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Chapter 4:Constraint Logic 
Programs

Where we learn about the only 
programming concept rules, and how 
programs execute
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Constraint Logic Programs

 User-Defined Constraints

 Programming with Rules

 Evaluation

 Derivation Trees and Finite Failure

 Goal Evaluation

 Simplified Derivation Trees

 The CLP Scheme
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User-Defined Constraints

 Many examples of modelling can be 
partitioned into two parts

� a general description of the object or process
� and specific information about the situation at 

hand

 The programmer should be able to define 
their own problem specific constraints

 Rules enable this
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Rules
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R1 R2A user defined constraint 
to define the model of the 
simple circuit:

parallel_resistors(V,I,R1,R2)

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

And the rule defining it
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Using Rules

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

Behaviour with resistors of 10 and 5 Ohms
parallel_resistors( , , , )V I R R R R1 2 1 10 2 5∧ = ∧ =

Behaviour with 10V battery where resistors are the same
parallel_resistors( , , , )10 I R R

It represents the constraint (macro replacement)
10 1 10 2 1 2= × ∧ = × ∧ + =I R I R I I I
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User-Defined Constraints

 user-defined constraint: p(t1,...,tn) where 
p is an n-ary predicate and t1,...,tn are 
expressions

 literal: a prim. or user-defined constraint

 goal: a sequence of literals L1,...,Lm

 rule: A :- B where A is a user-defined 
constraint and B a goal

 program: a sequence of rules
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Its not macro replacement!

parallel_resistors(VA,IA,10,5),

parallel_resistors(VB,IB,8,3), 

VA + VB = V, I = IB, I = IA

Imagine two uses of parallel resistors

After macro replacement (converting comma to conj)
VA I VA I I I IA

VB I VB I I I IB

VA VB V I IB I IA

= × ∧ = × ∧ + = ∧
= × ∧ = × ∧ + = ∧
+ = ∧ = ∧ =

1 10 2 5 1 2

1 8 2 3 1 2

Confused the two sets of local variables I1, I2
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Renamings

 A renaming r is a bijective (invertable) 
mapping of variables to variables

 A syntactic object is a constraint, user-
defined constraint, goal or rule

 Applying a renaming to a syntactic object 
gives the object with each variable x
replaced by r(x)

 variant o’ of object o has renaming r(o’ )=o
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Rewriting User-Defined Cons.

 goal G of the form (or empty m=0 [])
� L1, ..., Li-1, Li, Li+1, ..., Lm

 Li is of the form p(t1,...,tn)

 R is of the form p(s1,...,sn) :- B

 r is a renaming s.t. vars in r(R) not in G

 The rewriting of G at Li by R using 
renaming r is

� L1,...,Li-1,t1=r(s1),...,tn=r(sn),r(B),Li+1,...,Lm
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Rewriting Example

parallel_resistors(VA,IA,10,5),

parallel_resistors(VB,IB,8,3), 

VA + VB = V, I = IB, I = IA

Rewrite the first li teral with rule

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

Renaming: { ' , ' , ' , ' , ' , '}V V I I R R R R I I I I� � � � � �1 1 2 2 1 1 2 2

parallel_resi sto r s(V’,I’,R1’,R 2’) : -

V’ = I1’ * R1’ , V’ = I2’*R2 ’ , I 1’+I2’ = I’.
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Rewriting Example

VA=V’, IA=I’, 10=R1’, 5=R2’,

V’ = I1’*R1’, V’ = I2’*R2’, I1’+I2’ = I’,

parallel_resistors(VB,IB,8,3), 

VA + VB = V, I = IB, I = IA

Rewrite the 8th literal 

Renaming:{ ' ' , ' ' , ' ' , ' ' , ' ' , ' '}V V I I R R R R I I I I� � � � � �1 1 2 2 1 1 2 2

parallel_resistors(V’’,I’’,R1’’,R2’’) :-

V’’=I1’’*R1’’, V’’=I2’’*R2’’, I1’’+I2’’=I’’.
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Rewriting Example

VA=V’, IA=I’, 10=R1’, 5=R2’,

V’ = I1’*R1’, V’ = I2’*R2’, I1’+I2’ = I’,

VB=V’’, IB=I’’, 8=R1’’, 3=R2’’,

V’’=I1’’*R1’’, V’’=I2’’*R2’’, I1’’+I2’’=I’’ 

VA + VB = V, I = IB, I = IA

Simplifying onto the variables of interest V and I

V I= ×26 3/
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Programming with Rules

I I2

V

+

-
3_
--

-
-

R1

R2

ID

+

-
3_
--

VD

A voltage divider 
circuit, where cell 
must be 9 or 12V 
resistors 5,9 or 14

voltage_divider(V,I,R1,R2,VD,ID) :-

V1 = I*R1, VD= I2*R2, V = V1+VD, I = I2+ID.

cell(9).  (shorthand for cell(9) :- [].)

cell(12).

resistor(5). resistor(9). resistor(14).
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Programming with Rules

Aim: find component values such that the divider 
voltage VD is between 5.4 and 5.5 V when the divider 
current  ID is 0.1A

voltage_divider(V,I,R1,R2,VD,ID),

5.4 <= VD, VD <= 5.5, ID = 0.1,

cell(V), resistor(R1), resistor(R2).

Note: when rewriting cell and resistor literals 
there is a choice of which rule to use

(V=9,R1=5,R2=5) unsatisfiable constraint

(V=9,R1=5,R2=9) satisfiable constraint
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Programming with Rules

Consider the factorial function, how do we write 
rules for a predicate fac(N,F) where F = N!

N
N

N N N
!

( )!
=

=
× − ≥





1 0

1 1

if 

if 

(R1) fac(0,1).

(R2) fac(N,N*F) :- N >= 1, fac(N-1, F).

Note how the definition is recursive (in terms of 
itself) and mimics the mathematical definition

16

Programming with Rules
(R1) fac(0,1).
(R2) fac(N,N*F) :- N >= 1, fac(N-1, F).

Rewriting the goal fac(2,X) (i.e. what is 2!)

Simplified onto variable X, then answer X = 2

fac X

R

N X N F N fac N F

R

N X N F N N N F N F N fac N F

R

N X N F N N N F N F N N F

( , )

, , , ( , )

, , , ' , ' ' , ' , ( ' , ' )

, , , ' , ' ' , ' , ' , '

2

2

2 1 1

2

2 1 1 1 1

1

2 1 1 1 1 0 1

⇓
= = × ≥ −

⇓
= = × ≥ − = = × ≥ −

⇓
= = × ≥ − = = × ≥ − = =



Constraint Logic Programming

Peter Stuckey 9

17

Evaluation

 In each rewriting step we should check that 
the conjunction of primitive constraints is 
satisfiable

 derivation does this

 in each step a literal is handled
� primitive constraints: added to constraint store
� user-defined constraints: rewritten

18

Evaluation

 state: <G1| C1> where G1 is a goal and C1
is a constraint

 derivation step: G1 is L1, L2, ..., Lm
� L1 is a primitive constraint, C2 is C1 /\ L1

� if solv(C /\ L1) = false then G2 = [] 
� else G2 = L2, ..., Lm

� L1 is a user-defined constraint, C2 is C1 and 
G2 is the rewriting of G1 at L1 using some rule 
and renaming
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Evaluation

 derivation for <G0 | C0>:

� where each <Gi | Ci> to <Gi+1 | Ci+1> is a 
derivation step

 derivation for G is a derivation for the state 
<G | true>

G C G C G C0 0 1 1 2 2| | |⇒ ⇒ ⇒�

20

Derivation for fac(1,Y)
fac Y true

R
N Y N F N fac N F true

Y N F N fac N F N

N fac N F N Y N F

fac N F N Y N F N
R

N F N Y N F N

F N Y N F N N

( , )|

, , , ( , )|

, , ( , )|

, ( , )|

( , )|

, |

|

[]|

1
2

1 1 1

1 1 1

1 1 1

1 1 1
1

1 0 11 1

11 1 1 0

1

⇓
= = × ≥ −

⇓
= × ≥ − =

⇓
≥ − = ∧ = ×

⇓
− = ∧ = × ∧ ≥

⇓
− = = = ∧ = × ∧ ≥

⇓
= = ∧ = × ∧ ≥ ∧ − =

⇓
= ∧ = × ∧ ≥ ∧ − = ∧ =N Y N F N N F1 1 0 1

Corresponding answer simplified to Y is Y = 1
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Derivation for fac(1,Y)
fac Y true

R

Y true

( , )|

, |

[]|

1

1

1 0 1

1 0

⇓

= =

⇓

=

A failed derivation for fac(1,Y)
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Derivations

 For derivation beginning at <G0 | C0>

 success state: <[] | C> where solv(C) != 
false

 successful derivation: last state is success

 answer: simpl(C, vars(<G0 | C0>))

 fail state: <[] | C> where solv(C) = false

 failed derivation: last state is fail state
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Derivation Trees

 derivation tree for goal G
� root is < G | true >
� the children of each state are the states 

reachable in one derivation step 

 Encodes all possible derivations

 when leftmost literal is prim. constraint only 
one child

 otherwise children ordered like rule order

24

Derivation Tree Example
fac Y true

R R

Y true N Y N F N fac N F true

Y N F N fac N F C N

N fac N F C C Y N F

fac N F C C N

R R

N F C N N F N F N

( , )|

, | , , , ( , )|

[]| , , ( , )|

, ( , )|

( , )|

, | ' , ' ' ,

1

1 2

1 0 1 1 1 1

1 0 1 1 1 1

1 1 2 1

1 3 2 1

1 2

1 0 1 3 1

⇓ ⇓
= = = = × ≥ −

⇓ ⇓
= = × ≥ − ≡ =

⇓
≥ − ≡ ∧ = ×

⇓
− ≡ ∧ ≥

⇓ ⇓
− = = − = = × ' , ( ' , ' )|

| ' ' , ' , ( ' , ' )| '

[]| ' , ( ' , ' )| ' '

[]| '

≥ −
⇓ ⇓

= ≡ ∧ − = = × ≥ − ≡ ∧ − =
⇓ ⇓

≡ ∧ = ≥ − ≡ ∧ = ×
⇓

≡ ∧ ≥

1 1 3

1 4 3 1 0 1 1 6 3 1

5 4 1 1 1 7 6

8 7 1

fac N F C

F C C N F N F N fac N F C C N N

C C F N fac N F C C F N F

C C N

failed derivation

failed derivationanswer: Y = 1



Constraint Logic Programming

Peter Stuckey 13

25

Derivation Trees

 The previous example shows three 
derivations, 2 failed and one successful

 finitely failed: if a derivation tree is finite 
and all derivations are failed

 next slide a finitely failed derivation tree

 infinite derivation tree: some derivations 
are infinite

26

Finitely Failed Example
fac true

R R

true N N F N fac N F true

N F N fac N F C N

N fac N F C C N F

fac N F C C N

R R

N F C N N F N F N

( , )|

, | , , , ( , )|

[]| , , ( , )|

, ( , )|

( , )|

, | ' , ' ' ,

1 0

1 2

1 0 0 1 1 0 1 1

1 0 0 1 1 1 1

1 1 2 1 0

1 3 2 1

1 2

1 0 1 3 1

⇓ ⇓
= = = = × ≥ −

⇓ ⇓
= = × ≥ − ≡ =

⇓
≥ − ≡ ∧ = ×

⇓
− ≡ ∧ ≥

⇓ ⇓
− = = − = = × ' , ( ' , ' )|

| ' ' , ' , ( ' , ' )| '

[]| ' , ( ' , ' )| ' '

[]| '

≥ −
⇓ ⇓

= ≡ ∧ − = = × ≥ − ≡ ∧ − =
⇓ ⇓

≡ ∧ = ≥ − ≡ ∧ = ×
⇓

≡ ∧ ≥

1 1 3

1 4 3 1 0 1 1 6 3 1

5 4 1 1 1 7 6

8 7 1

fac N F C

F C C N F N F N fac N F C C N N

C C F N fac N F C C F N F

C C N
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Infinite Derivation Tree
(S1) stupid(X) :- stupid(X).

(S2) stupid(1).

stupid X true

S S

X X stupid X true X true

stupid X X X X

S S

X X stupid X X X X X X

stupid X X X X X X X X

S S

( )|

' , ( ' )| |

( ' )| ' []|

' ' ' , ( ' ' )| ' ' | '

( ' ' )| ' ' ' ' []| ' '

⇓ ⇓
= =

⇓ ⇓
= =

⇓ ⇓
= = = =

⇓ ⇓
= ∧ = = ∧ =

⇓ ⇓

1 2

1

1

1 2

1

1

1 2

Answer: X=1

Answer: X=1

Infinite derivation
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Goal Evaluation

 Evaluation of a goal performs an in-order 
depth-first search of the derivation tree

 when a success state in encountered the 
system returns an answer

 the user can ask for more answers in which 
case the search continues

 execution halts when the users requests no 
more answers or the entire tree is explored
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Goal Evaluation Example
fac Y true

R R

Y true N Y N F N fac N F true

Y N F N fac N F C N

N fac N F C C Y N F

fac N F C C N

R R

N F C N N F N F N

( , )|

, | , , , ( , )|

[]| , , ( , )|

, ( , )|

( , )|

, | ' , ' ' ,

1

1 2

1 0 1 1 1 1

1 0 1 1 1 1

1 1 2 1

1 3 2 1

1 2

1 0 1 3 1

⇓ ⇓
= = = = × ≥ −

⇓ ⇓
= = × ≥ − ≡ =

⇓
≥ − ≡ ∧ = ×

⇓
− ≡ ∧ ≥

⇓ ⇓
− = = − = = × ' , ( ' , ' )|

| ' ' , ' , ( ' , ' )| '

[]| ' , ( ' , ' )| ' '

[]| '

≥ −
⇓ ⇓

= ≡ ∧ − = = × ≥ − ≡ ∧ − =
⇓ ⇓

≡ ∧ = ≥ − ≡ ∧ = ×
⇓

≡ ∧ ≥

1 1 3

1 4 3 1 0 1 1 6 3 1

5 4 1 1 1 7 6

8 7 1

fac N F C

F C C N F N F N fac N F C C N N

C C F N fac N F C C F N F

C C NReturn answer: Y = 1 more? Return no more 
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Goal Evaluation Example 2
stupid X true

S S

X X stupid X true X true

stupid X X X X

S S

X X stupid X X X X X X

stupid X X X X X X X X

S S

( )|

' , ( ' )| |

( ' )| ' []|

' ' ' , ( ' ' )| ' ' | '

( ' ' )| ' ' ' ' []| ' '

⇓ ⇓
= =

⇓ ⇓
= =

⇓ ⇓
= = = =

⇓ ⇓
= ∧ = = ∧ =

⇓ ⇓

1 2

1

1

1 2

1

1

1 2

The evaluation never finds an answer, even 
though infinitely many exist
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Simplified Derivation Trees

 Derivation trees are very large

 A simplified form which has the most 
useful information

� constraints in simplified form (variables in the 
initial goal and goal part of state)

� uninteresting states removed

32

Simplified State

 simplified state: <G0 | C0> in derivation 
for G 

� replace C0 with C1=simpl(C0, vars(G,G0))
� if x=t in C1 replace x by t in G0 giving G1
� replace C1 with C2=simpl(C1, vars(G,G1))

 Example

fac N F N Y N F N N N F F

Y N F

fac N F N Y F

N

fac F Y F

( ' , ' )| ' '

vars { , ' , '}

( ' , ' )| ' '

'

( , ' )| '

− = ∧ = × ∧ ≥ ∧ − = ∧ =
=

− = ∧ =

− =

1 1 1 1

1 0

1

replace  by 0 and simplify again
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Simplified Derivation

 A state is critical if it is the first or last state 
of a derivation or the first literal is a user-
defined constraint

 A simplified derivation for goal G contains 
all the critical states in simplified form

 similarly for a simplified derivation tree

34

Example Simplified Tree
fac Y true

R R

false fac F Y F

R R

Y false

( , )|

[]| ( , )|

[]| []|

1

1 2

0

1 2

1

⇓ ⇓
=

⇓ ⇓
=

Note: fail states are <[] | false> and success states 
contain answers
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The CLP Scheme

 The scheme defines a family of 
programming languages

 A language CLP(X) is defined by
� constraint domain X
� solver for the constraint domain X
� simplifier for the constraint domain X

 Example we have used CLP(Real)

 Another example CLP(Tree)

36

CLP(R)

 Example domain for chapters 5,6,7

 Elements are trees containing real constants

 Constraints are               for trees

 and                          for arithmetic

{ , }= ≠
{ , , , , }= ≤ < ≥ >



Constraint Logic Programming

Peter Stuckey 19

37

Constraint Logic Programs 
Summary

 rules: for user-defined constraints
� multiple rules for one predicate
� can be recursive

 derivation: evaluates a goal
� successful: gives an answer (constraint)
� failed: can go no further
� infinite

 scheme: defines a CLP language


