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Propagation Based Constraint Solving

e Repeatedly rurpropagators
e Propagators change variable domains by:

e removing values
e changing upper and lower bounds
e bxing to a value

e Run until bxpoint.

KEY INSIGHT:

e Changes in domains are really the PxingBafolean variables
representing domains.

e Propagation is just the generation of clauses on these variables.
e FD solving is just SAT solvingconf3ict analysis for FREE!
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@ Finite Domain Propagation
e FD Example

@ SAT Solving
e SAT Example

© Lazy Clause Generation
e Original Lazy Clause Generation
e Lazier Clause Generation
e Global Constraints
@ Search

O Related Work

© Conclusion
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@ Finite Domain Propagation
e FD Example
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Terminology

e domain D maps variablex to set of possible valuel(x)
e propagator f; : D — D for constraintc

e monotonic decreasing function

e removes values from the domain which cannot be part of a solution
e Problem set of propagatord- and initial domainD

e propagation solver solv(F,D) = D' whereD' is the greatest mutual
Pxpoint of allf € F.

e FD solving interleaves propagation with search: (for simplicity
binary)

o Add newsearchconstraintc. D' = solv(F U {f.},D)
o On failure add backtrack and adec. D' = solv(F U {fac},D)
e Repeat until all variables bxed
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@ Finite Domain Propagation
e FD Example
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Finite Domain Propagation Example

Consider the problem with:
Domain Dg:
Do(X1) = Do(%2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
Xo < Xs, alldifferent  ([X1, X2, X3,X4]), X1 + Xo + X3+ Xq < 9.
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Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

F propagators for
X < Xz, alldifferent

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]

([X1, X2, X3, Xa]), X1 + X2 + X3+ X3 < 0.

x1=1
X1 1
X2 [14]
X3 [14]
Xg | [1..4]
X5 [14]
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Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

X < Xz, alldifferent

Do(x1) = Do(X2) = Do(x3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for

([X1, X2, X3, Xa]), X1 + X2 + X3+ X3 < 0.

x;1 =1 alldi
X1 1 1
X, | [1.4] [2..4]
xs | [1.4] [2..4]
Xe | [1..4] [2..4]
X5 | [1..4] [1..4]
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Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
X < Xz, alldifferent ([X1, X2, X3,X4]), X1 + X0+ X3+ Xg4 < 9.

=1 alldi! X <xg
X1 1 1 1
X | [1..4] [2..4] [2..4]
X3 | [1..4] [2..4] [2..4]
X¢ | [1..4] [2..4] [2..4]
xs | [1..4] [1..4] [2..4]
D
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Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
X < Xz, alldifferent ([X1, X2, X3,X4]), X1 + X0+ X3+ Xg4 < 9.

=1 alldi! X <x5| x5 <2
X1 1 1 1 1
X | [1..4] [2..4] [2..4] | [2..4]
x3 | [1..4] [2..4] [2..4] | [2..4]
X¢ | [1..4] [2..4] [2..4] | [2..4]
xs | [1..4] [1..4] [2..4] 2
D
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Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
X < Xz, alldifferent ([X1, X2, X3,X4]), X1 + X0+ X3+ Xg4 < 9.

=1 alldi! X <X | Xs <2 X <Xs
X1 1 1 1 1 1
X | [1..4] [2..4] [2..4] | [2..4] 2
x3 | [1..4] [2..4] [2..4] ] [2..4] [2..4]
Xg | [1..4] [2..4] [2..4] ] [2..4] [2..4]
xs | [1..4] [1..4] [2..4] 2 2
D
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Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
X < Xz, alldifferent ([X1, X2, X3,X4]), X1 + X0+ X3+ Xg4 < 9.

=1 alldi! X <x5| x5 <2 X <x; alldi
X1 1 1 1 1 1 1
X | [1..4] [2..4] [2..4] | [2..4] 2 2
X3 | [1..4] [2..4] [2..4]|[2..4] [2..4] [3..4]
Xg | [1..4] [2..4] [2..4] | [2..4] [2..4] [3..4]
xs | [1..4] [1..4] [2..4] 2 2 2
D
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Finite Domain Propagation Example

Consider the problem with:
Domain Dg:
Do(x1) = Do(X2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for

X < Xz, alldifferent

([X1, X2, X3, Xa]), X1 + X2 + X3+ X3 < 0.

=1 alldi! X <x5| x5 <2 X <x; alldi <9

X1 1 1 1 1 1 1 1

X | [1..4] [2..4] [2..4] | [2..4] 2 2 2

X3 | [1..4] [2..4] [2..4]|[2..4] [2..4] [3..4] 3

Xg | [1..4] [2..4] [2..4] | [2..4] [2..4] [3..4] 3

xs | [1..4] [1..4] [2..4] 2 2 2 2
D
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Finite Domain Propagation Example

Consider the problem with:
Domain Dg:
Do(X1) = Do(%2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
Xo < Xs, alldifferent  ([X1, X2, X3,X4]), X1 + Xo + X3+ Xq < 9.

xp=1 aldi! x<x| x5<2 x<xs aldil =~ <9 alldi
X1 1 1 1 1 1 1 1 1
o | [1.4] [2.4] [2.4]][2.4] 2 2 2 2
X3 | [1.4] [2.4] [2.4]]|[2.4] [2..4] [3.4] 3 0
X | [1.4] [2.4] [2.4]]|[2.4] [2..4] [3..4] 3 0
xs | [1.4] [1.4] [2..4] 2 2 2 2 2
D, fail

Backtrack

7187
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Finite Domain Propagation Example

=1 alldi! X <xg

X1 1 1 1
X | [1..4] [2..4] [2..4]
X3 | [1..4] [2..4] [2..4]
Xs | [1..4] [2..4] [2..4]
Xs | [1..4] [1..4] [2..4]
Dy
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Finite Domain Propagation Example

=1 alldi! X <x5| Xg> 2

X1 1 1 1 1
X | [1..4] [2..4] [2..4] | [2..4]
X3 | [1..4] [2..4] [2..4] | [2..4]
X¢ | [1..4] [2..4] [2..4] | [2..4]
Xs | [1..4] [1..4] [2..4] | [3..4]
D, D>
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Finite Domain Propagation Example

Xy =1 alldi! x,<Xx5|X5> 2

X1 1 1 1 1
Xo | [1..4] [2..4] [2..4]][2..4]
x3 | [1..4] [2..4] [2..4]][2..4]
x| [1..4] [2..4] [2..4]][2..4]
s | [1..4] [1..4] [2..4]][3..4]

D, D,
Do
X1=1 \X\ltl
/ N
D, ’
f ail D,
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Strengths and Weaknesses of FD solving

e Strengths

e high level modelling
e specialized global propagators
e programmable search

@ Weaknesses

e Search often needs programming (weak autonomous search)
e Optimization by repeated satisfaction search
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@ SAT Solving
e SAT Example
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Terminology

literal | = b orl = =b whereb is a Boolean

clausely vV --- VI, (or set of literals{ly,...,Iy}) also
Al A Al 1 — g

CNF set of clause€

e assignment A is a set of literals{b, =b} Z A
e unit propagation up(C,A) = A’
o foreach clausé; v --- VI, 1 VI, where{=ly,...,=ly 1} C Aaddl, to
A.
e continue to bxpoint
SAT solving

o Choose a literal: A' := up(C,AU{I})
e On failure determine a nogood C A and add it to C, backjump
e Repeat until all variables bxed
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@ SAT Solving
e SAT Example
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SAT Implication Graph

Decisioney;
Resolving clauses:>e;; V —€1, —€11 V —€31, €11 V —€41.
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SAT Implication Graph

—b21

—b31

—ba1

Decisione;
Resolving clausese,; V —by1, €31 V —bs1, €41 V —ba;.
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SAT Implication Graph

Decisione;
Resolving clauseby; VvV —bs;
Unit Pxpoint
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SAT Implication Graph

Aez ’—> A

Abs; €52

New Decisiorbs,
Resolving clauseds; V —bsy V 55, =gy V by
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SAT Implication Graph

e32 Abgz b3,3 €33

Aes Aby, ba3 €43 fail

=

Absl €52

Decisionbs,
Resolving clausesiany
Conl3ict detected!
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SAT 1UIP Conflict Resolution

\
—€42 =y, hus €43 > fall

—lb51 €52

Initial nogood (33 \V —€43)
e33 A\ 43 — false
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SAT 1UIP Conflict Resolution

Aez1 | A

Abs; Aesz |~ Abzy | \| bss ] €33

Abyy Aesz |~ Aby, | | bus > €43 | fall
k/ e -

Abs 1 €52

Resolvingbs, V —bssz V €43 gives
—bg> A baz N €33 — false
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SAT 1UIP Conflict Resolution

b2 €22
e32 Abgz b33 —;|:933_I
.
Aes Aby, buz - e43_’~> fail
k/' - = -
Absl €52

Resolvingbs, V —bsz V €33 gives
—b3> A —=bgr A b3z A byz — false

Lazy Clause Generation June 2010
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SAT 1UIP Conflict Resolution

e — LN
/// \\ \
N N

—|b31 —|ng \%)33_:—\;;6337
N -~

J— \
—ba1 €42 —b4o ﬁ_1)43 L 643]~> fail

—bs1 €52

Resolvinghy; V bsy V b3z and by Vv b3y V byz gives
=1 A =b3y A by — false

Peter J. Stuckey () Lazy Clause Generation June 2010



SAT 1UIP Conflict Resolution

] 42 | > k b | ie431> fail

Resolvingbs; V €35 V —bsy and bgy Vv e V —byo gives
=21 A =31 A =g A —€350 A —e4y — false
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SAT 1UIP Conflict Resolution

Aes;

faiI

Resolving—ey V —e3> and —ex V —e4» gives
—bs1 A —b31 A —bs1 A € — false
The 1UIP nOgOOd!b21 V b3y V ba1 V=€

Peter J. Stuckey () Lazy Clause Generation June 2010



SAT Backjumping

=bpy —€22

Backjump
Apply nogood by VvV b3y V b1 V —exn
Continue to unit Pxpoint
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SAT Implication Graph

1
ear ]| b b

—b31

_‘b41

_‘b51 _‘b52

Continue to unit Pxpoint
Resolving clausesy; V —bys V e, =bss V by
Unit Pxpoint
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SAT engineering

@ Cornerstones of modern SAT solvers

e Watched literals: e"cient implementation of unit propagation

e 1UIP nogoods: record elective nogoods (e"ciently)

e Activity-based search: concentrate on variables involved in recent
failures

o Restarts

e Other features
e Deep backjumping
e Activity based forgetting of nogoods
e Retry last used value for a variable
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Strengths and Weaknesses of SAT solving

e Strengths

e Learning avoids repeating the same subsearch
e Can deal with (low) millions of variables and clauses
e Strong autonomous search

@ Weaknesses

e Optimization by repeated satisfaction search
e Have to model entirely in clauses/Booleans (can debnitely blow the
limits above)
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© Lazy Clause Generation
e Original Lazy Clause Generation
e Lazier Clause Generation
e Global Constraints
@ Search
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© Lazy Clause Generation
e Original Lazy Clause Generation
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Representing Integer and Set Variables

e Integer variablex: represented using Booleans
o [x=d],d €[l..u]= Dg(x),
o [x <d],l <d< u.
e Clauses to maintain consistencipOM
[Xx<d]—-[[x<d+1] I<d<u-1
[x=d] e [x<dJA[x<d-1] I<d<u
e Unary arithmeticrepresentation (linear in size)

@ One to one correspondenadmainsD and assignmenA unit
pxpoints of DOMA = up(DOM, A)

Peter J. Stuckey () Lazy Clause Generation June 2010




Atomic Constraints

e atomic constraints debne changes in domains

e Fixing variable:x; = d
e Removing valuex # d
e Bounding variablex; <d, x >d

e Atomic constraints are just Boolean literals!

Xi:d =
X Zd =
Xj <d
Xj > d

Peter J. Stuckey ()

[xi = d]

-[x = d]

[xi <d]

-I[x <d-1]

Lazy Clause Generation
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Lazy Clause Generation Propagators

e Whenf (D) # D (new information)

e Propagatorexplainseach atomic constraint change
e What part of the current domairD created the new inference!

o D(x1) = {1}, D(x2) = D(x3) = D(xq) =[1 .. 4],
alldifferent  ([X1, X2, X3, X4])

o faigin (D) impliesx, 71, X3 71, X4 71

e explanationsx; =1 = x 71, x;=1 > x3 71, Xy =1 = X4 71,
e Adds explanation as clauses, unit propagate on Booleans
e Propagator similarly explain&ilure.

o D(x3) = {3}, D(xq) = {3}, alldifferent (X1, X2, X3, X4])
o faign (D) gives a false domain
e explanationxs =3 A X4 =3 — fall
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Finite Domain Propagation Example Redux

Consider the problem with:
Domain Dg:
Do(X1) = Do(X2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
Xo < Xg, alldifferent  ([X1, X2, X3,X4]), X1 + Xo + X3+ Xq < 9.
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Lazy Clause Generation example

Search x; =1

D(x1) = {1}, D(x2) = D(x3) = D(xs) = D(xs) =[1 ..4],
Propagatealldifferent  ([X1, X2, X3,X4]) on D

Determinesx, 7 1, x3 #1, x4 71
Explanationsx; =1 =X #1, x1=1 =2 x3 71, x3=1 > x4 #1
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Lazy Clause Generation example

alldi!

371—1

ro Bl =" 2

:1:31:1 %Igu 2

zaE1l Bz " 2

Propagate DOM clauses; #1 — x, > 2, ...
Ignoring DOM clausesx; =1 — X3 2, X1 =1 — x; <3, ...
Domain

D(x1) = {1}, D(x2) = D(x3) = D(x4) =[2 ..4], D(xs) =[1 .. 4]
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Lazy Clause Generation example

alldi! Xo ! X5
]
Xo =1 Xo H# 2
X3 =1 X3#2
N
Xa =1 Xs # 2
X5 # 2

Propégatexz < Xs

Determinesxs > 2 with explanationx, > 2 — X5 > 2

FIXPOINT:

D1(x1) = {1}, D1(X2) = D1(x3) = D1(Xs) = Di(xs) =[2 .. 4]
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Lazy Clause Generation example

alldi! Xo! Xsg

gz":1+X2#2

Xg":1+X3#2

X4":1+X4#2

X5 # 2 X5 ! 2 X5 = 2

Séarchx5 <2
Domain constraints determings; = 2 with explanation
Xg > 2N\ Xg <2— X5 =2

Peter J. Stuckey () Lazy Clause Generation
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Lazy Clause Generation example

X37/1 +X322

X471 +X422

X522 Xg < 2 X5:2

Pfopagatexz < Xs
Determinex, < 2 with explanationxs <2 — x, < 2

June 2010
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Lazy Clause Generation example

alldi! X2! Xs X2! Xs
7
gz":1+X2#2 Xo 1 2 Xo = 2
X3—1+X3#2
N
Xa =1r=Xa # 2
X5 # 2 X5 = 2

Dbmain constraints determing, = 2 with explanation
Xo > 2AN%X < 2—=X0=2

Dom

D(x1) = {1}, D(x:) = {2}, D(xs) = D(xs) =[2 ..4], D(xs) = {2}

ain
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Lazy Clause Generation

June 2010

40 / 87




Lazy Clause Generation example

alldi! z2! x5 x2! x5 alldi!
v
332"—‘1 x2#2 292'2 :C2:2
N\
X3 =1 I3 # 2 XT3 = 2
N
x4 =1 Ta # 2 Ta =2

Prdpagatealldifferent

xs # 2

Ts |

2

([X1, X2, X3, Xa])

Determinesxs # 2 and x4 # 2

with explanationsx, =2 — X3 2, Xp =2 — X4 7 2,

Peter J. Stuckey ()
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Lazy Clause Generation example

alldi! z2! x5 z2! x5 alldi!
v —
T2 =1l # 2 2! 210 =2
N N
$3E1+£U3#2 33352»1‘3#3
N\
Ta=1txa # 2 Tas2 - xa#t 3
| =
3;'5#2 :I?5! 2%3}5:2
7

Domain constraints determings; > 3 andxs > 3

Domain

D(x1) = {1}, D(x) = {2}, D(xs) = D(xs) =[3 .. 4], D(xs) = {2}

Peter J. Stuckey ()
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Lazy Clause Generation example

alldiﬁ Xo ! X5 Xo ! X5 alldiﬁ I 9
]
Xo =1 Xo # 2 Xo | 2+X2:2
—
X3 =1 X3#2 \Xgiz X3#3 X3! 3
N\ >N\
Xq4 =1 X4#2 X452 X4#3 X4 | 3
| =
X5 # 2 X5 ! 2|~ X5=2

Propégatexl + Xo+ X3+ X4 <9
Determinesxs < 3 andxg < 3

Peter J. Stuckey ()
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with explanationsx, > 2 A X4 > 3 — X3 < 3 and similar
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Lazy Clause Generation example

alldi! 9

A\ .

X3 £ 2 X3 # 3 X3! 3 X3=3
>N\

X4527X4#3 X4 | 3 X4=3

alldi! X2l X5 X! X5

Y —

Xo =1 Xo # 2 Xo | 2+X2=2
—

X3 =1 X3#2

N

X451 X4#2

xi# 2| [Rel Bpfxs=2

I

Peter J. Stuckey ()

Lazy Clause Generation

Domain constraints determings; = 3 and Xz = 3
With explanationsxs > 3AX3 <3 —>X3=3, X4 >3AX <3—>x=3
DomainD(x;) = {1}, D(x) = {2}, D(x3) = D(xs) = {3}, D(xs) = {2}
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Lazy Clause Generation example

alldiff alldiff
Y
X2 7/1
— N\ S
X371 \X372+ X3 =3
N
Xa 71 Xa 72 > X4 =3

Prdpagatealldifferent
Failure detected explanationxs =3 A x4 =3 — false

Peter J. Stuckey ()
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([X1, X2, X3, Xa])

Lazy Clause Generation
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Lazy Clause Generation Example

X1 =1 alldi! X, <X5 | X5<2 X <x; alldi <9 alldi!
X1 1 1 1 1 1 1 1 1
X | [1..4] [2..4] [2..4]][2..4] 2 2 2 2
X3 |[1..4] [2..4] [2..4]][2..4] [2..4] [3..4] 3 0
Xs | [1..4] [2..4] [2..4]][2..4] [2..4] [3..4] 3 0
Xs | [1..4] [1..4] [2..4] 2 2 2 2 2
D, fail

June 2010
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Lazy Clause Generation Explanation

alldi! Xo! X5  Xa! X5 alldi! 9 alldi!
v
Xo =1 Xo # 2 Xo! 2 X2=2
-\\
X3 =1 X3 # 2 X352 X3#3 X3 | 3%X3:3
N\ N\
X451 X4 H# 2 X452?X4#3 X4 ! 3+x4:3—>fail
Xs # 2| |Xs! 2/~ Xx5=2

The initial nogood

X3 =3 A X4 =3 — false

June 2010
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Lazy Clause Generation Explanation

alldi! Xo<X5 X2<Xs alldi! > <9 alldi!
v
Xo Z1 X2 > 2 Xo <2 X2 =2
o
X37/1+X322 X372+X323 X3§3%X3—3
\ QY S S
Xa 71 x4 >2 Xa 72 = Xa >3 \x4_<’3/—j_x4_=3_:—>fall
X5 > 2| |[Xs < 2={x5 =2
Resolving

Peter J. Stuckey ()

Xs > 3AXx0< 3A X3 =3 — false
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Lazy Clause Generation Explanation

alldi! X2 <X5 X2<Xs alldi! <9 alldi!
X1 =

v
Xo Z1 X2 > 2 Xo <2 X2 =2

o —N -
X3 71 [s{x3 > 2 X3 72 [+ x3 > 3\xs <3}-x3 =3 |
N N ~_ =
X4 7/1 +X422 X472 3)(423 \)(4_§’3/—j_x4_:3_:—>fail
x5 > 2| [xs < 2l x5 =2

Resolving

X3 > 3AXs > 3AX3 < 3AX <3 — false

Peter J. Stuckey ()
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Lazy Clause Generation Explanation

alldiﬁ X2! X5 X2! X5 alldiﬁ
P R
\b — \\ \\
Xo =1 Xo # 2 Xol 2 Xg9=2 \\ N
-\\ N
X3 =1 X3 # 2 X352+X3#3
N
X4u—_1 X4#2 )(4_2»)(4#3
| =
x5 # 2| (x5 1 2lslxs =2
Resolving

Xo > 2N\ X3 > 3AXg > 33— false

19 alldiff
N\~ _
Xs! 3>x3=3
7N\, -~
SN o oo -
Xa ! :—j_x4=3:—>fail
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Lazy Clause Generation Explanation

alldiﬁ X2! X5 X2! X5 alldiﬁ
e T
\b 7 ~ -

Xo =1 Xo # 2 Xo ! 2 X2—2 ~
-\\

X3 =1 X3 # 2 x352—>|x3

X X

X451 X4#2 X4—2;_X4

X5 # 2 X5 ! 2 X5 =2
Resolving

19 alldiff
N\~ _

x5 1 3:—>|_x3:3—:

7‘\*_ - -~

E(‘*_l ,?’—:jLX‘*—: 3_:- > fail

Xo > 2AX3>2AXe > 2ANX3F2 ANXq4 #2 — false
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Lazy Clause Generation Explanation

alldi! le 5 5132! ITs5 alldi! 19
.CC’]_:l //////’_-\\\\\\\

\b < \\ \\
To =1 xo # 2 2! 21 1o = N \\
r3 =1 x3 # 2 \\ ?:cg":2_:—>|zc3# ?)jf\rrxs' 3:+|_:c
\ \gii__ig\__
mlplm#el /| mElmm# sy m! 3pe

xs # 2 x5 | 2l x5 = 2

Resolving
Xo > 2AX3>2AXs > 2N\ % =2 — false
Simplify! X3 > 2AXqe > 2N X =2 — false

Rl

|_°|’~"_| /

alldi!
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Lazy Clause Generation Example

alldiff — x2! xs nogood
v

r2 =1 xo # 2 T2 =2
r3 =1 r3 # 2
N
ra =1 xa H 2

xIrs # 2
Backjump

Propagatexs > 2AXg > 2 — X #2

Peter J. Stuckey ()
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Lazy Clause Generation Example

alldi! X2! X5 nogood X2 ! Xs
X1 =1

Y
X2": +X2#2 X2":2 X2#3

X3":1+X3#2

N

Xa =1 Xa # 2

X5 # 2 Xs # 3

Domain constraints determing, > 3
Propagatex, < x5 determinesxs > 3
Dilerent Domain

Dj(x1) = {1}, Dj(x2) = Dj(xs) =[3 .. 4], Dj(x3) = Dj(xa) = [2 .. 4]
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What's Really Happening

e A high level OBooleanO model of the problem

e Clausal representation of the Boolean model is generated Oas we (
e All generated clauses are redundant and can be removed at any tir
e We can control the size of the active OBooleanO model

Comparing with SAT on Tai open shop scheduling: (averages)
SAT generates the full Boolean model before starting solving

| Time solve only  Fails Max Clauses Generatdd
SAT | 318 (89) 3597 1317
LCG 62 6611 1.00
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Strengths and Weaknesses of Lazy Clause Generation

e Strengths

e High level modelling

e Learning avoids repeating the same subsearch
e Strong autonomous search

e Programmable search

e Specialized global propagators (butquires work

@ Weaknesses

e Optimization by repeated satisfaction search
e Overhead compared to FD when nogoods are useless
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© Lazy Clause Generation

@ Lazier Clause Generation
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Lazy Boolean Variable Creation

e Many Boolean variables aneever used

e Createthem on demand

e Array encoding
e Create bounds variables initially < d
e Only create equality variables= d on demand
Addx >dAx<d—-x=d
e List encoding
e Create bounds variables on demard d
Addx <d' —x <d,x <d — x <d" whered' (d") is next lowest
(highest) existing bound
e At most 2x bounds clauses
e Create equality variables on demand as before
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Lazy Boolean Variable Creation Tradeoffs

e List versus array

e List always works!Array may require too many variables
e Implementation complexity

e List hampers learning

Tai open shop scheduling: 15x15 (average of 10 problems)
| AverageTime|

13.38
56.66

array
list
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Views (Schulte + Tack, 2005)

e View is a pseudo variable debned by a ObijectiveO function to ano

variable
e Xx=1ly+"
e X = bool2int (y)
e X= Yy

e The view variablex, does not exist, operations on it are mapped\to

e More importantfor lazy clause generation

e Reduce Boolean variable representation
e Improve nogoods (reduce search)

Constrained path covering problems: Average of 5 problems

| Time  Fails |
views 0.71 950
no views| 1.12 1231
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Explanation Deletion

e Explanations only really needed for nogood learning

e Forward add explanations as they are generated
e Backward delete explanations as we backtrack past them

e Smaller set of clauses
e Can hamper searc@ReprioritizationO

Tai open shop scheduling:

| 15x15 20«20 |
deletion 13.38 39.96
no deletion| 20.58 9588

But RCPSP worse with deletion!
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Lazy Explanation

e Explanations only needed for nogood learning

e Forward record propagator causing each atomic constraint
e Backward ask propagator to explain atomic constraint (if required)

e Standard for SAT extensions (MiniSAT 1.14) [See Gent et al
PADL2010]

e Only create needed explanations!
e Harder implementation

Social Golfers Problems: using an MDD propagator
(each explanation as expensive as running entire propagator)

| Time Reasons Fails
lazy explanation | 2.38 14347 2751
eager explanation 4.92 78177 5126
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Lazy Clause Generation Explanation

alldi! x| Is5 x| Is5 alldi!
T2 =1 >=xo# 2| w2 2x2=2
et = \
3 =1 ={x3# 2 T3 =2 >{x3# 3
Ta=1l ={xa# 2 Ta 2 >~xa# 3
rs # 2 x5! 2|15 =2

Dotted boxes explained by above propagator.
Initial nogood

Peter J. Stuckey ()

X3 =3 AX4 =3 — fall

Lazy Clause Generation

9 alldi!
3 = r3 = 3
3z, =3} fail
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Lazy Clause Generation Explanation

alldi! X2l X5  Xao! X5 alldi! I 9 alldi!
X1 =1
Xo =1l = Xo# 2 ;XQ! 2+X2=2
et = \ o )
Xz3E1l =>{X3# 2 X322 >X3# 3 X3 | 3—>x3:3_'
2%
_ o\
Xo%1 > x # 2 Xa%2 SIx,# 3| x4 3—>'_x4:3:—>fail
X5 # 2 X5 ! 2|~ X5=2
\_/

Résolvingx323/\x3§3—>x3:3andx423/\x4§3—>x4:3
X3 > 3AXs >3AX3 <3AX <3 —fall

Requestx; + Xo + X3+ X4 < 9 to explainxg < 3
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Lazy Clause Generation Explanation

alldi! z2! x5 m2! s alldi! 1 9 alldi!
331:]. ///’_‘\\\\
— N
$251+x2#2 :582! 2+$2:2 \\
T3 %1 > a3 # 2 r3%2 Haz # 3] \w3! 3-a3=3 |
__________ § ~°J
__________ %«_ — _
T4 %1 > x4 # 2 Tat2 Hwa#t 3| |w! 31> 24 =3 > fail
£U5#2 ac5! 2%:135:2
\_/

Lézy Explanatiorx; > 2A X3 >3 — X3 <3
Resolving on this gives

Xo > 2AX3>3AXs > 3ANX3 <3 — fall
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Lazy Clause Generation Explanation
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Final 1UIP nogood

Xo > 2AX3>2AXs > 2N\ % =2 — false

Note 5 unexplained atomic constraints remain!
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© Lazy Clause Generation

e Global Constraints
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The Globality of Explanation

e Nogoods extraciglobal informationfrom the problem

e Can overcomeveaknesseef local propagators

e Example

@ D(X1) = D(x2) =[0..100000]x2 > %1 A (b < %1 > X0)

e Setb = true and 200000propagations laterfailure. YIKES
(")
")

A global dilerence logic propagator immediately sdis= falsd
Lazy clause generation learbs= false after 200000propagations
e But never tries it again!
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Globals by Decomposition

e Globals debned by decomposition

o DonOt require implementation
e Automatically incremental

o Allow partial state relationships to be OlearnedO
e Much more attractive with lazy clause generation

e When propagation is not hampered, and size does not blowout:
e can begood enough

Resource constrained project scheduling problentsinfulative by
decomposition)closed 62 open problent% solved to optimality in time

J60 J90 J120
| 45s  300s 1800$ 45s  300s 1800$ 45s 300s 1800s
Laborie| - 84.2 85.0 - 785 794 - 41.3 41.7
LCG | 852 881 894 | /798 813 825 |425 448 453

Lazy Clause Generation
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Which Decomposition?

e Dilerent decompositions interact better or worse with lazy clause
generation.

o alldifferent

diseq: O(n?) disequations

bnd: Bound consistent decomposition of Bessiere et al IJCAIO9

()
e bnd+ : Bound consistent decomp. replacing>d Ax <d byx = d
e gcc: Based on a simple global cardinality decomposition

Quasi-group completion 25x25 (average of examples solved by all)

CSPComp2008
dised13) bnd(11) bnd + (13) gce(15) (13) (12)
Time Fails| Time Fails| Time Fails| Time Fails|| Time | Time
131 142680 757 9317, 129 1144 4.3 1010 | > 433| > 500|
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Explanations for Globals

e Globals are better than decomposition
e More e"cient
e Stronger propagation

e Instrument global constraint to also explain its propagations
e mdd: expensive each explanation as much as propagation
e cumulative: choices in how to explain

e Implementation complexityCanOt learn partial state

e More e"cient + stronger propagation

Resource constrained project scheduling problems:
J60 (25% faster) J90 (25% faster) J120 (60% faster)
| 45s 300s 1800% 45s 300s 1800$ 45s 300s 1800s
Decomp| 84.8 89.2 894 | 79.8 81.7 825|423 452 457
Global | 85.8 89.0 896 | 80.0 819 82.7 | 427 458 47.0
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© Lazy Clause Generation

@ Search
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Nogoods and Programmed Search

e Contraryto SAT folklore

e Activity based search can berrible
e Nogoods workexcellentlywith programmed search

Constrained Path Covering Problems

Time Fails
nogoods + VSIDS > 36189 > 30,000
nogoods + programmed 0.71 950
programmed > 2402 > 10,000

Peter J. Stuckey () Lazy Clause Generation June 2010




Activity-based search

e An excellent default search!

e Weakat the beginning (no meaningful activities)

e Needhybrid approachs
e Hot Restart:

e Start with programmed search to “initialize” meaningful activities.
@ Switch to activity-based after restart

e Use activity-based as part of a programmed search
@ Much more to explore in this direction
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O Related Work
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SAT modulo theories (SMT)

e Combine a SAT solver witlheory solvers to handle non Boolean
constraints.
e (Original) Lazy Clause Generation isspecial case

e Each propagator is its own theory
o Propagators do Otheory propagationO

@ Dilerences

o LCG transmits Olower levelO information
e LCG learns ObnerO nogoods

e LCG supports programmed search

e Global Propagators: Theories

@ Sometimes the theory view is better:

e modulo arithmetic + Radio Link Frequency Assignment
e Sometimes bPner nogoods are better

e separation logic + Open Shop Scheduling

e Eventually the approaches will merge!
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Generalized Nogoods (g-nogoods)

e Nogood learning has a long history in Constraint Programming
e longer than in SAT?

e Traditional Nogoods:x; = d; A--- A X, = dy — fall
o Generalized Nogoodsq ; dy A~ A Xq ; d, — fail

e Introduced by Katsirelos and Bacchus 2003
e Used SAT technology for propagation (watched literals)

e Equivalent to lazy clause generation without bounds constraints
e Interesting 1UIP nogoodsot elective?

e Also debned global explanation approach &tidifferent

e Didnt consider activity, forgetting and VSIDS search
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Mixed Integer Programming

e Strengths

e Can deal with 100K variables 1M linear constraints
e Strong autonomous search
e OKnowsO where the good solutions are

e Weaknesses
e Have to model using only linear constraints

Can we get add the optimization strength of MIP to lazy clause
generation?
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SCIP: Solving Constraint Integer Programs

Hybrid constraint programming and mixed integer programming (MIP)
e Linear constraints as propagators and part of global MIP
e MIP propagator explains failures (and fathoming) as nogoods

< < .
X1 3 di A - X > dn, — falil

e Propagates these using SAT technology
e Creates ALLUIP nogoods for MIP failures
e Very good results on some hard MIP problems
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Lazy Clause Generation and MIP?

e Mixed integer programming (MIP) solveitshow where the good
solutions are
e Lazy clause generation and MIP acempatible
e MIP engineexplainsfailure and fathoming (and reduced cost bounds
changes)
e Treated like an other global propagator
o SCIP is alazy clause generation MIP solver
e In order to use the MIP advantage it probably directs search

e SCIP default search:
e pseudo costs (MIP), then activity (SAT), then impact (CP)

e Plenty more to discover on the best interaction! (see our short pape
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© Conclusion
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Conclusion

Lazy Clause Generation

e High level modelling
e Strong nogood creation
o Effective autonomous search
e Global Constraints
Debnesstate-of-the-artfor:
e Resource constrained project scheduling (minimize makespan)
e Set constraint problems
e Nonagrams (regular constraints)
Usually 1-2 order of magnitude speedup on FD problem
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Future Research

Plenty of better engineering yet to be done

Plenty of open research questions
e Best combinination with MIP solving
e Hybrid search: structured + activity based
e Parallelism
e SAT Modulo Theories and Lazy Clause Generation
e Adaptive Behaviour
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Questions
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