
Constraint Logic Programming

Peter Stuckey 1

1

Chapter 2: Simplification,
Optimization and Implication

Where we learn more fun things we 
can do with constraints.
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Simplification, Optimization
and Implication

 Constraint Simplification

 Projection

 Constraint Simplifiers

 Optimization

 Implication and Equivalence
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Constraint Simplification

 Two equivalent constraints represent the 
same information, but

 One may be simpler than the other
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Removing redundant 
constraints, rewriting a 
primitive constraint, 
changing order, substituting 
using an equation all 
preserve equivalence
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Redundant Constraints

 One constraint C1 implies another C2 if the 
solutions of C1 are a subset of  those of C2

 C2 is said to be redundant wrt C1

 It is written C C1 2→
X X

Y X Y X

cons X X cons Z nil Z nil

≥ → ≥
≤ + ∧ ≥ → ≥

= → =

3 1

2 4 1

( , ) ( , )
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Redundant Constraints

 We can remove a primitive constraint which 
is redundant with respect to the rest of the 
constraint.  

X X X

Y X X Y Y X Y

cons X X cons Z nil Z nil cons X X cons Z nil

≥ ∧ ≥ ↔ ≥
≤ + ∧ ≥ ∧ ≥ ↔ ≤ + ∧ ≥
= ∧ = ↔ =

1 3 3

2 1 4 2 4

( , ) ( , ) ( , ) ( , )

Definitely produces a simpler constraint
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Solved Form Solvers

 Since a solved form solver creates 
equivalent constraints it can be a simplifier

cons X X cons Z nil Y succ X succ Z Y Z nil

X nil Z nil Y succ nil

( , ) ( , ) ( ) ( )

( )

= ∧ = ∧ = ∧ =
↔ = ∧ = ∧ =

For example using the term constraint solver

Or using the Gauss-Jordan solver
X Y Y X T Z X Y Z T

X Y Z T

= + ∧ + − = ∧ + = ∧ + =
↔ = ∧ = ∧ = −
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Projection

It becomes even more important to simplify when we are 
only interested in some variables in the constraint
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Projection

 The projection of a constraint C onto 
variables V is a constraint C1 such that

� C1 only involves variables V
� Every solution of C is a solution of C1
� A solution of C1 can be extended to give a 

solution of C
X Y Y Z Z

X Y Z

X Y Z

≥ ∧ ≥ ∧ ≥ 0

0 0 0

4 3 1

{ , , }

{ , , }

� � �

� � �

X

X

X

≥ 0

0

4

{ }

{ }

�

�



Constraint Logic Programming

Peter Stuckey 5

9

Fouriers Algorithm

 Eliminates variable y from linear ineqs C

 Write each ineq with y on one side of ineq

 For each pair 
� produce a new ineq

 The result is all new ineqs and those ineqs
in C which do not involve y

t y y t1 2≤ ≤
t y y t1 2≤ ≤

t y y t t t1 2 1 2≤ ⊗ ≤ ≤
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Fouriers Algorithm Example

Projecting out Y
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Result only involving X

X X≤ ∧ − ≤1 1
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Projecting Term Constraints

 We can also project term constraints

 projected onto {X,Z} is 

 But what is X = cons(Y,Z) projected onto X?

 Answer: there is no such constraint!

cons Y Y cons X Z succ Z succ T( , ) ( , ) ( ) ( )= ∧ =

X Z=
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Constraint Simplifiers

 constraints C1 and C2 are equivalent wrt
variables V if

� taking any solution of one and restricting it to 
the variables V, this restricted solution can be 
extended to be a solution of the other

 Example X=succ(Y) and X=succ(Z) wrt {X}
X succ Y X X succ Z

X succ a Y a X succ a X succ a Z a

X succ nil Y nil X succ nil X succ nil Z nil

= =( ) { } ( )

{ ( ), } { ( )} { ( ), }

{ ( ), } { ( )} { ( ), }

� � � � �

� � � � �
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Simplifier Definition

 A constraint simplifier is a function simpl
which takes a constraint C and set of 
variables V and returns a constraint C1 that 
is equivalent to C wrt V

 We can make a simplifier for real 
inequalities from Fouriers algorithm 
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Tree Constraint Simplifier

 apply the term solver to C obtaining C1

 if C1 is false then return false

 foreach equation x=t in C1

 if x is in V then
� if  t is  a variable not in V

� substitute x for t throughout C1 and result
� else add x=t to result

 return result
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Tree Simplification Example

Tree constraint to be simplified wrt {Y,T}

h f X Y g T h f g T X f X X g U( ( , ), , ( )) ( ( ( ), ), ( , ), ( ))=

Equivalent constraint from tree solver

Z f g U g U X g U Y g U T U= ∧ = ∧ = ∧ =( ( ), ( )) ( ) ( )

Discard the first two equations, keep the third 
and use the last to substitute for U by T

Y g T= ( )
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Simplifier Properties

 Desirable properties of a simplifier are:
� projecting:
� weakly projecting: for all constraints C2 that 

are equivalant to C1 wrt V

� a weakly projecting solver never uses more 
variables than is required

 Both properties allow a simplifier to be used 
as a solver (How?)

vars simpl C V V( ( , )) ⊆

| ( ( , )) | | ( ) |vars simpl C V V vars C V1 2− ≤ −
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Optimization

 Often given some problem which is 
modelled by constraints wedont want just 
any solution, but a “best” solution

 This is an optimization problem

 We need an objective function so that we 
can rank solutions, that is a mapping from 
solutions to a real value
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Optimization Problem

 An optimization problem (C,f) consists of 
a constraint C and objective function f

 A valuation v1 is preferred to valuation v2
if f(v1) < f(v2)

 An optimal solution is a solution of C such 
that no other solution of C is preferred to it.
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Optimization Example

0 1 2 3 4

1

2

3

4

Y

X

X+Y=4

An optimization problem

( , )C X Y f X Y≡ + ≥ ≡ +4 2 2

Find the closest point to the 
origin satisfying the C. 
Some solutions and f value

{ , }

{ , }

{ , }

X Y

X Y

X Y

� �

� �

� �

0 4 16

3 3 18

2 2 8
Optimal solution

{ , }X Y� �2 2
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Optimization

 Some optimization problems have no 
solution.

� Constraint has no solution

� Problem has no optimum

� For any solution there is more preferable one

( , )X X X≥ ∧ ≤2 0 2

( , )X X≤ 0
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Simplex Algorithm

 The most widely used optimization
algorithm

 Optimizes a linear function wrt to linear 
constraints

 Related to Gauss-Jordan elimination
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Simplex Algorithm

 A optimization problem (C, f) is in simplex 
form:

� C is the conjunction of CE and CI
� CE is a conjunction of linear equations
� CI constrains all variables in C to be non-

negative
� f is a linear expression over variables in C
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Simplex Example

minimize  subject to3 2 1

3

3 2 1

0 0 0 0

X+ Y-Z+

X Y

X Y Z T

X Y Z T

+ = ∧
− − + + = ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

An optimization problem in simplex form

• An arbitrary problem can be put in simplex form by

• replacing unconstrained var X by new vars

• replacing ineq by new var s and 

X X+ −−

e r≤ e s r+ =
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Simplex Solved Form

 A simplex optimization problem is in basic 
feasible solved (bfs) form if:

� The equations are in solved form
� Each constant on the right hand side is non-

negative
� Only parameters occur in the objective

 A basic feasible solution is obtained by 
setting each parameter to 0 and each non-
parameter to the constant in its equation
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Simplex Example

minimize  subject to10

3

4 2 2

0 0 0 0

− −
= − ∧
= + − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

Y Z

X Y

T Y Z

X Y Z T

An equivalent problem to that before in bfs form

We can read off a solution and its objective value
{ , , , }X T Y Z

f

� � � �3 4 0 0

10=
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Simplex Algorithm

starting from a problem in bfs form

repeat

Choose a variable  y with negative coefficient in the obj. func.

Find the equation x = b + cy + ... where c<0 and -b/c is minimal

Rewrite this equation with y the subject y = -b/c + 1/c x + ...

Substitute -b/c + 1/c x + ... for y in all other eqns and obj. func.

until no such variable y exists or no such equation exists

if no such y exists optimum is found

else there is no optimum solution
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Simplex Example
minimize  subject to10

3

4 2 2

0 0 0 0

− −
= − ∧
= + − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

Y Z

X Y

T Y Z

X Y Z T

Choose variable Y, the first
eqn is only one with neg.
coeff Y X= −3

minimize  subject to7

3

10 2 2

0 0 0 0

+ −
= − ∧
= − − ∧
≥ ∧ ≥ ∧ ≥ ∧ ≥

X Z

Y X

T X Z

X Y Z T

Choose variable Z, the 2nd
eqn is only one with neg.
coeff Z X T= − −5 0 5.

minimize  subject to2 2 0 5

3

5 0 5

0 0 0 0

+ +
= − ∧
= − − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

X T

Y X

Z X T

X Y Z T

.

.

No variable can be chosen, 
optimal value 2 is found 
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Another example
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solutions

minimize   subject toX Y

Y

X
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Y X
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An equivalent simplex  form is:

X S
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X Y S

X Y S S S

− = ∧
+ = ∧

− + − = ∧
≥ ∧ ≥ ∧ ≥ ∧ ≥ ∧ ≥
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0 0 0 0 0

An optimization problem 
showing contours of the 
objective function
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Another example

0 1 2 3 4
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Basic feasible solution form: circle
minimize  subject to0 0 5 0 5

3 0 5 0 5
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1 3

1 3

2 3
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. .

. .
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Choose S3, replace using 2nd eq

minimize  subject to− + +
= − + ∧
= − ∧
= + ∧

1 0 5 0 5

3 0 5 0 5

2

1

1 2

1 2

3 2

2

. .

. .

S S

Y S S

S S

X S

Optimal solution: box
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The Missing Part

 How do we get the initial basic feasible 
solution?

 Solve a different simplex problem
� Add artificial variables to make equations in 

basic feasible solved form
� Minimize the sumof the artificial variables
� If the sum is zero we can construct a bfs for the 

original problem
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The Missing Part Example

X S

X S

X Y S

− = ∧
+ = ∧

− + − =

2

3

1

1

3

2 3

Original simplex form equations

A X S

A X S

A X Y S

1 2

2 3

3 1

1

3

3 2

= − + ∧
= − − ∧
= + − −

With artificial vars in bfs form:

Objective function: minimize
A A A

X Y S S S
1 2 3

1 2 37 2

+ +
= − − − + −
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Missing Part Example II

minimize  subject toA A A

Y S S A A

S S A A

X S A

1 2 3

1 3 2 3

2 3 1 2

3 2

3 0 5 0 5 0 5 0 5

2

3

+ +
= − − − − ∧
= − + − ∧
= − −

. . . .

Problem after minization of objective function

Removing the artificial variables, the original problem 

Y S S

S S

X S

= − − ∧
= − ∧
= − ∧

3 0 5 0 5

2

3

1 3

2 3

3

. .
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Implication and Equivalence

 Other important operations involving 
constraints are:

 implication: test if C1 implies C2
� impl(C1, C2) answers true, false or unknown

 equivalence: test if C1 and C2 are 
equivalent

� equiv(C1, C2) answers true, false or unknown
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Implication Example
B u ild in g  a H ou s e

D oors
2  d ays

S tag e B

In te rio r W alls
4  d ays

C h im n ey
3  d ays

S tag e D

S tag e E

Tiles
3  d ays

R oof
2  d ays

W in d ows
3  d ays

S tag e C

E xterior W alls
3  d ays

S tag e A

F ou n d ation s
7  d ays

S tag e S

For the house constraints CH, will 
stage B have to be reached after 
stage C?

CH T TB C→ ≥

For this question the answer if 
false, but if we require the house 
to be finished in 15 days the 
answer is true

CH T T TE B C∧ = → ≥15



Constraint Logic Programming

Peter Stuckey 18

35

Implication and Equivalence

 We can use impl to define equiv and vice 
versa

 We can use a solver to do simple impl tests

 e.g. 

impl C C equiv C C C( , ) ( , )1 2 1 1 2= ∧

equiv C C impl C C impl C C( , ) ( , ) ( , )1 2 1 2 2 1= ∧

impl C C solv C C( , ) ( )1 2 1 2= ¬ ∧ ¬

impl CH T T solv CH T TB C B C( , ) ( )≥ = ¬ ∧ <
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Simplication, Optimization
and Implication Summary

 Equivalent constraints can be written in 
many forms, hence we desire simplification

 Particularly if we are only interested in the 
interaction of some of the variables

 Many problems desire a optimal solution, 
there are algms (simplex) to find them

 We may also be interested in asking 
questions involving implication


