
Constraint Logic Programming

Peter Stuckey 1

Chapter 3: Finite Constraint
Domains

Where we meet the simplest and yet
most difficult constraints, and some
clever and not so clever ways to solve
them

Finite Constraint Domains

 Constraint Satisfaction Problems

 A Backtracking Solver

 Node and Arc Consistency

 Bounds Consistency

 Generalized Consistency

 Optimization for Arithmetic CSPs

Constraint Logic Programming

Peter Stuckey 2

Finite Constraint Domains

 An important class of constraint domains

 Use to model constraint problems involving
choice: e.g. scheduling, routing and
timetabling

 The greatest industrial impact of constraint
programming has been on these problems

Constraint Satisfaction
Problems

 A constraint satisfaction problem (CSP)
consists of:

� a constraint C over variables x1,..., xn
� a domain D which maps each variable xi to a

set of possible values D(xi)

 It is understood as the constraint

C x D x xn D xn∧ ∈ ∧ ∧ ∈1 1() ()�

Constraint Logic Programming

Peter Stuckey 3

Map Colouring

A classic CSP is the problem of coloring a map so that
no adjacent regions have the same color

WA

NT

SA

Q

NSW

V

T

Can the map of Australia be
colored with 3 colors ?

WA NT WA SA NT SA

NT Q SA Q SA NSW

SA V Q NSW NSW V

≠ ∧ ≠ ∧ ≠ ∧
≠ ∧ ≠ ∧ ≠ ∧

≠ ∧ ≠ ∧ ≠

D WA D NT D SA D Q

D NSW D V D T

red yellow blue

() () () ()

() () ()

{ , , }

= = = =
= = =

4-Queens

Place 4 queens on a 4 x 4 chessboard so that none can
take another.

44�� 44�� 44�� 44��

�

�

�

�

Four variables Q1, Q2,
Q3, Q4 representing the
row of the queen in each
column. Domain of each
variable is {1,2,3,4}

One solution! -->

Constraint Logic Programming

Peter Stuckey 4

4-Queens

The constraints:

Q Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

1 2 1 3 1 4

2 3 2 4 3 4

1 2 1 1 3 2 1 4 3

2 3 1 2 4 2 3 4 1

1 2 1 1 3 2 1 4 3

2 3 1 2 4 2 3 4 1

≠ ∧ ≠ ∧ ≠ ∧
≠ ∧ ≠ ∧ ≠ ∧
≠ + ∧ ≠ + ∧ ≠ + ∧
≠ + ∧ ≠ + ∧ ≠ + ∧
≠ − ∧ ≠ − ∧ ≠ − ∧
≠ − ∧ ≠ − ∧ ≠ −

Not on the same row

Not diagonally up

Not diagonally down

Smugglers Knapsack

Smuggler with knapsack with capacity 9, who
needs to choose items to smuggle to make
profit at least 30

object profit size

whiskey

perfume

cigarretes

15 4

10 3

7 2

4 3 2 9 15 10 7 30W P C W P C+ + ≤ ∧ + + ≥

What should be the domains of the variables?

Constraint Logic Programming

Peter Stuckey 5

Simple Backtracking Solver

 The simplest way to solve CSPs is to
enumerate the possible solutions

 The backtracking solver:
� enumerates values for one variable at a time
� checks that no prim. constraint is false at each

stage

 Assume satisfiable(c) returns false when
primitive constraint c with no variables is
unsatisfiable

Partial Satisfiable

 Check whether a constraint is unsatisfiable
because of a prim. constraint with no vars

 partial_satisfiable(C)
� for each primitive constraint c in C

� if vars(c) is empty
� if satisfiable(c) = false return false

� return true

Constraint Logic Programming

Peter Stuckey 6

Backtrack Solve

 back_solve(C,D)
� if vars(C) is empty return

partial_satisfiable(C)
� choose x in vars(C)
� for each value d in D(x)

� let C1 be C with x replaced by d
� if partial_satisfiable(C1) then

� if back_solve(C1,D) then return true
� return false

Backtracking Solve
X Y Y Z D X D Y D Z< ∧ < = = =() () () { , }1 2

X Y Y Z< ∧ <

X = 1

1 < ∧ <Y Y Z

Y = 1

1 1 1< ∧ < Z

Y = 2

1 2 2< ∧ < Z

Z = 1

1 2 2 1< ∧ <

Z = 2

1 2 2 2< ∧ <

X = 2

2 < ∧ <Y Y Z

2 1 1< ∧ < Z 2 2 2< ∧ < Z

Constraint Logic Programming

Peter Stuckey 7

Node and Arc Consistency

 basic idea: find an equivalent CSP to the
original one with smaller domains of vars

 key: examine 1 prim.constraint c at a time

 node consistency: (vars(c)={x}) remove
any values from domain of x that falsify c

 arc consistency: (vars(c)={x,y}) remove
any values from D(x) for which there is no
value in D(y) that satisfies c and vice versa

Node consistency

 Primitive constraint c is node consistent
with domain D if |vars(c)| !=1 or

� if vars(c) = {x} then for each d in D(x)
� x assigned d is a solution of c

 A CSP is node consistent if each prim.
constraint in it is node consistent

Constraint Logic Programming

Peter Stuckey 8

Node Consistency Examples

Example CSP is not node consistent (see Z)

X Y Y Z Z

D X D Y D Z

< ∧ < ∧ ≤
= = =

2

1 2 3 4() () () { , , , }

This CSP is node consistent

X Y Y Z Z

D X D Y D Z

< ∧ < ∧ ≤
= = =

2

1 2 3 4 1 2() () { , , , }, () { , }

The map coloring and 4-queens CSPs are node
consistent. Why?

Achieving Node Consistency

� node_consistent(C,D)
� for each prim. constraint c in C

� D := node_consistent_primitive(c, D)
� return D

� node_consistent_primitive(c, D)
� if |vars(c)| =1 then

� let {x} = vars(c)

� return D

D x d D x x d c(): { ()|{ } }= ∈ � is a solution of

Constraint Logic Programming

Peter Stuckey 9

Arc Consistency

 A primitive constraint c is arc consistent
with domain D if |vars{c}| != 2 or

� vars(c) = {x,y} and for each d in D(x) there
exists e in D(y) such that

� and similarly for y

 A CSP is arc consistent if each prim.
constraint in it is arc consistent

{ , }x d y e c� � is a solution of

Arc Consistency Examples

This CSP is node consistent but not arc consistent
X Y Y Z Z

D X D Y D Z

< ∧ < ∧ ≤
= = =

2

1 2 3 4 1 2() () { , , , }, () { , }

For example the value 4 for X and X < Y.

The following equivalent CSP is arc consistent

X Y Y Z Z

D X D Y D Z

< ∧ < ∧ ≤
= = = ∅

2

() () ()

The map coloring and 4-queens CSPs are also arc
consistent.

Constraint Logic Programming

Peter Stuckey 10

Achieving Arc Consistency

 arc_consistent_primitive(c, D)
� if |vars(c)| = 2 then

� return D

 removes values which are not arc consistent
with c

D x d D x e D y

x d y e c

(): { ()| (),

{ , } }

= ∈ ∈exists

 is a soln of � �

D y e D y d D x

x d y e c

(): { ()| (),

{ , } }

= ∈ ∈exists

 is a soln of � �

Achieving Arc Consistency

 arc_consistent(C,D)
� repeat

� W := D
� for each prim. constraint c in C

� D := arc_consistent_primitive(c,D)
� until W = D
� return D

 A very naive version (there are much better)

Constraint Logic Programming

Peter Stuckey 11

Using Node and Arc Cons.

 We can build constraint solvers using the
consistency methods

 Two important kinds of domain
� false domain: some variable has empty domain
� valuation domain: each variable has a

singleton domain

 extend satisfiable to CSP with val. domain

Node and Arc Cons. Solver

 D := node_consistent(C,D)

 D := arc_consistent(C,D)

 if D is a false domain
� return false

 if D is a valuation domain
� return satisfiable(C,D)

 return unknown

Constraint Logic Programming

Peter Stuckey 12

Node and Arc Solver Example
Colouring Australia: with constraints

WA NT WA SA NT SA

NT Q SA Q SA NSW

SA V Q NSW NSW V

≠ ≠ ≠
≠ ≠ ≠
≠ ≠ ≠

WA red NT yellow= ∧ =

WA NT SA Q NSW V T

Node
consistency

Node and Arc Solver Example
Colouring Australia: with constraints

WA NT WA SA NT SA

NT Q SA Q SA NSW

SA V Q NSW NSW V

≠ ≠ ≠
≠ ≠ ≠
≠ ≠ ≠

WA red NT yellow= ∧ =

WA NT SA Q NSW V T

Arc
consistency

Answer:

unknown

Constraint Logic Programming

Peter Stuckey 13

Backtracking Cons. Solver

 We can combine consistency with the
backtracking solver

 Apply node and arc consistency before
starting the backtracking solver and after
each variable is given a value

Back. Cons Solver Example
44�� 44�� 44�� 44��

�

�

�

�

No value
can be

assigned to
Q3 in this

case!

Constraint Logic Programming

Peter Stuckey 14

Back. Cons Solver Example
44�� 44�� 44�� 44��

�

�

�

�

We cannot
find any

possible value
for Q4 in
this case!

Back. Cons Solver Example
44�� 44�� 44�� 44��

�

�

�

�

Constraint Logic Programming

Peter Stuckey 15

Node and Arc Solver Example
Colouring Australia: with constraints

WA red NT yellow= ∧ =

WA NT SA Q NSW V T

Backtracking
enumeration

Select a variable with domain of more than 1, T

Add constraint T red= Apply consistency

Answer: true

Bounds Consistency

 What about prim. constraints with more
than 2 variables?

 hyper-arc consistency: extending arc
consistency to arbitrary number of variables

 Unfortunately determining hyper-arc
consistency is NP-hard (so its probably
exponential)

 What is the solution?

Constraint Logic Programming

Peter Stuckey 16

Bounds Consistency

 arithmetic CSP: constraints are integer

 range: [l..u] represents the set of integers
{l, l+1, ..., u}

 idea use real number consistency and only
examine the endpoints (upper and lower
bounds) of the domain of each variable

 Define min(D,x) as minimum element in
domain of x, similarly for max(D,x)

Bounds Consistency

 A prim. constraint c is bounds consistent
with domain D if for each var x in vars(c)

� exist real numbers d1, ..., dk for remaining vars
x1, ..., xk such that

� is a solution of c
� and similarly for

 An arithmetic CSP is bounds consistent if
all its primitive constraints are

{ min(,), , }x D x x d xk dk� � � �1 1

{ max(,)}x D x�

Constraint Logic Programming

Peter Stuckey 17

Bounds Consistency Examples

X Y Z

D X D Y D Z

= +
= = = −

3 5

2 7 0 2 1 2() [..], () [..], () [..]

Not bounds consistent, consider Z=2, then X-3Y=10

But the domain below is bounds consistent

D X D Y D Z() [..], () [..], () [..]= = =2 7 0 2 0 1

Compare with the hyper-arc consistent domain

D X D Y D Z() { , , }, () { , , }, () { , }= = =3 5 6 0 1 2 0 1

Achieving Bounds Consistency

 Given a current domain D we wish to
modify the endpoints of domains so the
result is bounds consistent

 propagation rules do this

Constraint Logic Programming

Peter Stuckey 18

Achieving Bounds Consistency

Consider the primitive constraint X = Y + Z which
is equivalent to the three forms

X Y Z Y X Z Z X Y= + = − = −

Reasoning about minimum and maximum values:
X D Y D Z X D Y D Z

Y D X D Z Y D X D Z

Z D X D Y Z D X D Y

≥ + ≤ +
≥ − ≤ −
≥ − ≤ −

min(,) min(,) max(,) max(,)

min(,) max(,) max(,) min(,)

min(,) max(,) max(,) min(,)

Propagation rules for the constraint X = Y + Z

Achieving Bounds Consistency
X Y Z

D X D Y D Z

= +
= = =() [..], () [..], () [..]4 8 0 3 2 2

The propagation rules determine that:

() ()

() ()

() ()

0 2 2 5 3 2

4 2 2 6 8 2

4 3 1 8 8 0

+ = ≤ ≤ = +
− = ≤ ≤ = −
− = ≤ ≤ = −

X

Y

Z

Hence the domains can be reduced to

D X D Y D Z() [..], () [..], () [..]= = =4 5 2 3 2 2

Constraint Logic Programming

Peter Stuckey 19

More propagation rules
4 3 2 9

9

4

3

4

2

4
9

3

4

3

2

3
9

2

4

2

3

2

W P C

W D P D C

P D W D C

C D W D P

+ + ≤

≤ − −

≤ − −

≤ − −

min(,) min(,)

min(,) min(,)

min(,) min(,)

Given initial domain:
D W D P D C() [..], () [..], () [..]= = =0 9 0 9 0 9

We determine that

new domain:

W P C≤ ≤ ≤
9

4

9

3

9

2
, ,

D W D P D C() [..], () [..], () [..]= = =0 2 0 3 0 4

Disequations

Disequations give weak propagation rules, only when
one side takes a fixed value that equals the minimum or
maximum of the other is there propagation

Y Z≠

D Y D Z

D Y D Z

D Y D Z D Y D Z

() [..], () [..]

() [..], () [..]

() [..], () [..] () [..], () [..]

= =
= =
= = = =

2 4 2 3

2 4 3 3

2 4 2 2 3 4 2 2

no propagation

no propagation

prop

Constraint Logic Programming

Peter Stuckey 20

Multiplication X Y Z= ×

If all variables are positive its simple enough
X D Y D Z X D Y D Z

Y D X D Z Y D X D Z

Z D X D Y Z D X D Y

≥ × ≤ ×
≥ ≤
≥ ≤

min(,) min(,) max(,) max(,)

min(,) / max(,) max(,) / min(,)

min(,) / max(,) max(,) / min(,)

But what if variables can be 0 or negative?

Example:

becomes:

D X D Y D Z() [..], () [..], () [..]= = =4 8 1 2 1 3

D X D Y D Z() [..], () [..], () [..]= = =4 6 2 2 2 3

Multiplication X Y Z= ×
Calculate X bounds by examining extreme values

X D Y D Z D Y D Z

D Y D Z D Y D Z

≥ × ×
× ×

minimum{min(,) min(,), min(,) max(,)

max(,) min(,), max(,) max(,)}

Similarly for upper bound on X using maximum

BUT this does not work for Y and Z? As long as
min(D,Z) <0 and max(D,Z)>0 there is no bounds
restriction on Y

X Y Z X Y d Z d= × { , , / }� � �4 4

Recall we are using real numbers (e.g. 4/d)

Constraint Logic Programming

Peter Stuckey 21

Multiplication X Y Z= ×
We can wait until the range of Z is non-negative or
non-positive and then use rules like

Y D X D Z D X D Z

D X D Z D X D Z

≥ minimum{min(,) / min(,), min(,) / max(,)

max(,) / min(,), max(,) / max(,)}

division by 0:

+
= + ∞

−
= − ∞ = − ∞

v e v e

0 0

0

0

Bounds Consistency Algm

 Repeatedly apply the propagation rules for
each primitive constraint until there is no
change in the domain

 We do not need to examine a primitive
constraint until the domains of the variables
involve are modified

Constraint Logic Programming

Peter Stuckey 22

Bounds consistency solver

 D := bounds_consistent(C,D)

 if D is a false domain
� return false

 if D is a valuation domain
� return satisfiable(C,D)

 return unknown

Back. Bounds Cons. Solver

 Apply bounds consistency before starting
the backtracking solver and after each
variable is given a value

Constraint Logic Programming

Peter Stuckey 23

Back. Bounds Solver Example

Smugglers knapsack problem (whiskey available)
capacity profit

W P C W P C4 3 2 9 15 10 7 30+ + ≤ ∧ + + ≥

D W D P D C() [..], () [..], () [..]= = =0 9 0 9 0 9
Current domain:

Initial bounds consistency

D W D P D C() [..], () [..], () [..]= = =0 2 0 3 0 4

W = 0

D W D P D C() [..], () [..], () [..]= = =0 0 1 3 0 4

P = 1

D W D P D C() [..], () [..], () [..]= = =0 0 1 1 3 3

(0,1,3)

Solution Found: return true

Back. Bounds Solver Example

Smugglers knapsack problem (whiskey available)
capacity profit

W P C W P C4 3 2 9 15 10 7 30+ + ≤ ∧ + + ≥

Initial bounds consistency

P = 2

false

P = 3

W = 0

P = 1

(0,1,3) false

W = 1

(1,1,1)

W = 2

(2,0,0)

No more solutions

Constraint Logic Programming

Peter Stuckey 24

Generalized Consistency

 Can use any consistency method with any
other communicating through the domain,

� node consistency : prim constraints with 1 var
� arc consistency: prim constraints with 2 vars
� bounds consistency: other prim. constraints

 Sometimes we can get more information by
using complex constraints and special
consistency methods

Alldifferent

 alldifferent({V1,...,Vn}) holds when each
variable V1,..,Vn takes a different value

� alldifferent({X, Y, Z}) is equivalent to

 Arc consistent with domain

 BUT there is no solution! specialized
consistency for alldifferent can find it

X Y X Z Y Z≠ ∧ ≠ ∧ ≠

D X D Y D Z() { , }, () { , }, () { , }= = =1 2 1 2 1 2

Constraint Logic Programming

Peter Stuckey 25

Alldifferent Consistency

 let c be of the form alldifferent(V)

 while exists v in V where D(v) = {d}
� V := V - {v}
� for each v’ in V

� D(v’) := D(v’) - {d}

 DV := union of all D(v) for v in V

 if |DV| < |V| then return false domain

 return D

Alldifferent Examples
alldifferent X Y Z

D X D Y D Z

({ , , })

() { , } , () { , } , () { , }= = =12 12 12

DV = {1,2}, V={X,Y,Z} hence detect unsatisfiability
alldifferent X Y Z T

D X D Y D Z D T

({ , , , })

() { , } , () { , } , () { , } , () { , , , }= = = =12 12 12 2 3 4 5

DV = {1,2,3,4,5}, V={X,Y,Z,T} don’ t detect unsat.
Maximal matching based consistency could

X Y Z T

1 2 3 4 5

Constraint Logic Programming

Peter Stuckey 26

Other Complex Constraints

 schedule n tasks with start times Si and
durations Di needing resources Ri where L
resources are available at each moment

 array access if I = i, then X = Vi and if X !=
Vi then I != i

cumulative S S D D R R Ln n n([, ,],[, ,],[, ,],)1 1 1� � �

element I V V Xn(,[, ,],)1 �

Optimization for CSPs

 Because domains are finite can use a solver
to build a straightforward optimizer

 retry_int_opt(C, D, f, best)
� D2 := int_solv(C,D)
� if D2 is a false domain then return best
� let sol be the solution corresponding to D2
� return retry_int_opt(C /\ f < sol(f), D, f, sol)

Constraint Logic Programming

Peter Stuckey 27

Backtracking Optimization

 Since the solver may use backtrack search
anyway combine it with the optimization

 At each step in backtracking search, if best
is the best solution so far add the constraint
f < best(f)

Back. Optimization Example

Initial bounds consistency

capacity profit

W P C W P C4 3 2 9 15 10 7 30+ + ≤ ∧ + + ≥

P = 2

false

P = 3

false

W = 1

(1,1,1)

Modify constraint

W = 0

P = 1

(0,1,3)

Smugglers knapsack problem (whiskey available)

W = 2

false

Return last sol (1,1,1)

Constraint Logic Programming

Peter Stuckey 28

Branch and Bound Opt.

 The previous methods,unlike simplex dont
use the objective function to direct search

 branch and bound optimization for (C,f)
� use simplex to find a real optimal,
� if solution is integer stop
� otherwise choose a var x with non-integer opt

value d and examine the problems

� use the current best solution to constrain prob.

   (,) (,)C x d f C x d f∧ ≤ ∧ ≥

Branch and Bound Example
Smugglers knapsack problem

W ≤ 2 W ≥ 3

P ≤ 0 P ≥ 1

C ≤ 0 C ≥ 1

Solution (2,0,0) = 30

W ≤ 1 W ≥ 2

C ≤ 2 C ≥ 3

false W ≤ 0 W ≥ 1

false false

false

W ≤ 1 W ≥ 2

P ≤ 1 P ≥ 2

Solution (1,1,1) = 32

Worse than best sol

false

false

Constraint Logic Programming

Peter Stuckey 29

Finite Constraint Domains
Summary

 CSPs form an important class of problems

 Solving of CSPs is essentially based on
backtracking search

 Reduce the search useing consistency
methods

� node, arc, bound, generalized

 Optimization is based on repeated solving
or using a real optimizer to guide the search

