
Planning and Execution in Multi-Agent Path Finding: Models and Algorithms

Yue Zhang, Zhe Chen, Daniel Harabor, Pierre Le Bodic, Peter J. Stuckey
Monash University, Australia

{Yue.Zhang, Zhe.Chen, Daniel.Harabor, Pierre.LeBodic, Peter.Stuckey}@monash.edu

Abstract

In applications of Multi-Agent Path Finding (MAPF), it is
often the sum of planning and execution times that needs
to be minimised (i.e., the Goal Achievement Time). Yet cur-
rent methods seldom optimise for this objective. Optimal al-
gorithms reduce execution time, but may require exponen-
tial planning time. Non-optimal algorithms reduce planning
time, but at the expense of increased path length. To address
these limitations we introduce PIE (Planning and Improving
while Executing), a new framework for concurrent planning
and execution in MAPF. We show how different instantia-
tions of PIE affect practical performance, including initial
planning time, action commitment time and concurrent vs. se-
quential planning and execution. We then adapt PIE to Life-
long MAPF, a popular application setting where agents are
continuously assigned new goals and where additional deci-
sions are required to ensure feasibility. We examine a variety
of different approaches to overcome these challenges and we
conduct comparative experiments vs. recently proposed al-
ternatives. Results show that PIE substantially outperforms
existing methods for One-shot and Lifelong MAPF.

Introduction
Multi-Agent Path Finding (MAPF) (Stern et al. 2019) is the
problem of finding collision-free paths for a team of moving
agents. Efficiently solving MAPF is crucial for many real-
world applications, such as automated warehouses (Wur-
man, D’Andrea, and Mountz 2008), automated intersec-
tions (Li et al. 2023) and computer games (Silver 2005).

When solving MAPF problems, existing studies typically
assume that necessary computation time is available up
front (Lam et al. 2022; Li et al. 2021c,a; Okumura 2023).
Smaller times are preferable but typically not reflected in
the corresponding objective functions, which instead aim to
minimise action costs; e.g, Makespan (Yu and LaValle 2013)
or Sum-of-Costs (Stern et al. 2019). The main advantage of
this approach, sometimes known as offline planning is that
execution times are as small as possible, subject to time-
out limits (which can range from seconds to hours). The
main drawback to offline planning is a mismatch between
the model assumptions and the requirements of real applica-
tions, which can be entirely online. In other words, if a plan

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0 20 40 60 80 100
time(s)

16000
18000
20000
22000
24000
26000
28000

So
C

19248
19251

28187

1s 30s 73s 116s99s

PIE LaCAM MAPF-LNS

Figure 1: Planning and execution costs for 3 different MAPF
algorithms on a small grid map; random-32-32-20 with
400 agents and unit action costs. PIE and LaCAM* com-
pute the same initial solution and begin execution after 1s.
MAPF-LNS plans for a further 29s then begins execution.

is not immediately available real-world agents simply wait
in place, until the planner can provide instructions.

An alternative approach, which can reduce up-front de-
lays, involves decomposing a MAPF problem into a se-
quence of smaller sub-problems; e.g., each having a lim-
ited time horizon (Švancara et al. 2019; Li et al. 2021d;
Morag, Stern, and Felner 2023). The resulting interleaved
planning model has the advantage that agents are provided
with instructions sooner. The main drawback is an increase
in execution costs, as less time is available for each planning
episode. Another drawback is that the planner runs until a
solution is found, which may take more or less time, de-
pending on the sub-problem at hand. In other words, plan-
ning episodes do not necessarily have a fixed duration.

In this work we propose a new concurrent planning
framework which we call PIE: Planning and Improving
while Executing. PIE leverages fast solvers to quickly com-
pute and commit to a small number of actions for each agent.
During execution of these actions, PIE optimises the remain-
ing paths of agents and then commits to a new set of ac-
tions. Concurrent algorithms have been previously studied
in single-agent search (Korf 1990) where they are known to
reduce waiting time for agents and improve Goal Achieve-
ment Time (GAT) (Gu et al. 2022).

As a motivating example consider Figure 1, where we il-
lustrate the concrete advantages of PIE (in blue) compared
with two leading offline planners: MAPF-LNS (Li et al.



2021a) (the best known algorithm for anytime MAPF, in yel-
low) and LaCAM⋆ (Okumura 2023) (the best known algo-
rithm for scalable MAPF, in green). The graph shows Sum-
of-(executed action)-Cost (SoC) over time, with the end-
point of each line indicating the end of execution (i.e., GAT
for the last arriving agent). We make three observations: (i)
PIE finishes executing substantially faster than either offline
planner; (ii) the execution costs for PIE are very similar to
MAPF-LNS, which requires 29 seconds of additional com-
pute; (iii) advantages are magnified when considering up-
front wait costs: +400 for PIE and LaCAM⋆ and +12000
(400×30) for MAPF-LNS.

We describe the general PIE framework and the main
decision variables required by the model. We then anal-
yse and experiment with two distinct instantiations: PIE for
one-shot MAPF (where each agent has a single target) and
PIE for Lifelong MAPF (where agents are continuously as-
signed new tasks). Results show substantial improvements
for Goal Achievement Time for one-shot MAPF and sub-
stantially higher throughput for Lifelong MAPF in compar-
ison to leading methods from the area.

Existing Models and Algorithms
Offline Algorithms for Multi Agent Path Finding: Lazy
Constraint Addition Search for MAPF (LaCAM⋆) (Oku-
mura 2023) is a highly scalable suboptimal algorithm for
one-shot MAPF. LaCAM⋆ is a two-level search. In the high-
level, the algorithm explores configurations of agents, i.e., a
sequence of non-repeated vertices, one for each agent. Each
high-level node is associated with a configuration and a con-
straint tree (CT). The root high-level node is the start config-
uration that consists of the start vertices of each agent with
no constraints on CT. LaCAM⋆ aims to expand the search
tree in a depth-first search style that transits the search nodes
from the start configuration to the goal configuration (goal
vertices of each agent). During the search, the configuration,
which satisfies the associate CT, is efficiently generated by
Priority Inheritance with Backtracking (PIBT), a rule-based
MAPF solver (Okumura et al. 2019). If the configuration
generation fails, LaCAM⋆ does not immediately discard the
node. Instead, it invokes the low-level search in CT, which
gradually grows CT to govern agent movements and gen-
erate the associate configuration until a valid configuration
is found. LaCAM⋆ further improves its performance by dis-
carding duplicate configurations to prevent livelocks and en-
hancing PIBT with a pattern-based swap operation (Luna
and Bekris 2011; De Wilde, Ter Mors, and Witteveen 2014).

Large Neighbourhood Search for MAPF (MAPF-LNS)
(Li et al. 2021a) is the current state-of-the-art anytime search
algorithm for one-shot MAPF. It aims to improve MAPF so-
lutions to near-optimal within a given time budget by replan-
ning subsets of agents using Large Neighbourhood Search.
MAPF-LNS initiates with an initial solution and iteratively
modifies it by selecting a subset of agents as the neighbour-
hood, destroying and replanning the neighbourhood’s paths
to improve the solution. This neighbourhood is heuristically
chosen by three strategies (agent-based, map-based and ran-
dom), and the associated paths are removed and replanned
to ensure collision avoidance. If successful, the new paths

replace the existing ones, contributing to a better solution.
This process iterates until the time budget is exceeded. The
neighbourhood selection strategy is adapted during itera-
tions to use strategies that have more recently improved so-
lutions, and a tabu-list is used to avoid continually examin-
ing the same sets of agents. The low-level search for getting
the initial solution and replanning in MAPF-LNS uses Pri-
oritised Planning (PP) (Silver 2005). PP simply plans for
agents in an order, e.g., randomly sampled. It plans paths for
each agent while treating other higher-priority agents’ paths
(including those not being replanned) as temporal obstacles.

MAPF-LNS2 (Li et al. 2022) is a sub-optimal MAPF al-
gorithm, which starts from an initial conflict solution and
repair the solution to be conflict-free based on large neigh-
bourhood search. It starts by calling PP to find paths for a
MAPF instance. For the agents that fail to obtain a conflict-
free path, MAPF-LNS2 plans paths for them while minimis-
ing the number of collisions using Safe Interval Path Plan-
ning with Soft Constraints (SIPPS) (Li et al. 2022; Phillips
and Likhachev 2011). After obtaining the conflict path for
all agents, MAPF-LNS2 selects the neighbourhood agents
that cause conflicts based on the heuristic, destroys and re-
pairs the neighbourhood paths to reduce the total number of
conflicts in the solution. This process iterates until the cur-
rent repaired solution is collision-free.

Interleaved Planning and Execution in Multi Agent
Path Finding: One similar idea is called Rolling-Horizon
Collision Resolution (RHCR) (Li et al. 2021d), which is
designed for Lifelong MAPF. In the RHCR framework,
the solvers only need to plan for a MAPF solution that is
collision-free within a window. By doing so, agents can
quickly start executing the windowed solution. RHCR runs
this planning and execution of the partial solutions sequen-
tially. It performs well in large-scale warehouses against
other Lifelong MAPF algorithms in terms of the number of
goals completed, but the runtime of the planning algorithm
is regarded as free of cost in the simulation. In other words,
the actual GAT needs to be increased by adding the wait-
ing time for planning. In (Morag, Stern, and Felner 2023),
authors also applies RHCR in their Lifelong MAPF frame-
work. In their experiments, they set the planning time limit
to be the same as the execution time per window, which can
be adapted to our problem settings (planning while execut-
ing). However, the low-level planner in RHCR cannot guar-
antee to compute the windowed solutions within the strict
’execution move’ time limit, it suffers from a high failure
rate when scaling up with more agents. In addition, once the
solver finds a solution, it will terminate. Thus, there is no
chance to improve the returned solutions.

Concurrent Path Finding Algorithms: Concurrent
planning and execution are mostly studied in single agent
planning, called Real-time Heuristic Search (RTHS) (Korf
1990). During the execution, RTHS algorithms perform a
constant amount of expansions (or within a fixed time limit)
as look-ahead in the search tree. Then the algorithm commits
the next k actions and re-roots the tree from the last loca-
tion of the committed actions. It can be regarded as planning
while executing when the look-ahead time limit is the same
as the time on execution. Since RTHS generates only partial



solutions during each commit, studies in this direction focus
on improving the look-ahead overheads and developing dy-
namic commitment strategies to optimise the feasibility of
the final plan (Gu et al. 2022; Elboher et al. 2023; Koenig
and Sun 2009).

In Sigurdson et al. (2018), authors consider this real-time
setting for MAPF, they run individual RTHS for each agent
and avoid collisions for agents nearby, i.e., within a given
“vision” limit. Since RTHS search performs limited look-
ahead, the commitment has a risk of making incorrect ac-
tion choices, such as an action leading to planning failure.
Furthermore, the complexity of MAPF environments makes
the problem harder to solve in a single search tree, i.e., col-
lision avoidance between agents. As a result, RTHS often
suffers from a low success rate and agents may reach dead-
ends when pushed by others.

Problem Setup
MAPF: The input is an undirected 4-connected gridmap
G = (V,E), and a set of m agents A = {a1...am}. Each
agent has a start location si ∈ V and a goal location gi ∈ V .
Time is assumed to be discrete. At each timestep, each agent
takes one action: either wait at the current location, or move
to an adjacent location. A path is a sequence of actions that
can transit an agent from its start to goal location. The length
(or cost) of a path is its number of actions. A plan is a set of
paths, one for each agent. A conflict occurs in a plan if two
agents would occupy the same vertex at the same timestep,
or if they would pass through the same edge in opposite
directions at the same timestep. A MAPF solution π is a
conflict-free plan.
One-shot and Lifelong: Conventional MAPF focuses on
solving the “one-shot” version of this problem, which is
solved when all agents are at their goal. By comparison,
Lifelong MAPF is a MAPF variant in which an agent re-
ceives a new goal once it reaches its current goal (Li et al.
2021d; Morag, Stern, and Felner 2023). This process contin-
ues until a simulation time horizon T is reached. The goals
are assigned by the Task Oracle (TO), which can reveal a
number of subsequent goals to each agent. In this work, we
reveal one goal at a time.
Concurrent Planning and Execution: For concurrent plan-
ning and execution in MAPF, agents can execute with a par-
tial solution. That is, a MAPF solver can commit only k
steps of actions in the path to the agents, denoted as πk. The
committed path πk is now locked and cannot be changed.
During the execution of πk, the solver can further plan for
the uncommitted path towards the goal or do nothing. After
the k timesteps execution, agents will wait until receiving
the next partial solution to execute. This process continues
until the problem is solved, i.e., all agents reach their goal
locations. We make additional simplifying assumptions that:
• Both the execution time of each action and planning time

is counted as an integer value of seconds;
• The execution is perfect with no delay and the communi-

cation time for committed actions is free of cost.
Objective Functions: Normally in conventional MAPF, the
objective is to minimise the Sum of path Costs (SoC), which

Algorithm 1: PIE Framework

Input: ⟨G,A⟩; Tinit, initial solution planning time limit; Taction,
execution time for one action; k, number of actions per com-
mit.

1: Texec ← Taction ∗ k
2: π ← Plan Improve(⟨G,A⟩, ∅, Tinit)
3: Commit πk

4: π ← π \ πk

5: while (Execution of πk) do
6: Update A.starts, A.goals from TO
7: π ← Plan Improve(⟨G,A⟩, π, T exec)
8: Commit πk

9: π ← π \ πk

is the sum of the execution time for each agent. In concurrent
planning and execution, both planning time and execution
time are measured together. In single agent planning, this
is called Goal Achievement Time (GAT) (Gu et al. 2022),
which is the time for a single agent from the planning start
to reach the goal location in execution. For MAPF, the GAT
is defined for each agent, as the sum of planning time and
path length. We simultaneously optimise GAT for all agents,
which is measured as the Sum of the Goal Achievement
Times (SGAT).

For Lifelong MAPF, there is no fixed goal. Instead, the
objective is to maximise the throughput, i.e., the average
number of goals reached per timestep by time T (equiva-
lently, the throughput can be understood as maximising the
number of goals reached).

Planning and Improving while Executing
In this section, we describe a new concurrent planning and
execution framework for MAPF. Our model has several
components, which must be instantiated:
Initial Planning Time (Tinit): this variable is the time al-
lowed to compute an initial solution. Tinit is also counted as
a waiting cost for every agent in the SGAT.
How Long to Commit (k): this variable is the number of ac-
tions that the agents commit to during each execution phase.
Once committed, these k actions cannot be changed.
Execution time (Taction): this variable specifies the time re-
quired to execute a single action. Multiplying by k gives the
time available for the planner to compute the next set of ac-
tions before the agents incur additional waiting time.
Planner: the main ingredient in PIE is the planner. We sug-
gest algorithms that can incrementally improve the solution
until time out. However, any MAPF planner can be used.

Pseudocode for the PIE framework is shown in Algo-
rithm 1, we take as input Tinit, k, Taction, the map G and
a set of agents A with initially assigned start and goal lo-
cations. PIE starts by generating an initial solution π and
improves π within the runtime limit Tinit (line 2). The algo-
rithm then commits the first k actions of π, and updates the
solution π to be the uncommitted part of the solution. Then
agents iteratively commit and execute (lines 5-9). The loop
terminates when all agents stay at goals. During each execu-
tion, the planner will plan and improve the uncommitted part
of the solution with runtime limit Texec (line 7). After plan-



Algorithm 2: Plan Improve for MAPF

Input: ⟨G,A⟩; π; T max
1: if π is a partial solution or π is ∅ then
2: π ← LaCAM⋆(⟨G,A⟩, π, T max)
3: Tremain = T max− runtime of LaCAM⋆

4: π ←MAPF-LNS(⟨G,A⟩, π, Tremain)
5: Return π

ning, the planner commits the next k actions and updates the
uncommitted solution π (line 8-9).

PIE for One-Shot MAPF
In this section, we show how to instantiate PIE for one-shot
MAPF. The approach combines LaCAM⋆, which we used to
compute fast feasible solutions, and MAPF-LNS, which we
use to improve the costs of uncommitted actions.

MAPF-LNS utilises MAPF-LNS2 to get initial solutions,
but MAPF-LNS2 can be ineffective when given only a short
time limit but a large number of agents (Shen et al. 2023) i.e.,
time of executing one action. Therefore, we use LaCAM⋆

instead, which outperforms MAPF-LNS2 in scalability. We
then modify LaCAM⋆ to return partial solutions on time-
out, in which we select the best node explored so far as the
partial solution. The best node is measured by the number
of goals reached with tie-breaking on the maximum depth
of the search node to ensure as many steps possible in the
solution do not have conflicts.

Pseudo-code is shown in Algorithm 2. First, we generate
an initial solution if there is no current solution (line 1-2),
and use the remaining time to run MAPF-LNS to improve
the solution (line 3-4). Notice that if the uncommitted π is
a partial solution or not feasible, we discard the plan and
compute anew. 1 When improving (line 4), we maintain the
adaptive weights for MAPF-LNS, which affect the choice of
destroy heuristics, and tabu list, which prevents MAPF-LNS
from keep selecting the same group of agents for replanning.
As for completeness, Algorithm 2 is complete because it re-
lies on the fact that LaCAM⋆ is itself complete, and on the
fact that MAPF-LNS only changes a feasible solution to an-
other feasible solution.

PIE for Lifelong MAPF
Lifelong MAPF is more time-sensitive because real-world
applications like automated warehouses require consis-
tent and real-time operation. In Lifelong settings, neither
LaCAM⋆ nor MAPF-LNS can be directly applied due to the
following reasons:

• Frequent Replan: Agents constantly receive new goals
during ongoing execution, and new conflict-free paths to
new goals are constantly required.

• After-Goal Decision: In Lifelong settings, the planner is
not aware of where the agent should go after reaching the

1As in experiments, we observe that LaCAM⋆ mostly succeeds
within seconds. Therefore we simply restart LaCAM⋆ in the next
iteration if it fails to get an initial solution.

Algorithm 3: Plan Improve for Lifelong MAPF

Input: ⟨G,A⟩; π; T max.
1: if π is a partial solution or π is ∅ then
2: π ← LaCAM⋆(⟨G,A⟩, π, T max)
3: else
4: A

′
← agents that have a new goal

5: if A
′

is not ∅ then
6: if Replan strategy is Replan All then
7: π ← LaCAM⋆(⟨G,A⟩, π, T max)
8: if Replan strategy is Replan Affected then
9: run PP for A

′

10: if No solution then
11: π ←MAPF-LNS2(⟨G,A

′
⟩, π, T max)

12: Tremain = T max− runtime of line 1-11
13: π ←MAPF-LNS(⟨G,A⟩, π, Tremain)
14: if π has a collision in current commit window then
15: Failure resolution for π
16: Return π

goal, because the new goals are only revealed by TO after
the agent reaches its goal on the map.

• Failure Path Finding with Same Goal: In Lifelong,
more than one agent may have the same goal location.
Applying MAPF planners to such problems will lead to
search failure.

Algorithm 3 shows the overview of Plan Improve adapted
to Lifelong MAPF, which addresses the above challenges.
Comparing with Algorithm 2, Algorithm 3 have additional
lines (line 3-11) to replan paths to new goals. We will discuss
different after-goal decision strategies, planner decisions and
their trade-offs in the following sections.

Replan Strageties
Different approaches to replanning are discussed in the lit-
erature, including replanning all agents, replanning a single
agent and replanning a single group (Švancara et al. 2019).
Replanning a single agent in Lifelong MAPF may find the
agent has no path if all other agents’ paths are locked, so it
is not applicable to our problem. We consider the other two
approaches, Replan All and Replan Affected.

Replan All. The simplest approach is to replan for all
the agents once there are new goals. For replan all, once
there are new goals (line 3-5), we simply use LaCAM⋆ to
plan paths for all agents from their current positions and re-
place π with the new solution (line 6-11). Replan All with
LaCAM⋆ is fast and with high scalability. However, such an
approach wastes the previous effort on path improvement,
as the uncommitted MAPF-LNS improved paths of agents
without new goals are completely removed and replaced by
LaCAM⋆ solution, leading to lower throughput.

Replan Affected. To maintain the search efforts in previ-
ous MAPF-LNS improvements, we minimise the agents that
need to be replanned by using MAPF-LNS2 (line 8-11). We
first use PP to plan for only the agents that have new goals
while regarding other agents as dynamic obstacles (line 9). If
PP fails on some agents, we then enable MAPF-LNS2 to re-
pair the incomplete solution. (line 11). Replan Affected pre-
serves the existing paths as much as possible by replanning



for a small group of agents. It helps maintain the solution
quality, but PP and MAPF-LNS2 may fail to find conflict-
free solutions in a short time limit, as the underlying time-
space search is slow in congested situations. Thus, a failure
resolution policy will be introduced later to handle it.

After-Goal Decision in Planner

Many one-shot MAPF planners, like PP and MAPF-LNS(2),
assume agents stay at goal forever after reaching the goal. If
we do nothing when planning for lifelong MAPF with mul-
tiple agents having the same goal, planners will fail to find
a solution as the goal state includes conflict. If we assume
the agent disappears after reaching the goal, we may com-
mit a conflict solution to let agents execute, as agents never
disappear in the execution. In this section, we discuss three
after-goal decisions for the planner, to ensure collision-free
actions for commitment.

Disappear Immediately. In (Švancara et al. 2019), au-
thors treat agents as disappearing immediately after reach-
ing goals. We apply the same idea as one choice. However,
if the commit window is more than one step, disappearing
immediately may cause problems since we commit actions
that assume agents disappear, but they do not actually disap-
pear during execution thus causing conflicts.

Stay at Dummy Goal. In (Li et al. 2021d), authors assign
a final dummy goal to each agent where it can safely stay if
an agent has no goal. In their problem setting, the map has
some areas reserved for dummy goals, e.g. robot charging
stations, which are never selected as real goals and are un-
likely to block other agents’ paths. However, not all maps
have such a setup. Thus, we design a dummy goal selec-
tion rule based on the degree of each location, which indi-
cates how many traversable locations a location connects to.
First, we collect all vertices with the highest degree as candi-
date dummy goals. If the number of candidates is not enough
(less than the number of agents), we continue the same col-
lection process that adds the set of vertices with one less
degree as candidates. This process continues until we have
at least as many candidates as agents, and then we randomly
select dummy goals for each agent from the candidates.

Our dummy goal selection rule tries to minimise the
chance that the selected dummy goal is a must-traverse
through location for other agents. Our planner is modified
to plan paths from starts to current goals, and then to the
dummy goals. However, such an approach wastes efforts to
plan paths that will be thrown away once the agent reaches
the current goal and gets a new goal, resulting in longer plan-
ning runtime.

Disappear After Commit Window. To avoid wasted
planning efforts, we extend the Dummy Goal approach. The
new approach moves agents towards their dummy goal when
reaching their current goals, but the paths are only planned
up to the end of the commit window. This agent is then
regarded as disappearing after the commit window. When
committing actions including reaching goal events, these
agents immediately get new goals for future windows, so the
approach never commits actions with agents “disappear”.

100 200 300 400
102

103
104

105

Inf

SG
AT

 D
iff

er
en

ce

Random

200 400 600 8001000102

103

104

105

Inf
Warehouse

200 400 600 8001000102

103

104

105

Inf

SG
AT

 D
iff

er
en

ce

Game

200 400 600 8001000102

103

104

105

Inf
City

Figure 2: SGAT difference between “optimised to PIE SoC
before executing” and PIE. “Inf” means the offline LNS
solver times out when computing a solution or optimising
a solution to reach the PIE SoC.

Failure Resolution Policy Based on MCP
Both Replan Affected and Disappear Immediately may re-
turn a conflicting solution in the upcoming commit window.
More importantly, the planner may return a collision solu-
tion if the time limit is tight. Thus, we design a failure res-
olution policy based on the Minimal Communication Pol-
icy (MCP) (Ma, Kumar, and Koenig 2017). MCP is a robust
execution policy that maintains the visiting order of agents
visiting each vertex according to a given plan so that the ex-
ecution is robust to unexpected delays. In (Li et al. 2021b),
authors extended the usage of MCP, they rebuilt a complete
MAPF plan by simulating the execution using MCP until all
agents reached their targets if a delay happened.

In this work, we use a modified MCP to rebuild a plan
that delays any collision within the commit window. First,
we record the visiting events order for each vertex accord-
ing to the given plan π, where each visiting event is a
set that records the agent that will visit the vertex at each
timestep (we omit timesteps with no visits). When build-
ing the visiting events order, multiple agents can visit at
the same time, indicating vertex collisions in the current
plan. For example, a vertex v has visiting even order ov =
[{a1}, {a2, a3}, {a2, a4}, {a5}] indicating a1 visits v first,
a2 and a3 then visit and collide at v, a2 and a4 collide at v
as a2 waits at v, and a5 visits v after a2 and a4 left.

We start the simulation with all agents in their current
state recorded on the paths. At each timestep, the simula-
tion increments agents that are not marked as “Done” yet,
to the next state recorded in their paths if and only if Con-
dition 1: the agent is included in the top visiting event of its
current vertex, and Condition 2: it is also included in the top
visiting event for the target vertex, are satisfied. The simula-
tion erases an agent from the top visiting event of its current
vertex when its state increments to the next state and pops
the event if the event is empty (ov[0] = ∅). Otherwise, the



simulation issues a stay at the current state for this timestep.

If an agent reaches the last state on its path, it is marked
as “Done” and erased from the corresponding visiting event.
The rebuild finishes when all agents are marked as “Done”.
When rebuilding paths, this generalised MCP pauses agents
competing for the same vertex at the same time within
the committed window and allows conflict actions outside
the committed window. So that, the committed actions are
conflict-free and paths outside the committed window are
given to the planner for optimisation while executing.

The Necessity of Condition 1. State increment Condition
1 is necessary to guarantee the correct execution to rebuild
the collision-delayed plan, with the original MCP only hav-
ing rules similar to Condition 2.

Assuming, agent a2 is with path p2 = [v−, v, v, v+].
When building the visiting event order, the original MCP
may ignore the wait on v and only consider which agent vis-
its v before a2 and which agent is after a2. But here, the
MCP visiting event order ov is built upon a collision plan.
To distinguish between the situation that a2 is in collision
with both a3 and a4 and a3 visit the v earlier than a4, we al-
ways record each visiting (occupation) event caused by the
wait in the visiting event order.

In this case, when a1 left v then a2 enters v the current
order of v is ov = [{a2, a3}, {a2, a4}, {a5}] and the cur-
rent state of a2 progressed to p2[1] = v. a2 then is al-
lowed to progress to p2[2] = v, as the current vertex and
next vertex are both v and a2 ∈ ov[0]. Then the visiting
order is updated to ov = [{a3}, {a2, a4}, {a5}]. Assuming
a3 is delayed somewhere else and will not visit v in a few
timesteps. If Condition 1 does not exist, a2 will increment
to p2[3] = v+. But as a2 /∈ ov[0], the erase a2 from the top
event of ov operation does not erase a2 and leaves its occu-
pation in ov[1] = a2, a4 forever. Thus we either need extra
mechanisms to erase agents from non-top events correctly,
or we simply use Condition 1 to maintain the visiting or-
der correctly. We choose to use Condition 1, where a2 only
increments to p2[3] after a3 clears its visiting event.

100 200 300 4000
200
400
600
800

1000

SG
AT

 D
iff

er
en

ce

Random

200 400 600 800 1000
0

1000
2000
3000
4000

Warehouse

200 400 600 800 10000
500

1000
1500
2000
2500
3000

SG
AT

 D
iff

er
en

ce

Game

200 400 600 800 10000
500

1000
1500
2000
2500
3000

City

Figure 4: Average SGAT Difference between initial planning
time is 2,3,4s and initial planning time is 1s.

Experiments
We implement PIE in C++2 and conduct experiments in
a Nectar Cloud VM instance with 16GB RAM, 8 AMD
EPYC-Rome CPUs for one-shot MAPF problems and an-
other Nectar Cloud VM instance with 32GB RAM, 16 AMD
EPYC-Rome CPUs for Lifelong MAPF problems.

One-shot MAPF
We conduct experiments on four different maps using
grid-based Multi-Agent Path Finding (MAPF) benchmarks
sourced from (Stern et al. 2019) spanning different do-
mains. These maps are named random-32-32-10 (referred
to as Random), warehouse-10-20-10-2-1 (referred to as
Warehouse), ht mansion n (referred to as Game), and
Paris 1 256 (referred to as City). For each map, we test all
25 random scenario files available in the benchmark sets. We
vary the number of agents up to the maximum number of

2Code is at https://github.com/YueZhang-studyuse/PIE

100 200 300 400
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

Re
la

tiv
e 

su
m

 o
f G

AT

Random

200 400 600 800 1000
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
Warehouse

200 400 600 800 1000
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Game

200 400 600 800 1000
1.00

1.01

1.02

1.03

1.04

1.05

1.06
City

Figure 3: Relative SGAT (SGAT divided by lower bound) with different commit windows 1, 3, 10, 20.



agents from the benchmark sets, which are from 100 to 400,
increasing by 100 for Random, and from 200 to 1000, in-
creasing by 200 for other maps. The runtime limit for the ini-
tial solution runtime limit (T init) is set to 1 second, which
is the best setup we found from experiments.

Experiment 1: Optimised Before Execution. To show
the necessity of optimising while execution and the price
of optimising the solution while agents waiting at starts.
We evaluate PIE with commit = 1 as a baseline and record
the corresponding SoC for each instance. We then sim-
ulate an optimising before execution situation by running
an offline MAPF-LNS to get an equal or better SoC and
evaluate its SGAT. That is, we terminate MAPF-LNS when
SoCcurrent ≤ SoCPIE . We evaluated MAPF-LNS with
both MAPF-LNS2 and LaCAM⋆ as the initial solution
solver. The runtime limit is set to 300 seconds. Figure 2
shows the SGAT difference between “optimise first to get
a good solution before execution” and “immediately start-
ing with PIE”. This is calculated by the SGAT of running
offline MAPF-LNS to get an equal or better solution mi-
nus the SGAT of PIE. The cost of optimising offline first
grows substantially when scaling, because the runtime for
computing an equal or better solution grows, causing sub-
stantial delays when agents are waiting in place. It is worth
noting that although MAPF-LNS2 as an initial solver out-
performs LaCAM⋆ in Warehouse and Game maps offline,
we observe that MAPF-LNS2 takes the majority of the run-
time for computing an initial collision-free solution, while
LaCAM⋆ always finishes in less than 1s. Therefore for PIE,
we use LaCAM⋆ as the initial solver to start executing as
quickly as possible.

Experiment 2: Initial Planning Time. We set commit =
1 as a baseline, and evaluate for PIE, to see if using a longer
initial planning time (Tinit) before starting yields better so-
lutions. Figure 4 shows the difference in average SGAT of
Tinit = 2, 3, 4s compared to Tinit = 1s. The difference is
calculated by the SGAT of Tinit = n minus the SGAT of
Tinit = 1s. Even spending only one extra second to opti-
mise the solution is worse because all agents are delayed for
1s and therefore, the waiting cost adds up. Things get worse
the longer we wait indicating that a minimal initial planning
time (1s) is best.

Experiment 3: How Long to Commit. Committing to
more steps of action may reduce flexibility in path improve-
ment. This is because committed actions are locked, sug-
gesting that always committing one step of action appears
to be the optimal choice. Figure 3 shows the resulting rel-
ative SGAT with commit windows 1, 3, 10, 20. This met-
ric is obtained by dividing the SGAT by the lower bound
(the sum of single-agent shortest paths, disregarding other
agents’ paths).

Longer commit windows increase the number of LNS it-
erations per unit time, since we have relatively more time for
improvement. We see that with a small number of agents,
or where the path lengths of agents are short (Random),
longer commit times are strictly worse; but when the num-
ber of agents is large and path lengths long, longer commit
times are preferable. For example, we observe that for 1000
agents, in the first 20s, LNS is only able to run on average

10.5 iterations per second for Game, 5.7 for Warehouse and
29.2 for City, meaning in 1s it may be unable to complete
even one iteration to improve the solution. Note that the
number of iterations per second improves as the execution
proceeds as agents remaining paths are shorter, and some
agents are finished. For City, the path length is much longer
than other maps, meaning the longer commits are even more
preferable. This makes sense since missed opportunities to
improve early commit windows that arise with long com-
mit windows are ameliorated by getting more LNS iterations
when paths to improve are longer.

Lifelong MAPF
For Lifelong MAPF, we do experiments on the same maps
as one-shot MAPF. For each map, we extend the number of
agents to test harder cases, including from 100 to 700, in-
creased by 100 for Random, from 200 to 1400, increased by
200 for Warehouse and Game, from 500 to 3500, increased
by 500 for City. For each map and number of agents, we
generate problem instances by randomly selecting the same
number of unique locations on the map as the number of
agents as agent start locations. For the goal locations, we
randomly select locations (which do not need to be unique)
on the map. We fix the sequence of goals assigned to each
agent for fair comparison. We set each move to be 1 second,
and the simulation time to 1000 seconds. During the simu-
lation, we only reveal one goal every time the agent finishes
its current goal.

Experiment 4: (Re-)Planning when Reaching a Goal.
We set commit = 1 as a baseline, and evaluate the throughput
of Lifelong PIE with combinations of Replanning and After-
Goal Decision strategies in Table 1. Note that for commit
= 1 both Disappear strategies are identical. For the replan-
ner, Replan Affect outperforms Replan All in most cases.
However, when adding more agents, e.g. for 500 agents in
Random, Replan Affect finds it harder to replan paths and
fix collisions. In such cases, Replan All maintains a stable
improvement when scaling up. For the After-Goal Decision,
Disappear is always better than Stay at Dummy Goal. This
occurs because, under the Dummy Goal setting, low-level
searches face challenges in finding paths, as the solution
that traverses the goal then dummy goal requires a longer
path to be computed, and collision avoidance has to con-
sider target conflicts on dummy goals. Replan Affect and
Disappear, which trades off maintaining the previous solu-
tion and more runtime for low-level searches, works the best
in most cases. Replan All and Disappear become the best
as we scale up. Note that for some cases when adding more
agents, the initial solver always fails, and the solution is al-
ways the LaCAM⋆ partial solution. In these cases, we need
to consider increasing the commit window to have more im-
provement when scaling up.

Experiment 5: Throughput Evaluation. Finally we
compare lifelong PIE with RHCR, the existing state-of-the-
art Lifelong MAPF solver, as well as an approach of simply
replanning when a goal is achieved using LaCAM⋆ (effec-
tively PIE with Replan All, and no path improvement). We
consider two variants of PIE: one uses Replan Affected and
usually generates the highest throughput (PIEF ); while the



Random
m 100 200 300 400 500 600 700

AL DU 4.2 6.07 5.52 5.06 4.63 4.43 4.05*
AL DI 4.28 7.64 9.1 6.64 5.64 4.79 4.17
AF DU 4.29 7.66 8.95 1.69 0.06 0.04 0.02
AF DI 4.3 7.97 10.66 11.2 1.87 0.04 0.01

Warehouse
m 200 400 600 800 1000 1200 1400

AL DU 2.04 3.14 3.93 4.44 4.77 4.48* 4.07*
AL DI 2.33 4.65 5.93 4.84 5.24 4.98 4.42
AF DU 2.33 4.72 6.66 7.77 5.92 0.41 0.44
AF DI 2.34 4.75 6.82 8.89 11 12.4 0.13

Game
m 200 400 600 800 1000 1200 1400

AL DU 1.77 2.55 3.09 3.24 3.62 3.78* 3.88*
AL DI 1.84 2.86 3.12 3.3 3.49 3.75 3.8
AF DU 1.85 3.57 4.58 2.54 0.37 3.78* 3.88*
AF DI 1.86 3.64 5 5.32 5.18 4.1 3.89

City
m 500 1000 1500 2000 2500 3000 3500

AL DU 2.36 4.62* 6.87* 8.88* 10.91* 12.24* 13.44*
AL DI 2.39 4.66 6.92 8.91 10.76 12.24* 13.44*
AF DU 2.41 4.59 6.87* 8.88* 10.91* 12.24* 13.44*
AF DI 2.41 4.78 7.21 9.53 12 12.24* 13.44*

Table 1: Throughput of differing Replanning and After-Goal
strategies: AL: Replan All, AF: Replan Affected, DU: Stay
at Dummy Goal, and DI: Disappear (both approaches are
identical for k = 1). m is the number of agents. “*” means
the initial solver failed every commit, i.e. the solution is pure
LaCAM⋆ partial solution and with no LNS improvement.

other uses Replan All and scales better eventually (PIEL);
details are given in Table 1. For RHCR, we set the parame-
ter to be the best they reported (w = 5, h = 10 and low-level
planner used is Priority-Based Search (Ma et al. 2019)).

As indicated in Table 1, for Disappear, we found when
the number of actions per commit is more than 1, Disappear
After Commit Window always generates better results than
Disappear Immediately. Furthermore, Replan Affect with a
smaller commit window, which gets benefits from knowing
the next goals as quickly as possible, is better. While for
Replan All, having more time to improve the LaCAM⋆ re-
planned solution (larger commit window) is more important
and achieves more throughput.

Figure 5 shows the throughput achieved by LaCAM⋆,
RHCR and lifelong PIE for different maps and numbers of
agents. Clearly RHCR performs very well for small num-
bers of agents, but fails to scale at all well. PIEF is the high-
est throughput approach until the number of agents reaches
a point where Replan Affected can not find a solution for
affected agents within the commit time, where PIEL takes
over. Note that when MAPF-LNS2 starts to fail more fre-

100 200 300 400 500 600 700
0
2
4
6
8

10

Th
ro

ug
hp

ut

200 400 600 800 1000 1200 14000
2
4
6
8

10
12

200 400 600 800 1000120014000
1
2
3
4
5
6

Th
ro

ug
hp

ut

500 100015002000250030003500
2.5
5.0
7.5

10.0
12.5
15.0

Figure 5: Throughput of RHCR, LaCAM⋆, PIEL and PIEF .

Random Warehouse Game City
DA, All (PIEL) 10 20 20 20

DA, Affect (PIEF ) 1 1 1 3

Table 2: PIE Strategy with the associated best commits (the
commit window that has the most number of best through-
put for different numbers of agents of a map) achieved the
throughput in Figure 5. DA: Disappear After Commit Win-
dow. “All” and “Affect” means the replanning strategy. Col-
umn 1-4 are the associate commits that report the best per-
formance. For commit = 1, Disappear After Commit Win-
dow is equivalent to Disappear Immediately.

quently (for example, 11% failure rate for 1200 agents in
Warehouse and 23% failure rate for 1000 agents in Game),
the throughput of PIEF does not immediately drop signifi-
cantly. This is because our failure resolution policy tries to
rebuild the solution and let agents move during the current
commit. As numbers continue to increase PIEL degrades to
effectively be equivalent to applying no path improvement
(LaCAM⋆). Clearly the number of agents where PIEF starts
to fail is different for different maps, and for City we never
reach this point.

Conclusions and Future Work
In this paper, we generate an efficient approach to planning
and improving while executing for One-Shot MAPF and
Lifelong MAPF problems. To do so we combine LaCAM⋆

(Okumura 2023) to generate initial solutions very fast, with
MAPF-LNS (Li et al. 2021a) to improve solutions. The re-
sulting algorithm provides substantially improved sum of
Goal Achievement Times compared to optimising before
executing for MAPF. We adapt the approach to Lifelong
MAPF, by investigating how to replan agents when they
reach their goal. We also make use of a Failure Resolu-
tion Policy to handle cases where a conflicting solution is
found when committing to the next commit window. While
replanning only affected agents is usually best, as the prob-
lem scales we simply have to throw away the previous solu-
tion, since we cannot replan new agents in the time available.
Overall our Lifelong MAPF solution provides significantly
greater throughput than competing approaches. Future work



will extend PIE with dynamic commit windows and con-
sider more planner speedups. In addition to this, considering
execution with delay probabilities in PIE is an interesting
direction for real-life applications.

Acknowledgements
This work is supported by the Australian Research Council
under grant DP200100025, and by a gift from Amazon.

References
De Wilde, B.; Ter Mors, A. W.; and Witteveen, C. 2014.
Push and rotate: a complete multi-agent pathfinding algo-
rithm. Journal of Artificial Intelligence Research, 51: 443–
492.
Elboher, A.; Bensoussan, A.; Karpas, E.; Ruml, W.; Shper-
berg, S. S.; and Shimony, E. 2023. A formal metareasoning
model of concurrent planning and execution. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 37, 12427–12435.
Gu, T.; Ruml, W.; Shperberg, S. S.; Shimony, E. S.; and
Karpas, E. 2022. When to Commit to an Action in Online
Planning and Search. In SOCS, volume 15, 83–90.
Koenig, S.; and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems, 18: 313–341.
Korf, R. E. 1990. Real-time heuristic search. Artificial in-
telligence, 42(2-3): 189–211.
Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J.
2022. Branch-and-cut-and-price for multi-agent path find-
ing. Computers & Operations Research, 144: 105809.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021a. Anytime Multi-Agent Path Finding via Large Neigh-
borhood Search. In IJCAI, 4127–4135.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig,
S. 2022. MAPF-LNS2: fast repairing for multi-agent path
finding via large neighborhood search. In AAAI, volume 36,
10256–10265.
Li, J.; Chen, Z.; Zheng, Y.; Chan, S.-H.; Harabor, D.;
Stuckey, P. J.; Ma, H.; and Koenig, S. 2021b. Scalable rail
planning and replanning: Winning the 2020 flatland chal-
lenge. In ICAPS, volume 31, 477–485.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.;
and Koenig, S. 2021c. Pairwise symmetry reasoning for
multi-agent path finding search. Artificial Intelligence, 301:
103574.
Li, J.; Lin, E.; Vu, H. L.; Koenig, S.; et al. 2023. Intersec-
tion coordination with priority-based search for autonomous
vehicles. In AAAI, volume 37, 11578–11585.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.;
and Koenig, S. 2021d. Lifelong multi-agent path finding in
large-scale warehouses. In AAAI, volume 35, 11272–11281.
Luna, R.; and Bekris, K. E. 2011. Push and swap: Fast coop-
erative path-finding with completeness guarantees. In IJCAI,
294–300.

Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with consistent prioritization for multi-
agent path finding. In AAAI, volume 33, 7643–7650.
Ma, H.; Kumar, T. S.; and Koenig, S. 2017. Multi-agent path
finding with delay probabilities. In AAAI, 1, 3605–3612.
Morag, J.; Stern, R.; and Felner, A. 2023. Adapting to
Planning Failures in Lifelong Multi-Agent Path Finding. In
SOCS, volume 16, 47–55.
Okumura, K. 2023. Improving LaCAM for Scalable Even-
tually Optimal Multi-Agent Pathfinding. In IJCAI.
Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2019. Priority Inheritance with Backtracking for Iterative
Multi-agent Path Finding. In IJCAI, 535–542.
Phillips, M.; and Likhachev, M. 2011. Sipp: Safe interval
path planning for dynamic environments. In ICRA, 5628–
5635. IEEE.
Shen, B.; Chen, Z.; Cheema, M. A.; Harabor, D. D.; and
Stuckey, P. J. 2023. Tracking Progress in Multi-Agent Path
Finding. arXiv preprint arXiv:2305.08446.
Sigurdson, D.; Bulitko, V.; Yeoh, W.; Hernández, C.; and
Koenig, S. 2018. Multi-agent pathfinding with real-time
heuristic search. In CIG, 1–8. IEEE.
Silver, D. 2005. Cooperative Pathfinding. In AIIDE, 117–
122.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In SOCS, volume 10, 151–158.
Švancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Barták, R.
2019. Online multi-agent pathfinding. In AAAI, volume 33,
7732–7739.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI magazine, 29(1): 9–9.
Yu, J.; and LaValle, S. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In AAAI,
volume 27, 1443–1449.


