Constraint Logic Programming

Peter Suckey

Chapter 2: Smplification,
Optimization and Implication

Where we learn more fun things we
can do with constraints.
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5?3(: Int Smplificati
¢ H J Constraint Smplification

¥ Two equivalent constraints represent the
same information, but

¥ One may be simpler than the other

X21UX2302=Y+X  Removing redundant
- X2302=Y+X  constraints, rewriting a
- 3 XOX=2-Y primitive constraint,
o X=2-YDO3< X changing order, substituting
o X=2-Y[O3<2-Y usinganequational
W X=2-Y[Oy<-p Preserve equivalence
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UL |
LY F Redundant Constraints
-

¥ One constraint C1 implies another C2 if the
solutions of C1 are a subset of those of C2

v C2issadto beredundant wrt C1
v Itiswritten Cl1 - C2
X223, X=21
Y<X+20Y24- X=21
cons( X, X) =cons(Z,nil) - Z =nil
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P} U
t'lg Redundant Constraints

¥ We can remove a primitive constraint which
Is redundant with respect to the rest of the
constraint.
X>210X 23 X =3
Y<X+20X210Y24 < Y<X+20Y24
cons( X, X) =consg(Z,nil) Z =nil « cons(X, X) = cons(Z,nil)

Definitely produces a simpler constraint

P} U
t'lg Solved Form Solvers

v Since asolved form solver creates
equivalent constraintsit can be asimplifier

For example using the term constraint solver
cons( X, X) =cons(Z,nil) Y = succ( X) Osucc(Z) =Y OZ = nil
o X =nilOZ=nil OY = succ(nil)

Or using the Gauss-Jordan solver
X=2+YO2Y+ X -T=Z0X+Y=40Z+T=5
o X=30Y=10Z=5-T
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h"PrOJectlon

It becomes even more important to simplify when we are
only interested in some variables in the constraint

Vi=11xR1 + 4 + a
— Vv

V2=12xR2 [

V-V1=0 V2
V1

V-V2=0

V1-V2=0 |[ lll le
I -11-12=0 v v

-1 +11+12=0

R1=5 10

R2 =10 SimplifiedwrttoVand | V=1

) )
L¥€ S Projection
- ~»
¥ The projection of aconstraint C onto
variables V isaconstraint C1 such that
v Clonly involves variables V

v Every solution of Cisasolution of C1

¥ A solution of C1 can be extended to give a
solution of C
Xz2YUOY=2Z0Z=0 X=0

{X+— 0,Y> 0,Z+ 0} {X 0
{X>4Y> 3,Z 1} {X 4}
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P} U
t'lg Fouriers Algorithm

¥ Eliminates variable y from linear inegs C
¥ Write each ineq with y on one side of ineq
% yst,
v Foreachpair t, <y Yy<t,
~produceanewineq tsyUyst,
¥ Theresult is al new inegs and those inegs
in C which do not involvey

t, <t,

o L W
t'lg Fouriers Algorithm Example

Projecting out Y o

X-1<Y
-1-X<y e &
Y<1-X
Y<1+X

+
——————————

X-1sYUY<1-X X<1

X-1<sYOY<1+X 0<2 Result only involving X
~1-X<YOY<1-X 0<2

X<1l0-1< X
~1-X<YOY<1+X -1<X - 10
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e} U

t'lg Projecting Term Constraints

¥ We can aso project term constraints
cons(Y,Y) =cons( X, Z) succ(Z) = succ(T)

v projected onto {X,Z} is X =Z

¥ But what is X = cons(Y,Z) projected onto X?

¥ Answer: there is no such constraint!
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“ . - . g
t'lg Constraint Smplifiers

¥ constraints C1 and C2 are equivalent wrt
variablesV if
¥ taking any solution of one and restricting it to
the variables V, this restricted solution can be
extended to be a solution of the other
¥ Example X=succ(Y) and X=succ(Z) wrt {X}
X = succ(Y) {X} X = sucg(2)
{X—succ(a),Y—a {Xsuec(a)) {Xe—>succ(a),Z—a}
{X>succ(nil),Y—nil} {X+>suce(nil)} { X+ suce(nil),Z > nil}
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o} U
t'lg Smplifier Definition

¥ A constraint simplifier isafunction ssmpl
which takes a constraint C and set of
variables V and returns a constraint C1 that
isequivaent to C wrt V

¥ We can make asimplifier for real
inequalities from Fouriers algorithm
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“ . - . g
t'lg Tree Constraint Smplifier

¥ apply the term solver to C obtaining C1
v if Clisfalsethen return false
~ foreach equation x=tin C1
vif XisinV then
~if t is avariablenotinV
~ substitute x for t throughout C1 and result

~else add x=t to result

¥ return result
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ﬁaT Smplification Exampl
L} J Tree Smplification Example

Tree constraint to be simplified wrt {Y,T}
h(f (X,Y),,9(T)) =h(f(9(T), X), f (X, X),9(U))
Equivalent constraint from tree solver
Z=1f(g(U),gU)0X=9gU)0Y=gU)0OT=U

Discard the first two equations, keep the third
and use the last to substitutefor U by T

Y =g(T)
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6“'39 lifier P '
LM J Smplifier Properties

¥ Desirable properties of asimplifier are:
¥ projecting: vars(simpl(C,V)) OV
¥ weakly projecting: for al constraints C2 that
are equivalant to C1 wrt V
|vars(simpl (CLV)) V| < |vars(C2) -V|

~ aweakly projecting solver never uses more
variables than isrequired

¥ Both properties allow a simplifier to be used
as asolver (How?)
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t'lf_.f Optimization

¥ Often gven some problem which is
modelled by constraints we dont want just
any solution, but a“best” solution

¥ Thisisan optimization problem

¥ We nead an objective function so that we
can rank solutions, that is a mapping from
solutionsto ared value
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@
t'lg Optimization Problem

¥ An optimization problem (C,f) consists of
a onstraint C and oljedive functionf

v A valuationvlispreferred to valuation v2
if f(vl) < f(v2)

v An optimal solution isasolution d C such
that no aher solution d Cispreferred toit.
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t'lg Optimization Example

An optimization problem 4
(C=X+Yz4, f=X2+Y?) ==

Find the closest point to the

origin satisfying the C.

Some solutions and f value
{(X0Y 4 16
{XH3Y¥Y—3 18 Optimal solution

(X>2Y-2) 8 (X 2Y 2
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“ . . .
t'lf_.! Optimization

¥ Some optimization problems have no
solution.
¥ Constraint has no solution
(X 220X <0, X?)
¥ Problem has no optimum
(X <0, X)

¥ For any solution there is more preferable one

20
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P Y U
t'lg Smplex Algorithm

~ The most widely used optimization
algorithm

¥ Optimizes alinear function wrt to linear
constraints

v Related to Gauss-Jordan elimination
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P L U
t'lg Smplex Algorithm

¥ A optimization problem (C, f) isin simplex
form:
¥ Cisthe conjunction of CE and Cl
~ CE isaconjunction of linear equations
¥ Cl constrains all variablesin C to be non-
negative
v fisalinear expression over variablesin C

22
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t'lg Smplex Example

An optimization problem in simplex form
minimize 3X+2Y-Z+1 subjed to
X +Y =30
-X =3¥Y +2Z +T =10
X=200Y=200Z2=z00T=0

» An arbitrary problem can be put in ssmplex form by
« replacing unconstrained var X by new vars X" — X~

s replacingineq e<r bynewvarsand €+sS=r
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o L W
t'lg Smplex Solved Form

¥ A simplex optimization problemisin basic
feasible solved (bfs) form if:
~ The equations are in solved form
~ Eadh constant on the right hand side is non-
negative
¥ Only parameters occur in the objective
¥ A basic feasible solution is obtained by
setting eat parameter to O and eat non
parameter to the constant in its equation

24
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Lo Smplex Example

An equivalent problem to that before in bfs form
minimize 10-Y — Z subject to
X= 3 -Y J
T= 4 +2Y -2Z 0O
Xz200Y=200z2=200T=0

We can read off a solution and its objective value
{ X 3TH—4Y-0,2Z- 0
f =10
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{'ias lex Algorith
L} J Smplex Algorithm

starting from a problem in bfs form

repeat
Choose avariable y with negative coefficient in the obj. func.
Find the equation x = b + ¢y + ... where c<0 and -b/c is minimal
Rewrite this equation with y the subject y = -b/c + 1/c x + ...
Substitute -b/c + L/c x + ... for y in all other egns and obj. func.

until no such variable y exists or no such equation exists

if no suchy exists optimum is found

else there is no optimum solution %
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363 simpl |
h"SmpexExampe

L V-7 sbi _
mini T' ze10 subject to Choose variable Z, the 2nd
X= 3 -Y egn isonly one with neg.
T= 4 +2Y -27Z 0O coeff Z=5-X-05T
X=00Y=200Z=00T=0
minimize 2+2X + 05T subject to

Choose variable Y, the first Y= 3 -X 0
egn isonly one with neg. Z= 5 —-X -05T O
coeff Y =3~ X X >00Y>00Z200T20
minimize 7 + X — Z subject to
Y= 3 -X 0 No variable can be chosen,
T= 10 -2X -2Z 0 optimal value 2 isfound

X=200Y=200zZz=z00T=0
27

€363 Another examp
‘) nother example

minimize X —Y subject to Y
4—
V20U -2 -1 0  preferred
X =10 /,/ // ) / ymlons
X <30 A
2Y< X +3

An equivalent simplex formis:

X -S =10
X +S, =30
-X +2Y -§ =30  Anoptimization problem
X 200Y200S 200S,200S,20 showing contours of the

objective function 28
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€363 Another examp
e Another example

Basic feasible solution form: circle YA

minimize 0+ 05S - 05S,; subject to 4_ 2 1 o
Y= 3 -05§ -05S, [ -l
S= 2 -5
X= 3 -s, O
Choose S3, replace using 2nd eq

minimize —1+05S, + 05S, subject to
Y= 3 -055 +05S, O
S= 2 -S O
X= 1 +S, 0O

Optimal solution: box
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(383 Tremis
e e Missing Part

¥ How do we get the initial basic feasible
solution?
v Solve adifferent ssmplex problem

¥ Add artificial variablesto make equationsin
basic feasible solved form

¥ Minimize the sumof the artificia variables
¥ If the sumis zero we can construct a bfs for the
original problem

30
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P ) U
t'lg The Missing Part Example

Original ssimplex form equations

X -S =10
X +S, =30
-X +2¥Y -§ =3
With artificia varsin bfsform:
A= 1 -X +S, O
A= 3 =X -S, O

A= 3 +X -2Y -§
Objective function: minimize
At A+ A
=7-X-2Y-S+S,-S,
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P L U
t'lg Missing Part Example 1|

Problem after minization of objective function
minimize A + A, + A, subject to

Y = 3 -05§ -05S ~05A, -05A, O
5 = 2 -S, +A A 0
X =3 -5, - A

Removing the artificial variables, the origina problem
Y= 3 -055 -05S, O
S=2 -S, O
X= 3 -S, O

32
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P} U
t'lg Implication and Equivalence

¥ Other important operations involving
constraints are:
v implication: test if C1 implies C2
¥ impl(C1, C2) answerstrue, false or unknown
v equivalence; test if C1 and C2 are

equivalent
¥ equiv(Cl, C2) answers true, false or unknown

Building a House

o L W
t'lg Implication Example

For the house constraints CH, will
stage B have to be reached after
stage C?

CH - T, 2T,

1
Exterior Walls
3 days

Chimney
3 days

Interior Walls
4 days

For this question the answer if
false, but if we require the house Doors
to be finished in 15 days the
answer istrue

CHOT.=15- T, =T,
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t'lg Implication and Equivalence

¥ We can use impl to define equiv and vice
versa
impl (C1,C2) = equiv(C1,C10C2)
equiv(C1,C2) =impl(C1,C2) Uimpl(C2,C1)

¥ We can use a solver to do simple impl tests
impl (C1,C2) = - solv(C10-C2)

v eg.impl(CH, Ty 2T.) = =solv(CH 0T, <T.)
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1 3 = Smplication, Optimization
~ and Implication SUmmary

¥ Equivalent constraints can be written in
many forms, hence we desire simplification

¥ Particularly if we are only interested in the
interaction of some of the variables

¥ Many problems desire a optimal solution,
there are algms (simplex) to find them

¥ We may also be interested in asking
guestions involving implication
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