation.
Constraints 16(4):407-429

Gange G, Stuckey PJ, Van Hentenryck P (2013) Explaining propagators for
edge-valued decision diagrams. In: International Conference on Principles and
Practice of Constraint Programming, Springer, pp 340-355

Gent IP, Jefferson C, Kelsey T, Lynce I, Miguel I, Nightingale P, Smith BM,
Tarim SA (2007) Search in the patience game black hole. AT Communications
20(3):211-226

Hadzic T, Hooker JN, OSullivan B, Tiedemann P (2008) Approximate com-
pilation of constraints into multivalued decision diagrams. In: International
Conference on Principles and Practice of Constraint Programming, Springer,
pp 448462

Hoda S, Van Hoeve WJ, Hooker JN (2010) A systematic approach to MDD-
based constraint programming. In: International Conference on Principles and
Practice of Constraint Programming, Springer, pp 266-280

Huang J, Darwiche A (2005) DPLL with a trace: From SAT to knowledge
compilation. In: Proceedings of the International Joint Conference on Artificial
Intelligence, vol 5, pp 156—162

Jha A, Suciu D (2013) Knowledge compilation meets database theory: compil-
ing queries to decision diagrams. Theory of Computing Systems 52(3):403-440
Jung JC, Barahona P, Katsirelos G, Walsh T (2008) Two encodings of DNNF
theories. In: ECAI workshop on Inference methods based on Graphical Struc-
tures of Knowledge

Kell B, van Hoeve WJ (2013) An MDD approach to multidimensional bin
packing. In: International Conference on Integration of Artificial Intelligence
(AI) and Operations Research (OR) Techniques in Constraint Programming,
Springer, pp 128-143

Koch T, Martin A, Vo8 S (2000) SteinLib: An updated library on Steiner tree
problems in graphs. Tech. Rep. ZIB-Report 00-37, Konrad-Zuse-Zentrum fiir
Informationstechnik Berlin, Takustr. 7, Berlin, URL http://elib.zib.de/steinlib
Koriche F, Lagniez JM, Marquis P, Thomas S (2015) Compiling constraint
networks into multivalued decomposable decision graphs. In: Proceedings of
the International Joint Conference on Aritificial Intelligence, pp 332-338
Latour AL, Babaki B, Dries A, Kimmig A, Van den Broeck G, Nijssen S (2017)
Combining stochastic constraint optimization and probabilistic programming.
In: International Conference on Principles and Practice of Constraint Pro-
gramming, Springer, pp 495-511

Leo K, Tack G (2015) Multi-pass high-level presolving. In: Proceedings of the
International Joint Conference on Aritificial Intelligence, pp 346-352

Leo K, Mears C, Tack G, de la Banda MG (2013) Globalizing constraint
models. In: Schulte C (ed) International Conference on Principles and Practice
of Constraint Programming, Springer, Lecture Notes in Computer Science, vol
8124, pp 432-447

Loreggia A, Malitsky Y, Samulowitz H, Saraswat VA (2016)
Deep learning for algorithm portfolios. In: Proceedings of the
Thirtieth ~ AAAI Conference on Artificial Intelligence, Febru-
ary 12-17, 2016, Phoenix, Arizona, USA., pp 1280-1286, URL
http://www.aaai.org/ocs/index.php/AAAT/AAATL6 /paper/view /12274

Compiling CP Subproblems To MDDs and d-DNNF's 39

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Mears C, de la Banda MG, Wallace M (2009) On implementing symmetry
detection. Constraints 14(4):443-477

Muise C, Mcllraith S, Beck JC, Hsu E (2010) Fast d-DNNF compilation with
sharpSAT. In: Workshops at the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence

Nethercote N, Stuckey P, Becket R, Brand S, Duck G, Tack G (2007) MiniZinc:
Towards a standard CP modelling language. In: International Conference on
Principles and Practice of Constraint Programming, Springer-Verlag, LNCS,
vol 4741, pp 529-543

OMahony E, Hebrard E, Holland A, Nugent C, OSullivan B (2008) Using
case-based reasoning in an algorithm portfolio for constraint solving. In: Irish
Conference on Artificial Intelligence and Cognitive Science, pp 210-216
Parlett D (1980) The Penguin Book of Patience. Penguin Books

Perez G, Régin JC (2014) Improving GAC-4 for table and MDD constraints.
In: International Conference on Principles and Practice of Constraint Pro-
gramming, Springer, pp 606-621

Perez G, Régin JC (2016) Constructions and in-place operations for MDDs
based constraints. In: International Conference on Integration of Artificial In-
telligence (AI) and Operations Research (OR) Techniques in Constraint Pro-
gramming, Springer, pp 279-293

Perez G, Régin JC (2017) MDDs: Sampling and probability constraints. In:
International Conference on Principles and Practice of Constraint Program-
ming, Springer, pp 226242

Perez G, Régin JC, Antipolis U, Umr I (2015) Efficient operations on mdds
for building constraint programming models. In: Proceedings of International
Joint Conference on Artificial Intelligence, pp 374-380

Pesant G (2004) A regular language membership constraint for finite sequences
of variables. In: Wallace M (ed) International Conference on Principles and
Practice of Constraint Programming, Springer-Verlag, LNCS, vol 3258, pp
482-495

Pesant G (2005) Counting solutions of CSPs: A structural approach. In: Pro-
ceedings of the International Joint Conference of Artificial Intelligence, pp
260-265

Puget JF (2005) Automatic detection of variable and value symmetries. In: In-
ternational Conference on Principles and Practice of Constraint Programming,
Springer, pp 475489

Régin JC (1996) Generalized arc consistency for global cardinality constraint.
In: Proceedings of the National Conference on Artificial Intelligence, AAAIT
Press, pp 209-215

Sang T, Bacchus F, Beame P, Kautz HA, Pitassi T (2004) Combining compo-
nent caching and clause learning for effective model counting. SAT 4:7th
Srinivasan A, Ham T, Malik S, Brayton RK (1990) Algorithms for discrete
function manipulation. In: Computer-Aided Design, 1990. ICCAD-90. Digest
of Technical Papers., 1990 IEEE International Conference on, IEEE, pp 92-95
Van Hentenryck P (1999) The OPL optimization programming language. MIT
Press

Xu L, Hutter F, Hoos HH, Leyton-Brown K (2008) Satzilla: Portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research (JAIR)
32:565-606

