
Grounding Bound Founded Answer Set Programs

Rehan Abdul Aziz and Geoffrey Chu and Peter James Stuckey
University of Melbourne and NICTA

Abstract

Bound Founded Answer Set Programming (BFASP) is an
extension of Answer Set Programming (ASP) that extends
stable model semantics to numeric variables. While the the-
ory of BFASP is defined on ground rules in practice BFASP
programs are written as complex non-ground expressions.
Flattening of BFASP is a technique used to simplify arbi-
trary expressions of the language to a small and well de-
fined set of primitive expressions. In this paper, we first show
how we can flatten arbitrary BFASP rule expressions, to give
equivalent BFASP programs. Next, we extend the bottom-up
grounding technique and magic set transformation used by
ASP to BFASP programs. Our implementation shows that for
BFASP problems, these techniques can significantly reduce
the ground program size, and improve subsequent solving.

Introduction
Many problems in the areas of planning or reasoning can
be efficiently expressed using Answer Set Programming
(ASP) (Baral 2003). Answer Set Programming enforces sta-
ble model semantics (Gelfond and Lifschitz 1988) on the
program, which disallow solutions representing circular rea-
soning. For example, given only rules that says: b can be
inferred from a, and a can be inferred from b, the assign-
ment a = true, b = true would be a solution under the
logical semantics normally used by Boolean Satisfiability
(SAT) (Mitchell 2005) solvers or Constraint Programming
(CP) (Marriott and Stuckey 1998) solvers, but would not be
a solution under the stable model semantics used by ASP
solvers. Thus ASP is particularly useful in problem domains
where circular reasoning needs to be avoided.

Bound Founded Answer Set Programming
(BFASP) (Aziz, Chu, and Stuckey 2013) is an exten-
sion of ASP to allow founded integer and real variables.
This allows us to concisely express and efficently solve
problems involving inductive definitions of numeric vari-
ables where we want to disallow circular reasoning. As an
example consider the Road Construction problem (Road-
Con). We wish to decide which roads to build such that the
shortest paths between various cities are acceptable, with
the minimal total cost. This can be modelled as:

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

minimize
∑
e∈Edge built [e]× cost [e]

∀y ∈ Node : sp[y, y] ≤ 0
∀y ∈ Node, e ∈ Edge : sp[from[e], y] ≤ len[e] + sp[to[e], y]

← built [e]
∀y ∈ Node, e ∈ Edge : sp[to[e], y] ≤ len[e] + sp[from[e], y]

← built [e]

∀p ∈ Demand : sp[d from[p], d to[p]] ≤ demand [p]

The decisions are which edges e are built (built [e]). The aim
is to minimize the total cost of the edges cost [e] built. The
first rule is a base case that says that shortest path from a
node to itself is 0. The second constraint defines the short-
est path sp[x, y] from x to y: the path from x to y is no
longer than from x to z along edge e if it is built plus the
shortest path from z to y; and the third constraint is similar
for the other direction of the edge. The last constraint en-
sures that the shortest path for each of a given set of paths
p ∈ Demand are no longer than their maximal allowed dis-
tance demand [p].

As shown above the model has a trivial solution with cost
0 by setting sp[x, y] = 0 for all x, y. In order to avoid this
we require that the sp variables are (upper-bound) founded
variables, that is they take the largest possible justified value.
The first three constraints are actually rules which justify
upper bounds on sp, the last constraint it a restriction that
needs to be met and cannot be used to justify upper bounds.
Solving such a BFASP is challenging, mapping to CP mod-
els leads to inefficient solving, and hence we need a BFASP
solver which can reason directly about unfounded sets of nu-
meric assumptions, see (Aziz, Chu, and Stuckey 2013) for
details.

The Road Construction problem is a non-ground BFASP
since it is parametric in the data: Node , Edge , Demand ,
cost , from , to, len , d from , d to and demand . In this paper
we consider how to efficiently create a ground BFASP from
a non-ground BFASP given the data. This is analogous to
flattening (Stuckey and Tack 2013) of constraint models and
grounding (Syrjnen 2009; Gebser, Schaub, and Thiele 2007;
Perri et al. 2007) of ASP programs. The contributions of this
paper are:
• A flattening algorithm that transforms complex expres-

sions to primitive forms while preserving the stable model



semantics.

• A generalization of bottom-up grounding for normal logic
programs to BFASPs.

• A generalization of the magic set transformation for nor-
mal logic programs to BFASPs.

Preliminaries
Constraints
We consider three types of variables: integer, real, and
Boolean. Let V be a set of variables. We use [l, u] to indi-
cate the interval l ≤ x ≤ u. A domainD maps each variable
x ∈ V to a set of constant values D(x). A valuation (or as-
signment) θ over variables vars(θ) ⊆ V maps each variable
x ∈ vars(θ) to a value θ(x). A restriction of assignment θ to
variables V , θ|V , is the the assignment θ′ over V ∩ vars(θ)
where θ′(v) = θ(v).

A constraint c is a set of assignments over the variables
vars(c), representing the solutions of the constraint. Given
a constraint c, a variable y ∈ vars(c) is monotonically in-
creasing (decreasing) in c if forall solutions θ ∈ c, then
increasing (decreasing) the value of y also creates a solu-
tion, that is θ′ where θ′(y) > θ(y), and θ′(x) = θ(x), x ∈
vars(c)− {y}, is also a solution of c.

A constraint program (CP) is a collection of variables V
and constraints C on those variables (vars(c) ⊆ V, c ∈ C).
A positive-CP P is a CP where each constraint is increasing
in exactly one variable and decreasing in the rest. The min-
imal solution of a positive-CP is an assignment θ that satis-
fies P s.t. there is no other assignment θ′ that also satisfies
P and there exists a variable v for which θ′(v) < θ(v). Note
that for Booleans, true > false . A positive-CP P always
has a unique minimal solution. This unique minimal solu-
tion θ is given by: ∀x, θ(x) = min{v | P ⇒ x ≥ v}. If we
have bounds consistent propagators for all the constraints in
the program, then the unique minimal solution can be found
simply by performing bounds propagation on all constraints
until a fixed point is reached, and then setting all variables
to their lowest values.

Answer set programming
A normal logic program P is a collection of rules of the
form:

b0 ← b1 ∧ . . . ∧ bn ∧ ¬b′1 ∧ . . . ∧ ¬b′m
where {b0, b1, . . . , bn, b′1, . . . , b′m} are Boolean variables. b0
is the head of the rule while the RHS of the reverse impli-
cation if the body of the rule. A rule without any negative
literals is a positive rule. A positive program is a collection
of positive rules. The least model of a positive program is an
assignment θ that assigns true to the minimum number of
variables. The reduct of P w.r.t. an assignment θ is written
P θ is a positive program obtained by removing the nega-
tive literals {b′1, . . . , b′m} in every rule r of P as follows: if
there exists an i for which θ(b′i) = true , discard the rule,
otherwise, discard all the negative literals from the rule. The
stable models of P are all assignments θ for which the least
model of P θ is equal to θ. Note that if we consider a logic

program as a constraint program, then a positive program is
a positive-CP and the least model of that program is equiva-
lent to the minimal solution defined above.

Bound Founded Answer Set Programs (BFASP)
BFASP is an extension of ASP that extends its semantics
over integer and real variables. In BFASP, the set of vari-
ables is a union of two disjoint sets: standard S and founded
variables F .1 A rule r is a pair (c, y) where c is a constraint,
y ∈ F is the head of the rule and it is increasing in c. A
bound founded answer set program (BFASP) P is a tuple
(S,F , C,R) whereC andR are sets of constraints and rules
respectively. Given a variable y ∈ F , rules(y) is the set of
rules with y as their heads. Each standard variable s is as-
sociated with a lower and an upper bound, written lb(s) and
ub(s) respectively. On the other hand, founded variables are
only associated with lower bounds that we refer to as ini-
tial bounds, that can be accessed through the function ujb.
An initial bound b for a numeric founded variable y can be
considered as an implicit rule (y ≥ b, y). For Booleans, we
assume that the initial bounds are fixed to false . Note that
we consider the domain of Boolean variables to be ordered
such that true > false . So for example, an ASP rule such as
a← b ∧ c can equivalently be written as: a ≥ f(b, c) where
f is a Boolean function which returns the value of b ∧ c.

The reduct of a BFASP P w.r.t. an assignment θ is a
positive-CP made from each rule r ≡ (c, y) by replacing
in c each variable x ∈ vars(c) − {y} that is not decreasing
by its value θ(x) to create a positive-CP constraint c′. Let rθ
denote this constraint. If rθ is not a tautology, it is included
in the reduct. An assignment θ is a stable model of P iff i)
it satisfies all the constraints in P and ii) it is the minimal
model that satisfies P θ and all the initial bounds on founded
variables
Example 1. Consider a BFASP with standard variable s,
integer founded variables a, b both with initial bounds of 0,
Boolean founded variables x and y, and the rules:

(a ≥ b+ s, a)
(b ≥ 8← x, b)
(x← ¬y ∧ (a ≥ 5), x)

Consider an assignment θ s.t. θ(x) = true , θ(y) = false ,
θ(b) = 8, θ(s) = 9 and θ(a) = 17. The reduct of θ is
the positive-CP: a ≥ b + 9, b ≥ 8 ← x, x ← a ≥ 5.
The minimal model that satisfies the reduct and the initial
bounds is equal to θ, therefore, θ is a stable model of the
program. Consider another assignment θ′ where all values
are the same as in θ, but θ′(s) = 3. Then, P θ

′
is the positive-

CP: a ≥ b + 3, b ≥ 8 ← x, x ← a ≥ 5. The minimal solu-
tion that satisfies this positive-CP and all the initial bounds
is M where M(a) = 3, M(b) = 0, M(x) = M(y) = false .

The focus of this paper is BFASPs where every rule is
written in the form (y ≥ f(x1, . . . , xn), y). f(x1, . . . , xn)

1For the rest of this paper we only consider lower bound
founded variables, analogous to founded Booleans. Upper bound
founded variables can be implemented as negated lower bound
founded variables, e.g. replace sp[x, y] in the Road Construction
example by −nsp[x, y] where nsp[x, y] is lower bound founded.



is essentially an expression tree where the leaf nodes are the
variables x1, . . . , xn. A variable is terminal in an expression
if it appears as a direct descendant of the root.

Example 2. The function f(x1, . . . , x5) = x1 +
min(x2, x3−x4)−(x5)2 can be described by the tree given
below. Only the variable x1 is terminal.

sum

x1 min −

x2 sum product

x3 − x5 x5

x4

The local dependency graph for a BFASP P is de-
fined over founded variables. For each rule r = (y ≥
f(x1, . . . , xn), y), there is an edge from y to all founded
xi. Each edge is marked increasing, decreasing, or non-
monotonic, depending on whether f is increasing, decreas-
ing, or non-monotonic in xi. A BFASP is locally valid iff no
edge within an SCC is marked non-monotonic. A program
is locally stratified if all the edges between any two nodes
in the same component are positive. For example, if x and y
are in the same SCC, then y ≥ sin(x1) where x1 has initial
domain (−∞, ∞) is not valid since the sin function is not
monotonic over this domain, but y ≥ sin(x1) where x1 has
initial domain [0, π/2] is valid.

We say θ ∈ D if θ(x) ∈ D(x),∀x ∈ V .

Non-ground BFASPs
A non-ground BFASP is a BFASP where sets of variables are
grouped together in variable arrays, and sets of ground rules
are represented by non-ground rules via universal quantifi-
cation over index variables. For example, if we have ar-
rays of variables a, b, c, instead of writing the ground rules:
(a[1] ≥ b[1] + c[1], a[1]), (a[2] ≥ b[2] + c[2], a[2]), (a[3] ≥
b[3]+c[3], a[3]) individually, we can represent them by ∀i ∈
[1, 3] : (a[i] ≥ b[i] + c[i], a[i]). Variables can be grouped to-
gether in arrays of any dimension and non-ground BFASP
rule have the following form: ∀ī ∈ D̄ where con(̄i) :
(y[l0(̄i)] ≥ f(x1[l1(̄i)], . . . , xn[ln(̄i)]), y[l0(̄i)]), where ī is
a set of index variables i1, . . . , im, D̄ is a set of domains
D1, . . . , Dm, con is a constraint over the index variables
which constrain these values, l0, . . . , ln are functions over
the index variables which return a tuple of array indices,
y, x1, . . . , xn are arrays of variables and f is a function over
the xi variables. Let gen(r) ≡ ī ∈ D̄ ∧ con denote the
generator constraint for a non-ground rule r.

Example 3. Suppose we have a 2 dimensional array of
variables a and 1 dimensional arrays of variables b and
c. In the non-ground rule: ∀i, j ∈ [1, 10] where i < j :
(a[i, j] ≥ b[i + 1] + c[i ∗ j], a[i, j]), i and j are the index
variables, i, j ∈ [1, 10] ∧ i < j is the generator constraint,
l0(i, j) = (i, j), l1(i, j) = (i + 1), l2(i, j) = (i ∗ j), and
f(x1, x2) = x1 + x2.

Note that we require the generator constraint in each
rule to constrain the index variables so that f is always

defined. For example, if we have variables a[1], . . . , a[10],
b[1], . . . , b[10] and c[1], . . . , c[10], then the rule ∀i ∈
[1, 10](a[i] ≥ b[i + 1] + c[i + 2], a[i]) is not valid since
c[i + 2] refers to a variable outside the array when i = 10.
On the other hand, ∀i ∈ [1, 8] : (a[i] ≥ b[i+1]+c[i+2], a[i])
is valid since all values of i refer to variables within the ar-
ray. We can relax this restriction but it requires us to care-
fully treat partial function applications (see e.g. (Frisch and
Stuckey 2009)).

Variable arrays can contain either founded variables, stan-
dard variables, or parameters (which can simply be consid-
ered fixed standard variables), although all variables in a
variable array must be of the same type. Note that the ar-
ray names in our notation correspond to predicate names
in standard ASP syntax, and our index variables correspond
to ASP “local variables.” Also, in standard ASP syntax, the
generator constraint is often put in the rule body instead of
being made explicit. We make them explicit so that we do
not have to mix Boolean conditions with arithmetic func-
tions in the rule body. For example, an ASP rule: rch(X)←
rch(Y ), e(X,Y ), node(X), node(Y ) would be written in
our syntax as ∀x ∈ Node, y ∈ Node where e[x, y] :
(rch[x]← rch[y], rch[x]).

Given a non-ground rule r, let grnd(r) be the set of
ground rules obtained by substituting all possible values
of the index variables that satisfy gen(r) into the quanti-
fied expression. Similarly given a non-ground BFASP P , let
grnd(P ) be the grounded BFASP that contains the ground-
ing of all its rules and constraints.

The predicate dependency graph, validity and stratifica-
tion are defined similarly for array variables and non-ground
rules as the local dependency graph, local validity and lo-
cal stratification respectively are defined for atomic vari-
ables and ground rules. All our subsequent discussion on
non-ground BFASPs is restricted to valid BFASPs. Note that
similarly to how local stratification is a tighter condition for
logic programs, local validity is also a tighter condition for
BFASPs. In particular, non-ground rules where the mono-
tonicity of subexpressions are not fixed may still be locally
valid.

Flattening
A ground BFASP may contain constraints and rules whose
expressions are not flat, i.e., they are expression trees with
height greater than one. Such expressions are not supported
by constraint solvers and we need to flatten these expres-
sions to primitive forms. We omit consideration of flattening
constraints since this is the same as in standard CP (Stuckey
and Tack 2013). Consider the expression tree in Example
2, if it were a constraint, we would introduce variables
i1, . . . , i5 to decompose the given function into the follow-
ing set of equalities: f = x1+i1+i2, i1 = min(x2, i3), i3 =
x3 + i4, i4 = −x4, i2 = −i5, i5 = x5 × x5. Similar to how
an arithmetic function is decomposed by introducing new
variables and a set of equalities, rules in BFASP can be flat-
tened by introducing new founded and standard variables,
and new rules and constraints. In this section, we show how
this can be done such that the stable models of the original
program are preserved.



We first note that the standard CP flattening algorithm
does not preserve stable model semantics. If a standard vari-
able is introduced in order to represent a subexpression con-
taining founded variables, the stable models of the program
may change.

Example 4. Consider a BFASP with: (x1 ≥ max(x2, x3)−
2, x1), (x2 ≥ x1 + 1, x2), (x3 ≥ x1 + 2, x3), (x1 ≥ 3, x1)
where x1, x2, x3 are all founded variables. The only stable
model of this program is x1 = 3, x2 = 4, x3 = 5. Suppose
we introduced a standard variable i1 to represent the subex-
pression max(x2, x3), so that the first rule in the program
is replaced by: (x1 ≥ i1 − 2, x1) and i1 = max(x2, x3).
Now, due to the introduction of the standard variable i1, the
new program has many new spurious stable models such as
i1 = 6, x1 = 4, x2 = 5, x3 = 6 or i1 = 7, x1 = 5, x2 =
6, x3 = 7.

To preserve the stable model semantics, it is in fact neces-
sary to use introduced founded variables to represent subex-
pressions containing founded variables. Before we describe
the central result that we use in our flattening algorithm, let
us describe two restrictions that we impose on the rules that
we require for the correctness of our algorithm:

1. Each founded variable appears only once in the expres-
sion tree of the rule expression. For example, the rule
y ≥ x1 −min(x1, x2) is not supported since x1 appears
twice.

2. Every function in which a founded variable appears must
be monotonic in all its argument given the initial domains
of the variables.

These restrictions force the BFASP to be locally valid. The
following theorem shows us how we can preserve the stable
model semantics.

Theorem 1. Let P be a BFASP containing a rule r ≡
(y ≥ f1(x1, . . . , xk, f2(xk+1, . . . , xn)), y) where f1 is in-
creasing in the argument where f2 appears. Let P ′ be the
same as P with r replaced by the two rules: r1 ≡ (y ≥
f1(x1, . . . , xk, y

′), y) and r2 ≡ (y′ ≥ f2(xk, . . . , xn), y′)
where y′ is an introduced lb-founded variable. Then the sta-
ble models of P ′ restricted to the variables of P are equiva-
lent to the stable models of P .

Theorem 1 tells us that we can preserve the stable model
semantics by introducing a founded variable to represent
subexpressions containing founded variables. Note that if
a subexpression does not contain any founded variables at
all, i.e., only contains standard variables, parameters or con-
stants, then a standard CP flattening step is sufficient.

Example 5. Consider the rule: (y ≥ x1 + min(x2, x3 −
x4)−(x5)2, y). Suppose x1, x2, x5 are lb-founded variables,
and x3, x4 are standard variables. The RHS of the initial
rule is increasing in the subexpression min(x2, x3 − x4)
and decreasing in (x5)2, so we can replace it with founded
variables i1 and i2, and break it into: (y ≥ x1 + i1 + i2, y),
(i1 ≥ min(x2, x3 − x4), i1), (i2 ≥ −(x5)2, i2). The rule
(i1 ≥ min(x2, x3 − x4), i1) requires further flattening.
However, the subexpression x3 − x4 only contains stan-
dard variables, so we only need to introduce a standard

variable i3 and break it into: (i1 ≥ min(x2, i3), i1) and
i3 = x3 − x4.

The flattening algorithm, formalized as the procedure flat,
works as follows. We put all the rules of the program in a set
R and all the constraints in the program in a set T . We pick a
rule r ≡ (y ≥ f(e1, . . . , en), y) from R, where f is the top
level function in that rule, and e1, . . . , en are the expressions
which form f ’s arguments. If there is some ei which is not a
terminal, i.e., not a constant, parameter or variable, then we
have two cases. If ei is an expression that does not contain
any founded variables, we simply introduce a standard vari-
able y′, replace ei with y′ in that rule, and add the constraint
y′ = ei to T . If ei is an expression that does contain founded
variables, then we must apply the transformation described
in Theorem 1. If f is increasing in ei, we introduce an lb-
founded variable y′, replace ei with y′ in that rule, and add
a new rule (y′ ≥ ei, y

′) to R. If f is decreasing in ei, we
introduce an lb-founded variable y′, replace ei with −y′ in
that rule, and add a new rule (y′ ≥ −ei, y′) to R. After this,
all the arguments of f are terminals. Through the subrou-
tine simplify, we simplify r as much as possible, e.g., by
getting rid of double negations, pushing negations inside the
expressions as much as possible etc. We remove r from R
and pick another rule from R until R is empty. Finally, we
flatten all the constraints in T using the standard CP flat-
tening algorithm cp flat as described in (Stuckey and Tack
2013). Note that since we replace all decreasing subexpres-
sions by negated introduced variables and simplify expres-
sions by pushing negations towards the variables, we han-
dle negation through simple rule forms like (y ≥ −x, y),
(y ≥ 1

x , y), (y ≥ ¬x, y) etc.

flat(P )
Pflat := ∅
R := rules(P )
T := cons(P )
for(r ≡ (y ≥ f(e1, . . . , en), y) ∈ R)
R := R \ {r}
for(each non-terminal ei)

if(ei does not contain founded vars)
replace ei with standard var y′ in r
T = T ∪ {y′ = ei}

elif(f is increasing in ei)
replace ei with lb-founded var y′ in r
R = R ∪ {(y′ ≥ ei, y′)}

elif(f is decreasing in ei)
replace ei with −y′ in r
R = R ∪ {(y′ ≥ −ei, y′)}

r := simplify(r)
Pflat = Pflat ∪ {r}

for(c ∈ T )
Pflat = Pflat∪ cp flat(c)

return Pflat

Once we have flattened the entire program, we can calcu-
late the initial domains for the introduced variables as well
as the ujb values for the introduced founded variables. This



step is not strictly necessary for correctness since we can
always set the ujb values of founded variables to −∞ and
set the initial domains of introduced variables to (−∞,∞).
However, getting tighter initial domains may allow us to get
a smaller grounding and/or improve solving efficiency. We
perform these calculations in the reverse order in which the
variables were introduced. Finding initial domains simply
requires propagating the constraints and is standard in CP
flattening so we do not discuss this further. Suppose y′ is an
introduced lb-founded variable. There will be exactly one
rule (y′ ≥ f(x1, . . . , xm), y), which means that the stable
model semantics forces it to be equal to f(x1, . . . , xm). We
set ujb(y′) = f(θ(x1), . . . , θ(xn)) where:

1. if xi is a founded variable and f is increasing in xi, then
θ(xi) = ujb(xi)

2. else if f ′ is increasing in xi, then θ(xi) = lb(xi)

3. else θ(xi) = ub(xi).

Example 6. Assuming the initial domains of all variables
were [0, 10], and ujb(x1) = 1, ujb(x2) = 2 and ujb(x5) =
5, then the domains of the introduced variables of Example 4
are: i3 ∈ [−10, 10], i2 ∈ [−100, 0], i1 ∈ [−10, 10] and the
ujb values are: ujb(i2) = −25 and ujb(i1) = −10.

The algorithm can be extended to non-ground rules by
defining the index set of the introduced variables to be equal
to the domain of local variables as given in the generator
of the original rule in which their bodies appear. Moreover,
the generator expression of the intermediate rules stay the
same as that of the original rule from which they are derived.
For initial bound calculation on the introduced variables, θ is
defined similarly to how it is defined for standard variables.

Grounding
ASP grounders rely on two operations: propagation and jus-
tification. Propagation means inferring that some variable is
true in all stable models of the program. For example, let
us say that a is given as a fact, then any rule like a ← b is
useless since removing it does not affect the stable models
of the program. Justification means inferring that a variable
can be true in some stable model of the program. For exam-
ple, if we learn that b can be justified by some rule, and there
is another rule a ← b, then we must include this rule in the
program since it offers a justification for a. Justification also
has a potential to eliminate a useless rule, e.g., if we know
that b has no rule justifying it, then we can discard the rule
a ← b, or postpone including this in our ground program
until we find a justification for b.

In constraints term, what ASP grounders do is maintain an
implicit domain D for all the variables, which initially only
contains false for all variables. By inspecting the rules, they
then iteratively increase the upper bound on these variables
(from false to true), which in turn increases the upper bound
of bodies of some rules in which these variables appear as
positive literals, which results in the instantiation of those
rules which increases the upper bound on their heads and so
on. At the same time, they also propagate the lower bound of
a variable (fix it true where possible). By performing both
justification and propagation, the resulting ground program

has the same stable models as the ground program generated
by exhaustive instantiations, but has no useless rules.

To implement grounding based only on justification, due
to the simple nature of normal logic rules, it is sufficient to
keep track of ground variables and derive further instantia-
tions based solely on this knowledge, without actually ex-
plicitly maintaining a domain. For example, if variables b
and c have been created, then a← b∧cmust also be created.
Justification of all positive literals immediately implies justi-
fication of the head. Unfortunately, BFASP is more compli-
cated than that. For example, if we have a rule a ≥ b where
the initial bound of a is 5 and that of b is 1, then if some rule
justifies a bound of 2 on b, this does not imply that a ≥ b
should be grounded. Until we learn that a bound of 6 can
be justified on b, the rule is useless since not including it in
the final program does not change the stable models of the
program. In general, in BFASP, justification higher than the
initial bound for a variable does not imply usefulness of all
rules in which it positively appears. This means that a fixed
point bottom-up grounding based on creation of variables is
not sufficient to guarantee a useless rules free ground pro-
gram. However, this does not mean that it is not useful, by
allowing some over grounding, we can still eliminate sig-
nificant number of useless rules for certain problems. We
present one such approach in this section.

We propose a simpler grounding algorithm which may
generate useless rules in addition to all the useful ones, but
that can be implemented by simply maintaining a set of
ground rules and variables. The idea is that for each variable
v, we only keep track of whether v can potentially be justi-
fied above its ujb value, rather than keep track of whether it
can be justified above each value in its domain. If it can be
justified above its ujb, then when v appears in the body of a
rule, we assume that v can be justified to any possible bound
for the purpose of calculating what bound can be justified
on the head. This clearly over-estimates the bounds which
can be justified on the variables, and thus the algorithm will
generate all the useful rules and possibly some useless ones
as well.

We refer to a variable x as being created, written cr(x),
if it can go above its initial bound. More formally, cr(x)
is a founded Boolean with a rule: cr(x) ← x > ujb(x).
While that is how we define cr(x), we do not explicitly have
a variable cr(x) and the above rule in our implementation.
Instead, we implement it by maintaining a set Q of variables
that have been created. Initially, Q is empty. We recursively
look at each non-ground rule to see if the newly created vari-
ables make it possible for more head variables to be justified
above their ujb values. If so, we create those variables and
add them to Q. In order to do this, we need to find necessary
conditions under which the head variable can be justified
above its ujb. In order to simplify the presentation, we are
going to define ujb for constants, standard variables and pa-
rameters as well. For a constant x, we define ujb(x) to be
the value of x. For parameters and standard variables x, we
define ujb(x) = ub(x).2 Table 1 gives a non-exhaustive list

2Upper and lower bounds for parameters can be established by
simply parsing the array.



c φr

y ≥ sum(x1, . . . , xn) (
∑

i ujb(xi) > ujb(y))∨((∧iujb(xi) >

−∞∨ cr(xi)) ∧ (∨icr(xi)))

y ≥ max(x1, . . . , xn) ∨i(ujb(xi) > ujb(y) ∨ cr(xi))

y ≥ min(x1, . . . , xn) ∧i(ujb(xi) > ujb(y) ∨ cr(xi))

y ≥ product(x1, . . . , xn)

where ∧ixi > 0

∏
i ujb(xi) > ujb(y) ∨ (∨icr(xi)))

y ≥ x← r r ∈ Q ∧ (ujb(x) > ujb(y) ∨ cr(x))

y ← x ≥ 0 ujb(x) >= 0 ∨ cr(x)

y ← ∧ixi ∧icr(xi)

y ← ∨ixi ∨icr(xi)

y ≥ −x1 −ub(xi) > ujb(y)

y ← ¬x1 true

y ≥ 1/x1 where x1 > 0 1/− ub(x1) > ujb(y)

Table 1: Grounding conditions for rule r = (c, y)

of necessary conditions for the head variable to be justified
above its ujb value for different rule forms.

Let us now make a few observations about the conditions
given in Table 1. A key point is that for many rule forms φr
can evaluate to true , even without any variable in the body
getting created. For example, for max , even if one variable
has an initial bound that is greater than the initial bound of
the head, the rule needs to be grounded completely. All such
rules that evaluate to true give us a starting point for initial-
izing Q in our implementation.

The linear case (sum) deserves some explanation. It is
made up of two clauses, the first of which is an evaluation of
the initial condition, i.e., whether the sum of initial bounds
of all variables is greater than the initial bound of the head. If
this condition is true, then the rule needs to be grounded un-
conditionally. If this is false, then the second clause becomes
important. The second clause itself is a conjunction of two
more clauses. The first part says that all variables must be
greater than −∞ in order for the rule to justify a finite value
on the head. In the case where all variables already have a
finite initial bound, the final part of the condition says that at
least one of them must be created for the rule to be grounded
(given the initial condition failed). Note that this condition
becomes redundant if at least one of the variables has an
initial bound of −∞. A final observation is that after evalu-
ating initial bounds, all conditions given in the table simplify
to one of the following four forms: true , false , ∨icr(xi) or
∧icr(xi).

We can argue about the correctness of our approach by
looking at each row in the table and reasoning that until the
condition is satisfied, the rule can be ignored without affect-
ing the stable models of the program. We only provide a
brief sketch and do not analyze each case in the table. Say,
e.g. for y ≥ max (x1, . . . , xn), if the condition is not sat-
isfied, this means that no xi has a rule in the program that
justifies a value higher than its initial bound, and no xi ini-
tially justifies a bound on y that is greater than ujb(y). If we
include a ground version of this rule in the final program,
then after taking the reduct w.r.t. some assignment, the rule
can never justify any bound on the head during the minimal
order computation, and hence we can safely eliminate it.

Example 7. Consider a BFASP with the following two non-

ground rules:

∀i ∈ [1, 10] : a[i] ≥ b[i] + x[i]
∀i ∈ [1, 10] : x[i] ≥ min(c[i], d[i])

where x is an introduced variable. The initial bounds are as
follows: ujb(a) = 5, ujb(b) = 2, ujb(c) = 7, ujb(d) =
1 and ujb(x) = 1. For the first rule, the initial condition
evaluates to false. Moreover, since both b and x have initial
bounds greater than −∞, we get:

cr(b[i]) ∨ cr(x[i])

For the second rule, since ujb(c[i]) > ujb(x[i]) and
ujb(d[i]) is not greater than ujb(x[i]), we get the condition:
cr(d[i]).

createCPs(P )

for(r ∈ P : φr =
n∧
i=1

cr(xi[l̄i]))

cp[r] := true % new constraint program
cp[r] := cp[r] ∧ gen(r)
for(i ∈ 1 . . . n)
set[r, i] := ∅
cp[r] := cp[r] ∧ l̄i ∈�set[r, i]�

for(r ∈ P : φr =
n∨
i=1

cr(xi[l̄i]))

for(i ∈ 1 . . . n)
cp[r, i] := true % new constraint program
cp[r, i] := cp[r, i] ∧ gen(r)
set[r, i] := ∅
cp[r, i] := cp[r, i] ∧ l̄i ∈�set[r, i]�

ground(P )
C := {groundAll(c) : c ∈ constraints(P )}
R′ := {groundAll(r) : r ∈ P : φr = true}
while(R′ 6= ∅)
H := heads(R’)
Q∪=H
R′ := ∅
for(r ∈ P : H ∩ vars(φr) 6= ∅)

if(φr 6=
n∧
i=1

cr(xi[l̄i]) ∧ φr(Q) 6=
n∧
i=1

cr(xi[l̄i]))

continue
for(i ∈ 1 . . . n)
dom = {m̄ | x[m̄] ∈ Q}
set[r, i] := dom \ set[r, i]
if(φr is conj) R′ ∪= search(cp[r]) \R
if(φr is disj) R′ ∪= search(cp[r, i]) \R
R∪=R′

set[r, i] := cr
We are now ready to present the main bottom-up ground-

ing algorithm. createCPs is a preprocessing step that cre-
ates constraint programs for rules in a BFASP P whose con-
ditions are either conjunctions or disjunctions. For a rule
with a conjunctive condition, it only creates one program,
while for one with a disjunctive condition, it creates one con-
straint program for each variable in the condition. Each pro-
gram is initialized with the gen(r) which defines the vari-
ables and some initial constraints given in the where clause



of the non-ground rule. Furthermore, for each array literal in
the φr, a constraint is posted on its literal (which is a func-
tion of index variables in the rule), to be in the domain given
by the current value of the set variable (the reason for the
Quine quotes) which is initially set to empty.

ground is called on after preprocessing. Q and R are sets
of ground variables and rules respectively. groundAll is a
function that grounds a non-ground rule or constraint com-
pletely, and returns the set of all rules and constraints re-
spectively. Initially, we ground all constraints in P and rules
for which φr evaluates to true. R′ is a temporary variable
that represents the set of new ground rules from the last it-
eration. In each iteration, we only look for non-ground rules
that have some variable in their conditions that is created in
the previous iteration. heads takes a set of ground rules as
its input and returns their heads. In each iteration, through
Q, we manipulate the set constraint to get new rule instan-
tiations. For each variable in the clause, we make set equal
to the new values created for that variable. For both the con-
junctive and the disjunctive case, this optimization only tries
out new values of recently created variables to instantiate
new rules. search takes a constraint program as its input,
finds all its solutions, instantiates the non-ground rule for
each solution, and returns the set of these ground rules. Af-
ter creating new rules due to the new values in set , we make
it equal to all values of the variable in Q. The fixed point
calculation stops when no new rules are created.

Magic set transformation
Let us first define the query of a BFASPs. To build the query
Q for a BFASP P , we ground all its constraints and its objec-
tive function, and put all the variables that appear in them in
Q.3 Note that our query does not have any free variable and
only contains ground variables. Therefore, we do not need
any adornment strings to propagate binding information as
in the original magic set technique. The original magic set
technique has three stages: adorn, generate and modify. For
the reason described above, we only describe the latter two.

The purpose of the magic set technique is to simulate a
top-down computation through bottom-up grounding. This
is achieved by creating a corresponding magic variable m a
for every variable a in the original program that repre-
sents whether we care about that variable or not. Addition-
ally, there are magic rules that specify when a magic vari-
able should be created, meaning, when we become inter-
ested in the corresponding variable. Consider a simple rule
(a ≥ b + c + d, a). Let us say that the initial bounds of all
four variables are −∞, and we are interested in computing
the final value of a. We model this as initially setting m a to
true. To capture that the value of b is required to compute the
value of a, we add a magic rule m b← m a. We can have a
similar rule form c, but actually, we can make the condition
for deriving m c tighter. If b can never go higher than −∞,
then there is no need to know the value of c since the rule is
useless until b is created. Similarly, we are only interested in
d if both b and c are created.

3Technically if the problem has output variables, whose value
will be printed, they too need to be added to Q.

Fortunately, we already have the necessary conditions in
the form of φr that should be satisfied before a non-ground
rule can be instantiated to a useful ground rule. We now de-
scribe how we can utilize that information for the genera-
tion of magic rules. First, recall that after evaluating the ini-
tial conditions, for any rule r, φr reduces to true, false, a
conjunction or a disjunction. For a conjunction, the magic
rules are the same as they are for a normal rule in the orig-
inal magic set technique. For example, for the above rule
r = (a ≥ b + c + d, a), φr = cr(b) ∧ cr(c) ∧ cr(d), as
described, we get the following three magic rules: m b ←
m a; m c← m a∧ cr(b) and m d← m a∧ cr(b)∧ cr(c).

For a disjunction, the magic rules are even simpler. For ev-
ery cr(x) in the disjunction, we simply post the magic rule
m x ← m a. Since not all variables in the original rule ap-
pear in the condition, some might get removed in the simpli-
fication or not be included in the original condition at all. We
can ignore them for grounding, but we are interested in their
values as soon as we know that the rule can be grounded.
Therefore, as soon as the magic variable is created, and φr
is satisfied, we are interested in all the variables in the rule
that do not appear in φr. Finally, we define the modification
step for a rule r = (y ≥ f(x̄), y), written modify(r), as
changing it to r = (y ≥ f(x̄)← my, y).

magic(r)
a := head(r)

if(φr =
n∨
i=1

cr(xi))

for(i ∈ 1 . . . n)
P ∪= gen(r) : m xi ← m a

if(φr(Q) =
n∧
i=1

cr(xi))

b := m a
for(i ∈ 1 . . . n)
P ∪= gen(r) : m xi ← b
b := b ∧ cr(xi)

for(v ∈ vars(r) \ (vars(φr) ∪ {a}))
P ∪= gen(r) : m v ← m a ∧ b

P ∪={modify(r)}
The pseudo-code for generation of magic rules and mod-

ification of the original rule is given as the function magic
that takes a rule as its input. It adds magic rules for a rule to
a set P . The first two if conditions handle the disjunctive and
conjunctive case respectively. The for loop that follows gen-
erates magic rules for variables that are not in φr. With this
function, the entire bottom-up calculation with magic sets is
as follows:

1. Create magic variables for all the variables in the pro-
gram. Call magic for every rule in the program. If the
magic rules generated and/or the original rule after modi-
fication are not primitive expressions, flatten them.

2. Call ground on the resulting program. While grounding
the constraints, build the query by including m v to Q for
every ground variable v that is in some ground constraint.

3. Filter all the magic variables from Q, and magic rules
from R. Q and R contain the final set of variables and
rules respectively.



The next example demonstrates the complete bottom-up cal-
culation with magic sets.

Example 8. Consider a BFASP with the following rules:

R1 ∀i ∈ [2, 30] where i mod 2 = 0 :
a[i] ≥ b[i− 1] + y[i]

R2 ∀i ∈ [2, 30] where i mod 2 = 0 :
y[i] ≥ max (c[2i], d[i+ 1])

R3 ∀i ∈ [1, 10] : c[i] ≥ 10← s1[i]
R4 ∀i ∈ [1, 10] : b[i] ≥ s2[i+ 1]

where a, b, c, d are arrays of founded integers with ujb of
−∞, s2 is an array of standard Booleans and s1 is an array
of standard integers with domains (−∞,∞), and the index
set of all arrays is equal to [1, 100]. Let us compute φr for
each rule. φR1

= cr(b[i− 1]) ∧ cr(y[i]) φR2
= cr(c[2i]) ∨

cr(d[i+ 1]), and φ(R3) = φ(R4) = true .
We get the following magic rules for these rules:

M1 gen(R1) : m b[i− 1]← m a[i]
M2 gen(R1) : m y[i]← m a[i] ∧ cr(b[i− 1])
M3 gen(R2) : m c[2i]← m y[i]
M4 gen(R2) : m d[i+ 1]← m y[i]
M5 gen(R3) : m s1[i]← m c[i]
M6 gen(R4) : m s2[i+ 1]← m b[i]

Let us say we are given the constraint: a[2] +
a[5] ≥ 10. Processing this, we initialize Q with the set
{m a[2],m a[5]}. Running ground procedure extends Q
with the following variables, the rule used to derived a
variable is given in brackets: m b[1](M1), m s2[2](M6),
b[1](R4), m y[2], m c[4](M3), m d[3](M4), c[4](R3),
m s1[4](M5), y[2](R2), a[2](R1). Filtering magic rules,
the following ground rules are generated during the ground-
ing (the initial bounds of variables that are not created are
plugged in as constants in rules where they appear):

a[2]← b[1] + y[2]
y[2] ≥ max (c[4],−∞)
c[4] ≥ 10← s1[4]
b[1] ≥ s2[2]

Without magic sets transformation and only bottom-up
grounding, both R3 and R4 yield 10 ground rules each, R2
gives 2 ground rules (for i ∈ {2, 4}), and R1 gives 2 ground
rules as well (for i ∈ {2, 4}). With exhaustive grounding,
the number of rules from R1 to R4 is 48 (14+14+10+10).
The most important point to note is that increasing the range
of local variables in the generators of rules affects both
bottom-up and exhaustive grounding (grnd(P )), but has no
effect on grounding with magic sets.

Unstratified BFASPs
If a given BFASP program is unstratified, then the algorithm
described above is not sound. There might be parts of the
program that are unreachable from the founded atoms ap-
pearing in constraints but are inconsistent. A simple exam-
ple is a program with a rule a ← ¬a and a constraint ¬b.
There are no stable models of this program particularly due
to the first rule which can never be satisfied, but the magic

set grounding algorithm will ignore the rule since it is not
reachable from the b, and therefore wrongly declare ¬b as
a stable model of the program. This is unconditional incon-
sistency (Faber, Greco, and Leone 2007). On the other hand,
a simple example of conditional inconsistency is the follow-
ing program with three rules: p← ¬q; q ← ¬p; y ← ¬y,¬q
and a constraint ¬p ∨ ¬q. Since we are only interested in p
and q, our algorithm will ignore the third rule which means
that both p = true, q = false and q = true, p = false are
stable assignments, but that is clearly wrong. The second as-
signment is not stable due to the third rule that we ignored.
This is conditional dependency which means that some but
not all stable models of the restricted ground program are
actual stable models of the complete ground program. The
source of both types of inconsistencies is unstratified nega-
tion as we can prove that without it, we can safely ignore
parts of the program that are not reachable from the con-
straints. We use a simple strategy to overcome this issue by
including all ground magic variables of all array variables
that are part of a component in which there is some negative
edge between any two of its nodes.

We introduce some notation for the following result that
establishes correctness of our approach. Let M be a ground
BFASP produced by running the magic set transformation
after including the unstratified parts of the program in the
initial query for a given non-ground BFASP P . Let G be
equal to grnd(P ), and let Pi be part of grnd(P ) that is not
included in M .

Theorem 2. The stable models ofG restricted to the vari-
ables vars(M) is equivalent to the stable models of M .
That is:
• If θ′ is a stable model of G, then θ′|vars(M) is a stable

model of M .
• If θ is a stable model of M , then there exists θ′ s.t. θ′ is

a stable model of G and θ′|vars(M) = θ.

Experiments
We show the benefits of bottom-up grounding and magic
sets for computing with BFASPs on a number of bench-
marks: RoadCon, UtilPol and CompanyCon.4 Utilitarian
policies UtilPol is a problem in which a government de-
cides a set of policies to enact and enacting every policy
has a cost. Additionally, there are different citizens and ev-
ery citizen’s happiness depends on two factors: which poli-
cies are enacted and how happy some other citizens are. The
goal of the problem is to minimize the total cost on enacting
policies such that a certain target citizen t is happy above
a certain goal. Company controls CompanyCon is a prob-
lem related to stock markets. The parameters of the problem
are the number of companies, each company’s ownership of
stocks in other companies, and a source company that wants
to control a destination company. The decision variables are
the number of stocks that the source company buys in every
other company. A company c controls a company d if the
number of stocks that c owns in d plus the number of stocks

4All problem encodings and instances can be found at:
www.cs.mu.oz.au/˜pjs/bound founded/



Exhaustive Bottom-up Magic
N SCCs Flat Solve Flat Solve Flat Solve

100 5 4.64 2.12 1.52 0.37 0.32 0.05
300 15 37.42 — 4.05 3.67 0.43 0.16
600 20 240.61 — 20.11 19.81 0.88 0.93
900 30 — — 30.58 38.86 1.24 2.29

1400 45 — — 60.61 — 1.87 24.98
1400 20 — — 266.85 — 3.99 —

Table 2: Road Construction RoadCon

that other companies that c controls own in d is greater than
50 percent of total number of stocks of company d. The
objective of the problem is to minimize the total cost of
stocks bought by the source company. All experiments were
performed on a machine running Ubuntu 12.04.1 LTS with
8 GB of physical memory and Intel(R) Core(TM) i7-2600
3.4 GHz processor. Our implementation extends MiniZinc
2.0 (LIBMZN) and uses the solver CHUFFED extended with
founded variables and rules as described in our previous
work (Aziz, Chu, and Stuckey 2013).

Table 2 shows the results for RoadCon. N is the number
of nodes, and SCCs is the minimum number of strongly con-
nected components in the graph. The edge probability be-
tween any two nodes in an SCC is 0.2. We compare exhaus-
tive grounding (simply creating grnd(P )) against bottom-up
grounding, and bottom-up grounding with magic set trans-
formation. A — represents either the flattener/solver did not
finish in 10 minutes or that it ran out of memory. Using
bottom-up grounding, the founded variables representing the
shortest path between two variables are never created for
any variables that are not in the same SCC. Moreover, many
useless rules for such variables are also not created. Clearly
bottom-up grounding is far superior to naively grounding ev-
erything, and magic sets substantially improves on this.

Table 3 shows the results for UtilPol. The running time
for exhaustive and bottom-up for this benchmark are similar,
therefore, the comparison is only given for bottom-up vs.
magic sets. In the table, C is the number of citizens, P is
the number of policies, Cr represents the maximum number
of relevant citizens on which the happiness of t directly or
indirectly depends. Similarly, Pr is the maximum number
of policies on which the happiness of t and other citizens in
Cr depends. This is the part of the instance that is actually
relevant to the query, the rest is ignored when magic sets are
enabled. It can be seen that magic sets outperform regular
bottom-up grounding, especially when the relevant part of
the instance is small compared to the entire instance. Note
that when Pr is small, the flattening time for magic sets is
greater that the solving time since the resulting set of rules is
actually simple. This changes, however, as Pr is increased.

Table 4 gives the results for CompanyCon. In the table
C is the number of total companies while Cr is the maxi-
mum number of companies reachable from the destination
through the initial ownership graph. The table shows that if
Cr is small compared to C, magic sets can give significant
advantages. The search strategy used for the problem tries to

Instance Bottom-up Magic
C P Cr Pr Flat Solve Flat Solve
50 100 5 5 2.13 2.60 0.64 0.02

100 300 10 30 18.40 64.90 3.15 0.09
100 500 10 30 25.82 — 4.96 0.14
250 350 105 105 87.36 — 36.54 21.34
250 400 110 110 91.23 — 40.62 228.03
300 400 125 150 145.02 — 59.56 —

Table 3: Utilitarian Policies UtilPol

Instance Bottom-up Magic
C Cr Flat Solve Flat Solve

1000 15 23.97 19.48 0.58 1.91
1500 25 55.07 30.05 0.78 4.27
2000 35 93.62 38.74 0.98 7.80
3000 50 215.14 77.40 4.87 21.03
3000 60 212.80 — 5.18 64.14
5000 80 — — 10.13 88.51

Table 4: Company Controls CompanyCon

purchase the least stock possible in each company first, and
only increases this when the results don’t end up controlling
the destination company. Therefore, the complexity of solv-
ing the problem is driven by the number of relevant compa-
nies, since setting the stock brought for the rest of the com-
panies to zero does not affect the objective. Hence magic
sets are less important than in the previous problems. How-
ever, as the table shows, the unnecessary founded variables
rules can make an instance much more difficult to solve. This
is especially true for the flattening time of the bottom-up ap-
proach which is severely affected by the increase in the num-
ber of irrelevant companies. The same effect is much milder
for magic sets since it restricts to only the relevant part of
the problem instance.

Conclusion
Bound Founded Answer Set Programming extends Answer
Set Programming to disallow circular reasoning over nu-
meric entities. While the semantics of BFASP are a sim-
ple generalization of the semantics of ASP, to be practically
useful we must be able to model non-ground BFASPs in
a high level way. In this paper we show how we can flat-
ten and ground a non-ground BFASP while preserving its
semantics, thus creating an executable specification of the
BFASP problem. We show that using bottom-up grounding
and magic sets transformation we can significantly improve
the efficiency of computing BFASPs.

References
Aziz, R. A.; Chu, G.; and Stuckey, P. J. 2013. Stable model
semantics for founded bounds. Theory and Practice of Logic
Programming 13(4–5):517–532. Proceedings of the 29th In-
ternational Conference on Logic Programming.



Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.
Faber, W.; Greco, G.; and Leone, N. 2007. Magic sets and
their application to data integration. Journal of Computer
and System Sciences 73(4):584–609.
Frisch, A., and Stuckey, P. 2009. The proper treatment of
undefinedness in constraint languages. In Gent, I., ed., Pro-
ceedings of the 15th International Conference on Principles
and Practice of Constraint Programming, volume 5732 of
LNCS, 367–382. Springer-Verlag.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo : A new
grounder for answer set programming. In LPNMR, 266–271.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proceedings of the Fifth
International Conference on Logic Programming, 1070–
1080. MIT Press.
Marriott, K., and Stuckey, P. 1998. Programming with Con-
straints: an Introduction. MIT Press.
Mitchell, D. G. 2005. A SAT solver primer. Bulletin of the
EATCS 85:112–132.
Perri, S.; Scarcello, F.; Catalano, G.; and Leone, N. 2007.
Enhancing DLV instantiator by backjumping techniques.
Annals of Mathematics and Artificial Intelligence 51(2-
4):195–228.
Stuckey, P. J., and Tack, G. 2013. Minizinc with functions.
In Proceedings of the 10th International Conference on In-
tegration of Artificial Intelligence (AI) and Operations Re-
search (OR) techniques in Constraint Programming, number
7874 in LNCS, 268–283. Springer.
Syrjnen, T. 2009. LOGIC PROGRAMS AND CARDINAL-
ITY CONSTRAINTS – Theory and Practice. Ph.D. Disser-
tation, Faculty of Information and Natural Sciences, Aalto
University.


