

Identifying Research Problems

Peter Stuckey
IMDEA Software Institute and University of Melbourne

Workshop at UPM

Introductions

- Education
 - B.Sc and Ph.D from Monash University
- Postdoc
 - Postdoc at IBM T.J. Watson Research Center
- Currently
 - Professor of Computer Science at The University of Melbourne
- Research Interests
 - logic programming, constraint programming, discrete optimization
 - modelling languages, program analysis, bioinformatics (protein structure)

MiniZinc

- A high level modelling language for discrete optimization
- Open source (minizinc.org)
- Defacto standard for CP modelling
- Coursera course on MiniZinc
 - Modeling Discrete Optimization

```
n portschedule.mzn - Untitled Project
            % number of reclaimers
            % number of rails = nr for stages A,B,C,D,E
            % number of rails = (nr + 1) div 2 for stage F
   set of int: RECLAIMER = 1..nr;
   bool: stageF; % is this stage F data
   int: ns; % number of stockpiles
   set of int: STOCKPILE = 1..ns;
   array[STOCKPILE] of int: size; % size in 10000 tonnes
 10 array[STOCKPILE] of SHIP: ship; % which ship carries stockpile
 12 constraint forall(sh in SHIP)
                     (assert(exists(s in STOCKPILE)(ship[s] = sh),
                     "Ship " ++ show(sh) ++ " has no cargo!"));
 16 int: maxtime; % time considered
 17 set of int: TIME = 0..maxtime:
80
                                   Output
 Compiling army.mzn
 Error: cannot open file 'redefinitions-2.1.mzn'.
 Finished in 19msec
 Compiling portschedule.mzn
 Error: cannot open file 'redefinitions-2.1.mzn'.
 Finished in 11msec
 Compiling portschedule.mzn
 Error: cannot open file 'redefinitions-2.1.mzn'.
 Finished in 12msec
Ready.
```

Melbourne

The worlds most liveable city

Introduce Yourself (Who Are You?)

- Name
- Year
- Topic
- Research Experience
- What do you hope to get out of this workshop

The hardest part of research: asking questions

- If you are smart enough to get into graduate school, you are probably good at answering questions
- That's what college trained you to learn
- Graduate school teaches you how to ask questions

- Once you ask the right question, the answer is often obvious
- The question you ask implies a framing of the problem

The characteristics of great research

- Recall a good research paper/talk/result
- What was remarkable about it?

The characteristics of great research

Great research needs:

- execution
- presentation

• We will examine how to find a research idea

Types of Research Problems

- Foundational/Theoretical
 - New logic
 - Formalism
 - Better algorithm
- Experimental/Systems
 - Better system to do something (e.g., cloud computing)
 - New attack on a system (e.g, IoT)
 - ...

Well-presented research convinces you:

- 1. The problem is interesting
 - effect on human welfare, corporate profits, defense
 - evidence: other people have worked on it
- 2. The problem is hard
 - other smart people have tried it
 - obvious approaches do not work
 - problem persists over time
- 3. The authors have solved the problem
 - technical details
 - evaluation, such as proofs or experiments

Sources of research ideas

- Always be working on something (even if it won't be your thesis topic)
 - Think about problems, difficulties, or irritations
 - You might get sidetracked onto something more important
- Learn about other research: attend talks, read papers, take classes
 - future work they identified
 - connections they did not make
 - assumptions
 - other criticisms
- Your advisor
 - OK for starter projects, master's projects
 - by the end the PhD should be based on your ideas

Read, Attend, Discuss

- Read widely in your area
 - Your supervisor can start you off, but you should put in place mechanisms to alert you to new relevant results
- Attend conferences, departmental seminars, postgraduate seminars
 - Even if they seem to have nothing to do with your research
- Discuss with other postgraduates, supervisor, other academics
 - passageway conversations can lead to very interesting papers
- Even things that appear irrelevant may be useful
 - You don't know what you need to know
- Referee papers
 - ask your supervisor for some refereeing jobs

Become an Active Reader/Listener

- When reading technical material/examining software/attending talk
- CANONICAL QUESTIONS
 - From where did the author seem to draw the ideas?
 - What exactly was accomplished by this piece of work?
 - How does it seem to relate to other work in the field?
 - What would be the reasonable next step to build upon this work?
 - What ideas from related fields might be brought to bear upon this subject?
- A written log of technical reading and listening can be useful

Your Advisor

- A direct source of research ideas
 - almost always the first problem you will work on will be suggested by your advisor
- An experienced filter of possible research ideas
 - discuss new research ideas/directions with your advisor
- Judging feasibility + importance of new ideas needs experience
 - this is where you advisor is helpful

Learning to communicate well with your advisor is key

Collaboration

Two brains on one problem

>>

Two x (one brain on one problem)

- Strategies for collaboration
 - talk to other people,
 - read their drafts,
 - discuss their ideas without hoping to be an author
 - ask others for such help

Brainstorming

- An approach to generating ideas using a group
- Principles
 - Defer judgment
 - Reach for quantity
- 4 general rules
 - Go for quantity, "quantity leads to quality"
 - Withhold criticism, criticism inhibits idea creation, an accepting space
 - Welcome wild ideas, suspend assumptions, ignore the past
 - Combine and improve ideas, the power of the group

Brainstorming Exercise

- Think about problems that you encounter in day-to-day programming.
- Write a paragraph about the problem on a piece of paper
- Pass the paper left
 - write one sentence about the problem
 - things that might be related
 - some method that might be useful
 - some system/paper/person who has already solved it, solved something close
- Try to write something
- Continue until the paper reaches its original author

Think outside the box: A good research idea often "cheats"

- If you take the same approach as other people,
 you are likely to be no more successful than they are
- Cut the Gordian knot: take a different approach
- Example:
 - Artificial intelligence vs. brute force (chess, speech, etc.)

Bad ideas are essential

- Most ideas are bad ideas
- If you have lots of ideas, some will be good
- It's better to have bad ideas than no ideas
 - I can teach people how to filter
 - It's harder to teach courage and imagination
- Filtering is initially your advisor's role
 - You will get better with time,
 and spend less time evaluating and discarding bad ideas
 - Have faith in your own judgment, too
 - Your advisor is not infallible.
- Generate lots of ideas before filtering
 - Breadth-first, not depth-first, approach to the problem
- Don't look for a "home run"

Attack the Problem Now!

- Dont wait until you've read all the background material
- Develop a quick solution if you can
- Then check it hasnt been done before
- Get to know
 - CITESEER: http://citeseerx.ist.psu.edu/
 - DBLP: http://www.informatik.uni-trier.de/~ley/db/
 - Google Scholar: http://scholar.google.com.au/
- Use authors web sites

Heilmeier's Catechism (questions to be asked about any research proposal)

- 1. What are you trying to do? Articulate your objectives using absolutely no jargon.
- 2. How is it done today, and what are the limits of current practice?
- 3. What's new in your approach and why do you think it will be successful?
- 4. Who cares?
- 5. If you're successful, what difference will it make?
- 6. What are the risks and the payoffs?
- 7. How much will it cost?
- 8. How long will it take?
- 9. What are the midterm and final "exams" to check for success?

Caveats

- More applicable to experimental research
- Foundational/basic research
 - Better algorithm to do something
 - Solve an open problem
 - Fully homomorphic encryption
 - P = NP (perhaps not)
 - Brand new concept or paradigm shift
 - Internet,

Automation

- Find a task that is currently done manually, or that is time-consuming or difficult
- Thoughtfully examine the manual process
- What reasoning does the person do?
- Can you automate that process?

Contrarianism

- Turn the conventional wisdom on its head
 - Do the opposite of what everyone else expects
 - You must do this thoughtfully: you have to justify why, and why it matters
- Example: sequentializing parallel programs
 - Solves the same problem, and is better in some ways

Notice complementary approaches

- Given two approaches to a problem: wherever one is used, try the other one
- Example: static and dynamic analysis
 - Static: sound, conservative
 - Dynamic: precise, does not generalized
- ⇒ combine ideas from both
- Example: semantic vs. syntactic analysis

Combine existing techniques

- Apply one after the other
- Create a hybrid analysis

Cross-fertilization

- Take an approach from one domain, and apply it to another
- Examples: Machine learning, statistics, biology, ...

Fill in gaps

- Review your previous research
- Are there themes or commonalities?
- Find ways to fill in the gaps

• This is particularly useful for creating a PhD thesis out of a sequence of successful projects.

Generalizing

How does this generalize? What are the broader implications?

Problem vs. technique

- A research project requires:
 - A goal or problem
 - A technical approach
- Advantages of starting with a goal
 - More likely to find a technical approach
 - More likely to be novel and relevant
- Advantages of starting with a technique
 - Quick to complete: you probably already have it implemented
 - Fits well with your other work

What is your secret weapon?

Use your unique set of skills and experiences

Why are you the right person to work on this?

- You have taken a particular combination of classes
 - Example: Google founders (algorithms/machine learning)
- You have a friend with a tool/technique/knowledge
 - Don't be afraid to collaborate
- You thought of it first (new approach)
- You are willing to work harder

Passion for your work

- Your intellectual curiosity about a topic is necessary but not sufficient.
- Necessary:
 - Your love for the topic will affect your motivation (and possibly ability)
 - It helps if the topic was your idea
- Not sufficient:
 - It has to matter to other people as well

Creative Thinking (not specific to research)

- YOUR BRAIN DOES BETTER CREATIVE WORK WHEN YOU'RE TIRED
- EXERCISE CAN IMPROVE YOUR CREATIVITY
- AMBIENT NOISE LEVELS ARE BEST FOR CREATIVITY
- NOTHING IS ORIGINAL: CREATIVITY IS ALL ABOUT MAKING CONNECTIONS
- TRAVELING ABROAD MIGHT IMPROVE YOUR CREATIVE THINKING
- DIM LIGHTING MAKES US FEEL MORE FREE
- CONSTRAINTS CAN BE BENEFICIAL TO CREATIVE WORK
- A SEPARATE, MESSY DESK CAN IMPROVE YOUR CREATIVITY

Creative Thinking

- Brainstorming:
 - generating lots of ideas from a group of people
- Engaging your Right Brain
 - make something out of cardboard, balloons or Lego
 - mind mapping: a diagram of words interconnected by lines
- Go with the Flow
 - when you are being creative, push further, explore more ideas

Exercise

- Lets examine your research idea
- Does it convince us that
- 1. The problem is interesting
 - effect on human welfare, corporate profits, defense
 - evidence: other people have worked on it
- 2. The problem is hard
 - other smart people have tried it
 - obvious approaches do not work
 - problem persists over time
 - pstuckey@unimelb.edu.au

Exercise

- Lets examine your research idea
- Should it be
 - more defined, more focussed?
 - more general, less specific?
- Does it meet the Hellmeier criteria?