Lazy Clause Generation: Combining the best of SAT and

CP (and MIP?) solving

Peter J. Stuckey
with help from Timo Berthold, Geo!rey Chu, Michael Codish, Thibaut
Feydy, Graeme Gange, Olga Ohrimenko, Andreas Schutt, and Mark
Wallace

June 2010

Peter J. Stuckey () Lazy Clause Generation June 2010 1/87

Propagation Based Constraint Solving

e Repeatedly rurpropagators
e Propagators change variable domains by:

e removing values
e changing upper and lower bounds
e bxing to a value

e Run until bxpoint.

KEY INSIGHT:

e Changes in domains are really the PxingBafolean variables
representing domains.

e Propagation is just the generation of clauses on these variables.
e FD solving is just SAT solvingconf3ict analysis for FREE!

Peter J. Stuckey () Lazy Clause Generation June 2010 2 /87

@ Finite Domain Propagation
e FD Example

@ SAT Solving
e SAT Example

© Lazy Clause Generation
e Original Lazy Clause Generation
e Lazier Clause Generation
e Global Constraints
@ Search

O Related Work

© Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 3/87

@ Finite Domain Propagation
e FD Example

Peter J. Stuckey () Lazy Clause Generation June 2010 4/ 87

Terminology

e domain D maps variablex to set of possible valuel(x)
e propagator f; : D — D for constraintc

e monotonic decreasing function

e removes values from the domain which cannot be part of a solution
e Problem set of propagatord- and initial domainD

e propagation solver solv(F,D) = D' whereD' is the greatest mutual
Pxpoint of allf € F.

e FD solving interleaves propagation with search: (for simplicity
binary)

o Add newsearchconstraintc. D' = solv(F U {f.},D)
o On failure add backtrack and adec. D' = solv(F U {fac},D)
e Repeat until all variables bxed

Peter J. Stuckey () Lazy Clause Generation June 2010 5187

@ Finite Domain Propagation
e FD Example

Peter J. Stuckey () Lazy Clause Generation June 2010 6 /87

Finite Domain Propagation Example

Consider the problem with:
Domain Dg:
Do(X1) = Do(%2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
Xo < Xs, alldifferent ([X1, X2, X3,X4]), X1 + Xo + X3+ Xq < 9.

Peter J. Stuckey () Lazy Clause Generation June 2010

7187

Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

F propagators for
X < Xz, alldifferent

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]

([X1, X2, X3, Xa]), X1 + X2 + X3+ X3 < 0.

x1=1
X1 1
X2 [14]
X3 [14]
Xg | [1..4]
X5 [14]

June 2010

7187

Peter J. Stuckey ()

Lazy Clause Generation

Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

X < Xz, alldifferent

Do(x1) = Do(X2) = Do(x3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for

([X1, X2, X3, Xa]), X1 + X2 + X3+ X3 < 0.

x;1 =1 alldi
X1 1 1
X, | [1.4] [2..4]
xs | [1.4] [2..4]
Xe | [1..4] [2..4]
X5 | [1..4] [1..4]

June 2010

7187

Peter J. Stuckey ()

Lazy Clause Generation

Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
X < Xz, alldifferent ([X1, X2, X3,X4]), X1 + X0+ X3+ Xg4 < 9.

=1 alldi! X <xg
X1 1 1 1
X | [1..4] [2..4] [2..4]
X3 | [1..4] [2..4] [2..4]
X¢ | [1..4] [2..4] [2..4]
xs | [1..4] [1..4] [2..4]
D

Peter J. Stuckey () Lazy Clause Generation June 2010 7187

Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
X < Xz, alldifferent ([X1, X2, X3,X4]), X1 + X0+ X3+ Xg4 < 9.

=1 alldi! X <x5| x5 <2
X1 1 1 1 1
X | [1..4] [2..4] [2..4] | [2..4]
x3 | [1..4] [2..4] [2..4] | [2..4]
X¢ | [1..4] [2..4] [2..4] | [2..4]
xs | [1..4] [1..4] [2..4] 2
D

Peter J. Stuckey () Lazy Clause Generation June 2010 7187

Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
X < Xz, alldifferent ([X1, X2, X3,X4]), X1 + X0+ X3+ Xg4 < 9.

=1 alldi! X <X | Xs <2 X <Xs
X1 1 1 1 1 1
X | [1..4] [2..4] [2..4] | [2..4] 2
x3 | [1..4] [2..4] [2..4]] [2..4] [2..4]
Xg | [1..4] [2..4] [2..4]] [2..4] [2..4]
xs | [1..4] [1..4] [2..4] 2 2
D

Peter J. Stuckey () Lazy Clause Generation June 2010

Finite Domain Propagation Example

Consider the problem with:
Domain Dg:

Do(X1) = Do(x2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
X < Xz, alldifferent ([X1, X2, X3,X4]), X1 + X0+ X3+ Xg4 < 9.

=1 alldi! X <x5| x5 <2 X <x; alldi
X1 1 1 1 1 1 1
X | [1..4] [2..4] [2..4] | [2..4] 2 2
X3 | [1..4] [2..4] [2..4]|[2..4] [2..4] [3..4]
Xg | [1..4] [2..4] [2..4] | [2..4] [2..4] [3..4]
xs | [1..4] [1..4] [2..4] 2 2 2
D

Peter J. Stuckey () Lazy Clause Generation June 2010

Finite Domain Propagation Example

Consider the problem with:
Domain Dg:
Do(x1) = Do(X2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for

X < Xz, alldifferent

([X1, X2, X3, Xa]), X1 + X2 + X3+ X3 < 0.

=1 alldi! X <x5| x5 <2 X <x; alldi <9

X1 1 1 1 1 1 1 1

X | [1..4] [2..4] [2..4] | [2..4] 2 2 2

X3 | [1..4] [2..4] [2..4]|[2..4] [2..4] [3..4] 3

Xg | [1..4] [2..4] [2..4] | [2..4] [2..4] [3..4] 3

xs | [1..4] [1..4] [2..4] 2 2 2 2
D

June 2010

7187

Peter J. Stuckey ()

Lazy Clause Generation

Finite Domain Propagation Example

Consider the problem with:
Domain Dg:
Do(X1) = Do(%2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
Xo < Xs, alldifferent ([X1, X2, X3,X4]), X1 + Xo + X3+ Xq < 9.

xp=1 aldi! x<x| x5<2 x<xs aldil =~ <9 alldi
X1 1 1 1 1 1 1 1 1
o | [1.4] [2.4] [2.4]][2.4] 2 2 2 2
X3 | [1.4] [2.4] [2.4]]|[2.4] [2..4] [3.4] 3 0
X | [1.4] [2.4] [2.4]]|[2.4] [2..4] [3..4] 3 0
xs | [1.4] [1.4] [2..4] 2 2 2 2 2
D, fail

Backtrack

7187

Peter J. Stuckey () Lazy Clause Generation June 2010

Finite Domain Propagation Example

=1 alldi! X <xg

X1 1 1 1
X | [1..4] [2..4] [2..4]
X3 | [1..4] [2..4] [2..4]
Xs | [1..4] [2..4] [2..4]
Xs | [1..4] [1..4] [2..4]
Dy

June 2010

8 /87

Peter J. Stuckey ()

Lazy Clause Generation

Finite Domain Propagation Example

=1 alldi! X <x5| Xg> 2

X1 1 1 1 1
X | [1..4] [2..4] [2..4] | [2..4]
X3 | [1..4] [2..4] [2..4] | [2..4]
X¢ | [1..4] [2..4] [2..4] | [2..4]
Xs | [1..4] [1..4] [2..4] | [3..4]
D, D>

June 2010

8 /87

Peter J. Stuckey ()

Lazy Clause Generation

Finite Domain Propagation Example

Xy =1 alldi! x,<Xx5|X5> 2

X1 1 1 1 1
Xo | [1..4] [2..4] [2..4]][2..4]
x3 | [1..4] [2..4] [2..4]][2..4]
x| [1..4] [2..4] [2..4]][2..4]
s | [1..4] [1..4] [2..4]][3..4]

D, D,
Do
X1=1 \X\ltl
/ N
D, ’
f ail D,

Peter J. Stuckey () Lazy Clause Generation June 2010

Strengths and Weaknesses of FD solving

e Strengths

e high level modelling
e specialized global propagators
e programmable search

@ Weaknesses

e Search often needs programming (weak autonomous search)
e Optimization by repeated satisfaction search

Peter J. Stuckey () Lazy Clause Generation June 2010 10/ 87

@ SAT Solving
e SAT Example

Peter J. Stuckey () Lazy Clause Generation June 2010 11/ 87

Terminology

literal | = b orl = =b whereb is a Boolean

clausely vV --- VI, (or set of literals{ly,...,Iy}) also
Al A Al 1 — g

CNF set of clause€

e assignment A is a set of literals{b, =b} Z A
e unit propagation up(C,A) = A’
o foreach clausé; v --- VI, 1 VI, where{=ly,...,=ly 1} C Aaddl, to
A.
e continue to bxpoint
SAT solving

o Choose a literal: A' := up(C,AU{I})
e On failure determine a nogood C A and add it to C, backjump
e Repeat until all variables bxed

Peter J. Stuckey () Lazy Clause Generation June 2010 12 / 87

@ SAT Solving
e SAT Example

Peter J. Stuckey () Lazy Clause Generation June 2010 13/ 87

SAT Implication Graph

Decisioney;
Resolving clauses:>e;; V —€1, —€11 V —€31, €11 V —€41.

Peter J. Stuckey () Lazy Clause Generation June 2010 14/ 87

SAT Implication Graph

—b21

—b31

—ba1

Decisione;
Resolving clausese,; V —by1, €31 V —bs1, €41 V —ba;.

Peter J. Stuckey () Lazy Clause Generation June 2010 15/ 87

SAT Implication Graph

Decisione;
Resolving clauseby; VvV —bs;
Unit Pxpoint

Peter J. Stuckey () Lazy Clause Generation June 2010 16 / 87

SAT Implication Graph

Aez ’—> A

Abs; €52

New Decisiorbs,
Resolving clauseds; V —bsy V 55, =gy V by

Peter J. Stuckey () Lazy Clause Generation June 2010 17/ 87

SAT Implication Graph

e32 Abgz b3,3 €33

Aes Aby, ba3 €43 fail

=

Absl €52

Decisionbs,
Resolving clausesiany
Conl3ict detected!

Peter J. Stuckey () Lazy Clause Generation June 2010 18/ 87

SAT 1UIP Conflict Resolution

\
—€42 =y, hus €43 > fall

—lb51 €52

Initial nogood (33 \V —€43)
e33 A\ 43 — false

Peter J. Stuckey () Lazy Clause Generation June 2010 19/ 87

SAT 1UIP Conflict Resolution

Aez1 | A

Abs; Aesz |~ Abzy | \| bss] €33

Abyy Aesz |~ Aby, | | bus > €43 | fall
k/ e -

Abs 1 €52

Resolvingbs, V —bssz V €43 gives
—bg> A baz N €33 — false

Peter J. Stuckey () Lazy Clause Generation June 2010

SAT 1UIP Conflict Resolution

b2 €22
e32 Abgz b33 —;|:933_I
.
Aes Aby, buz - e43_’~> fail
k/' - = -
Absl €52

Resolvingbs, V —bsz V €33 gives
—b3> A —=bgr A b3z A byz — false

Lazy Clause Generation June 2010

Peter J. Stuckey ()

SAT 1UIP Conflict Resolution

e — LN
/// \\ \
N N

—|b31 —|ng \%)33_:—\;;6337
N -~

J— \
—ba1 €42 —b4o ﬁ_1)43 L 643]~> fail

—bs1 €52

Resolvinghy; V bsy V b3z and by Vv b3y V byz gives
=1 A =b3y A by — false

Peter J. Stuckey () Lazy Clause Generation June 2010

SAT 1UIP Conflict Resolution

] 42 | > k b | ie431> fail

Resolvingbs; V €35 V —bsy and bgy Vv e V —byo gives
=21 A =31 A =g A —€350 A —e4y — false

Peter J. Stuckey ()

Lazy Clause Generation

June 2010

SAT 1UIP Conflict Resolution

Aes;

faiI

Resolving—ey V —e3> and —ex V —e4» gives
—bs1 A —b31 A —bs1 A € — false
The 1UIP nOgOOd!b21 V b3y V ba1 V=€

Peter J. Stuckey () Lazy Clause Generation June 2010

SAT Backjumping

=bpy —€22

Backjump
Apply nogood by VvV b3y V b1 V —exn
Continue to unit Pxpoint

Peter J. Stuckey () Lazy Clause Generation June 2010 25/ 87

SAT Implication Graph

1
ear]| b b

—b31

_‘b41

_‘b51 _‘b52

Continue to unit Pxpoint
Resolving clausesy; V —bys V e, =bss V by
Unit Pxpoint

Peter J. Stuckey () Lazy Clause Generation June 2010 26 / 87

SAT engineering

@ Cornerstones of modern SAT solvers

e Watched literals: e"cient implementation of unit propagation

e 1UIP nogoods: record elective nogoods (e"ciently)

e Activity-based search: concentrate on variables involved in recent
failures

o Restarts

e Other features
e Deep backjumping
e Activity based forgetting of nogoods
e Retry last used value for a variable

Peter J. Stuckey () Lazy Clause Generation June 2010 27 | 87

Strengths and Weaknesses of SAT solving

e Strengths

e Learning avoids repeating the same subsearch
e Can deal with (low) millions of variables and clauses
e Strong autonomous search

@ Weaknesses

e Optimization by repeated satisfaction search
e Have to model entirely in clauses/Booleans (can debnitely blow the
limits above)

Peter J. Stuckey () Lazy Clause Generation June 2010 28 / 87

© Lazy Clause Generation
e Original Lazy Clause Generation
e Lazier Clause Generation
e Global Constraints
@ Search

Peter J. Stuckey () Lazy Clause Generation June 2010 29 / 87

© Lazy Clause Generation
e Original Lazy Clause Generation

Peter J. Stuckey () Lazy Clause Generation June 2010 30/ 87

Representing Integer and Set Variables

e Integer variablex: represented using Booleans
o [x=d],d €[l..u]= Dg(x),
o [x <d],l <d< u.
e Clauses to maintain consistencipOM
[Xx<d]—-[[x<d+1] I<d<u-1
[x=d] e [x<dJA[x<d-1] I<d<u
e Unary arithmeticrepresentation (linear in size)

@ One to one correspondenadmainsD and assignmenA unit
pxpoints of DOMA = up(DOM, A)

Peter J. Stuckey () Lazy Clause Generation June 2010

Atomic Constraints

e atomic constraints debne changes in domains

e Fixing variable:x; = d
e Removing valuex # d
e Bounding variablex; <d, x >d

e Atomic constraints are just Boolean literals!

Xi:d =
X Zd =
Xj <d
Xj > d

Peter J. Stuckey ()

[xi = d]

-[x = d]

[xi <d]

-I[x <d-1]

Lazy Clause Generation

June 2010

32 /87

Lazy Clause Generation Propagators

e Whenf (D) # D (new information)

e Propagatorexplainseach atomic constraint change
e What part of the current domairD created the new inference!

o D(x1) = {1}, D(x2) = D(x3) = D(xq) =[1 .. 4],
alldifferent ([X1, X2, X3, X4])

o faigin (D) impliesx, 71, X3 71, X4 71

e explanationsx; =1 = x 71, x;=1 > x3 71, Xy =1 = X4 71,
e Adds explanation as clauses, unit propagate on Booleans
e Propagator similarly explain&ilure.

o D(x3) = {3}, D(xq) = {3}, alldifferent (X1, X2, X3, X4])
o faign (D) gives a false domain
e explanationxs =3 A X4 =3 — fall

Peter J. Stuckey () Lazy Clause Generation June 2010 33 /87

Finite Domain Propagation Example Redux

Consider the problem with:
Domain Dg:
Do(X1) = Do(X2) = Do(X3) = Do(Xs) = Do(xs) =[1 ..4]
F propagators for
Xo < Xg, alldifferent ([X1, X2, X3,X4]), X1 + Xo + X3+ Xq < 9.

Peter J. Stuckey () Lazy Clause Generation June 2010

Lazy Clause Generation example

Search x; =1

D(x1) = {1}, D(x2) = D(x3) = D(xs) = D(xs) =[1 ..4],
Propagatealldifferent ([X1, X2, X3,X4]) on D

Determinesx, 7 1, x3 #1, x4 71
Explanationsx; =1 =X #1, x1=1 =2 x3 71, x3=1 > x4 #1

Peter J. Stuckey () Lazy Clause Generation June 2010

Lazy Clause Generation example

alldi!

371—1

ro Bl =" 2

:1:31:1 %Igu 2

zaE1l Bz " 2

Propagate DOM clauses; #1 — x, > 2, ...
Ignoring DOM clausesx; =1 — X3 2, X1 =1 — x; <3, ...
Domain

D(x1) = {1}, D(x2) = D(x3) = D(x4) =[2 ..4], D(xs) =[1 .. 4]

Peter J. Stuckey () Lazy Clause Generation June 2010

Lazy Clause Generation example

alldi! Xo ! X5
]
Xo =1 Xo H# 2
X3 =1 X3#2
N
Xa =1 Xs # 2
X5 # 2

Propégatexz < Xs

Determinesxs > 2 with explanationx, > 2 — X5 > 2

FIXPOINT:

D1(x1) = {1}, D1(X2) = D1(x3) = D1(Xs) = Di(xs) =[2 .. 4]

Peter J. Stuckey ()

Lazy Clause Generation

Lazy Clause Generation example

alldi! Xo! Xsg

gz":1+X2#2

Xg":1+X3#2

X4":1+X4#2

X5 # 2 X5 ! 2 X5 = 2

Séarchx5 <2
Domain constraints determings; = 2 with explanation
Xg > 2N\ Xg <2— X5 =2

Peter J. Stuckey () Lazy Clause Generation

June 2010

38 /87

Lazy Clause Generation example

X37/1 +X322

X471 +X422

X522 Xg < 2 X5:2

Pfopagatexz < Xs
Determinex, < 2 with explanationxs <2 — x, < 2

June 2010

39 /87

Peter J. Stuckey () Lazy Clause Generation

Lazy Clause Generation example

alldi! X2! Xs X2! Xs
7
gz":1+X2#2 Xo 1 2 Xo = 2
X3—1+X3#2
N
Xa =1r=Xa # 2
X5 # 2 X5 = 2

Dbmain constraints determing, = 2 with explanation
Xo > 2AN%X < 2—=X0=2

Dom

D(x1) = {1}, D(x:) = {2}, D(xs) = D(xs) =[2 ..4], D(xs) = {2}

ain

Peter J. Stuckey ()

Lazy Clause Generation

June 2010

40 / 87

Lazy Clause Generation example

alldi! z2! x5 x2! x5 alldi!
v
332"—‘1 x2#2 292'2 :C2:2
N\
X3 =1 I3 # 2 XT3 = 2
N
x4 =1 Ta # 2 Ta =2

Prdpagatealldifferent

xs # 2

Ts |

2

([X1, X2, X3, Xa])

Determinesxs # 2 and x4 # 2

with explanationsx, =2 — X3 2, Xp =2 — X4 7 2,

Peter J. Stuckey ()

Lazy Clause Generation

June 2010

41/ 87

Lazy Clause Generation example

alldi! z2! x5 z2! x5 alldi!
v —
T2 =1l # 2 2! 210 =2
N N
$3E1+£U3#2 33352»1‘3#3
N\
Ta=1txa # 2 Tas2 - xa#t 3
| =
3;'5#2 :I?5! 2%3}5:2
7

Domain constraints determings; > 3 andxs > 3

Domain

D(x1) = {1}, D(x) = {2}, D(xs) = D(xs) =[3 .. 4], D(xs) = {2}

Peter J. Stuckey ()

Lazy Clause Generation

June 2010

42 | 87

Lazy Clause Generation example

alldiﬁ Xo ! X5 Xo ! X5 alldiﬁ I 9
]
Xo =1 Xo # 2 Xo | 2+X2:2
—
X3 =1 X3#2 \Xgiz X3#3 X3! 3
N\ >N\
Xq4 =1 X4#2 X452 X4#3 X4 | 3
| =
X5 # 2 X5 ! 2|~ X5=2

Propégatexl + Xo+ X3+ X4 <9
Determinesxs < 3 andxg < 3

Peter J. Stuckey ()

Lazy Clause Generation

with explanationsx, > 2 A X4 > 3 — X3 < 3 and similar

June 2010

43 | 87

Lazy Clause Generation example

alldi! 9

A\ .

X3 £ 2 X3 # 3 X3! 3 X3=3
>N\

X4527X4#3 X4 | 3 X4=3

alldi! X2l X5 X! X5

Y —

Xo =1 Xo # 2 Xo | 2+X2=2
—

X3 =1 X3#2

N

X451 X4#2

xi# 2| [Rel Bpfxs=2

I

Peter J. Stuckey ()

Lazy Clause Generation

Domain constraints determings; = 3 and Xz = 3
With explanationsxs > 3AX3 <3 —>X3=3, X4 >3AX <3—>x=3
DomainD(x;) = {1}, D(x) = {2}, D(x3) = D(xs) = {3}, D(xs) = {2}

June 2010

44 | 87

Lazy Clause Generation example

alldiff alldiff
Y
X2 7/1
— N\ S
X371 \X372+ X3 =3
N
Xa 71 Xa 72 > X4 =3

Prdpagatealldifferent
Failure detected explanationxs =3 A x4 =3 — false

Peter J. Stuckey ()

alldiff

([X1, X2, X3, Xa])

Lazy Clause Generation

June 2010

fail

Lazy Clause Generation Example

X1 =1 alldi! X, <X5 | X5<2 X <x; alldi <9 alldi!
X1 1 1 1 1 1 1 1 1
X | [1..4] [2..4] [2..4]][2..4] 2 2 2 2
X3 |[1..4] [2..4] [2..4]][2..4] [2..4] [3..4] 3 0
Xs | [1..4] [2..4] [2..4]][2..4] [2..4] [3..4] 3 0
Xs | [1..4] [1..4] [2..4] 2 2 2 2 2
D, fail

June 2010

46 / 87

Peter J. Stuckey ()

Lazy Clause Generation

Lazy Clause Generation Explanation

alldi! Xo! X5 Xa! X5 alldi! 9 alldi!
v
Xo =1 Xo # 2 Xo! 2 X2=2
-\\
X3 =1 X3 # 2 X352 X3#3 X3 | 3%X3:3
N\ N\
X451 X4 H# 2 X452?X4#3 X4 ! 3+x4:3—>fail
Xs # 2| |Xs! 2/~ Xx5=2

The initial nogood

X3 =3 A X4 =3 — false

June 2010

47 | 87

Peter J. Stuckey ()

Lazy Clause Generation

Lazy Clause Generation Explanation

alldi! Xo<X5 X2<Xs alldi! > <9 alldi!
v
Xo Z1 X2 > 2 Xo <2 X2 =2
o
X37/1+X322 X372+X323 X3§3%X3—3
\ QY S S
Xa 71 x4 >2 Xa 72 = Xa >3 \x4_<’3/—j_x4_=3_:—>fall
X5 > 2| |[Xs < 2={x5 =2
Resolving

Peter J. Stuckey ()

Xs > 3AXx0< 3A X3 =3 — false

Lazy Clause Generation June 2010 48 | 87

Lazy Clause Generation Explanation

alldi! X2 <X5 X2<Xs alldi! <9 alldi!
X1 =

v
Xo Z1 X2 > 2 Xo <2 X2 =2

o —N -
X3 71 [s{x3 > 2 X3 72 [+ x3 > 3\xs <3}-x3 =3 |
N N ~_ =
X4 7/1 +X422 X472 3)(423 \)(4_§’3/—j_x4_:3_:—>fail
x5 > 2| [xs < 2l x5 =2

Resolving

X3 > 3AXs > 3AX3 < 3AX <3 — false

Peter J. Stuckey ()

Lazy Clause Generation

June 2010 49 [/ 87

Lazy Clause Generation Explanation

alldiﬁ X2! X5 X2! X5 alldiﬁ
P R
\b — \\ \\
Xo =1 Xo # 2 Xol 2 Xg9=2 \\ N
-\\ N
X3 =1 X3 # 2 X352+X3#3
N
X4u—_1 X4#2)(4_2»)(4#3
| =
x5 # 2| (x5 1 2lslxs =2
Resolving

Xo > 2N\ X3 > 3AXg > 33— false

19 alldiff
N\~ _
Xs! 3>x3=3
7N\, -~
SN o oo -
Xa ! :—j_x4=3:—>fail

June 2010 50/ 87

Peter J. Stuckey ()

Lazy Clause Generation

Lazy Clause Generation Explanation

alldiﬁ X2! X5 X2! X5 alldiﬁ
e T
\b 7 ~ -

Xo =1 Xo # 2 Xo ! 2 X2—2 ~
-\\

X3 =1 X3 # 2 x352—>|x3

X X

X451 X4#2 X4—2;_X4

X5 # 2 X5 ! 2 X5 =2
Resolving

19 alldiff
N\~ _

x5 1 3:—>|_x3:3—:

7‘*_ - -~

E(‘*_l ,?’—:jLX‘*—: 3_:- > fail

Xo > 2AX3>2AXe > 2ANX3F2 ANXq4 #2 — false

Peter J. Stuckey ()

Lazy Clause Generation

June 2010 51/ 87

Lazy Clause Generation Explanation

alldi! le 5 5132! ITs5 alldi! 19
.CC’]_:l //////’_-\\\\\\\

\b < \\ \\
To =1 xo # 2 2! 21 1o = N \\
r3 =1 x3 # 2 \\ ?:cg":2_:—>|zc3# ?)jf\rrxs' 3:+|_:c
\ \gii__ig__
mlplm#el /| mElmm# sy m! 3pe

xs # 2 x5 | 2l x5 = 2

Resolving
Xo > 2AX3>2AXs > 2N\ % =2 — false
Simplify! X3 > 2AXqe > 2N X =2 — false

Rl

|_°|’~"_| /

alldi!

Peter J. Stuckey () Lazy Clause Generation

June 2010

52 / 87

Lazy Clause Generation Example

alldiff — x2! xs nogood
v

r2 =1 xo # 2 T2 =2
r3 =1 r3 # 2
N
ra =1 xa H 2

xIrs # 2
Backjump

Propagatexs > 2AXg > 2 — X #2

Peter J. Stuckey ()

Lazy Clause Generation

June 2010

53/ 87

Lazy Clause Generation Example

alldi! X2! X5 nogood X2 ! Xs
X1 =1

Y
X2": +X2#2 X2":2 X2#3

X3":1+X3#2

N

Xa =1 Xa # 2

X5 # 2 Xs # 3

Domain constraints determing, > 3
Propagatex, < x5 determinesxs > 3
Dilerent Domain

Dj(x1) = {1}, Dj(x2) = Dj(xs) =[3 .. 4], Dj(x3) = Dj(xa) = [2 .. 4]

Peter J. Stuckey () Lazy Clause Generation

June 2010

54/ 87

What's Really Happening

e A high level OBooleanO model of the problem

e Clausal representation of the Boolean model is generated Oas we (
e All generated clauses are redundant and can be removed at any tir
e We can control the size of the active OBooleanO model

Comparing with SAT on Tai open shop scheduling: (averages)
SAT generates the full Boolean model before starting solving

| Time solve only Fails Max Clauses Generatdd
SAT | 318 (89) 3597 1317
LCG 62 6611 1.00

Peter J. Stuckey () Lazy Clause Generation June 2010 55/ 87

Strengths and Weaknesses of Lazy Clause Generation

e Strengths

e High level modelling

e Learning avoids repeating the same subsearch
e Strong autonomous search

e Programmable search

e Specialized global propagators (butquires work

@ Weaknesses

e Optimization by repeated satisfaction search
e Overhead compared to FD when nogoods are useless

Peter J. Stuckey () Lazy Clause Generation June 2010

© Lazy Clause Generation

@ Lazier Clause Generation

Peter J. Stuckey () Lazy Clause Generation June 2010 57/ 87

Lazy Boolean Variable Creation

e Many Boolean variables aneever used

e Createthem on demand

e Array encoding
e Create bounds variables initially < d
e Only create equality variables= d on demand
Addx >dAx<d—-x=d
e List encoding
e Create bounds variables on demard d
Addx <d' —x <d,x <d — x <d" whered' (d") is next lowest
(highest) existing bound
e At most 2x bounds clauses
e Create equality variables on demand as before

Peter J. Stuckey () Lazy Clause Generation June 2010 58 / 87

Lazy Boolean Variable Creation Tradeoffs

e List versus array

e List always works!Array may require too many variables
e Implementation complexity

e List hampers learning

Tai open shop scheduling: 15x15 (average of 10 problems)
| AverageTime|

13.38
56.66

array
list

Peter J. Stuckey () Lazy Clause Generation June 2010

59 / 87

Views (Schulte + Tack, 2005)

e View is a pseudo variable debned by a ObijectiveO function to ano

variable
e Xx=1ly+"
e X = bool2int (y)
e X= Yy

e The view variablex, does not exist, operations on it are mapped\to

e More importantfor lazy clause generation

e Reduce Boolean variable representation
e Improve nogoods (reduce search)

Constrained path covering problems: Average of 5 problems

| Time Fails |
views 0.71 950
no views| 1.12 1231

Peter J. Stuckey () Lazy Clause Generation June 2010

Explanation Deletion

e Explanations only really needed for nogood learning

e Forward add explanations as they are generated
e Backward delete explanations as we backtrack past them

e Smaller set of clauses
e Can hamper searc@ReprioritizationO

Tai open shop scheduling:

| 15x15 20«20 |
deletion 13.38 39.96
no deletion| 20.58 9588

But RCPSP worse with deletion!

Peter J. Stuckey () Lazy Clause Generation June 2010 61/ 87

Lazy Explanation

e Explanations only needed for nogood learning

e Forward record propagator causing each atomic constraint
e Backward ask propagator to explain atomic constraint (if required)

e Standard for SAT extensions (MiniSAT 1.14) [See Gent et al
PADL2010]

e Only create needed explanations!
e Harder implementation

Social Golfers Problems: using an MDD propagator
(each explanation as expensive as running entire propagator)

| Time Reasons Fails
lazy explanation | 2.38 14347 2751
eager explanation 4.92 78177 5126

Peter J. Stuckey () Lazy Clause Generation June 2010

Lazy Clause Generation Explanation

alldi! x| Is5 x| Is5 alldi!
T2 =1 >=xo# 2| w2 2x2=2
et = \
3 =1 ={x3# 2 T3 =2 >{x3# 3
Ta=1l ={xa# 2 Ta 2 >~xa# 3
rs # 2 x5! 2|15 =2

Dotted boxes explained by above propagator.
Initial nogood

Peter J. Stuckey ()

X3 =3 AX4 =3 — fall

Lazy Clause Generation

9 alldi!
3 = r3 = 3
3z, =3} fail

June 2010

Lazy Clause Generation Explanation

alldi! X2l X5 Xao! X5 alldi! I 9 alldi!
X1 =1
Xo =1l = Xo# 2 ;XQ! 2+X2=2
et = \ o)
Xz3E1l =>{X3# 2 X322 >X3# 3 X3 | 3—>x3:3_'
2%
_ o\
Xo%1 > x # 2 Xa%2 SIx,# 3| x4 3—>'_x4:3:—>fail
X5 # 2 X5 ! 2|~ X5=2
_/

Résolvingx323/\x3§3—>x3:3andx423/\x4§3—>x4:3
X3 > 3AXs >3AX3 <3AX <3 —fall

Requestx; + Xo + X3+ X4 < 9 to explainxg < 3

Peter J. Stuckey () Lazy Clause Generation June 2010

64 / 87

Lazy Clause Generation Explanation

alldi! z2! x5 m2! s alldi! 1 9 alldi!
331:]. ///’_‘\\\\
— N
$251+x2#2 :582! 2+$2:2 \\
T3 %1 > a3 # 2 r3%2 Haz # 3] \w3! 3-a3=3 |
__________ § ~°J
__________ %«_ — _
T4 %1 > x4 # 2 Tat2 Hwa#t 3| |w! 31> 24 =3 > fail
£U5#2 ac5! 2%:135:2
_/

Lézy Explanatiorx; > 2A X3 >3 — X3 <3
Resolving on this gives

Xo > 2AX3>3AXs > 3ANX3 <3 — fall

Peter J. Stuckey () Lazy Clause Generation June 2010 65 / 87

Lazy Clause Generation Explanation

[I

r3 =1 —

/

I
|

%

/

‘*/

S
w

A
T PG
2

N
w

8
w

_V
Fl
_

/
w
.
w
w
i
TR

Wi
Yz

=1 1=
Y

-

8

N

(=
|OJ

=

v

\F

.

/
s VI
N
IFl1
N

)

N

T
w

|

\ N

N
| W) | W

¥
\
\

<

x5! 2

¥

8
ol

I
N

_/

Final 1UIP nogood

Xo > 2AX3>2AXs > 2N\ % =2 — false

Note 5 unexplained atomic constraints remain!

Peter J. Stuckey ()

Lazy Clause Generation

© Lazy Clause Generation

e Global Constraints

Peter J. Stuckey () Lazy Clause Generation June 2010 67 / 87

The Globality of Explanation

e Nogoods extraciglobal informationfrom the problem

e Can overcomeveaknesseef local propagators

e Example

@ D(X1) = D(x2) =[0..100000]x2 > %1 A (b < %1 > X0)

e Setb = true and 200000propagations laterfailure. YIKES
(")
")

A global dilerence logic propagator immediately sdis= falsd
Lazy clause generation learbs= false after 200000propagations
e But never tries it again!

Peter J. Stuckey () Lazy Clause Generation June 2010 68 / 87

Globals by Decomposition

e Globals debned by decomposition

o DonOt require implementation
e Automatically incremental

o Allow partial state relationships to be OlearnedO
e Much more attractive with lazy clause generation

e When propagation is not hampered, and size does not blowout:
e can begood enough

Resource constrained project scheduling problentsinfulative by
decomposition)closed 62 open problent% solved to optimality in time

J60 J90 J120
| 45s 300s 1800$ 45s 300s 1800$ 45s 300s 1800s
Laborie| - 84.2 85.0 - 785 794 - 41.3 41.7
LCG | 852 881 894 | /798 813 825 |425 448 453

Lazy Clause Generation

June 2010

69 / 87

Peter J. Stuckey ()

Which Decomposition?

e Dilerent decompositions interact better or worse with lazy clause
generation.

o alldifferent

diseq: O(n?) disequations

bnd: Bound consistent decomposition of Bessiere et al IJCAIO9

()
e bnd+ : Bound consistent decomp. replacing>d Ax <d byx = d
e gcc: Based on a simple global cardinality decomposition

Quasi-group completion 25x25 (average of examples solved by all)

CSPComp2008
dised13) bnd(11) bnd + (13) gce(15) (13) (12)
Time Fails| Time Fails| Time Fails| Time Fails|| Time | Time
131 142680 757 9317, 129 1144 4.3 1010 | > 433| > 500|

Peter J. Stuckey () Lazy Clause Generation June 2010 70 / 87

Explanations for Globals

e Globals are better than decomposition
e More e"cient
e Stronger propagation

e Instrument global constraint to also explain its propagations
e mdd: expensive each explanation as much as propagation
e cumulative: choices in how to explain

e Implementation complexityCanOt learn partial state

e More e"cient + stronger propagation

Resource constrained project scheduling problems:
J60 (25% faster) J90 (25% faster) J120 (60% faster)
| 45s 300s 1800% 45s 300s 1800$ 45s 300s 1800s
Decomp| 84.8 89.2 894 | 79.8 81.7 825|423 452 457
Global | 85.8 89.0 896 | 80.0 819 82.7 | 427 458 47.0

Peter J. Stuckey () Lazy Clause Generation June 2010 71/ 87

© Lazy Clause Generation

@ Search

Peter J. Stuckey () Lazy Clause Generation June 2010 72 | 87

Nogoods and Programmed Search

e Contraryto SAT folklore

e Activity based search can berrible
e Nogoods workexcellentlywith programmed search

Constrained Path Covering Problems

Time Fails
nogoods + VSIDS > 36189 > 30,000
nogoods + programmed 0.71 950
programmed > 2402 > 10,000

Peter J. Stuckey () Lazy Clause Generation June 2010

Activity-based search

e An excellent default search!

e Weakat the beginning (no meaningful activities)

e Needhybrid approachs
e Hot Restart:

e Start with programmed search to “initialize” meaningful activities.
@ Switch to activity-based after restart

e Use activity-based as part of a programmed search
@ Much more to explore in this direction

Peter J. Stuckey () Lazy Clause Generation June 2010 74 | 87

O Related Work

Peter J. Stuckey () Lazy Clause Generation June 2010 75 | 87

SAT modulo theories (SMT)

e Combine a SAT solver witlheory solvers to handle non Boolean
constraints.
e (Original) Lazy Clause Generation isspecial case

e Each propagator is its own theory
o Propagators do Otheory propagationO

@ Dilerences

o LCG transmits Olower levelO information
e LCG learns ObnerO nogoods

e LCG supports programmed search

e Global Propagators: Theories

@ Sometimes the theory view is better:

e modulo arithmetic + Radio Link Frequency Assignment
e Sometimes bPner nogoods are better

e separation logic + Open Shop Scheduling

e Eventually the approaches will merge!

Peter J. Stuckey () Lazy Clause Generation June 2010

Generalized Nogoods (g-nogoods)

e Nogood learning has a long history in Constraint Programming
e longer than in SAT?

e Traditional Nogoods:x; = d; A--- A X, = dy — fall
o Generalized Nogoodsq ; dy A~ A Xq ; d, — fail

e Introduced by Katsirelos and Bacchus 2003
e Used SAT technology for propagation (watched literals)

e Equivalent to lazy clause generation without bounds constraints
e Interesting 1UIP nogoodsot elective?

e Also debned global explanation approach &tidifferent

e Didnt consider activity, forgetting and VSIDS search

Peter J. Stuckey () Lazy Clause Generation June 2010 77 | 87

Mixed Integer Programming

e Strengths

e Can deal with 100K variables 1M linear constraints
e Strong autonomous search
e OKnowsO where the good solutions are

e Weaknesses
e Have to model using only linear constraints

Can we get add the optimization strength of MIP to lazy clause
generation?

Peter J. Stuckey () Lazy Clause Generation June 2010

SCIP: Solving Constraint Integer Programs

Hybrid constraint programming and mixed integer programming (MIP)
e Linear constraints as propagators and part of global MIP
e MIP propagator explains failures (and fathoming) as nogoods

< < .
X1 3 di A - X > dn, — falil

e Propagates these using SAT technology
e Creates ALLUIP nogoods for MIP failures
e Very good results on some hard MIP problems

Peter J. Stuckey () Lazy Clause Generation June 2010

Lazy Clause Generation and MIP?

e Mixed integer programming (MIP) solveitshow where the good
solutions are
e Lazy clause generation and MIP acempatible
e MIP engineexplainsfailure and fathoming (and reduced cost bounds
changes)
e Treated like an other global propagator
o SCIP is alazy clause generation MIP solver
e In order to use the MIP advantage it probably directs search

e SCIP default search:
e pseudo costs (MIP), then activity (SAT), then impact (CP)

e Plenty more to discover on the best interaction! (see our short pape

Peter J. Stuckey () Lazy Clause Generation June 2010 80 / 87

© Conclusion

Peter J. Stuckey () Lazy Clause Generation June 2010 81 /87

Conclusion

Lazy Clause Generation

e High level modelling
e Strong nogood creation
o Effective autonomous search
e Global Constraints
Debnesstate-of-the-artfor:
e Resource constrained project scheduling (minimize makespan)
e Set constraint problems
e Nonagrams (regular constraints)
Usually 1-2 order of magnitude speedup on FD problem

Peter J. Stuckey () Lazy Clause Generation June 2010 82/ 87

Future Research

Plenty of better engineering yet to be done

Plenty of open research questions
e Best combinination with MIP solving
e Hybrid search: structured + activity based
e Parallelism
e SAT Modulo Theories and Lazy Clause Generation
e Adaptive Behaviour

Peter J. Stuckey () Lazy Clause Generation June 2010

Questions

Peter J. Stuckey () Lazy Clause Generation June 2010 84 / 87

