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Abstract. Underlying symmetries in constraint satisfaction and opti-
mization problems can make the search for solutions or optimal solu-
tions much harder. In contrast, when symmetries are known, they can
be used to speed up the search for solutions by avoiding considering
symmetric parts of the solution space. This can be achieved by using
static or dynamic symmetry breaking approaches. Unfortunately sym-
metry breaking approaches are hard to compare. Each method is typi-
cally only implemented in one or two systems, and symmetry papers use
different problems to compare and illustrate their ideas. In this paper
we show how to add symmetry declarations to MiniZinc models. These
symmetries can then either be treated as static symmetry breaking con-
straints using MiniZinc global decomposition, or passed to a dynamic
symmetry breaking method if the underlying solver supports it. This
will allow a better understanding of the strengths and weaknesses of dif-
ferent symmetry breaking approaches by allowing simpler comparisons
of different systems.

1 Introduction

Underlying symmetries in constraint satisfaction and optimization problems can
make these problems much harder to solve. In contrast, when symmetries of a
problem are known, we can dramatically improve problem solving by breaking
the symmetries either statically or dynamically. Unfortunately, while many dif-
ferent approaches to symmetry breaking have been developed [3, 5, 7, 4, 6], there
has been little direct comparison of the approaches (although see [9]). The rea-
son is that most symmetry breaking approaches are implemented in only one
system.

Declaring symmetries should be a standard part of modelling. If the modeller
understands that symmetries exist, then they should be declared so the solver
used can take advantage of them. Similarly a standard notation for symmetries
gives a target for tools that automatically detect symmetries [8], so these tools
can become generic and system independent. A library of models with declared
symmetries in a widely supported standard for modelling allows easier compari-
son of the strengths and weaknesses of different symmetry breaking approaches,
and helps to evaluate new symmetry breaking appraoches.

When symmetries are declared in a model we can make use of generic symme-
try breaking techniques (e.g., SBDD [4, 6]) to take advantage of the symmetries.
Unfortunately, most constraint solvers do not support such symmetry breaking



methods. Another effective way of breaking symmetries is to convert the sym-
metry declarations into a set of lex-leader symmetry breaking constraints (e.g.,
[3]). This has the advantage that such constraints will be supported by all solvers
which support MiniZinc.

In this paper we describe how to add symmetry declarations to models in
MiniZinc. The contributions of this paper are:

– We provide a complete set of symmetry declarations that allow any solution
symmetry (as defined by Def. 2 in [2]) to be declared as part of a MiniZinc
model.

– We provide MiniZinc decomposition definitions which convert a symmetry
declaration into a set of static symmetry breaking constraints. This allows
symmetries to be exploited on any system supporting MiniZinc without any
special extra requirement for handling symmetries (although systems that
do treat symmetries better may do so straightforwardly).

– Symmetry declarations handled by MiniZinc decomposition are automati-
cally decomposed in a manner to ensure that the symmetry breaking con-
straints generated from different symmetry declarations are mutually com-
patible. This is typically very hard for a human modeller to do.

The remainder of the paper is organized as follows: in the next section we
given definitions enough to define solutions symmetries. In Section 3 we define 6
basic symmetry declarations for MiniZinc. In Section 4 we discuss how to handle
the symmetry declarations, in particular giving default MiniZinc decompositions
for each declaration. In Section 5 we give some experiments comparing different
systems and symmetry breaking approaches. Finally in Section 6 we conclude.

2 Preliminaries

We assume the reader is familiar with MiniZinc [10].

A Constraint Satisfaction Problem (CSP) P is a triple P ≡ (V,D,C), where
V is a set of variables, D is a set of domains, and C is a set of constraints. A
pair of P ≡ (V,D,C) is of the form x/d where x ∈ V and d ∈ D(x). We denote
the set of all pairs of P by pairs(P ). A pairset of P is a subset of pairs(P ), and
a valuation of P over X ⊆ V is one that contains exactly one pair x/d for each
variable in x ∈ X.

A constraint c ∈ C over a set X ⊆ V of variables is a set of valuations over
X, and we say that scope(c) = X. Valuation θ over scope(c) is allowed by c if
θ ∈ c. Valuation θ over X ⊆ V satisfies constraint c if scope(c) ⊆ X and the
projection of θ over scope(c) — defined as {x/d|(x/d) ∈ θ, x ∈ scope(c)} — is
allowed by c. A solution of P is a valuation over V that satisfies every c ∈ C.

We reiterate the definition of a solution symmetry from [2].

Definition 1. For any CSP instance P ≡ (V,D,C), a solution symmetry of P
is a permutation σ of the set pairs(P ) that preserves the set of solutions to P .



3 Symmetry Declarations

We introduce 6 new symmetry breaking predicates into MiniZinc for declar-
ing variable symmetries, value symmetries, variable sequence symmetries, value
sequence symmetries, variable permutation symmetries and value permutation
symmetries. Every solution symmetry can be expressed as a variable permuta-
tion symmetry (although perhaps not very concisely), so these declarations are
complete in terms of their ability to express symmetries. In the following, we
show the integer (int) versions only, but analogous versions for Booleans (bool)
exist.

predicate var_sym(array[int] of var int: x);

Requires: All variables in x are distinct. Means: Every variable in the set x is
interchangeable, i.e., for any i, j, if we swap the values of x[i] and x[j], then solutions
are preserved.

predicate val_sym(array[int] of var int: x, array[int] of int: s);

Requires: All variables in x are distinct. All values in s are distinct. Means: We can
interchange any pair of values in s over all the variables in x, i.e., for any i, j, if we
take every x[k] which was set to s[i] and change it to s[j] and take every x[k] which
was set to s[j] and change it to s[i], then solutions are preserved.

predicate var_seq_sym(array[int,int] of var int: x);

Requires: All variables in x are distinct. Means: We can interchange any pair of
variable sequences in x, i.e., for any i, j, if for every k, we swap x[i, k] with x[j, k], then
solutions are preserved.

predicate val_seq_sym(array[int] of var int: x, array[int,int] of int: s);

Requires: All variables in x are distinct. All values in s are distinct. Means: We can
interchange any pair of value sequences in x, i.e., for any i, j, if for every m, we take
every x[k] which was set to s[i,m] and change it to s[j,m] and take every x[k] which
was set to s[j,m] and change it to s[i,m], then solutions are preserved.

predicate var_perm_sym(array[int] of var int:x, array[int,int] of int: p);

Requires: All variables in x are distinct. Each row of p is a permutation of the
integers 1 .. length(x) and the ith row represents the variable sequence [x[p[i, k]] | k ∈
1..length(x)]. Means: We can map any variable sequence represented in p to another
variable sequence represented in p, i.e., for any i, j, if for every k, we take x[p[i, k]] and
set it to the value of x[p[j, k]], then solutions are preserved.

predicate val_perm_sym(array[int] of var int: x, array[int,int] of int: s);

Requires: All variables in x are distinct. Each row of s covers the same set of values.
Means: We can map any value sequence in s to another value sequence in s, i.e., for
any i, j, if we take every x[k] which was set to s[i,m] and change its value to s[j,m],
then solutions are preserved.

Note that {var,val} perm sym is different from {var,val} seq sym. They allow ar-
bitrary permutations of variables/values, rather than just swaps. Note that any solution



symmetry can be declared as a var perm sym. For any solution symmetry, we can in-
troduce Boolean variables to represent the literals in the problem, i.e., x = v for each
variable x and value v, and use var perm sym to declare which permutations preserves
solutions. var perm sym is not a very efficient way to handle a symmetry, so if the
symmetry fits into the other 5 categories, it is generally more concise and efficient to
use those.

Notice that the symmetry declarations are no different from normal MiniZinc user-
defined predicates. Indeed the default behaviour of symmetry declarations in MiniZinc
will be to add static symmetry breaking constraints.

Example 1. Consider the problem of generating a latin square1 of size n. A MiniZinc
model for this is:

include "alldifferent.mzn";
int: n; %% size
array[1..n,1..n] of var 1..n: x;
constraint forall(i in 1..n)(alldifferent([x[i,j] | j in 1..n]));
constraint forall(j in 1..n)(alldifferent([x[i,j] | i in 1..n]));
solve satisfy;

then this has a number of symmetries. We can declare the value symmetries, row
symmetries and column symmetries of the latin squares problem by adding

% value symmetries
constraint val_sym([x[i,j] | i in 1..n, j in 1..n], [i | i in 1..n]);
% row symmetries
constraint var_seq_sym(array2d(1..n, 1..n, [x[i,j] | i in 1..n, j in 1..n]));
% column symmetries
constraint var_seq_sym(array2d(1..n, 1..n, [x[j,i] | i in 1..n, j in 1..n]));

We can generate new symmetry declarations which are special cases of the above
predicates using MiniZinc predicates.

Example 2. A common symmetry for problems with sequences is that the sequence is
reversable. We can create a new symmetry predicate rev seq sym which captures this
using var perm sym, as follows:

include "var_perm_sym.mzn";
predicate rev_seq_sym(array[int] of var int: x) =
let { int: l = length(x),

array[1..2,1..l] of 1..l: y = array2d(1..2,1..l,
[ if i == 1 then j else l - j + 1 endif | i in 1..2, j in 1..l ])

} in var_perm_sym(x,y);

Example 3. Another common symmetry for problems of square matrices is that of ro-
tation symmetry. We can define a new symmetry predicate rot sqr sym which captures
rotational symmetries as follows:

include "var_perm_sym.mzn";
predicate rot_sqr_sym(array[int,int] of var int: x) =
let { int: n = card(index_set_1of2(x)),

int: n2 = card(index_set_2of2(x)),
int: l = n * n,

1 see e.g. http://en.wikipedia.org/wiki/Latin_square



array[1..l] of var int: y = [x[i,j] | i in index_set_1of2(x),
j in index_set_2of2(x) ],

array[1..4,1..l] of 1..l: p = array2d(1..4,1..l,
[ if k == 1 then i*n + j - n else
if k == 2 then (n - j)*n + i else
if k == 3 then (n - i)*n + (n - j)+1 else

i*n + (n - j) - n + 1 endif endif endif
| k in 1..4, i,j in 1..n ])

} in assert(n == n2, "rot_sqr_sym: rotation symmetry applied to" ++
" non square matrix",

var_perm_sym(y,p));

We can, for example, declare the rotational symmetries of the latin squares problem of
Example 1 by adding the following to our mdoel:

% rotational symmetries
constraint rot_sqr_sym(x);

4 Handling Symmetry Declarations

A solver supporting MiniZinc can handle symmetry declarations in a model in a number
of ways:

– they can apply static symmetry breaking using the decompositions described here;
– they can provide their own decomposition to static symmetry breaking constraints;
– they can provide global static symmetry breaking constraints; or
– they can provide dynamic symmetry breaking using the definitions.

They can also mix the approaches but there are some caveats in doing so to ensure
that the symmetry breaking approaches are compatible.

4.1 Single Symmetry Declaration by Default Decomposition

If there is only one symmetry declaration in the program, it is relatively straight forward
to convert the symmetry declaration into a lex-leader symmetry breaking constraint
by using a MiniZinc decomposition. In general, we pick a lexicographical order (typi-
cally the order in which vars appear in the main argument x), and we add constraints
to prune any assignment which can be mapped to a lexicographically better assign-
ment using any of the symmetries given in the declaration (since that shows it is not
the lex-leader in its equivalence class). The symmetry breaking constraints for vari-
able symmetries, value symmetries and variable sequence symmetries are simple and
standard. The symmetry breaking constraints for value sequence symmetries, variable
permutation symmetries and value permutation symmetries are more complicated, we
are not aware of any definitions in the literature.

The lex-leader symmetry breaking constraint for variable symmetries simply re-
quires that the variables are ordered by value:

predicate var_sym(array[int] of var int: x) =
let { int: l = min(index_set(x)), int: u = max(index_set(x)) } in
forall(i in l..u-1)(x[i] <= x[i+1]);



The lex-leader symmetry breaking constraint for value symmetries require that the
earliest occurrence of each value is ordered:

predicate val_sym(array[int] of var int: x, array[int] of int: s) =
let { int: l = min(index_set(x)), int: u = max(index_set(x)),

array[1..length(s)] of var l..u+1:p =
[ min([ u+1 + bool2int(x[j] = s[i])*(j-u-1) |

j in index_set(x) ]) | i in 1..length(s) ] } in
forall (i in 1..length(s)-1) ( p[i+1] > min(p[i],u) );

The lex-leader symmetry breaking constraint for variable sequence symmetries re-
quires that the rows are ordered lexicographically:

include "lex_lesseq.mzn";
predicate var_seq_sym(array[int,int] of var int: x) =

let { int: l1 = min(index_set_1of2(x)),
int: u1 = max(index_set_1of2(x)),
int: l2 = min(index_set_2of2(x)),
int: u2 = max(index_set_2of2(x)) } in

forall (i in l1..u1-1) ( lex_lesseq([x[i,j] | j in l2..u2],
[x[i+1,j] | j in l2..u2]));

The following lex-leader symmetry breaking constraint for value sequence symme-
tries works as follows. Let A consist of the smallest values from each column of s, and
B be the remaining values in s. If x[1] ∈ B, then there exists a permutation which
will take x[1] to a lower value, hence the assignment is not the lex-leader and can be
pruned. If the value of x[1] is not in s and x[2] ∈ B, then x[1] is invariant under any of
the permutations and there exists a permutation which maps x[2] to a lower value, so
again, the assignment is not the lex-leader and can be pruned. In general, if the first k
variables are not in s, then the k+ 1th must not be in B. This is easily expressed as a
lexicographical constraint:

include "lex_lesseq.mzn";
predicate val_seq_sym(array[int] of var int: x, array[int,int] of int: s) =

let {
int: l1 = min(index_set_1of2(s)),
int: u1 = max(index_set_1of2(s)),
int: l2 = min(index_set_2of2(s)),
int: u2 = max(index_set_2of2(s)),
set of int: A = { min([s[i,j] | i in l1..u1]) | j in l2..u2 },
set of int: B = { s[i,j] | i in l1..u1, j in l2..u2 } diff A,
int: l = min(index_set(x)), int: u = max(index_set(x)),
array[l..u] of var 0..2: y

} in
forall (i in index_set(x)) (

(y[i] = 0 <-> (x[i] in A)) /\ (y[i] = 2 <-> (x[i] in B))
) /\ lex_lesseq(y, [1 | i in index_set(x)]);

The following lex-leader symmetry breaking constraint for variable permutation
constraints works as follows. Let ρi be the permutation defined by row i of the matrix
p. We ensure that x is lexicographically less than ρi(ρ

−1
j (x)) for all permutations i, j



in p. This means that no permutation swap will improve the lexicographic value of x,
we use the original order x for all constraints to ensure compatibility of the pairwise
symmetry breaking constraints.

include "lex_lesseq.mzn";
predicate var_perm_sym(array[int] of var int: x, array[int,int] of int: p) =

let { int: l = min(index_set_1of2(p)),
int: u = max(index_set_1of2(p)),
array[1..length(x)] of var int: y = [ x[i] | i in index_set(x)] } in

forall (i in l..u, j in l..u where i != j) (
var_perm_sym_pairwise(y, %% forces index 1..length(x)

[ p[i,k] | k in index_set_2of2(p)],
[ p[j,k] | k in index_set_2of2(p)]) );

predicate var_perm_sym_pairwise(array[int] of var int: x,
array[int] of int: p1, array[int] of int: p2) =

let { array[1..length(x)] of 1..length(x): invp1 =
[ j | i,j in 1..length(x) where p1[j] = i ] } in

lex_lesseq(x, [ x[p2[invp1[i]]] | i in 1..length(x) ]);

The following lex-leader symmetry breaking constraint for value permutation sym-
metries works as follows. We consider each value permutation individually. For a per-
mutation mapping s[i, k] to s[j, k], we look at the most significant variable (x[1]) and
consider when the value permutation maps it to a better/worse/same lexicographical
value. With A,B,C defined as below in val perm sym pairwise, x[1] ∈ A means it will
be mapped to a worse value, x[1] ∈ B means it will be mapped to the same value and
x[1] ∈ C means it will be mapped to a better value, so we want x[1] ∈ A∨ x[1] ∈ B. If
x[1] ∈ B, then we have consider the next most significant variable x[2], etc. Thus we
can enforce x[1] ∈ A ∨ (x[1] ∈ B ∧ x[2] ∈ A) ∨ (x[1] ∈ B ∧ x[2] ∈ B ∧ x[3] ∈ A) . . .,
which can be expressed as a lexicographical constraint.

include "lex_lesseq.mzn";
predicate val_perm_sym(array[int] of var int: x, array[int,int] of int: s) =

let { int: l = min(index_set_1of2(s)),
int: u = max(index_set_1of2(s)) } in

forall (i in l..u, j in l..u where i != j) (
val_perm_sym_pairwise(x, [ s[i,k] | k in index_set_2of2(s)],

[ s[j,k] | k in index_set_2of2(s)]) );
predicate val_perm_sym_pairwise(array[int] of var int: x,

array[int] of int: s1, array[int] of int: s2) =
let {

int: l = min(index_set(x)), int: u = max(index_set(x)),
set of int: A = { s1[i] | i in index_set(s1) where s1[i] < s2[i] },
set of int: B = { s1[i] | i in index_set(s1) where s1[i] = s2[i] },
set of int: C = { s1[i] | i in index_set(s1) where s1[i] > s2[i] },
array[l..u] of var 0..2: y } in

forall (i in index_set(x)) (
y[i] = 0 <-> (x[i] in A) /\ y[i] = 2 <-> (x[i] in C)

) /\ lex_lesseq(y, [1 | i in index_set(x)]);

4.2 Multiple Symmetry Declarations by Default Decomposition

A difficulty arises when we wish to convert multiple symmetry declarations into lex-
leader symmetry breaking constraints. It is well known that simply taking the con-



junction of multiple lex-leader symmetry breaking constraints is not correct in general.
Instead, we need to find a set of symmetry breaking constraints which are compati-
ble. A sufficient condition for a set of lex-leader symmetry breaking constraints to be
compatible is that they all follow the same lexicographical ordering.

Suppose we are given a variable ordering “order”, which can either be user specified,
extracted from the search annotation, or extracted from the symmetry declarations.
Then we can convert the symmetry declarations into lex-leader symmetry breaking
constraints which are consistent with “order” as follows:

For variable symmetries, we first sort the variables so they are ordered according
to the global order order. This makes use of a new MiniZinc function: MiniZinc builtin
function

function array[int] of var int: sort(array[int] of var int:x,
array[int] of var int:order);

which returns the variables in x sorted as they appear in order, so e.g. sort( [a, b, c, d, e],
[e, c, f, d, a, g, b]) returns [e, c, d, a, b].

include "var_sym.mzn";
predicate var_sym_ord(array[int] of var int: x,

array[int] of var int: order) =
let { array[1..length(x)] of var int: x2 = sort(x, order) } in
var_sym(x2);

In order to apply value symmetries we must first sort the variables and the values,
to make sure the summetry breaking is compatible.

include "val_sym.mzn";
predicate val_sym_ord(array[int] of var int: x, array[int] of int: s,

array[int] of var int: order) =
let { array[1..length(x)] of var int: x2 = sort(x, order),

array[1..length(s)] of int: s2 = sort(s)
} in val_sym(x2, s2);

Variable sequence symmetries can be decomposed into a set of equivalent vari-
able permutation symmetries. We implement the ordered version of variable sequence
symmetry breaking by decomposing to the ordered version of variable permutation
breaking. For any i, j, the symmetry swapping the ith and jth row in x is equivalent
to a variable permutation symmetry mapping the concatenation of the ith and jth row
to the concatenation of the jth and ith row.

include "var_perm_sym_ord.mzn";
predicate var_seq_sym_ord(array[int,int] of var int: x,

array[int] of var int: order) =
let { int: l = min(index_set_1of2(x)),

int: u = max(index_set_1of2(x)),
int: n = 2*card(index_set_2of2(x)),

for (i in l..u, j in i+1..u) (
let { array[1..n] of var int: y =

[x[i,k] | k in index_set_2of2(x)] ++
[x[j,k] | k in index_set_2of2(x)],

array[1..2,1..n] of int: p = array2d(1..2, 1..n,
[i | i in 1..n] ++ [n+1-i | i in 1..n])

} in var_perm_sym_ord(y, p, order);



For value sequence symmetries, we simply need to sort the input variable array x,
since the values are always treated in increasing order in any case.

include "val_seq_sym.mzn";
predicate val_seq_sym_ord(array[int] of var int: x, array[int,int] of int: s,

array[int] of var int: order) =
let { array[1..length(x)] of var int: x2 = sort(x, order) } in
val_seq_sym(x2, s);

Our decomposition for variable permutation symmetries already make use of an
order to make each pairwise symmetry breaking constraint compatible. For multiple
symmetries, we simply use the global order rather than the default order of x. This
requires relabeling the permutation matrix. We make use of a new MiniZinc builtin
function

function array[int] of int: index_sort(array[int] of var int:x,
array[int] of var int:y);

which takes as input two variable sequences covering the same set of variables, and
returns a permutation new index of index set(x) such that x[i] is the same variable
as y[new index[i]]. E.g., index sort([a, b, c, d, e], [e, c, d, a, b]) returns [4, 5, 2, 3, 1].

include "var_perm_sym.mzn";
predicate var_perm_sym_ord(array[int] of var int: x,

array[int,int] of int: p,
array[int] of var int: order) =

let { int: n = length(x),
int: r = card(index_set_1of2(p)),
array[1..n] of var int: y = sort(x, order),
array[1..n] of 1..n: r = index_sort(x,y),
array[1..r,1..n] of 1..n: pr = array2d(1..r,1..n,

[ p[i,r[j]] | i in index_set_1of2(p), j in 1..n ]) } in
var_perm_sym(y, pr);

Finally for value permutations we again simply need to sort the input variable array
x, and use the simple form.

include "val_perm_sym.mzn";
predicate val_perm_sym_ord(array[int] of var int: x, array[int,int] of int: s,

array[int] of var int: order) =
let { array[1..length(x)] of var int: x2 = sort(x, order) } in
val_perm_sym(x2, s);

In order to support multiple symmetry declarations by default decomposition we
need to make the following changes to MiniZinc (in particular the tool mzn2fzn which
flattens MiniZinc models to FlatZinc models:

– Detect when multiple symmetry breaking constraints appear in a model. By an-
notating the predicate definitions for the base symmetry constraint with a new
annotation symmetry, we can strightforwardly modify the translator to count the
occurences of symmetry predicates. By default the translator should not unroll
predicates which are annotated as symmetry in the first (usual) flattening stage.



– Derive a global variable order. We can extend MiniZinc with an order annotation:

annotation global_order(array[int] of var int:g);

If this annotation is present on the search item for the model then it is used
as the global order for the variables. If no annotation appears, but some variable
sequences appear in the search annotation then the concatentation of the sequences
of variables appearing (removing duplicates) are considered the global order. In any
case we extend the global order with the all remaining variables that appear in
the final model in the order created by the translator, simply to ensure that no
variable does not appear in the order.

– Modify the translation to make use of ordered predicates. When the translator
detects that there are two or more symmetry predicates the translation must be
modified. Each symmetry predicate is unrolled in a later phase, where the global
order argument is automatically added. If only a single symmetry predicate is used,
the simple “unordered” default decomposition can be used.

– Implement index sort and sort. This is a simple matter of programming.

4.3 Solver Specific Static Symmetry Breaking Constraints

Any solver can choose to implement the static symmetry breaking constraints defined
herein as using their own decomposition or as a global. There are significant perfor-
mance advantages to be gained by this, since the decompositions defined above can be
extremely large. By defining a specific Minizinc global library for their solver they can
specialize the how the symmetry predicate is handled.

Example 4. Suppose the solver natively supports val sym, then the solver writer simply
adds a file val sym.mzn to their global library containing:

predicate val_sym(array[int] of var int: x, array[int] of int: s);

This tells the MiniZinc system to pass these predicates directly to the FlatZinc sent to
the solver. There is a small complication when dealing with globals with two dimen-
sional arrays since FlatZinc only allows one dimensional arrays. To handle this some
simple rewriting is required. For example for native support of val perm sym the solver
writer would add a file val perm sym.mzn containing:

predicate val_perm_sym(array[int] of var int: x, array[int,int] of int: s)=
let { int: n = card(index_set_1of2(s)) } in
val_perm_sym_fz(x, n,

[s[i,j] i in index_set_1of2(s), j in index_set_20f2(s)]);
predicate val_perm_sym_fzn(array[int] of var int:x,int:n,array[int] of int:s);

which rewrites the 2d array to 1d and passes in the size of the first dimension (so the
solver can reconstruct the 2d array).

To be compatible with multiple symmetry declarations the solver writer should
implement decompositions or globals that implement the “ordered” versions of the
symmetry breaking predicates, making use of the global order argument that will be
passes in by the MiniZinc translation.



4.4 Solver Specific Dynamic Symmetry Breaking Approaches

Finally, if the solver supports some form of dynamic symmetry breaking then the solver
writer can modify the globals library for the solver as above, but rather than treat the
symmetry predicates as constraints, can record them for use by the dynamic symmetry
breaking approach.

If they only support some of the forms of symmetry constraints then they can
either:

– add decompositions to translate to the forms of symmetry predicates that the
dynamic approach does support, if this is possible; or

– ensure that the dynamic symmetry breaking approach makes use of the “order”
given in the ordered versions, and let the remaining symmetry constraints be han-
dled by static decomposition.

5 Experiments

The extension of MiniZinc to automatically handle multiple symmetry declarations
is still a work in progress. In particular, the ordered versions of the predicates are
not currently supported as sort and index sort has not yet been implemented. For
the experiments, we get around this by making sure that every symmetry declaration
uses the same default variable ordering, so that no sorting is required to enforce the
compatibility of the decompositions.

We compare 4 different ways of handling the symmetry declarations: Chuffed
with no symmetry breaking, i.e., just ignore the symmetry declarations (chuffed-none),
Chuffed with an implementation of short-cut SBDS [1] (chuffed-sbds), Chuffed with
the default decomposition into static symmetry breaking constraints described in this
paper (chuffed-static), and Gecode with the default decomposition into static symmetry
breaking constraints described in this paper (gecode-static).

We try 4 problems with various kinds of symmetries. The Latin Squares prob-
lem (see Example 1) has value symmetries (val sym), row and column symmetries
(var seq sym × 2), and rotational symmetries (rot sqr sym). The well known N-Queens
problem has a horizontal flip symmetry (var seq sym), and a value sequence sym-
metry (val seq sym). The 3-dimensional version of the N-Queens problem, the NN-
Queens problem, has value symmetries (val sym), horizontal and vertical flip sym-
metries (var seq sym × 2), and rotational symmetries (rot sqr sym). The Balanced
Incomplete Block Design (BIBD) problem (see e.g. http://en.wikipedia.org/wiki/
Block_design) has row and column symmetries (var seq sym × 2). For each problem,
we find all solutions of instances with an appropriate size. The models are available
from www.cs.mu.oz.au/~pjs/minisym/

A time out of 15 minutes was used. For each method, we show the number of
solutions found, the number of failures required, and the time spent in Table 1. Note
that since none of these methods are complete symmetry breaking methods they will
not necessarily find the same number of solutions.

It can be seen from Table 1 that the completeness level of our static decomposition
into symmetry breaking constraints (chuffed-static and gecode-static) is greater than
that of the shortcut SBDS method implemented in Chuffed chuffed-sbds on Latin
Square and BIBD, and is the same on NN-Queens and N-Queens. chuffed-static is
several times slower than chuffed-sbds on NN-Queens for the same level of completeness,
but is much faster on BIBD since it is more complete and has a smaller search space
on that problem.



Table 1. Comparison of the different ways the symmetry declarations can be handled.
We compare Chuffed with no symmetry breaking (chuffed-none), Chuffed with short-
cut SBDS (chuffed-sbds), Chuffed with static decomposition (chuffed-static), and Gecode
with static decomposition (gecode-static).

Problem chuffed-none chuffed-sbds chuffed-static gecode-static
Sols. Fails Time Sols. Fails Time Sols. Fails Time Sols. Fails Time

Latin-5 161280 27 3.13 56 63 0.01 31 11 0.01 31 62 0.02
Latin-6 >14M >11k T.O. 9408 7691 0.37 4930 60 0.40 4930 5672 1.42
NN-Queens-7 20160 70235 33.7 4 181 0.01 4 181 0.04 4 650 0.11
NN-Queens-8 0 296246 230 0 1440 0.07 0 1440 0.40 0 92101 13.78
N-Queens-11 2680 18313 1.50 1072 9125 0.47 1072 9125 0.47 1072 13037 0.19
N-Queens-12 14200 74524 34.6 5564 37387 6.22 5564 37387 6.80 5564 63236 0.94
BIBD-7-3-1 151200 6251 14.6 2 25 0.01 1 22 0.01 1 20 0.01
BIBD-8-4-3 >1M >1M T.O. 164 943 0.05 92 462 0.03 92 621 0.10
BIBD-16-4-1 >2M >212k T.O. >241k >42k T.O. 2436 47473 14.78 2436 774840 192

6 Conclusion and Future Work

Symmetries appear in many combinatorial problems, and without treatment make
finding solutions for these problems much harder. By allowing symmetries to be de-
clared in the model in a uniform way we strengthen models and make it easy to com-
pare different symmetry breaking approaches. We provide a solution to the problem
of multiple symmetry declarations by defining compatibly lex-least static decompo-
sitions that make use of a global order. All the decompositions are available from
www.cs.mu.oz.au/~pjs/minisym/ We believe that adding symmetry declarations to a
standard modelling langauge is an important step for the community, and will help
advance our understanding and use of symmetries.

We plan to extending the MiniZinc tool set to handle multiple symmetry declara-
tions as defined in Section 4.2. One can already use MiniZinc for single symmetries,
and multiple symmetry declarations where the user takes care to ensure the orderings
are compatible. For the MiniZinc Challenge 2013 we hope to use multiple benchmarks
that include symemtry declarations which will hopefully give impetus to solver writers
to support the symmetry declarations natively.
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