
Lazy Clause Generation: Combining the best of SAT and
CP (and MIP?) solving

Peter J. Stuckey
with help from Timo Berthold, Geoffrey Chu, Michael Codish, Thibaut
Feydy, Graeme Gange, Olga Ohrimenko, Andreas Schutt, and Mark

Wallace

June 2010

Peter J. Stuckey () Lazy Clause Generation June 2010 1 / 87

Propagation Based Constraint Solving

Repeatedly run propagators

Propagators change variable domains by:
removing values
changing upper and lower bounds
fixing to a value

Run until fixpoint.

KEY INSIGHT:

Changes in domains are really the fixing of Boolean variables
representing domains.

Propagation is just the generation of clauses on these variables.

FD solving is just SAT solving: conflict analysis for FREE!

Peter J. Stuckey () Lazy Clause Generation June 2010 2 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 3 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 4 / 87

Terminology

domain D maps variable x to set of possible values D(x)

propagator fc : D �→ D for constraint c
monotonic decreasing function
removes values from the domain which cannot be part of a solution.

Problem set of propagators F and initial domain D0

propagation solver solv(F ,D) = D � where D � is the greatest mutual
fixpoint of all f ∈ F .

FD solving interleaves propagation with search: (for simplicity
binary)

Add new search constraint c . D � = solv(F ∪ {fc},D)
On failure add backtrack and add ¬c . D � = solv(F ∪ {f¬c},D)
Repeat until all variables fixed

Peter J. Stuckey () Lazy Clause Generation June 2010 5 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 6 / 87

Finite Domain Propagation Example

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

x1 = 1 alldiff x2 ≤ x5 x5 ≤ 2 x2 ≤ x5 alldiff
�

≤ 9 alldiff

x1

1 1 1 1 1 1 1 1

x2

[1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] 2 2 2 2

x3

[1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅

x4

[1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅

x5

[1 .. 4] [1 .. 4] [2 .. 4] 2 2 2 2 2
D1 fail

Backtrack

Peter J. Stuckey () Lazy Clause Generation June 2010 7 / 87

Finite Domain Propagation Example

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

x1 = 1

alldiff x2 ≤ x5 x5 ≤ 2 x2 ≤ x5 alldiff
�

≤ 9 alldiff

x1 1

1 1 1 1 1 1 1

x2 [1 .. 4]

[2 .. 4] [2 .. 4] [2 .. 4] 2 2 2 2

x3 [1 .. 4]

[2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅

x4 [1 .. 4]

[2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅

x5 [1 .. 4]

[1 .. 4] [2 .. 4] 2 2 2 2 2
D1 fail

Backtrack

Peter J. Stuckey () Lazy Clause Generation June 2010 7 / 87

Finite Domain Propagation Example

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

x1 = 1 alldiff

x2 ≤ x5 x5 ≤ 2 x2 ≤ x5 alldiff
�

≤ 9 alldiff

x1 1 1

1 1 1 1 1 1

x2 [1 .. 4] [2 .. 4]

[2 .. 4] [2 .. 4] 2 2 2 2

x3 [1 .. 4] [2 .. 4]

[2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅

x4 [1 .. 4] [2 .. 4]

[2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅

x5 [1 .. 4] [1 .. 4]

[2 .. 4] 2 2 2 2 2
D1 fail

Backtrack

Peter J. Stuckey () Lazy Clause Generation June 2010 7 / 87

Finite Domain Propagation Example

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

x1 = 1 alldiff x2 ≤ x5

x5 ≤ 2 x2 ≤ x5 alldiff
�

≤ 9 alldiff

x1 1 1 1

1 1 1 1 1

x2 [1 .. 4] [2 .. 4] [2 .. 4]

[2 .. 4] 2 2 2 2

x3 [1 .. 4] [2 .. 4] [2 .. 4]

[2 .. 4] [2 .. 4] [3 .. 4] 3 ∅

x4 [1 .. 4] [2 .. 4] [2 .. 4]

[2 .. 4] [2 .. 4] [3 .. 4] 3 ∅

x5 [1 .. 4] [1 .. 4] [2 .. 4]

2 2 2 2 2

D1

fail

Backtrack

Peter J. Stuckey () Lazy Clause Generation June 2010 7 / 87

Finite Domain Propagation Example

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

x1 = 1 alldiff x2 ≤ x5 x5 ≤ 2

x2 ≤ x5 alldiff
�

≤ 9 alldiff

x1 1 1 1 1

1 1 1 1

x2 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]

2 2 2 2

x3 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]

[2 .. 4] [3 .. 4] 3 ∅

x4 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]

[2 .. 4] [3 .. 4] 3 ∅

x5 [1 .. 4] [1 .. 4] [2 .. 4] 2

2 2 2 2

D1

fail

Backtrack

Peter J. Stuckey () Lazy Clause Generation June 2010 7 / 87

Finite Domain Propagation Example

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

x1 = 1 alldiff x2 ≤ x5 x5 ≤ 2 x2 ≤ x5

alldiff
�

≤ 9 alldiff

x1 1 1 1 1 1

1 1 1

x2 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] 2

2 2 2

x3 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]

[3 .. 4] 3 ∅

x4 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]

[3 .. 4] 3 ∅

x5 [1 .. 4] [1 .. 4] [2 .. 4] 2 2

2 2 2

D1

fail

Backtrack

Peter J. Stuckey () Lazy Clause Generation June 2010 7 / 87

Finite Domain Propagation Example

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

x1 = 1 alldiff x2 ≤ x5 x5 ≤ 2 x2 ≤ x5 alldiff

�
≤ 9 alldiff

x1 1 1 1 1 1 1

1 1

x2 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] 2 2

2 2

x3 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4]

3 ∅

x4 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4]

3 ∅

x5 [1 .. 4] [1 .. 4] [2 .. 4] 2 2 2

2 2

D1

fail

Backtrack

Peter J. Stuckey () Lazy Clause Generation June 2010 7 / 87

Finite Domain Propagation Example

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

x1 = 1 alldiff x2 ≤ x5 x5 ≤ 2 x2 ≤ x5 alldiff
�

≤ 9

alldiff

x1 1 1 1 1 1 1 1

1

x2 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] 2 2 2

2

x3 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3

∅

x4 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3

∅

x5 [1 .. 4] [1 .. 4] [2 .. 4] 2 2 2 2

2

D1

fail

Backtrack

Peter J. Stuckey () Lazy Clause Generation June 2010 7 / 87

Finite Domain Propagation Example

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

x1 = 1 alldiff x2 ≤ x5 x5 ≤ 2 x2 ≤ x5 alldiff
�

≤ 9 alldiff

x1 1 1 1 1 1 1 1 1
x2 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] 2 2 2 2
x3 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅
x4 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅
x5 [1 .. 4] [1 .. 4] [2 .. 4] 2 2 2 2 2

D1 fail

Backtrack

Peter J. Stuckey () Lazy Clause Generation June 2010 7 / 87

Finite Domain Propagation Example

x1 = 1 alldiff x2 ≤ x5

x5 > 2

x1 1 1 1

1

x2 [1 .. 4] [2 .. 4] [2 .. 4]

[2 .. 4]

x3 [1 .. 4] [2 .. 4] [2 .. 4]

[2 .. 4]

x4 [1 .. 4] [2 .. 4] [2 .. 4]

[2 .. 4]

x5 [1 .. 4] [1 .. 4] [2 .. 4]

[3 .. 4]

D1

D2

Peter J. Stuckey () Lazy Clause Generation June 2010 8 / 87

Finite Domain Propagation Example

x1 = 1 alldiff x2 ≤ x5 x5 > 2
x1 1 1 1 1
x2 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]
x3 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]
x4 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]
x5 [1 .. 4] [1 .. 4] [2 .. 4] [3 .. 4]

D1 D2

Peter J. Stuckey () Lazy Clause Generation June 2010 8 / 87

Finite Domain Propagation Example

x1 = 1 alldiff x2 ≤ x5 x5 > 2
x1 1 1 1 1
x2 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]
x3 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]
x4 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4]
x5 [1 .. 4] [1 .. 4] [2 .. 4] [3 .. 4]

D1 D2

D0

x1=1 x1 �=1

D1

x5≤2 x5>2

?

fail D2

Peter J. Stuckey () Lazy Clause Generation June 2010 9 / 87

Strengths and Weaknesses of FD solving

Strengths
high level modelling
specialized global propagators
programmable search

Weaknesses
Search often needs programming (weak autonomous search)
Optimization by repeated satisfaction search

Peter J. Stuckey () Lazy Clause Generation June 2010 10 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 11 / 87

Terminology

literal l = b or l = ¬b where b is a Boolean

clause l1 ∨ · · · ∨ ln (or set of literals {l1, . . . , ln}) also
¬l1 ∧ · · · ∧ ¬ln−1 → ln

CNF set of clauses C

assignment A is a set of literals {b,¬b} �⊆ A

unit propagation up(C ,A) = A�

foreach clause l1 ∨ · · · ∨ ln−1 ∨ ln where {¬l1, . . . ,¬ln−1} ⊆ A add ln to
A.
continue to fixpoint

SAT solving
Choose a literal l : A� := up(C ,A ∪ {l})
On failure determine a nogood c ⊆ A and add it to C , backjump
Repeat until all variables fixed

Peter J. Stuckey () Lazy Clause Generation June 2010 12 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 13 / 87

SAT Implication Graph

e11

¬e21

¬e31

¬e41 .

.

Decision e11

Resolving clauses: ¬e11 ∨ ¬e21, ¬e11 ∨ ¬e31, ¬e11 ∨ ¬e41.
.

Peter J. Stuckey () Lazy Clause Generation June 2010 14 / 87

SAT Implication Graph

e11

¬e21 ¬b21

¬e31 ¬b31

¬e41 ¬b41 .

.

Decision e11

Resolving clauses: e21 ∨ ¬b21, e31 ∨ ¬b31, e41 ∨ ¬b41.
.

Peter J. Stuckey () Lazy Clause Generation June 2010 15 / 87

SAT Implication Graph

e11

¬e21 ¬b21

¬e31 ¬b31

¬e41 ¬b41 .

¬b51

.

Decision e11

Resolving clause: b21 ∨ ¬b51
Unit fixpoint

Peter J. Stuckey () Lazy Clause Generation June 2010 16 / 87

SAT Implication Graph

e11

¬e21 ¬b21 b22

¬e31 ¬b31

¬e41 ¬b41 .

¬b51 b52 e52

.

New Decision b52

Resolving clauses: b51 ∨ ¬b52 ∨ e52, ¬b52 ∨ b22

.

Peter J. Stuckey () Lazy Clause Generation June 2010 17 / 87

SAT Implication Graph

e11

¬e21 ¬b21 b22 e22

¬e31 ¬b31 ¬e32 ¬b32 b33 e33

¬e41 ¬b41 ¬e42 ¬b42 b43 e43 fail

¬b51 b52 e52

.

Decision b52

Resolving clauses many
Conflict detected!

Peter J. Stuckey () Lazy Clause Generation June 2010 18 / 87

SAT 1UIP Conflict Resolution

e11

¬e21 ¬b21 b22 e22

¬e31 ¬b31 ¬e32 ¬b32 b33 e33

¬e41 ¬b41 ¬e42 ¬b42 b43 e43 fail

¬b51 b52 e52

.

Initial nogood (¬e33 ∨ ¬e43)
e33 ∧ e43 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 19 / 87

SAT 1UIP Conflict Resolution

e11

¬e21 ¬b21 b22 e22

¬e31 ¬b31 ¬e32 ¬b32 b33 e33

¬e41 ¬b41 ¬e42 ¬b42 b43 e43 fail

¬b51 b52 e52

.

Resolving b42 ∨ ¬b43 ∨ e43 gives
¬b42 ∧ b43 ∧ e33 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 20 / 87

SAT 1UIP Conflict Resolution

e11

¬e21 ¬b21 b22 e22

¬e31 ¬b31 ¬e32 ¬b32 b33 e33

¬e41 ¬b41 ¬e42 ¬b42 b43 e43 fail

¬b51 b52 e52

.

Resolving b32 ∨ ¬b33 ∨ e33 gives
¬b32 ∧ ¬b42 ∧ b33 ∧ b43 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 21 / 87

SAT 1UIP Conflict Resolution

e11

¬e21 ¬b21 b22 e22

¬e31 ¬b31 ¬e32 ¬b32 b33 e33

¬e41 ¬b41 ¬e42 ¬b42 b43 e43 fail

¬b51 b52 e52

.

Resolving b21 ∨ b42 ∨ b33 and b21 ∨ b32 ∨ b43 gives
¬b21 ∧ ¬b32 ∧ ¬b42 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 22 / 87

SAT 1UIP Conflict Resolution

e11

¬e21 ¬b21 b22 e22

¬e31 ¬b31 ¬e32 ¬b32 b33 e33

¬e41 ¬b41 ¬e42 ¬b42 b43 e43 fail

¬b51 b52 e52

.

Resolving b31 ∨ e32 ∨ ¬b32 and b41 ∨ e42 ∨ ¬b42 gives
¬b21 ∧ ¬b31 ∧ ¬b41 ∧ ¬e32 ∧ ¬e42 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 23 / 87

SAT 1UIP Conflict Resolution

e11

¬e21 ¬b21 b22 e22

¬e31 ¬b31 ¬e32 ¬b32 b33 e33

¬e41 ¬b41 ¬e42 ¬b42 b43 e43 fail

¬b51 b52 e52

.

Resolving ¬e22 ∨ ¬e32 and ¬e22 ∨ ¬e42 gives
¬b21 ∧ ¬b31 ∧ ¬b41 ∧ e22 → false

The 1UIP nogood! b21 ∨ b31 ∨ b41 ∨ ¬e22

Peter J. Stuckey () Lazy Clause Generation June 2010 24 / 87

SAT Backjumping

e11

¬e21 ¬b21 ¬e22

¬e31 ¬b31

¬e41 ¬b41 .

¬b51

.

Backjump
Apply nogood: b21 ∨ b31 ∨ b41 ∨ ¬e22
Continue to unit fixpoint

Peter J. Stuckey () Lazy Clause Generation June 2010 25 / 87

SAT Implication Graph

e11

¬e21 ¬b21 ¬e22 ¬b22

¬e31 ¬b31

¬e41 ¬b41 .

¬b51 ¬b52

.

Continue to unit fixpoint
Resolving clauses b21 ∨ ¬b22 ∨ e22, ¬b52 ∨ b22

Unit fixpoint

Peter J. Stuckey () Lazy Clause Generation June 2010 26 / 87

SAT engineering

Cornerstones of modern SAT solvers
Watched literals: efficient implementation of unit propagation
1UIP nogoods: record effective nogoods (efficiently)
Activity-based search: concentrate on variables involved in recent
failures
Restarts

Other features
Deep backjumping
Activity based forgetting of nogoods
Retry last used value for a variable

Peter J. Stuckey () Lazy Clause Generation June 2010 27 / 87

Strengths and Weaknesses of SAT solving

Strengths
Learning avoids repeating the same subsearch
Can deal with (low) millions of variables and clauses
Strong autonomous search

Weaknesses
Optimization by repeated satisfaction search
Have to model entirely in clauses/Booleans (can definitely blow the
limits above)

Peter J. Stuckey () Lazy Clause Generation June 2010 28 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 29 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 30 / 87

Representing Integer and Set Variables

Integer variable x : represented using Booleans
[[x = d]], d ∈ [l .. u] = D0(x),
[[x ≤ d]], l ≤ d < u.

Clauses to maintain consistency: DOM
[[x ≤ d]] → [[x ≤ d + 1]] l ≤ d < u − 1

[[x = d]] ↔ [[x ≤ d]] ∧ ¬[[x ≤ d − 1]] l < d ≤ u

Unary arithmetic representation (linear in size)

One to one correspondence domains D and assignment A unit
fixpoints of DOM A = up(DOM,A)

Peter J. Stuckey () Lazy Clause Generation June 2010 31 / 87

Atomic Constraints

atomic constraints define changes in domains
Fixing variable: xi = d

Removing value: xi �= d

Bounding variable: xi ≤ d , xi ≥ d

Atomic constraints are just Boolean literals!
xi = d ≡ [[xi = d]]
xi �= d ≡ ¬[[xi = d]]
xi ≤ d ≡ [[xi ≤ d]]
xi ≥ d ≡ ¬[[xi ≤ d − 1]]

Peter J. Stuckey () Lazy Clause Generation June 2010 32 / 87

Lazy Clause Generation Propagators

When f (D) �= D (new information)

Propagator explains each atomic constraint change

What part of the current domain D created the new inference!
D(x1) = {1}, D(x2) = D(x3) = D(x4) = [1 .. 4],

alldifferent([x1, x2, x3, x4])
falldiff (D) implies x2 �= 1, x3 �= 1, x4 �= 1
explanations x1 = 1 → x2 �= 1, x1 = 1 → x3 �= 1, x1 = 1 → x4 �= 1,

Adds explanation as clauses, unit propagate on Booleans

Propagator similarly explains failure.
D(x3) = {3}, D(x4) = {3}, alldifferent([x1, x2, x3, x4])
falldiff (D) gives a false domain
explanation x3 = 3 ∧ x4 = 3 → fail

Peter J. Stuckey () Lazy Clause Generation June 2010 33 / 87

Finite Domain Propagation Example Redux

Consider the problem with:
Domain D0:

D0(x1) = D0(x2) = D0(x3) = D0(x4) = D0(x5) = [1 .. 4]
F propagators for:

x2 ≤ x5, alldifferent([x1, x2, x3, x4]), x1 + x2 + x3 + x4 ≤ 9.

Peter J. Stuckey () Lazy Clause Generation June 2010 34 / 87

Lazy Clause Generation example

alldiff .

x1 = 1

x2 �= 1

x3 �= 1

x4 �= 1 .

.

Search: x1 = 1
D(x1) = {1}, D(x2) = D(x3) = D(x4) = D(x5) = [1 .. 4],

Propagate alldifferent([x1, x2, x3, x4]) on D

Determines x2 �= 1, x3 �= 1, x4 �= 1
Explanations x1 = 1 → x2 �= 1, x1 = 1 → x3 �= 1, x1 = 1 → x4 �= 1

Peter J. Stuckey () Lazy Clause Generation June 2010 35 / 87

Lazy Clause Generation example

alldiff

x1 = 1

x2 �= 1 x2 ≥ 2

x3 �= 1 x3 ≥ 2

x4 �= 1 x4 ≥ 2 .

.

Propagate DOM clauses: x2 �= 1 → x2 ≥ 2, ...
Ignoring DOM clauses: x1 = 1 → x1 �= 2, x1 = 1 → x1 ≤ 3, ...
Domain

D(x1) = {1}, D(x2) = D(x3) = D(x4) = [2 .. 4], D(x5) = [1 .. 4]
.

Peter J. Stuckey () Lazy Clause Generation June 2010 36 / 87

Lazy Clause Generation example

alldiff x2 ≤ x5

x1 = 1

x2 �= 1 x2 ≥ 2

x3 �= 1 x3 ≥ 2

x4 �= 1 x4 ≥ 2 .

x5 ≥ 2

.
Propagate x2 ≤ x5

Determines x5 ≥ 2 with explanation x2 ≥ 2 → x5 ≥ 2
FIXPOINT:

D1(x1) = {1}, D1(x2) = D1(x3) = D1(x4) = D1(x5) = [2 .. 4]
.

Peter J. Stuckey () Lazy Clause Generation June 2010 37 / 87

Lazy Clause Generation example

alldiff x2≤x5

x1 = 1

x2 �= 1 x2 ≥ 2

x3 �= 1 x3 ≥ 2

x4 �= 1 x4 ≥ 2 .

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Search x5 ≤ 2

Domain constraints determine x5 = 2 with explanation
x5 ≥ 2 ∧ x5 ≤ 2 → x5 = 2

.

Peter J. Stuckey () Lazy Clause Generation June 2010 38 / 87

Lazy Clause Generation example

alldiff x2≤x5 x2≤x5

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2

x3 �= 1 x3 ≥ 2

x4 �= 1 x4 ≥ 2 .

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Propagate x2 ≤ x5

Determine x2 ≤ 2 with explanation x5 ≤ 2 → x2 ≤ 2

.

Peter J. Stuckey () Lazy Clause Generation June 2010 39 / 87

Lazy Clause Generation example

alldiff x2≤x5 x2≤x5

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2

x4 �= 1 x4 ≥ 2 .

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Domain constraints determine x2 = 2 with explanation
x2 ≥ 2 ∧ x2 ≤ 2 → x2 = 2
Domain:

D(x1) = {1}, D(x2) = {2}, D(x3) = D(x4) = [2 .. 4], D(x5) = {2}
.

Peter J. Stuckey () Lazy Clause Generation June 2010 40 / 87

Lazy Clause Generation example

alldiff x2≤x5 x2≤x5 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2

x4 �= 1 x4 ≥ 2 x4 �= 2 .

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Propagate alldifferent([x1, x2, x3, x4])

Determines x3 �= 2 and x4 �= 2
with explanations x2 = 2 → x3 �= 2, x2 = 2 → x4 �= 2,

.

Peter J. Stuckey () Lazy Clause Generation June 2010 41 / 87

Lazy Clause Generation example

alldiff x2≤x5 x2≤x5 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 .

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Domain constraints determine x3 ≥ 3 and x4 ≥ 3
Domain

D(x1) = {1}, D(x2) = {2}, D(x3) = D(x4) = [3 .. 4], D(x5) = {2}

.

Peter J. Stuckey () Lazy Clause Generation June 2010 42 / 87

Lazy Clause Generation example

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Propagate x1 + x2 + x3 + x4 ≤ 9

Determines x3 ≤ 3 and x4 ≤ 3
with explanations x2 ≥ 2 ∧ x4 ≥ 3 → x3 ≤ 3 and similar

.

Peter J. Stuckey () Lazy Clause Generation June 2010 43 / 87

Lazy Clause Generation example

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Domain constraints determine x3 = 3 and x4 = 3
With explanations x3 ≥ 3 ∧ x3 ≤ 3 → x3 = 3, x4 ≥ 3 ∧ x4 ≤ 3 → x4 = 3
Domain D(x1) = {1}, D(x2) = {2}, D(x3) = D(x4) = {3}, D(x5) = {2}

.

Peter J. Stuckey () Lazy Clause Generation June 2010 44 / 87

Lazy Clause Generation example

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Propagate alldifferent([x1, x2, x3, x4])
Failure detected: explanation x3 = 3 ∧ x4 = 3 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 45 / 87

Lazy Clause Generation Example

x1 = 1 alldiff x2 ≤ x5 x5 ≤ 2 x2 ≤ x5 alldiff
�

≤ 9 alldiff

x1 1 1 1 1 1 1 1 1
x2 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] 2 2 2 2
x3 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅
x4 [1 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [2 .. 4] [3 .. 4] 3 ∅
x5 [1 .. 4] [1 .. 4] [2 .. 4] 2 2 2 2 2

D1 fail

Peter J. Stuckey () Lazy Clause Generation June 2010 46 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.

The initial nogood
x3 = 3 ∧ x4 = 3 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 47 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.

Resolving
x4 ≥ 3 ∧ x4‘ ≤ 3 ∧ x3 = 3 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 48 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.

Resolving
x3 ≥ 3 ∧ x4 ≥ 3 ∧ x3 ≤ 3 ∧ x4 ≤ 3 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 49 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.

Resolving
x2 ≥ 2 ∧ x3 ≥ 3 ∧ x4 ≥ 3 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 50 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.

Resolving
x2 ≥ 2 ∧ x3 ≥ 2 ∧ x4 ≥ 2 ∧ x3 �= 2 ∧ x4 �= 2 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 51 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.

Resolving
x2 ≥ 2 ∧ x3 ≥ 2 ∧ x4 ≥ 2 ∧ x2 = 2 → false

Simplify! x3 ≥ 2 ∧ x4 ≥ 2 ∧ x2 = 2 → false

.

Peter J. Stuckey () Lazy Clause Generation June 2010 52 / 87

Lazy Clause Generation Example

alldiff x2≤x5 nogood

x1 = 1

x2 �= 1 x2 ≥ 2 x2 �= 2

x3 �= 1 x3 ≥ 2

x4 �= 1 x4 ≥ 2 .

x5 ≥ 2

.

Backjump
Propagate x3 ≥ 2 ∧ x4 ≥ 2 → x2 �= 2

.

Peter J. Stuckey () Lazy Clause Generation June 2010 53 / 87

Lazy Clause Generation Example

alldiff x2≤x5 nogood x2 ≤ x5

x1 = 1

x2 �= 1 x2 ≥ 2 x2 �= 2 x2 ≥ 3

x3 �= 1 x3 ≥ 2

x4 �= 1 x4 ≥ 2 .

x5 ≥ 2 x5 ≥ 3 .

.

Domain constraints determine x2 ≥ 3
Propagate x2 ≤ x5 determines x5 ≥ 3
Different Domain
D �
2(x1) = {1}, D �

2(x2) = D �
2(x5) = [3 .. 4], D �

2(x3) = D �
2(x4) = [2 .. 4]

Peter J. Stuckey () Lazy Clause Generation June 2010 54 / 87

What’s Really Happening

A high level “Boolean” model of the problem

Clausal representation of the Boolean model is generated “as we go”

All generated clauses are redundant and can be removed at any time

We can control the size of the active “Boolean” model

Comparing with SAT on Tai open shop scheduling: (averages)
SAT generates the full Boolean model before starting solving

Time solve only Fails Max Clauses Generated
SAT 318 (89) 3597 13.17
LCG 62 6611 1.00

Peter J. Stuckey () Lazy Clause Generation June 2010 55 / 87

Strengths and Weaknesses of Lazy Clause Generation

Strengths
High level modelling
Learning avoids repeating the same subsearch
Strong autonomous search
Programmable search
Specialized global propagators (but requires work)

Weaknesses
Optimization by repeated satisfaction search
Overhead compared to FD when nogoods are useless

Peter J. Stuckey () Lazy Clause Generation June 2010 56 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 57 / 87

Lazy Boolean Variable Creation

Many Boolean variables are never used

Create them on demand

Array encoding
Create bounds variables initially x ≤ d

Only create equality variables x = d on demand
Add x ≥ d ∧ x ≤ d → x = d

List encoding
Create bounds variables on demand x ≤ d

Add x ≤ d � → x ≤ d , x ≤ d → x ≤ d �� where d � (d ��) is next lowest
(highest) existing bound
At most 2× bounds clauses
Create equality variables on demand as before

Peter J. Stuckey () Lazy Clause Generation June 2010 58 / 87

Lazy Boolean Variable Creation Tradeoffs

List versus array

List always works! Array may require too many variables

Implementation complexity

List hampers learning

Tai open shop scheduling: 15x15 (average of 10 problems)

AverageTime

array 13.38
list 56.66

Peter J. Stuckey () Lazy Clause Generation June 2010 59 / 87

Views (Schulte + Tack, 2005)

View is a pseudo variable defined by a “bijective” function to another
variable

x = αy + β
x = bool2int(y)
x = ¬y

The view variable x , does not exist, operations on it are mapped to y

More important for lazy clause generation
Reduce Boolean variable representation
Improve nogoods (reduce search)

Constrained path covering problems: Average of 5 problems

Time Fails

views 0.71 950
no views 1.12 1231

Peter J. Stuckey () Lazy Clause Generation June 2010 60 / 87

Explanation Deletion

Explanations only really needed for nogood learning
Forward add explanations as they are generated
Backward delete explanations as we backtrack past them

Smaller set of clauses

Can hamper search “Reprioritization”

Tai open shop scheduling:

15x15 20x20
deletion 13.38 39.96
no deletion 20.58 95.88

But RCPSP worse with deletion!

Peter J. Stuckey () Lazy Clause Generation June 2010 61 / 87

Lazy Explanation

Explanations only needed for nogood learning
Forward record propagator causing each atomic constraint
Backward ask propagator to explain atomic constraint (if required)

Standard for SAT extensions (MiniSAT 1.14) [See Gent et al
PADL2010]

Only create needed explanations!

Harder implementation

Social Golfers Problems: using an MDD propagator
(each explanation as expensive as running entire propagator)

Time Reasons Fails

lazy explanation 2.38 14347 2751
eager explanation 4.92 78177 5126

Peter J. Stuckey () Lazy Clause Generation June 2010 62 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.

Dotted boxes explained by above propagator.
Initial nogood

x3 = 3 ∧ x4 = 3 → fail

.

Peter J. Stuckey () Lazy Clause Generation June 2010 63 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Resolving x3 ≥ 3 ∧ x3 ≤ 3 → x3 = 3 and x4 ≥ 3 ∧ x4 ≤ 3 → x4 = 3

x3 ≥ 3 ∧ x4 ≥ 3 ∧ x3 ≤ 3 ∧ x4 ≤ 3 → fail

Request x1 + x2 + x3 + x4 ≤ 9 to explain x4 ≤ 3

Peter J. Stuckey () Lazy Clause Generation June 2010 64 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Lazy Explanation x2 ≥ 2 ∧ x3 ≥ 3 → x4 ≤ 3
Resolving on this gives

x2 ≥ 2 ∧ x3 ≥ 3 ∧ x4 ≥ 3 ∧ x3 ≤ 3 → fail

Peter J. Stuckey () Lazy Clause Generation June 2010 65 / 87

Lazy Clause Generation Explanation

alldiff x2≤x5 x2≤x5 alldiff
�

≤ 9 alldiff

x1 = 1

x2 �= 1 x2 ≥ 2 x2 ≤ 2 x2 = 2

x3 �= 1 x3 ≥ 2 x3 �= 2 x3 ≥ 3 x3 ≤ 3 x3 = 3

x4 �= 1 x4 ≥ 2 x4 �= 2 x4 ≥ 3 x4 ≤ 3 x4 = 3 fail

x5 ≥ 2 x5 ≤ 2 x5 = 2

.
Final 1UIP nogood

x2 ≥ 2 ∧ x3 ≥ 2 ∧ x4 ≥ 2 ∧ x2 = 2 → false

Note 5 unexplained atomic constraints remain!

Peter J. Stuckey () Lazy Clause Generation June 2010 66 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 67 / 87

The Globality of Explanation

Nogoods extract global information from the problem

Can overcome weaknesses of local propagators

Example

D(x1) = D(x2) = [0 .. 100000] x2 ≥ x1 ∧ (b ⇔ x1 > x2)

Set b = true and 200000 propagations later failure. YIKES

A global difference logic propagator immediately sets b = false!

Lazy clause generation learns b = false after 200000 propagations
But never tries it again!

Peter J. Stuckey () Lazy Clause Generation June 2010 68 / 87

Globals by Decomposition

Globals defined by decomposition
Don’t require implementation
Automatically incremental
Allow partial state relationships to be “learned”
Much more attractive with lazy clause generation

When propagation is not hampered, and size does not blowout:
can be good enough!

Resource constrained project scheduling problems: (cumulative by
decomposition) closed 62 open problems % solved to optimality in time

J60 J90 J120
45s 300s 1800s 45s 300s 1800s 45s 300s 1800s

Laborie - 84.2 85.0 - 78.5 79.4 - 41.3 41.7
LCG 85.2 88.1 89.4 79.8 81.3 82.5 42.5 44.8 45.3

Peter J. Stuckey () Lazy Clause Generation June 2010 69 / 87

Which Decomposition?

Different decompositions interact better or worse with lazy clause
generation.

alldifferent

diseq: O(n2) disequations
bnd: Bound consistent decomposition of Bessiere et al IJCAI09
bnd+: Bound consistent decomp. replacing x ≥ d ∧ x ≤ d by x = d

gcc: Based on a simple global cardinality decomposition

Quasi-group completion 25x25 (average of examples solved by all)

CSPComp2008
diseq(13) bnd(11) bnd + (13) gcc(15) (13) (12)

Time Fails Time Fails Time Fails Time Fails Time Time

131 142680 757 9317 129 1144 4.3 1010 > 433 > 500

Peter J. Stuckey () Lazy Clause Generation June 2010 70 / 87

Explanations for Globals

Globals are better than decomposition
More efficient
Stronger propagation

Instrument global constraint to also explain its propagations
mdd: expensive each explanation as much as propagation
cumulative: choices in how to explain

Implementation complexity, Can’t learn partial state

More efficient + stronger propagation

Resource constrained project scheduling problems:
J60 (25% faster) J90 (25% faster) J120 (60% faster)

45s 300s 1800s 45s 300s 1800s 45s 300s 1800s
Decomp 84.8 89.2 89.4 79.8 81.7 82.5 42.3 45.2 45.7
Global 85.8 89.0 89.6 80.0 81.9 82.7 42.7 45.8 47.0

Peter J. Stuckey () Lazy Clause Generation June 2010 71 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 72 / 87

Nogoods and Programmed Search

Contrary to SAT folklore
Activity based search can be terrible
Nogoods work excellently with programmed search

Constrained Path Covering Problems

Time Fails

nogoods + VSIDS > 361.89 > 30, 000
nogoods + programmed 0.71 950
programmed > 240.2 > 10, 000

Peter J. Stuckey () Lazy Clause Generation June 2010 73 / 87

Activity-based search

An excellent default search!

Weak at the beginning (no meaningful activities)

Need hybrid approachs
Hot Restart:

Start with programmed search to “initialize” meaningful activities.
Switch to activity-based after restart

Use activity-based as part of a programmed search

Much more to explore in this direction

Peter J. Stuckey () Lazy Clause Generation June 2010 74 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 75 / 87

SAT modulo theories (SMT)

Combine a SAT solver with theory solvers to handle non Boolean
constraints.

(Original) Lazy Clause Generation is a special case
Each propagator is its own theory
Propagators do “theory propagation”

Differences
LCG transmits “lower level” information
LCG learns “finer” nogoods
LCG supports programmed search
Global Propagators ≈ Theories

Sometimes the theory view is better:
modulo arithmetic + Radio Link Frequency Assignment

Sometimes finer nogoods are better
separation logic + Open Shop Scheduling

Eventually the approaches will merge!

Peter J. Stuckey () Lazy Clause Generation June 2010 76 / 87

Generalized Nogoods (g-nogoods)

Nogood learning has a long history in Constraint Programming
longer than in SAT?

Traditional Nogoods: x1 = d1 ∧ · · · ∧ xn = dn → fail

Generalized Nogoods: x1
=
�= d1 ∧ · · · ∧ xn

=
�= dn → fail

Introduced by Katsirelos and Bacchus 2003
Used SAT technology for propagation (watched literals)
Equivalent to lazy clause generation without bounds constraints
Interesting 1UIP nogoods not effective?
Also defined global explanation approach for alldifferent
Didnt consider activity, forgetting and VSIDS search

Peter J. Stuckey () Lazy Clause Generation June 2010 77 / 87

Mixed Integer Programming

Strengths
Can deal with 100K variables 1M linear constraints
Strong autonomous search
“Knows” where the good solutions are

Weaknesses
Have to model using only linear constraints

Can we get add the optimization strength of MIP to lazy clause
generation?

Peter J. Stuckey () Lazy Clause Generation June 2010 78 / 87

SCIP: Solving Constraint Integer Programs

Hybrid constraint programming and mixed integer programming (MIP)

Linear constraints as propagators and part of global MIP

MIP propagator explains failures (and fathoming) as nogoods

x1
≤
≥ d1 ∧ · · · xn ≤

≥ dn → fail

Propagates these using SAT technology

Creates ALLUIP nogoods for MIP failures

Very good results on some hard MIP problems

Peter J. Stuckey () Lazy Clause Generation June 2010 79 / 87

Lazy Clause Generation and MIP?

Mixed integer programming (MIP) solvers know where the good
solutions are

Lazy clause generation and MIP are compatible
MIP engine explains failure and fathoming (and reduced cost bounds
changes)
Treated like an other global propagator
SCIP is a lazy clause generation MIP solver!

In order to use the MIP advantage it probably directs search

SCIP default search:
pseudo costs (MIP), then activity (SAT), then impact (CP)

Plenty more to discover on the best interaction! (see our short paper)

Peter J. Stuckey () Lazy Clause Generation June 2010 80 / 87

Outline

1 Finite Domain Propagation
FD Example

2 SAT Solving
SAT Example

3 Lazy Clause Generation
Original Lazy Clause Generation
Lazier Clause Generation
Global Constraints
Search

4 Related Work

5 Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 81 / 87

Conclusion

Lazy Clause Generation

High level modelling

Strong nogood creation

Effective autonomous search

Global Constraints

Defines state-of-the-art for:

Resource constrained project scheduling (minimize makespan)

Set constraint problems

Nonagrams (regular constraints)

Usually 1-2 order of magnitude speedup on FD problem

Peter J. Stuckey () Lazy Clause Generation June 2010 82 / 87

Future Research

Plenty of better engineering yet to be done

Plenty of open research questions

Best combinination with MIP solving

Hybrid search: structured + activity based

Parallelism

SAT Modulo Theories and Lazy Clause Generation

Adaptive Behaviour

Peter J. Stuckey () Lazy Clause Generation June 2010 83 / 87

Questions

Peter J. Stuckey () Lazy Clause Generation June 2010 84 / 87

