
Constraint Logic Programming

Peter Stuckey 1

1

Chapter 4:Constraint Logic
Programs

Where we learn about the only
programming concept rules, and how
programs execute

2

Constraint Logic Programs

 User-Defined Constraints

 Programming with Rules

 Evaluation

 Derivation Trees and Finite Failure

 Goal Evaluation

 Simplified Derivation Trees

 The CLP Scheme

Constraint Logic Programming

Peter Stuckey 2

3

User-Defined Constraints

 Many examples of modelling can be
partitioned into two parts

� a general description of the object or process
� and specific information about the situation at

hand

 The programmer should be able to define
their own problem specific constraints

 Rules enable this

4

Rules

I
I1

I2

V

+

--
3_
--

-
-

V

R1 R2A user defined constraint
to define the model of the
simple circuit:

parallel_resistors(V,I,R1,R2)

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

And the rule defining it

Constraint Logic Programming

Peter Stuckey 3

5

Using Rules

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

Behaviour with resistors of 10 and 5 Ohms
parallel_resistors(, , ,)V I R R R R1 2 1 10 2 5∧ = ∧ =

Behaviour with 10V battery where resistors are the same
parallel_resistors(, , ,)10 I R R

It represents the constraint (macro replacement)
10 1 10 2 1 2= × ∧ = × ∧ + =I R I R I I I

6

User-Defined Constraints

 user-defined constraint: p(t1,...,tn) where
p is an n-ary predicate and t1,...,tn are
expressions

 literal: a prim. or user-defined constraint

 goal: a sequence of literals L1,...,Lm

 rule: A :- B where A is a user-defined
constraint and B a goal

 program: a sequence of rules

Constraint Logic Programming

Peter Stuckey 4

7

Its not macro replacement!

parallel_resistors(VA,IA,10,5),

parallel_resistors(VB,IB,8,3),

VA + VB = V, I = IB, I = IA

Imagine two uses of parallel resistors

After macro replacement (converting comma to conj)
VA I VA I I I IA

VB I VB I I I IB

VA VB V I IB I IA

= × ∧ = × ∧ + = ∧
= × ∧ = × ∧ + = ∧
+ = ∧ = ∧ =

1 10 2 5 1 2

1 8 2 3 1 2

Confused the two sets of local variables I1, I2

8

Renamings

 A renaming r is a bijective (invertable)
mapping of variables to variables

 A syntactic object is a constraint, user-
defined constraint, goal or rule

 Applying a renaming to a syntactic object
gives the object with each variable x
replaced by r(x)

 variant o’ of object o has renaming r(o’)=o

Constraint Logic Programming

Peter Stuckey 5

9

Rewriting User-Defined Cons.

 goal G of the form (or empty m=0 [])
� L1, ..., Li-1, Li, Li+1, ..., Lm

 Li is of the form p(t1,...,tn)

 R is of the form p(s1,...,sn) :- B

 r is a renaming s.t. vars in r(R) not in G

 The rewriting of G at Li by R using
renaming r is

� L1,...,Li-1,t1=r(s1),...,tn=r(sn),r(B),Li+1,...,Lm

10

Rewriting Example

parallel_resistors(VA,IA,10,5),

parallel_resistors(VB,IB,8,3),

VA + VB = V, I = IB, I = IA

Rewrite the first li teral with rule

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

Renaming: { ' , ' , ' , ' , ' , '}V V I I R R R R I I I I� � � � � �1 1 2 2 1 1 2 2

parallel_resi sto r s(V’,I’,R1’,R 2’) : -

V’ = I1’ * R1’ , V’ = I2’*R2 ’ , I 1’+I2’ = I’.

Constraint Logic Programming

Peter Stuckey 6

11

Rewriting Example

VA=V’, IA=I’, 10=R1’, 5=R2’,

V’ = I1’*R1’, V’ = I2’*R2’, I1’+I2’ = I’,

parallel_resistors(VB,IB,8,3),

VA + VB = V, I = IB, I = IA

Rewrite the 8th literal

Renaming:{ ' ' , ' ' , ' ' , ' ' , ' ' , ' '}V V I I R R R R I I I I� � � � � �1 1 2 2 1 1 2 2

parallel_resistors(V’’,I’’,R1’’,R2’’) :-

V’’=I1’’*R1’’, V’’=I2’’*R2’’, I1’’+I2’’=I’’.

12

Rewriting Example

VA=V’, IA=I’, 10=R1’, 5=R2’,

V’ = I1’*R1’, V’ = I2’*R2’, I1’+I2’ = I’,

VB=V’’, IB=I’’, 8=R1’’, 3=R2’’,

V’’=I1’’*R1’’, V’’=I2’’*R2’’, I1’’+I2’’=I’’

VA + VB = V, I = IB, I = IA

Simplifying onto the variables of interest V and I

V I= ×26 3/

Constraint Logic Programming

Peter Stuckey 7

13

Programming with Rules

I I2

V

+

-
3_
--

-
-

R1

R2

ID

+

-
3_
--

VD

A voltage divider
circuit, where cell
must be 9 or 12V
resistors 5,9 or 14

voltage_divider(V,I,R1,R2,VD,ID) :-

V1 = I*R1, VD= I2*R2, V = V1+VD, I = I2+ID.

cell(9). (shorthand for cell(9) :- [].)

cell(12).

resistor(5). resistor(9). resistor(14).

14

Programming with Rules

Aim: find component values such that the divider
voltage VD is between 5.4 and 5.5 V when the divider
current ID is 0.1A

voltage_divider(V,I,R1,R2,VD,ID),

5.4 <= VD, VD <= 5.5, ID = 0.1,

cell(V), resistor(R1), resistor(R2).

Note: when rewriting cell and resistor literals
there is a choice of which rule to use

(V=9,R1=5,R2=5) unsatisfiable constraint

(V=9,R1=5,R2=9) satisfiable constraint

Constraint Logic Programming

Peter Stuckey 8

15

Programming with Rules

Consider the factorial function, how do we write
rules for a predicate fac(N,F) where F = N!

N
N

N N N
!

()!
=

=
× − ≥

1 0

1 1

if

if

(R1) fac(0,1).

(R2) fac(N,N*F) :- N >= 1, fac(N-1, F).

Note how the definition is recursive (in terms of
itself) and mimics the mathematical definition

16

Programming with Rules
(R1) fac(0,1).
(R2) fac(N,N*F) :- N >= 1, fac(N-1, F).

Rewriting the goal fac(2,X) (i.e. what is 2!)

Simplified onto variable X, then answer X = 2

fac X

R

N X N F N fac N F

R

N X N F N N N F N F N fac N F

R

N X N F N N N F N F N N F

(,)

, , , (,)

, , , ' , ' ' , ' , (' , ')

, , , ' , ' ' , ' , ' , '

2

2

2 1 1

2

2 1 1 1 1

1

2 1 1 1 1 0 1

⇓
= = × ≥ −

⇓
= = × ≥ − = = × ≥ −

⇓
= = × ≥ − = = × ≥ − = =

Constraint Logic Programming

Peter Stuckey 9

17

Evaluation

 In each rewriting step we should check that
the conjunction of primitive constraints is
satisfiable

 derivation does this

 in each step a literal is handled
� primitive constraints: added to constraint store
� user-defined constraints: rewritten

18

Evaluation

 state: <G1| C1> where G1 is a goal and C1
is a constraint

 derivation step: G1 is L1, L2, ..., Lm
� L1 is a primitive constraint, C2 is C1 /\ L1

� if solv(C /\ L1) = false then G2 = []
� else G2 = L2, ..., Lm

� L1 is a user-defined constraint, C2 is C1 and
G2 is the rewriting of G1 at L1 using some rule
and renaming

Constraint Logic Programming

Peter Stuckey 10

19

Evaluation

 derivation for <G0 | C0>:

� where each <Gi | Ci> to <Gi+1 | Ci+1> is a
derivation step

 derivation for G is a derivation for the state
<G | true>

G C G C G C0 0 1 1 2 2| | |⇒ ⇒ ⇒�

20

Derivation for fac(1,Y)
fac Y true

R
N Y N F N fac N F true

Y N F N fac N F N

N fac N F N Y N F

fac N F N Y N F N
R

N F N Y N F N

F N Y N F N N

(,)|

, , , (,)|

, , (,)|

, (,)|

(,)|

, |

|

[]|

1
2

1 1 1

1 1 1

1 1 1

1 1 1
1

1 0 11 1

11 1 1 0

1

⇓
= = × ≥ −

⇓
= × ≥ − =

⇓
≥ − = ∧ = ×

⇓
− = ∧ = × ∧ ≥

⇓
− = = = ∧ = × ∧ ≥

⇓
= = ∧ = × ∧ ≥ ∧ − =

⇓
= ∧ = × ∧ ≥ ∧ − = ∧ =N Y N F N N F1 1 0 1

Corresponding answer simplified to Y is Y = 1

Constraint Logic Programming

Peter Stuckey 11

21

Derivation for fac(1,Y)
fac Y true

R

Y true

(,)|

, |

[]|

1

1

1 0 1

1 0

⇓

= =

⇓

=

A failed derivation for fac(1,Y)

22

Derivations

 For derivation beginning at <G0 | C0>

 success state: <[] | C> where solv(C) !=
false

 successful derivation: last state is success

 answer: simpl(C, vars(<G0 | C0>))

 fail state: <[] | C> where solv(C) = false

 failed derivation: last state is fail state

Constraint Logic Programming

Peter Stuckey 12

23

Derivation Trees

 derivation tree for goal G
� root is < G | true >
� the children of each state are the states

reachable in one derivation step

 Encodes all possible derivations

 when leftmost literal is prim. constraint only
one child

 otherwise children ordered like rule order

24

Derivation Tree Example
fac Y true

R R

Y true N Y N F N fac N F true

Y N F N fac N F C N

N fac N F C C Y N F

fac N F C C N

R R

N F C N N F N F N

(,)|

, | , , , (,)|

[]| , , (,)|

, (,)|

(,)|

, | ' , ' ' ,

1

1 2

1 0 1 1 1 1

1 0 1 1 1 1

1 1 2 1

1 3 2 1

1 2

1 0 1 3 1

⇓ ⇓
= = = = × ≥ −

⇓ ⇓
= = × ≥ − ≡ =

⇓
≥ − ≡ ∧ = ×

⇓
− ≡ ∧ ≥

⇓ ⇓
− = = − = = × ' , (' , ')|

| ' ' , ' , (' , ')| '

[]| ' , (' , ')| ' '

[]| '

≥ −
⇓ ⇓

= ≡ ∧ − = = × ≥ − ≡ ∧ − =
⇓ ⇓

≡ ∧ = ≥ − ≡ ∧ = ×
⇓

≡ ∧ ≥

1 1 3

1 4 3 1 0 1 1 6 3 1

5 4 1 1 1 7 6

8 7 1

fac N F C

F C C N F N F N fac N F C C N N

C C F N fac N F C C F N F

C C N

failed derivation

failed derivationanswer: Y = 1

Constraint Logic Programming

Peter Stuckey 13

25

Derivation Trees

 The previous example shows three
derivations, 2 failed and one successful

 finitely failed: if a derivation tree is finite
and all derivations are failed

 next slide a finitely failed derivation tree

 infinite derivation tree: some derivations
are infinite

26

Finitely Failed Example
fac true

R R

true N N F N fac N F true

N F N fac N F C N

N fac N F C C N F

fac N F C C N

R R

N F C N N F N F N

(,)|

, | , , , (,)|

[]| , , (,)|

, (,)|

(,)|

, | ' , ' ' ,

1 0

1 2

1 0 0 1 1 0 1 1

1 0 0 1 1 1 1

1 1 2 1 0

1 3 2 1

1 2

1 0 1 3 1

⇓ ⇓
= = = = × ≥ −

⇓ ⇓
= = × ≥ − ≡ =

⇓
≥ − ≡ ∧ = ×

⇓
− ≡ ∧ ≥

⇓ ⇓
− = = − = = × ' , (' , ')|

| ' ' , ' , (' , ')| '

[]| ' , (' , ')| ' '

[]| '

≥ −
⇓ ⇓

= ≡ ∧ − = = × ≥ − ≡ ∧ − =
⇓ ⇓

≡ ∧ = ≥ − ≡ ∧ = ×
⇓

≡ ∧ ≥

1 1 3

1 4 3 1 0 1 1 6 3 1

5 4 1 1 1 7 6

8 7 1

fac N F C

F C C N F N F N fac N F C C N N

C C F N fac N F C C F N F

C C N

Constraint Logic Programming

Peter Stuckey 14

27

Infinite Derivation Tree
(S1) stupid(X) :- stupid(X).

(S2) stupid(1).

stupid X true

S S

X X stupid X true X true

stupid X X X X

S S

X X stupid X X X X X X

stupid X X X X X X X X

S S

()|

' , (')| |

(')| ' []|

' ' ' , (' ')| ' ' | '

(' ')| ' ' ' ' []| ' '

⇓ ⇓
= =

⇓ ⇓
= =

⇓ ⇓
= = = =

⇓ ⇓
= ∧ = = ∧ =

⇓ ⇓

1 2

1

1

1 2

1

1

1 2

Answer: X=1

Answer: X=1

Infinite derivation

28

Goal Evaluation

 Evaluation of a goal performs an in-order
depth-first search of the derivation tree

 when a success state in encountered the
system returns an answer

 the user can ask for more answers in which
case the search continues

 execution halts when the users requests no
more answers or the entire tree is explored

Constraint Logic Programming

Peter Stuckey 15

29

Goal Evaluation Example
fac Y true

R R

Y true N Y N F N fac N F true

Y N F N fac N F C N

N fac N F C C Y N F

fac N F C C N

R R

N F C N N F N F N

(,)|

, | , , , (,)|

[]| , , (,)|

, (,)|

(,)|

, | ' , ' ' ,

1

1 2

1 0 1 1 1 1

1 0 1 1 1 1

1 1 2 1

1 3 2 1

1 2

1 0 1 3 1

⇓ ⇓
= = = = × ≥ −

⇓ ⇓
= = × ≥ − ≡ =

⇓
≥ − ≡ ∧ = ×

⇓
− ≡ ∧ ≥

⇓ ⇓
− = = − = = × ' , (' , ')|

| ' ' , ' , (' , ')| '

[]| ' , (' , ')| ' '

[]| '

≥ −
⇓ ⇓

= ≡ ∧ − = = × ≥ − ≡ ∧ − =
⇓ ⇓

≡ ∧ = ≥ − ≡ ∧ = ×
⇓

≡ ∧ ≥

1 1 3

1 4 3 1 0 1 1 6 3 1

5 4 1 1 1 7 6

8 7 1

fac N F C

F C C N F N F N fac N F C C N N

C C F N fac N F C C F N F

C C NReturn answer: Y = 1 more? Return no more

30

Goal Evaluation Example 2
stupid X true

S S

X X stupid X true X true

stupid X X X X

S S

X X stupid X X X X X X

stupid X X X X X X X X

S S

()|

' , (')| |

(')| ' []|

' ' ' , (' ')| ' ' | '

(' ')| ' ' ' ' []| ' '

⇓ ⇓
= =

⇓ ⇓
= =

⇓ ⇓
= = = =

⇓ ⇓
= ∧ = = ∧ =

⇓ ⇓

1 2

1

1

1 2

1

1

1 2

The evaluation never finds an answer, even
though infinitely many exist

Constraint Logic Programming

Peter Stuckey 16

31

Simplified Derivation Trees

 Derivation trees are very large

 A simplified form which has the most
useful information

� constraints in simplified form (variables in the
initial goal and goal part of state)

� uninteresting states removed

32

Simplified State

 simplified state: <G0 | C0> in derivation
for G

� replace C0 with C1=simpl(C0, vars(G,G0))
� if x=t in C1 replace x by t in G0 giving G1
� replace C1 with C2=simpl(C1, vars(G,G1))

 Example

fac N F N Y N F N N N F F

Y N F

fac N F N Y F

N

fac F Y F

(' , ')| ' '

vars { , ' , '}

(' , ')| ' '

'

(, ')| '

− = ∧ = × ∧ ≥ ∧ − = ∧ =
=

− = ∧ =

− =

1 1 1 1

1 0

1

replace by 0 and simplify again

Constraint Logic Programming

Peter Stuckey 17

33

Simplified Derivation

 A state is critical if it is the first or last state
of a derivation or the first literal is a user-
defined constraint

 A simplified derivation for goal G contains
all the critical states in simplified form

 similarly for a simplified derivation tree

34

Example Simplified Tree
fac Y true

R R

false fac F Y F

R R

Y false

(,)|

[]| (,)|

[]| []|

1

1 2

0

1 2

1

⇓ ⇓
=

⇓ ⇓
=

Note: fail states are <[] | false> and success states
contain answers

Constraint Logic Programming

Peter Stuckey 18

35

The CLP Scheme

 The scheme defines a family of
programming languages

 A language CLP(X) is defined by
� constraint domain X
� solver for the constraint domain X
� simplifier for the constraint domain X

 Example we have used CLP(Real)

 Another example CLP(Tree)

36

CLP(R)

 Example domain for chapters 5,6,7

 Elements are trees containing real constants

 Constraints are for trees

 and for arithmetic

{ , }= ≠
{ , , , , }= ≤ < ≥ >

Constraint Logic Programming

Peter Stuckey 19

37

Constraint Logic Programs
Summary

 rules: for user-defined constraints
� multiple rules for one predicate
� can be recursive

 derivation: evaluates a goal
� successful: gives an answer (constraint)
� failed: can go no further
� infinite

 scheme: defines a CLP language

