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Abstract—Blockmodelling is an important technique in so-
cial network analysis for discovering the latent structures and
groupings in graphs. State-of-the-art approaches approximate the
graph using matrix factorisation, which can discover both the
latent graph structures and vertex groupings. However, factori-
sation is a one-way approximation, in that it only approximates
the graph with a lossy model that removes the background noise.
Traditional Blockmodelling methods rely on an alternating 2-
step optimization that involves iteratively updating the matrix
representing membership while fixing the matrix representing
the graph’s underlying structure, and then updating the structure
matrix while keeping the membership matrix fixed. We propose
a single step optimization method, which uses algebraic simplifi-
cation to directly update the lower dimensional, latent structure
representation. This helps improve both the convergence and
accuracy of blockmodelling. We also show that this approach
can solve multi-view blockmodelling problems, involving multiple
graphs over the same vertices. We use real datasets to show that
our approach has much higher accuracy and comparable running
times to competing approaches.

Index Terms—Blockmodelling, Multi-view, Algebraic simplifi-
cation

INTRODUCTION

Finding the inherent groups in graphs is an important
problem in social network analysis and has applications in
many domains, such as identifying communities in social
networks [1], functional modules in protein-protein interaction
networks [2] and analysing the effect of community structure
on the diffusion of ideas in social networks [3]. This involves
assigning each vertex in the graph to one or more inherent
groups, where each vertex can represent a person or a protein
for example.

How vertices are assigned to their respective groups depends
on what it means for two vertices to belong to the same
group. The most popular definition is the community one.
Vertices belong to the same community/group if they have
many connections among themselves and few connections to
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other communities [4]. Although this definition has been useful
in numerous applications [1], there are other alternative types
of inherent graph structures. Consider the example shown in
Figure 1, which shows a blockmodel decomposition of the
flight routing network between airports. Each vertex represents
an airport and an edge between them represents one or more
flights between the airports. Figure 1a shows the ungrouped
adjacency matrix of the graph. Figure 1b shows a partition
of the vertices into groups or positions, delimited by the red
dotted lines, and the rows and columns are rearranged so
vertices in the same group are adjacent. We label the positions
as P1-P4. The decomposition shows the P4 vertices are highly
connected among themselves and to vertices in other positions.
This grouping found by the blockmodel algorithm corresponds
to highly-connected, international hub airports. P3 vertices
are highly connected among themselves and P4 vertices, and
represent the large national hub airports. P2 and P1 have
higher connectivity to the core (P4) and fewer connections
among themselves. The overall structure is core-periphery,
which can be summarised by the combination of (1) the image
matrix of Figure 1d, which shows the aggregate connectivity
between positions, and (2) the membership matrix of Figure
1c, which shows the membership of each vertex (airport)
to each position. A decomposition based on the community
definition is unable to find the structure in Figure 1, as it cannot
capture the off-diagonal blocks for the rearranged adjacency
matrix (e.g., Figure 1b). In a community model, airports within
each group are mainly connected among themselves, which is
clearly not the case for how airports are organised. Therefore a
more general approach to finding the inherent graph structure
is needed.

An alternative and more general approach is blockmodelling
from social network analysis. Blockmodelling decomposes
graphs based on different grouping definitions, such as struc-
tural equivalence, where vertices are in the same position
if they have similar patterns of interactions to vertices of
other positions. The core-periphery structure of the example
shown in Figure 1 fits this definition. The inherent structure



(a) Adjacency matrix of the airport
routing network.

(b) Rearranged adjacency matrix
according to a 4 position block-
model.

(c) Membership matrix. Rows are
the vertices, and columns are the
positions. Values range from 0 to
1.

(d) Image matrix. Rows and
columns are the positions. Values
range from 0 to 1.

Fig. 1: Airport routing network, represented by the adjacency matrix
in Figure 1a. In Figure 1b, the pixels representing the edges of
the adjacency matrices are coloured according to their position
assignments and the red dotted lines represent the boundaries of the
positions after they are discretised. Edges whose incident vertices
belong to two different positions are coloured with the average of
the two interacting positions. Darker blocks in the image matrix of
Figure 1c represent larger values.

is revealed by the image diagram (Figure 1d), and this can
include hierarchical, community and many other important
structures. Blockmodels summarise the structure of a graph
succinctly, allow us to explore the membership of the vertices
and how they relate to each other, permit us to interpret the
underlying structure (e.g., it is a core-periphery), and facilitate
discovery of important roles (e.g., the Core role is highly
connected to all other roles and are key hubs for flights).

Two broad classes of approaches for blockmodelling have
been developed. The first class, Bayesian Blockmodelling,
takes a probabilistic approach using graphical models [5].
Challenges for this type of approach are how to efficiently
perform inference and the need to correctly model the under-
lying structure.

The second class of approach formulates the blockmodelling
task as a matrix decomposition problem, targeting the discov-
ery of latent factors [6]. An advantage of this type of approach
is the ability to leverage the large body of related work on
efficient matrix factorisation. Existing work in blockmodelling
using matrix factorisation takes as input the adjacency matrix
of the graph, and then decomposes this matrix into factors
that correspond to elements of the blockmodel. The standard
formulation of matrix decomposition is solved by iteratively
updating the membership matrix while holding the image
matrix fixed, and then updating the image matrix while holding
the membership matrix fixed. We show that we can construct

a closed form solution for updating the image matrix. We then
show that using this direct approach to computing membership
leads to performance and accuracy improvements for block-
modelling.

A further challenge we address in our formulation is the
incorporation of multi-view aspects. Multi-view refers to the
case whereby a given set of vertices can be used to form differ-
ent types of graphs or “views”. Each such view corresponds to
a different type of relationship. For example, a social network
may be constructed where vertices correspond to tweets. One
view for this network consists of edges indicating the existence
of reply relationships between pairs of tweets. Another view
for this network consists of edges that indicate the existence of
a given threshold of textual similarity between pairs of tweets.

In this paper, we propose a new method that:
• improves accuracy of the decomposition by using only a

single-step update method, and
• supports multi-view blockmodelling, improving the accu-

racy of the decomposition by utilising more sources of
information when they are available.

BLOCKMODELLING

A directed graph G(V,E) consists of a set of n vertices V
and a set of edges E, E ⊆ V × V . It can be represented by
an n × n adjacency matrix A where Aij = 1 iff there is a
directed edge from vi to vj .

A blockmodel is a form of dimension reduction that de-
composes a graph represented by an adjacency matrix into
a set of k vertex partitions (called positions), represented by
a membership matrix C ∈ [0, 1]n×k where cij = 1 means
that vertex i is assigned to position j, and an image matrix
M ∈ [0, 1]n×k, where mij describes the likelihood of an
edge between a vertex from position i to a vertex of another
position j. Each entry in M is called a block. The blockmodel
decomposition approximates A as CMC>. The objective of
blockmodelling is, given A and number of positions k, to find
the most accurate blockmodel decomposition, i.e.,

min
C,Mf = ‖A− CMC>‖2F

where ‖.‖2F is the Frobenius norm (squared).
Blockmodelling is NP-Hard [7], hence blockmodelling

methods only seek good local optima.
[6] introduced an improvement to the objective to account

for the imbalanced nature of edges to non-edges (no edges) in
A, which we also use. Typically a graph is sparse, hence non-
edges dominate. If we just approximate A without adjusting
for this, the edges are less likely to be approximated well.
Hence a weighting scheme was introduced.

min
C,M

(
‖(A− CMC>) ◦ (A−R)‖2F

)
(1)

where R ∈ [0, 1]n×n, Ri,j = m
n2 , ∀i, j ∈ V and ◦ represents

the element-wise multiplication operator. When a graph is
sparse, m

n2 is small, and the weighting factor (A−R) will be
large when Aij = 1 and small when Aij = 0, thus achieving
the reweighting.



There are two versions of blockmodelling. In hard block-
modelling, each vertex can only belong to one position.
Recall that each row of C indicates the membership of a
vertex to each of the k different positions. Hence for hard
blockmodelling, for each row i of C, if vertex vi belongs to
position j, then Cij = 1 and other entries in that row are zero,
i.e., Cix = 0, 1 ≤ x ≤ k, x 6= j.

In soft blockmodelling, vertices can belong to multiple
positions. This allows greater flexibility and ability to model
scenarios such as people (represented by vertices) having
multiple groups such as friends, family, work and hobbies.
Thus, soft blockmodelling can model overlapping member-
ships which gives better results, but at the expense of more
degrees of freedom, and potentially memberships where a
vertex belongs to all positions. In this paper we examine both
hard and soft blockmodelling.

Existing Blockmodelling approaches

Traditional matrix decomposition approaches to blockmod-
elling solve for M and C by starting from some random initial
solution, and updating C while holding M fixed, and then
updating M while holding C fixed.

Algorithm 1: Blockmodelling matrix decomposition
algorithm, given n×n adjacency matrix A and number
of positions k, find the best blockmodel C and M

1 M ← k × k matrix with random values in [0,1]
2 C ← n× k matrix with random values in [0,1]
3 while method has not converged do
4 C ← updateC(C,M,A)
5 M ← updateM(C,M,A)

6 return (C,M)

In hard blockmodelling, the update function for C,
updateC, is based on solving a discrete constrained optimisa-
tion problem [6]. In soft blockmodelling updateC is usually
based on gradient descent. Similarly, the update function for
M , updateM , can be based on multiplicative update rules [6]
or coordinate descent [8].

The update functions need to ensure that the values in
M matrices continue to lie in the range [0,1]. For hard
blockmodelling the values in C should be in {0, 1}.

updateC: We explain the approach that [6] used and we
also adopt. When solving hard blockmodelling, we are solving
a discrete, NP-hard problem. Updating C involves assigning
memberships and assessing the goodness of the change. To
reduce the computation needed, [6]. introduced an incremental
approach to evaluating Equation 1.

Let the current membership and image matrices at iteration
t be denoted by C(t) and M (t). Without loss of generality,
consider that the vertex vi be reassigned from its current
position g to its new position h. We can write these atomic
reassignment operations as matrices of dimensions n× k. Let
∆−ig = −1 for entry (i, g) and 0 elsewhere. Let ∆+

ih = +1 for

entry (i, h) and 0 elsewhere. This reassignment and its effect
on C can be written as C(t+1) = C(t)−∆−ig +∆+

ih. When we
perform the reassignment, we evaluate the new value for the
objective ‖(A−C(t+1)M (t)(C(t+1))>)◦(A−R)‖2F . To simply
the notation, let D(t) = ‖(A − C(t)M(C(t))>) ◦ (A − R)‖2F
(we drop the superscript for M to simply the notation, as it is
not updated here). The relationship between objectives D(t+1)

and D(t) can rewritten as:

D(t+1) = D(t) + S(t)ΛT + ΛU (t) − ΛMΛT

with S(t) = C(t)M , U (t) = M(C(t))> and Λ = ∆−ig −∆+
ih.

As most of the values in D(t+1) do not change due to
the reassignment, we can isolate the changes and the hence
computation to evaluate the goodness of it. We can compute
D(t+1) by first assuming D(t+1) = D(t) and then:

D
(t+1)
∗,i = S

(t)
∗,g − S(t)∗,h (2)

D
(t+1)
i,∗ = U

(t)
g,∗ − U (t)

h,∗ (3)

Dt+1
i,i = Mg,g −Mh,g −Mg,h +Mh,h (4)

Then for vertex vi, the position that results in a minimal sum
of the D(t+1) terms in Equations 2 to 4 is its best position
assignment. Computing Equations 2 to 4 has a complexity
of O(k) and since we can precompute D(t), S(t) and U (t),
the complexity of position evaluation is also O(k). S(t+1)

and U (t+1) can be similarly updated using rules similar to
Equations 2 and 3.

updateM: For updating M and ensuring M lies within [0, 1],
[8] used a coordinate descent approach, where each entry of
M is optimised one by one. Let Eij be a k×k matrix with all
entries 0, apart from row i and column j, which has value of 1
(this is the conjugate basis). Let ψ be a step size. They update
Mij by Mij = Mij + ψEij . To find the appropriate ψ for
each Mij , the following objective was solved: minψ Lij(ψ) =
‖A− C(M + ψEij)C

T ‖2F .
Taking the derivative and solving for ψ, resulted in the

following update rule:

ψ =

{
min(ψ, 1−Mij) if ψ ≥ 0

min(ψ,−Mij) if ψ < 0

For Soft Blockmodelling, [8] updated the membership and
image matrix using gradient descent approach where each
entry of C is optimized one by one. The idea was to compute
the gradient of C and M, then use a line search to find the
appropriate step size (ψ) that results in the minimal objective
value. To ensure that both M are C are non-negative, they were
projected to the non-negative quadrant.

ASBLOCK : IMPROVED BLOCKMODEL SOLVING

We show that by algebraic manipulation of the blockmodel
objective we can generate a closed form solution for com-
puting the image matrix M given a membership matrix C.



Assuming a perfect blockmodel decomposition we have that
A = CMC>. Let N = CTC. Then we have that

A = CMC>

⇔ AC = CMC>C
⇔ AC = CMN
⇔ C>AC = C>CMN
⇔ C>AC = NMN
⇔ M = N−1C>ACN−1

So we have a closed form formula for determining the image
matrix M given the membership matrix C.

Assuming that C is a hard membership matrix (i.e., each
row i has exactly one non-zero entry Cij = 1 indicating vertex
i should be placed in position j), then we have that N = C>C
is a diagonal matrix of size k × k where each diagonal entry
Njj =

∑n
i=1 Cij records the sum of column j of the C matrix

(which for hard membership equals the number of vertices
assigned to position j). When we have hard partitions, then N
is a diagonal matrix, hence we have the following equivalence
since multiplication by a diagonal matrix (and its inverse) is
associative and commutative:

M = N−2C>AC

Updating M : In previous work [8], gradient or coordinate
descent was used to update M . But as the previous analysis
showed, we can optimise for M directly.

Rather than updating M by gradient or coordinate descent
we can simply use this equation to compute the “best” M
given A and C. We define updateM(A,M,C) = N−2C>AC
for hard blockmodelling where N is the diagonal k × k
matrix with Njj =

∑n
i=1 Cij , 1 ≤ j ≤ k. In the case of hard

blockmodelling with a perfect decomposition this update will
drive us to the optimal solution for M immediately. For
soft blockmodelling updateM(A,M,C) = N−1C>ACN−1

where since N = C>C, its inverse is N−1 = C>C∑n
i (C

>C)ii
.

When substituted into updateM , N−1 becomes a
normalisation factor and M is guaranteed to lie between [0, 1].

Updating C: We adopt the same approach as [6] for updating
our hard membership blockmodels.

MULTIPLE VIEW BLOCKMODELLING

Standard blockmodelling treats all edges between vertices as
equivalent, and simply tries to find common structure within
the graph using this view of the edges. But in many cases
the graph will have different kinds of edges, and we know
that they represent different relationships between vertices: for
example in a protein-protein interaction (PPI) network their
are activation edges and inhibition edges. Each plays a very
different role in interaction. If we treat all interactions as the
same during blockmodelling then we would be unable take
advantage of this information.

[9] were the first to consider the idea of clustering vertices
based on multiple graphs among the edges. They show that by
considering a tri-matrix factorization approach, it is simple to

break the problem into finding a common position matrix C
and a separate image matrix Mi for each view of the graph.

The multiple view blockmodelling problem finds a single
position matrix C and p image matrices M1, . . . ,Mp that
minimize the objective function :

min
C,M1,...,Mp

(‖A1 − CM1C
>‖2F

+(‖A2 − CM2C
>‖2F

+(‖A3 − CM3C
>‖2F

...
+(‖Ap − CMpC

>‖2F
This defines a multiple view blockmodel.

For example, for a PPI network we construct the adjacency
matrix Aa of activation edges, and the adjacency matrix Ai
of inhibitory edges, in order to determine the position matrix
that takes into account both kinds of information separately.

Extending Algorithm 1 to handle the multiple view case
is straightforward. The procedure updateC simply uses
the larger objective function described above. We replace
line 5 by a loop updating each image matrix Mi ←
updateM(C,Mi, Ai).

In the case that we use our direct computation of
the image matrices Mi the updateM function is simply
updateM(C,Mi, Ai) = N−2C>AiC for hard blockmod-
elling and updateM(C,Mi, Ai) = N−1C>AiCN

−1 for soft
blockmodelling. Since all Mi are independent of each other
we can calculate each Mi separately and in parallel, which
saves computation time.

EVALUATION

In this section, we evaluate our approach and compare them
against the baseline algorithms. We first evaluate the single
view formulation and its improvement in recovering latent
structures using real world datasets. We then evaluate the
multi-view formulation and demonstrate how it improves on
single view formulations and multi-view community detection.
We use normalized mutual information (NMI) as the principle
measure of the accuracy of the approach, as is standard for
work on blockmodelling and community detection [10]. All
algorithms are implemented in Matlab 2019a.1 Experiments
were performed on an Intel i7 8th gen laptop with 1.8 GHz
CPU and 8 GB RAM. The time limit for each run was 3hrs.

Single View Evaluation

We compare our improved blockmodelling approach versus
a number of existing blockmodelling algorithms on several
standard datasets used in the literature. Statistics of the datasets
are shown in Figure I.

In previous work [6], several baselines in community detec-
tion and matrix factorisation based clustering were used. Some
of these algorithms perform either hard (-H) blockmodelling,
soft (-S) or have both a hard and soft version (we evalu-
ate against both variants). These algorithms include: RGC

1To avoid violating the double blind policy, we will release the code and
provide a link in paper after the reviewing process.



Name Vert. # Edge # Part. #
Baboon 14 23 2
Karate 34 78 2
Politic Books 105 441 3
College Football 115 613 12
Politic Blogs 1490 19090 2

TABLE I: Statistics of single view real world datasets.

Name Vert. # Views # Part. #
3sources 169 3 6
100leaves 1600 3 100
NewsGroup 500 3 5
WebKB 203 3 4
CiteSeer 3312 2 6
CoRA 1662 2 3

TABLE II: Statistics of multi view real datasets.

Relational Graph Clustering [11], Reic Role Models [12],
ANMF Asymmetric Nonnegative Matrix Factorization [13],
BNMTF Bounded Non-negative Matrix Tri-factorization [14].
[6] introduced several variants of their algorithm, and generally
found the following two variants outperform the other hard and
soft variants, hence we restrict our testing to these: Grad-
H-Ad optimises an objective that penalties M that deviate
from [0,1]. It uses the same position assignment approach as
ASBlock and coordinate descent to optimise M . Grad-H-
AdCn is similar to Grad-H-Ad, but it optimises an objective
that additionally encourages M to be 0 or 1. It uses similar
optimisation approaches as Grad-H-Ad. For other baseline
algorithms like DANMF Deep Autoencoder-like Nonnegative
Matrix Factorization [15] and SBM stochastic block model
for modular networks [16], we use the default parameters as
proposed in their original papers.

We also ran two different initialisations and update of
C in our algorithm. The first is a random membership
assignment of C (i.e., {0,1} assignment) which uses hard
blockmodelling update – we call this Hard ASBlock . The
second is for each row of C, we assign values in [0, 1] and
each row adds up to 1 (i.e., membership adds up to 1) and this
uses soft blockmodelling update – we call this Soft ASBlock .

We ran each algorithm 30 times with random initial matrices
and report the mean performance. The evaluation results for
real datasets are shown in Table III. As can be seen, both the
hard and soft initialisation variants of our proposed approach
have much better NMI performance than all the baselines.
Our hard initialisation approach is bettered by SBM twice.

(a) Baboon (b) Pol. books (c) Pol. blogs

Fig. 2: Blockmodel of single view datasets on applying ASBlock

Our soft initialisation approach is the best among all. As the
main difference between both our approaches and Grad-H-Ad
and Grad-H-AdCn is essentially the direct computation of the
image matrix M , this highlights the value of this treatment of
the image matrix.

It is interesting that the results for the two different initial-
isations and updates lead to large variations in the results.
We conjecture that the hard initialisation and update for
some datasets has insufficient freedom to explore and escape
its initialisation. The soft initialisation and update has more
freedom to move, and hence reach a globally better solution.

The time requirements for our methods are modest, as they
are faster in general than the Grad-H-Ad methods that they
are based on, showing that the direct computation of Mi

improves the convergence. They are typically twice as fast as
the DANMF method. The fastest methods in the table, RGC-S
and ANMF-S, are highly inaccurate.

To illustrate the benefit of the image decomposition, we
produced the adjusted adjacency matrices of three datasets
(Figure 2). The ideal types of structures have been discov-
ered - Baboon is similar to a core-periphery network, while
political blogs and books are community structure. Note that
for political books, it is known that there are generally two
communities of books (Democrats and Republicans, the two
dominant parties in United States), but also a small number
of books that sit between the two dominant communities (the
small community in the middle with links to the two other
communities). This demonstrates that our novel image matrix
update rule can find accurate and interpretable blockmodels to
explain the underlying networks.

Multi View Evaluation

We evaluate our multi-view blockmodelling approach on six
real-world datasets, summarised in Figure II. 2

We compare our ASBlock method against the base-
lines RMKMC [18] Robust Multi-View K-Means Clus-
tering, SNMTF [19] Simplicial Nonnegative Matrix Tri-
Factorization, SC-ML [20] Spectral clustering on Multi-Layer
graphs, MCGL [21] Multiview clustering with graph learning,
ASMV [22] Adaptive structure-based multi view clustering
and GraphFuse [23]. In each case we used the default
parameters proposed in the original papers.

Table IV contains results of our method and the base-
lines on the benchmark multi-view datasets. Since some of
these algorithms including ours depend on the initializations,
without loss of generality, we run all the methods 30 times
using random initializations and report the mean performance.
This table shows that our approach soft ASBlock is highly
competitive, providing the best results for all of the six
benchmarks, and hard ASBlock is clearly the second best
approach.

23Sources available from http://mlg.ucd.ie/datasets/3sources.html,
100leaves from the UCI repository, NewsGroup and WebKB from
http://lig-membres.imag.fr/grimal/data.html. CiteSeer and CoRA from
[17] are kindly made available by Vladimir Gligorijevic.

http://mlg.ucd.ie/datasets/3sources.html
http://lig-membres.imag.fr/grimal/data.html


Algorithms\Datasets Baboon Karate Pol Books football Pol Blogs
NMI time NMI time NMI time NMI time NMI time

RGC-H 0.5295 0.062 0.0064 0.18 0.0131 0.54 0.2618 3.34 0.0002 922.40
Reic-H 0.0588 17.73 0.0380 34.67 0.0238 135.70 0.2352 2342.80 — —
RGC-S 0.0026 0.02 0.0023 0.02 0.0014 0.04 0.2481 0.07 0.0010 3.89
ANMF-S 0.0669 0.05 0.0123 0.02 0.0035 0.04 0.2453 0.06 0.0013 5.34
BNMTF-S 0.0175 2.70 0.0129 7.04 0.0171 24.95 0.3141 173.90 — —
DANMF 0.2453 0.29 0.1678 0.95 0.4241 0.37 0.4229 4.05 0.1663 751.62
SBM* 0.5295 0.21 0.4006 1.73 0.4674 1.12 0.2798 7.2 0.0931 1092.31
Grad-H-Ad 0.2376 0.14 0.0955 0.14 0.0810 0.48 0.0668 4.00 0.0001 480.40
Grad-H-AdCn 0.1637 0.19 0.1115 0.14 0.1704 0.43 0.1075 2.11 0.0010 610.30
Hard ASBlock 0.6945 0.082 0.2896 0.29 0.4304 0.53 0.5805 3.38 0.2552 364.85
Soft ASBlock 0.6945 0.061 0.4016 0.093 0.4939 0.177 0.6312 1.34 0.2716 147.85

TABLE III: Computing NMI and time (secs) for various real datasets. A — indicates the method timed out after 3 hours. * indicates that
the algorithm was run in C++ (all others were run in Matlab)

Algorithms\Datasets 3sources 100leaves NewsGroup WebKB CiteSeer CoRA AVG
RMKMC 0.3248 0.0215 0.3198 0.2701 0.2679 0.2241 0.2380
SNMTF 0.0492 0.6578 0.0156 0.0383 0.2618 0.3032 0.2210
SC-ML 0.2728 0.7269 0.0942 0.2237 0.3208 0.4047 0.3405
MCGL 0.1162 0.8852 0.1143 0.0812 0.0793 0.1135 0.2316
ASMV 0.0958 0.9132 0.0732 0.2709 0.1202 0.1431 0.2694
GraphFuse 0.2632 0.8622 0.3422 0.3271 0.1618 0.2049 0.3602
hard ASBlock 0.3672 0.9087 0.5866 0.4231 0.3153 0.4638 0.5108
soft ASBlock 0.4128 0.9257 0.5941 0.4409 0.3428 0.4682 0.5308

TABLE IV: Average performance (NMI) over 30 executions for multi view real datasets.

RELATED WORK

Single view blockmodelling: : [11] and [13] introduced
the idea of non-negative matrix tri-factorisation for finding
blockmodels for graphs, and produced different multiplicative
optimisation approaches. [14] introduced a coordinate descent
algorithm to find overlapping position blockmodels. [6] [8]
proposed a framework of algorithms and objectives to tackle
sparse and noisy graphs. [24] proposed an information theo-
retic approach of finding blockmodels in evolving graphs.

[25] introduced a mixed membership probabilistic model,
where vertices can belong to multiple positions. [26] proposed
a generative probabilistic model that takes the difference in
the degree distributions of vertices into account. However,
their formulation is specifically targeting heavy tailed graphs,
while our model is general and can easily incorporate different
types of graphs. [12] proposed a null model formulation
that sums the difference between the adjacency matrix and
the blockmodel approximation of it. A simulated annealing
approach was proposed to optimise this. For the factorisation
based methods, our evaluation showed our novel image matrix
update approach had superior accuracy.

Multi-view community detection:: [9] devised a similar
approach to ours, using tri-factorisation to decompose each
graph view, but their approach does not impose any constraints
on their matrices apart from symmetry for their corresponding
M matrix, which means their approach is unable to find
general blockmodel decompositions such as the asymmetric
structures of a stick or ring. [27] devised a spectral clustering
approach, but similar to [9], spectral clustering can only find
communities and not other blockmodel structures. [28] pro-
posed a self-weighting multi-view clustering algorithm across
multiple graphs, that learns the importance weighting for each
view/graph.

CONCLUSION

We have presented a novel framework for blockmodelling in
social networks. Our framework replaces iterative computation
of the image matrix by a closed form solution. This leads to
faster convergence and more accurate results. We also show
that this framework provides a straightforward formulation for
the case of multi-view social networks that involve different
types of edges between vertices in the social network. Our em-
pirical results on a range of benchmark datasets demonstrate
the advantages of our approach in terms of the accuracy of the
resulting blockmodel, as well as the computational efficiency
of our approach, in comparison to a wide range of state-of-
the-art decomposition approaches.
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