Constraint Logic Programming

Peter Stuckey

Chapter 3: Finite Constraint
Domains

Where we meet the simplest and yet
most difficult constraints, and some
clever and not so clever ways to solve
them

“ - . . .
tu ¥ Finite Constraint Domains

¥ Constraint Satisfaction Problems
¥ A Backtracking Solver

¥ Node and Arc Consistency

¥ Bounds Consistency

v Generalized Consistency

¥ Optimization for Arithmetic CSPs

Constraint Logic Programming

Peter Stuckey

“
tu ¥ Finite Constraint Domains

v An important class of constraint domains

v Useto model constraint problems involving
choice: e.g. scheduling, routing and
timetabling

¥ The greatest industrial impact of constraint
programming has been on these problems

> Constraint Satisfaction
t'N'J ~ Problems

¥ A constraint satisfaction problem (CSP)
consists of:

v aconstraint C over variables x1,..., Xn

v adomain D which maps each variable xi to a
set of possible values D(xi)

v [t isunderstood as the constraint
CUOx10OD(xD--Oxn OD(xn)

Constraint Logic Programming

) =)

Qg Map Colouring

A classic CSP is the problem of coloring a map so that
no adjacent regions have the same color

Can the map of Australiabe
colored with 3 colors ?

WA £ NT OWA # SATNT # SA[D
NT 2QOSAZ QISAZ NSW DI
SAZ£V 0Q# NSW OINSW #V

D(WA) = D(NT) = D(SA) =D(Q) =
D(NSW) =D(V) =D(T) =
{red, yellow,blue}

P U
tu 3 4-Queens

Place 4 queens on a4 x 4 chessboard so that none can
take another.

Q1 Q2 Q@3 Q4

Four variables Q1, Q2,

Q3, Q4 representingthe 1 j

row of the queen in each

column. Domain of each 2 3

variableis{1,2,3,4} 3 3
Onesolution! --> 4 x

Peter Stuckey

Constraint Logic Programming

t'lg 4-Queens

The constraints:
Notonthesamerow Q17 Q2UQ1# Q30QL# Q4L
Q2#Q30Q2# Q40Q3% Q40

QlzQ2+10Q1% Q3+20Q1# Q4+30
Q2#Q3+10Q2#Q4+20Q3%2Q4+10
Ql#Q2-100Q1# Q3-20Q1% Q4-30
Not diagonally down Q22 Q3-10Q2% Q4-20Q3%#Q4-1

Not diagonally up

tu 3 Smugglers Knapsack

Smuggler with knapsack with capacity 9, who
needs to choose items to smuggle to make
profit at least 30
object profit size
whiskey 15 4
perfume 10 3
cigarretes 7 2

AW +3P+2C < 9[15W +10P+7C > 30

What should be the domains of the variables?

Peter Stuckey

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Simple Backtracking Solver

¥ The simplest way to solve CSPsisto
enumerate the possible solutions

¥ The backtracking solver:
¥ enumerates values for one variable at atime
¥ checksthat no prim. constraint isfalse at each
stage
v Assume satisfiable(c) returns false when
primitive constraint ¢ with no variablesis
unsatisfiable

<%
tu ¥ Partial Satisfiable

v Check whether a constraint is unsatisfiable
because of a prim. constraint with no vars
v partial_satisfiable(C)
¥ for each primitive constraint cin C
~if vars(c) is empty
~if satisfiable(c) = falsereturn false
v return true

Constraint Logic Programming

Peter Stuckey

o -
tu ¥ Backtrack Solve

¥ back_solve(C,D)
v if vars(C) isempty return
partial _satisfiable(C)

¥ choose xin vars(C)
¥ for each valuedin D(X)

~let C1 be C with x replaced by d

~if partial_satisfiable(C1) then

~if back_solve(C1,D) then return true

vreturn false

tu 3 Backtracking Solve
X<YOY<Z D(X)=D(Y)=D(Z)={12
X<yllyY<Zz

XZV \<:2

1<YOY<Z 2<YDY<Z
v AN
Yi}/// \\\QifZ 2<101<z 2<202<Z
1<101<Z 1<202<Z
Z=1 Z=2

1<202<1 1<202<2

Constraint Logic Programming

Peter Stuckey

N
L¥£F Node and Arc Consistency
-

v basic idea: find an equivalent CSP to the
original one with smaller domains of vars

v key: examine 1 prim.constraint c at atime

¥ node consistency: (vars(c)={x}) remove
any values from domain of x that falsify c

v arc consistency: (vars(c)={x,y}) remove
any values from D(x) for which thereisno
valuein D(y) that satisfies c and vice versa

£363 Node cons
LW JNo e consistency

¥ Primitive constraint ¢ is node consistent
with domain D if |vars(c)| =1 or
v if vars(c) = {x} then for eachd in D(X)
v x assigned d isasolution of ¢

v A CSPisnode consistent if each prim.
constraint in it is node consistent

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Node Consistency Examples

Example CSP is not node consistent (see Z)
X<YOY<zZOZ<2
D(X) = D(Y) = D(Z) ={1,2,34}

This CSP is node consistent
X<YOY<ZOZ<?2
D(X) = D(Y) ={12,34}, D(Z) ={1,2}

The map coloring and 4-queens CSPs are node
consistent. Why?

tu 3 Achieving Node Consistency

¥ node_consistent(C,D)
v for each prim. constraint cin C
~D := node_consistent_primitive(c, D)
vreturnD
¥ node_consistent_primitive(c, D)
v if |vars(c)| =1 then
~let {x} = vars(c)
D(x):={d OD(x)[{x— d} isasolution of c}
vreturn D

Constraint Logic Programming

Peter Stuckey

P X U
tu 3 Arc Consistency

¥ A primitive constraint cis arc consistent
with domain D if |vars{c}| '= 2 or
v vars(c) = {x,y} and for each d in D(x) there
exists ein D(y) such that
{x+—>d,yr— € isasolutionof c
vand similarly fory
v A CSPisarc consistent if each prim.
constraint in it is arc consistent

P} U
tu 3 Arc Consistency Examples

This CSP is node consistent but not arc consistent
X<ylY<z[OZzZ<?2
D(X) = D(Y) ={1,2,34}, D(Z) ={1.2}
For examplethe value 4 for Xand X<'Y.
The following equivalent CSP is arc consistent
X<YOY<ZzOZ<2
D(X)=D(Y)=D(Z2)=0

The map coloring and 4-queens CSPs are al'so arc
consistent.

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Achieving Arc Consistency

v arc_consistent_primitive(c, D)
v if |vars(c)| = 2 then
D(x):={d OD(x)|existse ID(y),
{x+—>d,y— €} isasoln of ¢}
D(y):={e OD(y)|existsd ID(x),
{x+—d,y— € isasoln of c}
vreturn D

¥ removes values which are not arc consi stent
with ¢

P} U
tu 3 Achieving Arc Consistency

v arc_consistent(C,D)
¥ repeat
*W:=D
~for each prim. constraint cin C
~D :=arc_consistent_primitive(c,D)
vuntil W=D
vreturn D
¥ A very naive version (there are much better)

10

Constraint Logic Programming

Peter Stuckey

tu 3 Using Node and Arc Cons.

¥ We can build constraint solvers using the
consistency methods
¥ Two important kinds of domain
v false domain: some variable has empty domain

v valuation domain: each variable has a
singleton domain

v extend satisfiable to CSP with val. domain

tu 3 Node and Arc Cons. Solver

¥ D := node_consistent(C,D)

v D :=arc_consistent(C,D)

v if Disafalsedomain
vreturn false

v if Disavauation domain
¥ return satisfiable(C,D)

¥ return unknown

11

Constraint Logic Programming

Peter Stuckey

-
t'lg Node and Arc Solver Example

Colouring Australia: with constraints
WA =red [JINT = yellow

WA NT SA Q NSWV T

Node
consistency

WAZNT WAZSA NT#SA
NTZQ SAZzQ SAZNSW
SAZV Q#NSW NSW#V

=
S}ff Node and Arc Solver Example

Colouring Australia: with constraints
WA =red [JNT = yellow

WA NT SA Q NSWV T

Arc
consistency

Answer:

WAZ NT| WAZSA | [NTzsA
NTZQ| |[SAZQ | [SAZ NSW
REV | [QZ NSW |[NSWZV

unknown

12

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Backtracking Cons. Solver

¥ We can combine consistency with the
backtracking solver

¥ Apply node and arc consistency before
starting the backtracking solver and after
each variable is given avalue

P} U
tu 3 Back. Cons Solver Example

Q1 Q2 Q3 Q4

1 X% ee
e 2 .8
e | 3 9 K| 9| ®

— 4 suoe

13

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Back. Cons Solver Example

Q1 Q2 Q@3 Q4

1 1[e e
i 2 e X]e
Tiiesele

T

tu 3 Back. Cons Solver Example

Q1 Q2 Q3 Q4

e /eXe
2 (X8
s w8 ex
e

14

Constraint Logic Programming

Peter Stuckey

pw § U
t‘g Node and Arc Solver Example

Colouring Australia: with constraints
WA =red [JNT = yellow

WA NT SA Q NSWV T

Backtracking
enumer ation

Select avariable with domain of morethan1, T
Add congtraint 1 = red Apply consistency

Answer: true

P U
tu 3 Bounds Consistency

¥ What about prim. constraints with more
than 2 variables?

¥ hyper -ar c consistency: extending arc
consistency to arbitrary number of variables

v Unfortunately determining hyper-arc
consistency is NP-hard (so its probably
exponential)

v What is the solution?

15

Constraint Logic Programming

Peter Stuckey

tu 3 Bounds Consistency

v arithmetic CSP: constraints are integer

¥ range: [l..u] represents the set of integers
{I,1+1, ..., u}

v idea use real number consistency and only
examine the endpoints (upper and lower
bounds) of the domain of each variable

v Define min(D,x) as minimum element in
domain of x, similarly for max(D,x)

tu 3 Bounds Consistency

¥ A prim. constraint ¢ is bounds consistent
with domain D if for each var x in vars(c)

v exist real numbersdl, ..., dk for remaining vars
X1, ..., Xk such that

{x+> min(D, x),x1 d1i,...xk > dk}
visasolution of ¢
- and similarly for (X max(D,x)}
v An arithmetic CSP is bounds consistent if
all its primitive constraints are

16

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Bounds Consistency Examples

X = 3Y +52Z
D(X) =[2..7],D(Y) =[0..2],D(Z) =[-1.2]

Not bounds consistent, consider Z=2, then X-3Y=10

But the domain below is bounds consi stent
D(X)=[2..7],D(Y) =[0..2],D(Z) =[0.1]

Compare with the hyper-arc consistent domain

D(X)={35,6},D(Y)={012},D(Z) ={0,1

P} U
tu 3 Achieving Bounds Consistency

v Given acurrent domain D wewish to
modify the endpoints of domains so the
result is bounds consistent

¥ propagation rulesdo this

17

Constraint Logic Programming

Peter Stuckey

tu 3 Achieving Bounds Consistency

Consider the primitive constraint X =Y + Z which
IS equivaent to the three forms
X=Y+Z Y=X-2Z Z=X-Y

Reasoning about minimum and maximum val ues:

X =2min(D,Y)+min(D,Z) X <max(D,Y)+max(D,Z)
Y =2 min(D, X) —max(D,Z) Y <max(D, X)-min(D,Z)
Z=2min(D, X)-max(D,Y) Z<max(D,X)-min(D,Y)

Propagation rules for the constraint X =Y + Z

tu 3 Achieving Bounds Consistency

X=Y+Z
D(X) =[4.8],D(Y) =[0..3],D(Z) =[2..2]
The propagation rules determine that:
(0+2=) 2< X <5 (=3+2)
(4-2=) 2=Y<6 (=8-2)
(4-3=) 1<Z<8 (=8-0)
Hence the domains can be reduced to
D(X) =[4.5],D(Y) =[2..3],D(Z) =[2..2]

18

Constraint Logic Programming

Peter Stuckey

o -
t'lg More propagation rules

IN+3P+2C<9
9 3 . 2 .
<___ —_——
W_4 4mln(D,P) 4mln(D,C)
9 4 | 2 .
<___ _——
P_3 3mln(D,W) 3mln(D,C)
C<g—£min(D W)—Emin(D P)
2 2 ’ 2 ’
Given initial domain:

D(W) =[0..9],D(P) =[0..9], D(C) =[0..9]

We determine that Ws%, Ps%, Cs%

new doman: D(W) =[0..2],D(P) =[0..3],D(C) =[0..4]

“ . .
t'lf_.! Disequations

Disequations give weak propagation rules, only when
one side takes a fixed value that equals the minimum or
maximum of the other is there propagation

D(Y) =[2.4],D(Z) =[2..3] no propagation
D(Y) =[2.4],D(Z) =[3.3] no propagation
D(Y) =[2.4],D(Z) =[2..2] prop D(Y)=[3.4],D(2)=[2..2]

19

Constraint Logic Programming

Peter Stuckey

“ . . .
t'lg Multiplication

If all variables are positive its simple enough

X z=2min(D,Y)xmin(D,Z) X <max(D,Y)xmax(D,Z)
Y =2 min(D, X)/max(D,Z) Y<max(D, X)/min(D,Z)
Z2min(D, X)/ max(D,Y) Z<max(D,X)/min(D,Y)

Example: D(X) =[4.8],D(Y) =[1.2],D(Z) =[1.3]

becomes: D(X) =[4..6],D(Y) =[2..2],D(Z) =[2..3]

But what if variables can be 0 or negative?

“ . . .
t'lg Multiplication

Calculate X bounds by examining extreme values

max(D,Y) x min(D, Z),max(D,Y) x max(D, Z)}
Similarly for upper bound on X using maximum

BUT this does not work for Y and Z? Aslong as
min(D,Z) <0 and max(D,Z)>0 thereis no bounds
restrictionon Y

X=Y%xZ {X—4Y—d,Z— 4/d}
Recall we are using real numbers (e.g. 4/d)

X = minimum{min(D,Y)xmin(D,Z),min(D,Y) x max(D, Z)

20

Constraint Logic Programming

Peter Stuckey

“ . . .
t'lg Multiplication

We can wait until the range of Z is non-negative or
non-positive and then use rules like
Y = minimum{min(D, X)/ min(D,Z),min(D, X)/ max(D,Z)
max(D, X)/ min(D, Z),max(D, X)/ max(D,Z)}

division by O:
+ ve - ve 0
= 4+ = —0 — = — 00
0 0 0

P} U
tu 3 Bounds Consistency Algm

v Repeatedly apply the propagation rules for
each primitive constraint until thereisno
change in the domain

v We do not need to examine a primitive
constraint until the domains of the variables
Involve are modified

21

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Bounds consistency solver

¥ D := bounds_consistent(C,D)
v if Disafasedoman
v return false
v if Disavauation doman
¥ return satisfiable(C,D)
¥ return unknown

P} U
tu ¥ Back. Bounds Cons. Solver

v Apply bounds consistency before starting
the backtracking solver and after each
variableis given avalue

22

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Back. Bounds Solver Example

Smugglers knapsack problem (whiskey available)
capacity profit

AMW+3P+2C<9 O 15W+10P+7C =30
Current domain:

D(W)=[0..0],D(P)=[1.1],D(C) =[3..3]
Initial bounds consistency

W=0
p=1 Solution Found: return true

tu 3 Back. Bounds Solver Example

Smugglers knapsack problem (whiskey available)
capacity profit
AIW+3P+2C<9 0O 15W+10P+7C=30

Initial bounds consistency

W=0 w=1 W= 2
P=1 P=2 P=3 (1,1,2) (2,0,0)
(0,1,3) false fase NO more solutions

23

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Generalized Consistency

¥ Can use any consistency method with any
other communicating through the domain,
¥ node consistency : prim constraints with 1 var
¥ arc consistency: prim constraints with 2 vars
¥ bounds consistency: other prim. constraints
¥ Sometimes we can get more information by
using complex constraints and special
consistency methods

“ .
t'lf_.! Alldifferent

v alldifferent({V1,...,vVn}) holds when each
variable V1,..,Vn takes a different value
v alldifferent({X, Y, Z}) is equivalent to
XzYUXz2ZUY#Z
¥ Arc consistent with domain
D(X)={12},D(Y)={1,2},D(Z2) ={1,2}
v BUT thereis no solution! specialized
consistency for alldifferent can find it

24

Constraint Logic Programring

Peter Stuckey

o -
t'lg All different Consistency

~ |et ¢ be of the form all different(V)
v whileexistsvinV where D(v) = {d}
vV:=V-{v}
vfor eachVv inV
~D(V) :=D(V) - {d}
v DV :=union d al D(v) forvinV
v if |DV| < |V| then return false domain
v return D

P} U
t'lg All different Examples

alldifferent({ X,Y, Z})
D(X) ={12},D(Y) ={1,2,D(2) ={12
DV = {1,2}, V={X)Y,Z} hencedetect unsatisfiability
alldifferent({ X,Y,Z,T})
D(X) ={12},D(Y) ={1,2},D(Z) ={12},D(T) ={2,34,5
DV = {1,2,3,4,5}, V={X,Y,Z,T} don’t detect unsat.
Maximal matching based consistency could

25

Constraint Logic Programming

Peter Stuckey

o -
t'lg Other Complex Constraints

cumulative([S,,...,S$,].[D;,..., D, l,[R,,..-,R.], L)

v schedule n tasks with start times S and
durations Di needing resources Ri where L
resources are available at each moment

element(I,[V,,...,V,], X)

v array accessif | = i,then X = Viandif X!=
Vithenl =i

P} U
tu 3 Optimization for CSPs

v Because domains are finite can use a solver
to build a straightforward optimizer
¥ retry_int_opt(C, D, f, best)
v D2 :=int_solv(C,D)
v if D2 isafadsedomain then return best
~ |et sol be the solution corresponding to D2
vreturnretry_int_opt(C A\ f < sol(f), D, f, sol)

26

Constraint Logic Programming

Peter Stuckey

tu 3 Backtracking Optimization

¥ Since the solver may use backtrack search
anyway combine it with the optimization

¥ At each step in backtracking search, if best
IS the best solution so far add the constraint
f < best(f)

tu 3 Back. Optimization Example

Smuggl ers knapsack problem (whiskey available)
capacity profit
AN+3P+2C<9 [15W+10P+7C =30

Initial bounds consistency
W=0 w=1 wW=2
P=1 P=2 P=3 (1,1,1) false

013 false false Return last sol (1,1,1)

27

Constraint Logic Programming

o -
tu 3 Branch and Bound Opt.

¥ The previous methods,unlike simplex dont
use the objective function to direct search
¥ branch and bound optimization for (C,f)
v use simplex to find area optimal,
¥ if solution is integer stop
¥ otherwise choose a var x with non-integer opt
value d and examine the problems
(COx<smOf) (COx=z@gf)
¥ use the current best solution to constrain prob.

tu 3 Branch and Bound Example

Smugglers knapsack problem
W<2 W=>3

P<O P>1 false

C<oO0 C=>1 W<1 W=2
Solution (2,0,0) = 30 P<l1 P22 false
W<l W =2 Solution (1,1,1) }: 32

C<?2 cz3 false Worse than best sol
false W<0 W21

false false

Peter Stuckey

Constraint Logic Programming

Peter Stuckey

Finite Constraint Domains
th £ Smmary

v CSPs form an important class of problems

v Solving of CSPsis essentially based on
backtracking search

¥ Reduce the search useing consistency
methods

¥ node, arc, bound, generalized

¥ Optimization is based on repeated solving

or using areal optimizer to guide the search

29

