
Constraint Logic Programming

Peter Stuckey 1

1

Chapter 2: Simplification,
Optimization and Implication

Where we learn more fun things we
can do with constraints.

2

Simplification, Optimization
and Implication

 Constraint Simplification

 Projection

 Constraint Simplifiers

 Optimization

 Implication and Equivalence

Constraint Logic Programming

Peter Stuckey 2

3

Constraint Simplification

 Two equivalent constraints represent the
same information, but

 One may be simpler than the other
X X Y X

X Y X

X X Y

X Y X

X Y Y

X Y Y

≥ ∧ ≥ ∧ = +
↔ ≥ ∧ = +
↔ ≤ ∧ = −
↔ = − ∧ ≤

↔ = − ∧ ≤ −
↔ = − ∧ ≤ −

1 3 2

3 2

3 2

2 3

2 3 2

2 1

Removing redundant
constraints, rewriting a
primitive constraint,
changing order, substituting
using an equation all
preserve equivalence

4

Redundant Constraints

 One constraint C1 implies another C2 if the
solutions of C1 are a subset of those of C2

 C2 is said to be redundant wrt C1

 It is written C C1 2→
X X

Y X Y X

cons X X cons Z nil Z nil

≥ → ≥
≤ + ∧ ≥ → ≥

= → =

3 1

2 4 1

(,) (,)

Constraint Logic Programming

Peter Stuckey 3

5

Redundant Constraints

 We can remove a primitive constraint which
is redundant with respect to the rest of the
constraint.

X X X

Y X X Y Y X Y

cons X X cons Z nil Z nil cons X X cons Z nil

≥ ∧ ≥ ↔ ≥
≤ + ∧ ≥ ∧ ≥ ↔ ≤ + ∧ ≥
= ∧ = ↔ =

1 3 3

2 1 4 2 4

(,) (,) (,) (,)

Definitely produces a simpler constraint

6

Solved Form Solvers

 Since a solved form solver creates
equivalent constraints it can be a simplifier

cons X X cons Z nil Y succ X succ Z Y Z nil

X nil Z nil Y succ nil

(,) (,) () ()

()

= ∧ = ∧ = ∧ =
↔ = ∧ = ∧ =

For example using the term constraint solver

Or using the Gauss-Jordan solver
X Y Y X T Z X Y Z T

X Y Z T

= + ∧ + − = ∧ + = ∧ + =
↔ = ∧ = ∧ = −

2 2 4 5

3 1 5

Constraint Logic Programming

Peter Stuckey 4

7

Projection

It becomes even more important to simplify when we are
only interested in some variables in the constraint

I
I1

I2

V

+

--
3_
--

+

-
-

V1
V2

--

V I R

V I R

V V

V V

V V

I I I

I I I

R

R

1 1 1

2 2 2

1 0

2 0

1 2 0

1 2 0

1 2 0

1 5

2 10

= ×
= ×

− =
− =
− =

− − =
− + + =

=
= Simplified wrt to V and I V I=

10

3

8

Projection

 The projection of a constraint C onto
variables V is a constraint C1 such that

� C1 only involves variables V
� Every solution of C is a solution of C1
� A solution of C1 can be extended to give a

solution of C
X Y Y Z Z

X Y Z

X Y Z

≥ ∧ ≥ ∧ ≥ 0

0 0 0

4 3 1

{ , , }

{ , , }

� � �

� � �

X

X

X

≥ 0

0

4

{ }

{ }

�

�

Constraint Logic Programming

Peter Stuckey 5

9

Fouriers Algorithm

 Eliminates variable y from linear ineqs C

 Write each ineq with y on one side of ineq

 For each pair
� produce a new ineq

 The result is all new ineqs and those ineqs
in C which do not involve y

t y y t1 2≤ ≤
t y y t1 2≤ ≤

t y y t t t1 2 1 2≤ ⊗ ≤ ≤

10

Fouriers Algorithm Example

Projecting out Y

X

Y

+1

+1-1

-1

X-1 +1

X Y

X Y

Y X

Y X

− ≤
− − ≤

≤ −
≤ +

1

1

1

1

X Y Y X X

X Y Y X

X Y Y X

X Y Y X X

− ≤ ⊗ ≤ − ≤
− ≤ ⊗ ≤ + ≤

− − ≤ ⊗ ≤ − ≤
− − ≤ ⊗ ≤ + − ≤

1 1 1

1 1 0 2

1 1 0 2

1 1 1

Result only involving X

X X≤ ∧ − ≤1 1

Constraint Logic Programming

Peter Stuckey 6

11

Projecting Term Constraints

 We can also project term constraints

 projected onto {X,Z} is

 But what is X = cons(Y,Z) projected onto X?

 Answer: there is no such constraint!

cons Y Y cons X Z succ Z succ T(,) (,) () ()= ∧ =

X Z=

12

Constraint Simplifiers

 constraints C1 and C2 are equivalent wrt
variables V if

� taking any solution of one and restricting it to
the variables V, this restricted solution can be
extended to be a solution of the other

 Example X=succ(Y) and X=succ(Z) wrt {X}
X succ Y X X succ Z

X succ a Y a X succ a X succ a Z a

X succ nil Y nil X succ nil X succ nil Z nil

= =() { } ()

{ (), } { ()} { (), }

{ (), } { ()} { (), }

� � � � �

� � � � �

Constraint Logic Programming

Peter Stuckey 7

13

Simplifier Definition

 A constraint simplifier is a function simpl
which takes a constraint C and set of
variables V and returns a constraint C1 that
is equivalent to C wrt V

 We can make a simplifier for real
inequalities from Fouriers algorithm

14

Tree Constraint Simplifier

 apply the term solver to C obtaining C1

 if C1 is false then return false

 foreach equation x=t in C1

 if x is in V then
� if t is a variable not in V

� substitute x for t throughout C1 and result
� else add x=t to result

 return result

Constraint Logic Programming

Peter Stuckey 8

15

Tree Simplification Example

Tree constraint to be simplified wrt {Y,T}

h f X Y g T h f g T X f X X g U((,), , ()) (((),), (,), ())=

Equivalent constraint from tree solver

Z f g U g U X g U Y g U T U= ∧ = ∧ = ∧ =((), ()) () ()

Discard the first two equations, keep the third
and use the last to substitute for U by T

Y g T= ()

16

Simplifier Properties

 Desirable properties of a simplifier are:
� projecting:
� weakly projecting: for all constraints C2 that

are equivalant to C1 wrt V

� a weakly projecting solver never uses more
variables than is required

 Both properties allow a simplifier to be used
as a solver (How?)

vars simpl C V V((,)) ⊆

| ((,)) | | () |vars simpl C V V vars C V1 2− ≤ −

Constraint Logic Programming

Peter Stuckey 9

17

Optimization

 Often given some problem which is
modelled by constraints wedont want just
any solution, but a “best” solution

 This is an optimization problem

 We need an objective function so that we
can rank solutions, that is a mapping from
solutions to a real value

18

Optimization Problem

 An optimization problem (C,f) consists of
a constraint C and objective function f

 A valuation v1 is preferred to valuation v2
if f(v1) < f(v2)

 An optimal solution is a solution of C such
that no other solution of C is preferred to it.

Constraint Logic Programming

Peter Stuckey 10

19

Optimization Example

0 1 2 3 4

1

2

3

4

Y

X

X+Y=4

An optimization problem

(,)C X Y f X Y≡ + ≥ ≡ +4 2 2

Find the closest point to the
origin satisfying the C.
Some solutions and f value

{ , }

{ , }

{ , }

X Y

X Y

X Y

� �

� �

� �

0 4 16

3 3 18

2 2 8
Optimal solution

{ , }X Y� �2 2

20

Optimization

 Some optimization problems have no
solution.

� Constraint has no solution

� Problem has no optimum

� For any solution there is more preferable one

(,)X X X≥ ∧ ≤2 0 2

(,)X X≤ 0

Constraint Logic Programming

Peter Stuckey 11

21

Simplex Algorithm

 The most widely used optimization
algorithm

 Optimizes a linear function wrt to linear
constraints

 Related to Gauss-Jordan elimination

22

Simplex Algorithm

 A optimization problem (C, f) is in simplex
form:

� C is the conjunction of CE and CI
� CE is a conjunction of linear equations
� CI constrains all variables in C to be non-

negative
� f is a linear expression over variables in C

Constraint Logic Programming

Peter Stuckey 12

23

Simplex Example

minimize subject to3 2 1

3

3 2 1

0 0 0 0

X+ Y-Z+

X Y

X Y Z T

X Y Z T

+ = ∧
− − + + = ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

An optimization problem in simplex form

• An arbitrary problem can be put in simplex form by

• replacing unconstrained var X by new vars

• replacing ineq by new var s and

X X+ −−

e r≤ e s r+ =

24

Simplex Solved Form

 A simplex optimization problem is in basic
feasible solved (bfs) form if:

� The equations are in solved form
� Each constant on the right hand side is non-

negative
� Only parameters occur in the objective

 A basic feasible solution is obtained by
setting each parameter to 0 and each non-
parameter to the constant in its equation

Constraint Logic Programming

Peter Stuckey 13

25

Simplex Example

minimize subject to10

3

4 2 2

0 0 0 0

− −
= − ∧
= + − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

Y Z

X Y

T Y Z

X Y Z T

An equivalent problem to that before in bfs form

We can read off a solution and its objective value
{ , , , }X T Y Z

f

� � � �3 4 0 0

10=

26

Simplex Algorithm

starting from a problem in bfs form

repeat

Choose a variable y with negative coefficient in the obj. func.

Find the equation x = b + cy + ... where c<0 and -b/c is minimal

Rewrite this equation with y the subject y = -b/c + 1/c x + ...

Substitute -b/c + 1/c x + ... for y in all other eqns and obj. func.

until no such variable y exists or no such equation exists

if no such y exists optimum is found

else there is no optimum solution

Constraint Logic Programming

Peter Stuckey 14

27

Simplex Example
minimize subject to10

3

4 2 2

0 0 0 0

− −
= − ∧
= + − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

Y Z

X Y

T Y Z

X Y Z T

Choose variable Y, the first
eqn is only one with neg.
coeff Y X= −3

minimize subject to7

3

10 2 2

0 0 0 0

+ −
= − ∧
= − − ∧
≥ ∧ ≥ ∧ ≥ ∧ ≥

X Z

Y X

T X Z

X Y Z T

Choose variable Z, the 2nd
eqn is only one with neg.
coeff Z X T= − −5 0 5.

minimize subject to2 2 0 5

3

5 0 5

0 0 0 0

+ +
= − ∧
= − − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

X T

Y X

Z X T

X Y Z T

.

.

No variable can be chosen,
optimal value 2 is found

28

Another example

0 1 2 3 4

1

2

3

4

Y

X

-2 -1 0

1

2

preferred
solutions

minimize subject toX Y

Y

X

X

Y X

−
≥ ∧
≥ ∧
≤ ∧

≤ +

0

1

3

2 3

An equivalent simplex form is:

X S

X S

X Y S

X Y S S S

− = ∧
+ = ∧

− + − = ∧
≥ ∧ ≥ ∧ ≥ ∧ ≥ ∧ ≥

2

3

1

1 2 3

1

3

2 3

0 0 0 0 0

An optimization problem
showing contours of the
objective function

Constraint Logic Programming

Peter Stuckey 15

29

Another example

0 1 2 3 4

1

2

3

4

Y

X

-2 -1 0

1

2

Basic feasible solution form: circle
minimize subject to0 0 5 0 5

3 0 5 0 5

2

3

1 3

1 3

2 3

3

+ −
= − − ∧
= − ∧
= − ∧

. .

. .

S S

Y S S

S S

X S

Choose S3, replace using 2nd eq

minimize subject to− + +
= − + ∧
= − ∧
= + ∧

1 0 5 0 5

3 0 5 0 5

2

1

1 2

1 2

3 2

2

. .

. .

S S

Y S S

S S

X S

Optimal solution: box

30

The Missing Part

 How do we get the initial basic feasible
solution?

 Solve a different simplex problem
� Add artificial variables to make equations in

basic feasible solved form
� Minimize the sumof the artificial variables
� If the sum is zero we can construct a bfs for the

original problem

Constraint Logic Programming

Peter Stuckey 16

31

The Missing Part Example

X S

X S

X Y S

− = ∧
+ = ∧

− + − =

2

3

1

1

3

2 3

Original simplex form equations

A X S

A X S

A X Y S

1 2

2 3

3 1

1

3

3 2

= − + ∧
= − − ∧
= + − −

With artificial vars in bfs form:

Objective function: minimize
A A A

X Y S S S
1 2 3

1 2 37 2

+ +
= − − − + −

32

Missing Part Example II

minimize subject toA A A

Y S S A A

S S A A

X S A

1 2 3

1 3 2 3

2 3 1 2

3 2

3 0 5 0 5 0 5 0 5

2

3

+ +
= − − − − ∧
= − + − ∧
= − −

. . . .

Problem after minization of objective function

Removing the artificial variables, the original problem

Y S S

S S

X S

= − − ∧
= − ∧
= − ∧

3 0 5 0 5

2

3

1 3

2 3

3

. .

Constraint Logic Programming

Peter Stuckey 17

33

Implication and Equivalence

 Other important operations involving
constraints are:

 implication: test if C1 implies C2
� impl(C1, C2) answers true, false or unknown

 equivalence: test if C1 and C2 are
equivalent

� equiv(C1, C2) answers true, false or unknown

34

Implication Example
B u ild in g a H ou s e

D oors
2 d ays

S tag e B

In te rio r W alls
4 d ays

C h im n ey
3 d ays

S tag e D

S tag e E

Tiles
3 d ays

R oof
2 d ays

W in d ows
3 d ays

S tag e C

E xterior W alls
3 d ays

S tag e A

F ou n d ation s
7 d ays

S tag e S

For the house constraints CH, will
stage B have to be reached after
stage C?

CH T TB C→ ≥

For this question the answer if
false, but if we require the house
to be finished in 15 days the
answer is true

CH T T TE B C∧ = → ≥15

Constraint Logic Programming

Peter Stuckey 18

35

Implication and Equivalence

 We can use impl to define equiv and vice
versa

 We can use a solver to do simple impl tests

 e.g.

impl C C equiv C C C(,) (,)1 2 1 1 2= ∧

equiv C C impl C C impl C C(,) (,) (,)1 2 1 2 2 1= ∧

impl C C solv C C(,) ()1 2 1 2= ¬ ∧ ¬

impl CH T T solv CH T TB C B C(,) ()≥ = ¬ ∧ <

36

Simplication, Optimization
and Implication Summary

 Equivalent constraints can be written in
many forms, hence we desire simplification

 Particularly if we are only interested in the
interaction of some of the variables

 Many problems desire a optimal solution,
there are algms (simplex) to find them

 We may also be interested in asking
questions involving implication

