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Chapter 3: Finite Constraint 
Domains

Where we meet the simplest and yet 
most difficult constraints, and some 
clever and not so clever ways to solve 
them

Finite Constraint Domains

 Constraint Satisfaction Problems

 A Backtracking Solver

 Node and Arc Consistency

 Bounds Consistency

 Generalized Consistency

 Optimization for Arithmetic CSPs
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Finite Constraint Domains

 An important class of constraint domains

 Use to model constraint problems involving 
choice: e.g. scheduling, routing and 
timetabling

 The greatest industrial impact of constraint 
programming has been on these problems

Constraint Satisfaction 
Problems

 A constraint satisfaction problem (CSP) 
consists of:

� a constraint C over variables x1,..., xn
� a domain D which maps each variable xi to a 

set of possible values D(xi)

 It is understood as the constraint

C x D x xn D xn∧ ∈ ∧ ∧ ∈1 1( ) ( )�
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Map Colouring

A classic CSP is the problem of coloring a map so that 
no adjacent regions have the same color

WA

NT

SA

Q

NSW

V

T

Can the map of Australia be
colored with 3 colors ?

WA NT WA SA NT SA

NT Q SA Q SA NSW

SA V Q NSW NSW V

≠ ∧ ≠ ∧ ≠ ∧
≠ ∧ ≠ ∧ ≠ ∧

≠ ∧ ≠ ∧ ≠

D WA D NT D SA D Q

D NSW D V D T

red yellow blue

( ) ( ) ( ) ( )

( ) ( ) ( )

{ , , }

= = = =
= = =

4-Queens

Place 4 queens on a 4 x 4 chessboard so that none can 
take another.

44�� 44�� 44�� 44��

�

�

�

�

Four variables Q1, Q2, 
Q3, Q4 representing the 
row of the queen in each 
column. Domain of each 
variable is {1,2,3,4}

One solution! -->
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4-Queens

The constraints:

Q Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

1 2 1 3 1 4

2 3 2 4 3 4

1 2 1 1 3 2 1 4 3

2 3 1 2 4 2 3 4 1

1 2 1 1 3 2 1 4 3

2 3 1 2 4 2 3 4 1

≠ ∧ ≠ ∧ ≠ ∧
≠ ∧ ≠ ∧ ≠ ∧
≠ + ∧ ≠ + ∧ ≠ + ∧
≠ + ∧ ≠ + ∧ ≠ + ∧
≠ − ∧ ≠ − ∧ ≠ − ∧
≠ − ∧ ≠ − ∧ ≠ −

Not on the same row

Not diagonally up

Not diagonally down

Smugglers Knapsack

Smuggler with knapsack with capacity 9, who 
needs to choose items to smuggle to make 
profit at least 30

object profit size

whiskey

perfume

cigarretes

15 4

10 3

7 2

4 3 2 9 15 10 7 30W P C W P C+ + ≤ ∧ + + ≥

What should be the domains of the variables?
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Simple Backtracking Solver

 The simplest way to solve CSPs is to 
enumerate the possible solutions

 The backtracking solver:
� enumerates values for one variable at a time
� checks that no prim. constraint is false at each 

stage

 Assume satisfiable(c) returns false when 
primitive constraint c with no variables is 
unsatisfiable

Partial Satisfiable

 Check whether a constraint is unsatisfiable 
because of a prim. constraint with no vars

 partial_satisfiable(C)
� for each primitive constraint c in C

� if vars(c) is empty
� if satisfiable(c) = false return false

� return true
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Backtrack Solve

 back_solve(C,D)
� if vars(C) is empty return

partial_satisfiable(C)
� choose x in vars(C)
� for each value d in D(x)

� let C1 be C with x replaced by d
� if partial_satisfiable(C1) then

� if back_solve(C1,D) then return true
� return false

Backtracking Solve
X Y Y Z D X D Y D Z< ∧ < = = =( ) ( ) ( ) { , }1 2

X Y Y Z< ∧ <

X = 1

1 < ∧ <Y Y Z

Y = 1

1 1 1< ∧ < Z

Y = 2

1 2 2< ∧ < Z

Z = 1

1 2 2 1< ∧ <

Z = 2

1 2 2 2< ∧ <

X = 2

2 < ∧ <Y Y Z

2 1 1< ∧ < Z 2 2 2< ∧ < Z
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Node and Arc Consistency

 basic idea: find an equivalent CSP to the 
original one with smaller domains of vars

 key: examine 1 prim.constraint c at a time

 node consistency: (vars(c)={x}) remove 
any values from domain of x that falsify c

 arc consistency: (vars(c)={x,y}) remove 
any values from D(x) for which there is no 
value in D(y) that satisfies c and vice versa

Node consistency

 Primitive constraint c is node consistent
with domain D if |vars(c)| !=1 or

� if vars(c) = {x} then for each d in  D(x)
� x assigned d is a solution of c

 A CSP is node consistent if each prim. 
constraint in it is node consistent
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Node Consistency Examples

Example CSP is not node consistent (see Z)

X Y Y Z Z

D X D Y D Z

< ∧ < ∧ ≤
= = =

2

1 2 3 4( ) ( ) ( ) { , , , }

This CSP is node consistent 

X Y Y Z Z

D X D Y D Z

< ∧ < ∧ ≤
= = =

2

1 2 3 4 1 2( ) ( ) { , , , }, ( ) { , }

The map coloring and 4-queens CSPs are node 
consistent. Why?

Achieving Node Consistency

� node_consistent(C,D)
� for each prim. constraint c in C

� D := node_consistent_primitive(c, D)
� return D

� node_consistent_primitive(c, D)
� if |vars(c)| =1 then

� let {x} = vars(c)

� return D

D x d D x x d c( ): { ( )|{ } }= ∈ �  is a solution of 
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Arc Consistency

 A primitive constraint c is arc consistent
with domain D if |vars{c}| != 2 or

� vars(c) = {x,y} and for each d in D(x) there 
exists e in D(y) such that 

� and similarly for y

 A CSP is arc consistent if each prim. 
constraint in it is arc consistent 

{ , }x d y e c� �    is a solution of  

Arc Consistency Examples

This CSP is node consistent but not arc consistent 
X Y Y Z Z

D X D Y D Z

< ∧ < ∧ ≤
= = =

2

1 2 3 4 1 2( ) ( ) { , , , }, ( ) { , }

For example the value 4 for X and X < Y.

The following equivalent CSP is arc consistent

X Y Y Z Z

D X D Y D Z

< ∧ < ∧ ≤
= = = ∅

2

( ) ( ) ( )

The map coloring and 4-queens CSPs are also arc 
consistent.
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Achieving Arc Consistency

 arc_consistent_primitive(c, D)
� if |vars(c)| = 2 then

� return D

 removes values which are not arc consistent 
with c

D x d D x e D y

x d y e c

( ): { ( )| ( ),

{ , } }

= ∈ ∈exists 

 is a soln of � �

D y e D y d D x

x d y e c

( ): { ( )| ( ),

{ , } }

= ∈ ∈exists 

 is a soln of � �

Achieving Arc Consistency

 arc_consistent(C,D)
� repeat

� W := D
� for each prim. constraint c in C

� D := arc_consistent_primitive(c,D)
� until W = D
� return D

 A very naive version (there are much better)
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Using Node and Arc Cons.

 We can build constraint solvers using the 
consistency methods

 Two important kinds of domain
� false domain: some variable has empty domain
� valuation domain: each variable has a 

singleton domain

 extend satisfiable to CSP with val. domain

Node and Arc Cons. Solver

 D := node_consistent(C,D)

 D := arc_consistent(C,D)

 if D is a false domain
� return false

 if D is a valuation domain
� return satisfiable(C,D)

 return unknown
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Node and Arc Solver Example
Colouring Australia: with constraints

WA NT WA SA NT SA

NT Q SA Q SA NSW

SA V Q NSW NSW V

≠ ≠ ≠
≠ ≠ ≠
≠ ≠ ≠

WA red NT yellow= ∧ =

WA   NT    SA     Q   NSW  V      T

Node 
consistency

Node and Arc Solver Example
Colouring Australia: with constraints

WA NT WA SA NT SA

NT Q SA Q SA NSW

SA V Q NSW NSW V

≠ ≠ ≠
≠ ≠ ≠
≠ ≠ ≠

WA red NT yellow= ∧ =

WA   NT    SA     Q   NSW  V      T

Arc 
consistency

Answer:

unknown
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Backtracking Cons. Solver

 We can combine consistency with the 
backtracking  solver

 Apply node and arc consistency before 
starting the backtracking solver and after 
each variable is given a value

Back. Cons Solver Example
44�� 44�� 44�� 44��

�

�

�

�

No value 
can be

assigned to
Q3 in this

case!
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Back. Cons Solver Example
44�� 44�� 44�� 44��

�

�

�

�

We cannot 
find any 

possible value
for Q4 in
this case!

Back. Cons Solver Example
44�� 44�� 44�� 44��

�

�

�

�
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Node and Arc Solver Example
Colouring Australia: with constraints

WA red NT yellow= ∧ =

WA   NT    SA     Q   NSW  V      T

Backtracking 
enumeration

Select a variable with domain of more than 1,  T

Add constraint T red= Apply consistency

Answer: true 

Bounds Consistency

 What about prim. constraints with more 
than 2 variables?

 hyper-arc consistency: extending arc 
consistency to arbitrary number of variables

 Unfortunately determining hyper-arc 
consistency is NP-hard (so its probably 
exponential)

 What is the solution?
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Bounds Consistency

 arithmetic CSP: constraints are integer 

 range: [l..u] represents the set of integers  
{l, l+1, ..., u}

 idea use real number consistency and only 
examine the endpoints (upper and lower 
bounds) of the domain of each variable

 Define min(D,x) as minimum element in 
domain of x, similarly for max(D,x)

Bounds Consistency

 A prim. constraint c is bounds consistent
with domain D if for each var x in vars(c)

� exist real numbers d1, ..., dk for remaining vars
x1, ..., xk such that 

� is a solution of c
� and similarly for 

 An arithmetic CSP is bounds consistent if 
all its primitive constraints are

{ min( , ), , }x D x x d xk dk� � � �1 1

{ max( , )}x D x�
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Bounds Consistency Examples

X Y Z

D X D Y D Z

= +
= = = −

3 5

2 7 0 2 1 2( ) [ .. ], ( ) [ .. ], ( ) [ .. ]

Not bounds consistent, consider Z=2, then X-3Y=10

But the domain below is bounds consistent

D X D Y D Z( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =2 7 0 2 0 1

Compare with the hyper-arc consistent domain

D X D Y D Z( ) { , , }, ( ) { , , }, ( ) { , }= = =3 5 6 0 1 2 0 1

Achieving Bounds Consistency

 Given a current domain D we wish to 
modify the endpoints of domains so the 
result is bounds consistent

 propagation rules do this
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Achieving Bounds Consistency

Consider the primitive constraint   X = Y + Z  which 
is equivalent to the three forms

X Y Z Y X Z Z X Y= + = − = −

Reasoning about minimum and maximum values:
X D Y D Z X D Y D Z

Y D X D Z Y D X D Z

Z D X D Y Z D X D Y

≥ + ≤ +
≥ − ≤ −
≥ − ≤ −

min( , ) min( , ) max( , ) max( , )

min( , ) max( , ) max( , ) min( , )

min( , ) max( , ) max( , ) min( , )

Propagation rules for the constraint X = Y + Z 

Achieving Bounds Consistency
X Y Z

D X D Y D Z

= +
= = =( ) [ .. ], ( ) [ .. ], ( ) [ .. ]4 8 0 3 2 2

The propagation rules determine that:

( ) ( )

( ) ( )

( ) ( )

0 2 2 5 3 2

4 2 2 6 8 2

4 3 1 8 8 0

+ = ≤ ≤ = +
− = ≤ ≤ = −
− = ≤ ≤ = −

X

Y

Z

Hence the domains can be reduced to

D X D Y D Z( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =4 5 2 3 2 2
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More propagation rules
4 3 2 9

9

4

3

4

2

4
9

3

4

3

2

3
9

2

4

2

3

2

W P C

W D P D C

P D W D C

C D W D P

+ + ≤

≤ − −

≤ − −

≤ − −

min( , ) min( , )

min( , ) min( , )

min( , ) min( , )

Given initial domain:
D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 9 0 9 0 9

We determine that

new domain:

W P C≤ ≤ ≤
9

4

9

3

9

2
, ,

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 2 0 3 0 4

Disequations 

Disequations give weak propagation rules, only when 
one side takes a fixed value that equals the minimum or 
maximum of the other is there propagation

Y Z≠

D Y D Z

D Y D Z

D Y D Z D Y D Z

( ) [ .. ], ( ) [ .. ]

( ) [ .. ], ( ) [ .. ]

( ) [ .. ], ( ) [ .. ] ( ) [ .. ], ( ) [ .. ]

= =
= =
= = = =

2 4 2 3

2 4 3 3

2 4 2 2 3 4 2 2

no propagation

no propagation

prop  
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Multiplication X Y Z= ×

If all variables are positive its simple enough
X D Y D Z X D Y D Z

Y D X D Z Y D X D Z

Z D X D Y Z D X D Y

≥ × ≤ ×
≥ ≤
≥ ≤

min( , ) min( , ) max( , ) max( , )

min( , ) / max( , ) max( , ) / min( , )

min( , ) / max( , ) max( , ) / min( , )

But what if variables can be 0 or negative?

Example:

becomes:

D X D Y D Z( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =4 8 1 2 1 3

D X D Y D Z( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =4 6 2 2 2 3

Multiplication X Y Z= ×
Calculate X bounds  by examining extreme values

X D Y D Z D Y D Z

D Y D Z D Y D Z

≥ × ×
× ×

minimum{min( , ) min( , ), min( , ) max( , )

max( , ) min( , ), max( , ) max( , )}

Similarly for upper bound on X using maximum

BUT this does not work for Y and Z? As long as 
min(D,Z) <0 and max(D,Z)>0 there is no bounds 
restriction on Y

X Y Z X Y d Z d= × { , , / }� � �4 4

Recall we are using real numbers (e.g. 4/d)
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Multiplication X Y Z= ×
We can wait until the range of Z is non-negative or 
non-positive and then use rules like

Y D X D Z D X D Z

D X D Z D X D Z

≥ minimum{min( , ) / min( , ), min( , ) / max( , )

max( , ) / min( , ), max( , ) / max( , )}

division by 0:  

+
= + ∞

−
= − ∞ = − ∞

v e v e

0 0

0

0

Bounds Consistency Algm

 Repeatedly apply the propagation rules for 
each primitive constraint until there is no 
change in the domain

 We do not need to examine a primitive 
constraint until the domains of the variables 
involve are modified
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Bounds consistency solver

 D := bounds_consistent(C,D)

 if D is a false domain
� return false

 if D is a valuation domain
� return satisfiable(C,D)

 return unknown

Back. Bounds Cons. Solver

 Apply bounds consistency before starting 
the backtracking solver and after each 
variable is given a value
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Back. Bounds Solver Example

Smugglers knapsack problem  (whiskey available)
capacity profit

W P C W P C4 3 2 9 15 10 7 30+ + ≤ ∧ + + ≥

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 9 0 9 0 9
Current domain:

Initial bounds consistency

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 2 0 3 0 4

W = 0

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 0 1 3 0 4

P = 1

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 0 1 1 3 3

(0,1,3)

Solution Found: return true

Back. Bounds Solver Example

Smugglers knapsack problem  (whiskey available)
capacity profit

W P C W P C4 3 2 9 15 10 7 30+ + ≤ ∧ + + ≥

Initial bounds consistency

P = 2

false

P = 3

W = 0

P = 1

(0,1,3) false

W = 1

(1,1,1)

W = 2

(2,0,0)

No more solutions
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Generalized Consistency

 Can use any consistency method with any 
other communicating through the domain, 

� node consistency : prim constraints with 1 var
� arc consistency: prim constraints with 2 vars
� bounds consistency: other prim. constraints

 Sometimes we can get more information by 
using complex constraints and special 
consistency methods

Alldifferent

 alldifferent({V1,...,Vn}) holds when each 
variable V1,..,Vn takes a different value

� alldifferent({X, Y, Z}) is equivalent to

 Arc consistent with domain 

 BUT there is no solution! specialized 
consistency for alldifferent can find it

X Y X Z Y Z≠ ∧ ≠ ∧ ≠

D X D Y D Z( ) { , }, ( ) { , }, ( ) { , }= = =1 2 1 2 1 2
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Alldifferent Consistency

 let c be of the form alldifferent(V)

 while exists v in V where D(v) = {d}
� V := V - {v}
� for each v’ in V

� D(v’) := D(v’) - {d}

 DV := union of all D(v) for v in V

 if |DV| < |V| then return false domain

 return D

Alldifferent Examples
alldifferent X Y Z

D X D Y D Z

({ , , } )

( ) { , } , ( ) { , } , ( ) { , }= = =12 12 12

DV = {1,2}, V={X,Y,Z} hence detect unsatisfiability
alldifferent X Y Z T

D X D Y D Z D T

({ , , , } )

( ) { , } , ( ) { , } , ( ) { , } , ( ) { , , , }= = = =12 12 12 2 3 4 5

DV = {1,2,3,4,5}, V={X,Y,Z,T} don’ t detect unsat.                 
Maximal matching based consistency could

X Y Z T

1 2 3 4 5
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Other Complex Constraints

 schedule n tasks with start times Si and 
durations Di needing resources Ri where L
resources are available at each moment

 array access if I = i, then X = Vi and if X != 
Vi then I != i

cumulative S S D D R R Ln n n([ , , ],[ , , ],[ , , ], )1 1 1� � �

element I V V Xn( ,[ , , ], )1 �

Optimization for CSPs

 Because domains are finite can use a solver 
to build a straightforward optimizer

 retry_int_opt(C, D, f, best)
� D2 := int_solv(C,D)
� if D2 is a false domain then return best
� let sol be the solution corresponding to D2
� return retry_int_opt(C /\ f < sol(f), D, f, sol)
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Backtracking Optimization

 Since the solver may use backtrack search 
anyway combine it with the optimization

 At each step in backtracking search, if best 
is the best solution so far add the constraint 
f < best(f)

Back. Optimization Example

Initial bounds consistency

capacity profit

W P C W P C4 3 2 9 15 10 7 30+ + ≤ ∧ + + ≥

P = 2

false

P = 3

false

W = 1

(1,1,1)

Modify constraint

W = 0

P = 1

(0,1,3)

Smugglers knapsack problem  (whiskey available)

W = 2

false

Return last sol (1,1,1)
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Branch and Bound Opt.

 The previous methods,unlike simplex dont
use the objective function to direct search

 branch and bound optimization for (C,f) 
� use simplex to find a real optimal, 
� if solution is integer stop 
� otherwise choose a var x with non-integer opt 

value d and examine the problems

� use the current best solution to constrain prob.

   ( , ) ( , )C x d f C x d f∧ ≤ ∧ ≥

Branch and Bound Example
Smugglers knapsack problem  

W ≤ 2 W ≥ 3

P ≤ 0 P ≥ 1

C ≤ 0 C ≥ 1

Solution (2,0,0) = 30

W ≤ 1 W ≥ 2

C ≤ 2 C ≥ 3

false W ≤ 0 W ≥ 1

false false

false

W ≤ 1 W ≥ 2

P ≤ 1 P ≥ 2

Solution (1,1,1) = 32

Worse than best sol

false

false
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Finite Constraint Domains 
Summary

 CSPs form an important class of problems

 Solving of CSPs is essentially based on 
backtracking search

 Reduce the search useing consistency 
methods

� node, arc, bound, generalized

 Optimization is based on repeated solving 
or using a real optimizer to guide the search


