Chapter 10: CLP Systems

Where we examine how CLP systems work and introduce an important concept for constraint solvers: incrementality

CLP Systems

- Simple Backtracking Goal Evaluation
- Incremental Constraint Solving
- Efficient Saving and Restoring of the Constraint Store
- Implementing If-Then-Else, Once and Negation
- Optimization
- Other Incremental Constraint Solvers
Backtracking Goal Evaln.

- Previously understood as depth-first left-right search through a derivation tree
- Specific algorithm: simple_solve_goal
 - parametric in solv and simpl
 - uses \text{defn}(P,L) \text{ which returns rules defining } L \text{ in program } P \text{ in the order they occur, renamed to not contain any previous variables}
- simple_solve_goal(G)
 - \text{return \ } simpl(\text{vars}(G) , \text{simple_backtrack}(<G|true>))

simple_backtrack

- \text{simple_backtrack}(<G|C>)
 - \text{if } G \text{ is empty return } C
 - \text{let } G \text{ be of the form } L, G'
 - \text{case } L \text{ is a primitive constraint}
 - \text{if } \text{solv}(C \land L) = false \text{ return false}
 - \text{return \ } \text{simple_backtrack}(<G'|C \land L>)
 - \text{case } L \text{ is an atom } p(s1,...,sn)
 - \text{foreach } p(t1,...,tn) :- B \text{ in } \text{defn}(P,L)
 - \text{C1 = simple_backtrack(<s1=t1,...,sn=tn,B,G'|C>)}
 - \text{if } C1 != false \text{ return } C1
 - \text{return false}
Example execution \textit{sum}(1,S)

\begin{itemize}
\item (S1) \textit{sum}(0,0).
\item (S2) \textit{sum}(N,N+S) :- \textit{sum}(N-1,S).
\end{itemize}

\begin{verbatim}
simple_backtrack(<\textit{sum}(1,S)|true>)
simple_backtrack(<1=0,S=0|true>) rule S1
 returns false
simple_backtrack(<1=N',S=N'+S',\textit{sum}(N'-1,S')|1=N'>) rule S2
 simple_backtrack(<S=N'+S',\textit{sum}(N'-1,S')|1=N'>)
 simple_backtrack(<\textit{sum}(N'-1,S')|1=N'\land S=N'+S'>)
 simple_backtrack(<N'-1=0,S'=0|1=N'\land S=N'+S'>) rule S1
 simple_backtrack(<S'=0|1=N'\land S=N'+S'/\land N'-1=0>)
 simple_backtrack(<1|1=N'\land S=N'+S'/\land N'-1=0\land S'=0>)
 returns 1=N'\land S=N'+S'/\land N'-1=0\land S'=0
simpl(S,1=N'\land S=N'+S'/\land N'-1=0\land S'=0) = S=1
\end{verbatim}

Incremental Solving

- The simple backtracking evaluation is inefficient, consider calls to \textit{solv}
 - \textit{solv}(1=0)
 - \textit{solv}(1 = N')
 - \textit{solv}(1 = N' \land S = N + S')
 - \textit{solv}(1 = N' \land S = N + S' \land N'-1 = 0)
 - \textit{solv}(1 = N' \land S = N + S' \land N'-1 = 0 \land S' = 0)
- Repeated work
Incremental Constraint Solver

- An **incremental constraint solver** is a function `isolv` which takes a primitive constraint `c` and returns `true`, `false` or `unknown`. There is an implicit constraint store `S`
 - if `isolv(c) = true` then `S ∧ c` is satisfiable
 - if `isolv(c) = false` then `S ∧ c` is unsatisfiable
 - if `isolv(c) != false` then store is updated to `S ∧ c`

Incremental Gauss-Jordan

- `inc_gj(c)`
 - `c := eliminate(c, S)`
 - if `c` is of the form `0 = 0` return `true`
 - if `c` is of the form `d = 0 (d != 0)` return `false`
 - rewrite `c` in the form `x = e`
 - `S := eliminate(S, x = e) ∧ x = e`
 - return `true`
 - `eliminate(C, x1 = e1 ∧ ... ∧ xn = en)`
 - foreach `xi`
 - replace `xi` by `ei` throughout `C`
 - return `C`
Incremental GJ Example

Solving \(I = N' \land S = N + S' \land N' - 1 = 0 \land S' = 0 \)

<table>
<thead>
<tr>
<th>(isolv(N'=1))</th>
<th>(S)</th>
<th>(c)</th>
<th>(eliminate(c, S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(isolv(S=N'+S'))</td>
<td>(N' = 1)</td>
<td>(1 = N')</td>
<td>(I = N')</td>
</tr>
<tr>
<td>(isolv(N'-1 = 0))</td>
<td>(S = N'+S')</td>
<td>(S = 1 + S')</td>
<td></td>
</tr>
<tr>
<td>(isolv(S' = 0))</td>
<td>(N'-1 = 0)</td>
<td>(0 = 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(S' = 0)</td>
<td>(S' = 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(S = 1 \land S = 1 \land S' = 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Incremental goal solver

- CLP systems use a global constraint store \(S \) and incremental solvers
- \(inc_{backtrack} \) similar to \(simple_{backtrack} \)
 - uses incremental solver
 - store is not part of argument
 - functions: \(save_{store} \), \(restore_{store} \) for saving and restoring the implicit store
inc_backtrack

- inc_backtrack(G)
 - if G is empty return true
 - let G be of the form L, G'
 - case L is a primitive constraint
 - if isolv(L) = false return false
 - return inc_backtrack(G')
 - case L is an atom p(s1,...,sn)
 - foreach p(t1,...,tn) :- B in defn(P,L)
 - save_store()
 - if inc_backtrack(s1=t1,...,sn=tn,B,G') then
 - return C1
 - restore_store()
 - return false

inc_solve_goal

- The incremental goal solving algorithm, making use of auxiliary functions to initialize and get the constraint store

- inc_solve_goal(G)
 - W := vars(G)
 - initialize_store()
 - if inc_backtrack(G) then
 - return simpl(W, get_store())
 - return false
Example execution sum(1,S)

<table>
<thead>
<tr>
<th>Constraint store stack</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc_backtrack(sum(1,S))</td>
<td><empty></td>
</tr>
<tr>
<td>inc_backtrack(1=0, S = 0)</td>
<td>true</td>
</tr>
<tr>
<td>return false</td>
<td><empty></td>
</tr>
<tr>
<td>inc_backtrack(1=N', S = N' + S', sum(N' -1, S'))</td>
<td>true</td>
</tr>
<tr>
<td>inc_backtrack(S = N' + S', sum(N' -1, S'))</td>
<td>true</td>
</tr>
<tr>
<td>inc_backtrack(sum(N'-1, S'))</td>
<td>true</td>
</tr>
<tr>
<td>inc_backtrack(N'-1 = 0, S' = 0)</td>
<td>true</td>
</tr>
<tr>
<td>inc_backtrack(S' = 0)</td>
<td>true</td>
</tr>
<tr>
<td>inc_backtrack([])</td>
<td>true</td>
</tr>
</tbody>
</table>

simpl((S), N' = 1 \land S = 1 \land S' = 0) = S = 1

Efficient saving and restoring

- Incremental solver requires saving/restoring the constraint store
- Don't need to save the entire store
- Save enough information to recreate store
 - **Trailing**: save modified parts of the constraint store in a trail and recover on backtracking
 - **Semantic backtracking**: store operations necessary to recover store
Trailing

- Associate a timestamp with each primitive constraint
- At a choicepoint
 - store the current timestamp
- Backtracking
 - remove all constraints with a later stamp
- Doesn't handle when an old primitive constraint is modified

Trailing

- Whenever an old constraint (from before the last choicepoint) is modified
 - save the old value in the trail
- Note we don't have to trail the same constraint again if it is modified again before another choicepoint
Trailing Gauss-Jordan

- Index each equation by arrival number
- Choicepoint saves:
 - index of last equation, last
 - trail of changes (initially empty)
- Whenever equation i is modified, if $i \leq last$ then each modified coefficient is added to trail $<i,x,a>$ or $<i,constant,b>$

Semantic Backtracking

- Save high-level operations of how to restore the constraint store (domain dependent)
- For Gauss-Jordan
 - a new constraint only eliminates a variable x
 - remember the old coefficients of x and
 - **undo** the elimination on backtracking
Semantic Backtracking Ex.

Imagine store is
1. \(X = Y + 2Z + 4 \)
 Removing constraint
2. \(U = 3Y + Z - 1 \)
3. \(V = 3 \)

Adding constraint
\[Y + 2V + X = 2 \]
Add coefficient * \((Y+Z+4)\) to eqns 1,2 and remove 4

Eliminate vars
\[Y = -Z - 4 \]
1. \(X = Z \)
2. \(U = -2Z - 13 \)
3. \(V = 3 \)
4. \(Y = -Z - 4 \)

Eliminate Y using equation and add.

Remember coeffs
\[[(1,Y,1),(2,Y,3)] \]

Extra Constructs

- So far “pure” programs (Chapter 4)
- Chapters 7 and 9 introduce
 - if-then-else
 - once
 - negation
 - optimization
- How are they implemented?
If-Then-Else, Once+Negation

- All three are implemented using a single construct, the *cut*, written !
- Cut prunes derivations from a tree
 - when reached: commit to this clause and remove any choices set up within this clause
- Very powerful, and dangerous
- Preferable to use if-then-else, once or negation rather than the lower level cut

Cut Example

Sum program for mode of usage: first arg fixed

\[
\text{sum}(N, SS) ::= \\
(N = 0 \rightarrow SS = 0) \\
; \quad \text{N} \geq 1, SS = N + S, \\
\text{sum}(N-1, S).
\]

Equivalent version with cut

\[
\text{sum}(N, SS) ::= \text{N} = 0, !, SS = 0. \\
\text{sum}(N, SS) ::= \text{N} \geq 1, SS = N + S, \\
\text{sum}(N-1, S).
\]
Cut Derivation Tree

When ! reached, other choices are pruned away.

Cut

- Cut commits to all choices made since when the atom which was rewritten that introduced the cut.
- Assume rewriting atom A' using rule
 - $A ::= L_1, \ldots, L_i, !, L_{i+1}, \ldots, L_n$
- When ! reached all choices for rewriting A' and all choices in evaluation L_1, \ldots, L_i are removed.
Implementing Cut

- Need save_store to return an index of the last store
- remove_choicepoints(i) removes all choicepoints with indexes >= i
- simply modify inc_backtrack for case introducing a cut

Modifying inc_backtrack

- **case** L is an atom $p(s_1,...,s_n)$
- **foreach** $p(t_1,...,t_n)$:- $L_1,...,L_n$ in defn(P,L)
 - $i :=$ save_store()
 - **if** some $L_j = !$ then
 - **if** inc_backtrack($s_1=t_1,...,s_n=t_n,L_1,...,L_{j-1}$) **then**
 - remove_choicepoints(i)
 - **return** inc_backtrack($L_j+1,...,L_n,G'$)
 - **elseif** inc_backtrack($s_1=t_1,...,s_n=t_n,C'$) **then**
 - **return** true
 - restore_store()
 - **return** **false**
Cut Example 2

\[h(X) : \neg X > 0, p(X), q(X) \]
\[h(4) \]
\[p(X) : \neg X < 4, r(X), !. \]
\[p(3) \]
\[r(1) \]
\[r(2) \]
\[q(2), q(3) \]

\[\begin{align*}
\text{Cut Example 2} \\
\text{constraint storestack} \\
\text{inc_backtrack(} h(X) \text{)} \\
\text{inc_backtrack(} X > 0, p(X), q(X) \text{)} \\
\text{inc_backtrack(} p(X), q(X) \text{)} \\
\text{inc_backtrack(} X < 4, r(X) \text{) (before cut)} \\
\text{inc_backtrack(} r(X) \text{)} \\
\text{return true} \\
\text{return false} \\
\text{inc_backtrack(} q(X) \text{) (after cut)} \\
\text{return false} \\
\text{inc_backtrack(} X = 4 \text{)} \\
\text{return true} \\
\end{align*} \]

Answer: \(X = 4 \)
If-Then-Else, Once+Negation

All are implemented using the meta-programming facilities and the cut.

\[
\begin{align*}
\text{once}(G) & \leftarrow \text{call}(G), !. \\
\text{not}(G) & \leftarrow \text{call}(G)!, !, \text{fail}. \\
\text{not}(G). \\
G1 \rightarrow G2 \ ; G3 & \leftarrow \text{call}(G1), !, \text{call}(G2). \\
G1 \rightarrow G2 \ ; G3 & \leftarrow \text{call}(G3).
\end{align*}
\]

Optimization

- **Implementing** \text{minimize}(G,E)
 - \text{minimize_store}(E): returns the minimal value of \text{E} wrt to current constraint store
 - search the derivation tree of \text{G} and collect minimum value \text{m} of \text{E}, then execute \text{E} = \text{m}, \text{G}
- **Multiple approaches to search**
 - retry search (restart after finding soln)
 - backtrack search (continue after finding)
Retry Optimization

- case L is minimization literal minimize(G,E)
 - i := save_store()
 - m := + ∞
 - while inc_backtrack(E < m, G) do
 - m := minimize_store(E)
 - remove_choicepoints(i+1)
 - restore_store()
 - i := save_store()
 - restore_store()
 - return inc_backtrack(E = m, G, G')

Retry Example

Evaluating minimize(butterfly(S,P), -P)

inc_backtrack(-P < + ∞ , butterfly(S,P))
 - answer: -P < + ∞ ∧ P = -100 ∧ 0 <= S <= 1
 - m := 100
inc_backtrack(-P < 100 , butterfly(S,P))
 - answer: -P < 100 ∧ P = 100S - 200 ∧ 1 <= S <= 3
 - m := -100
inc_backtrack(-P < -100, butterfly(S,P))
 - returns false
inc_backtrack(-P = -100, butterfly(S,P))
 - answers: P = 100 ∧ S = 3 (twice)
Backtracking Optimization

- minimize(G, E)
- Search the derivation tree for G
- At each success update the minimal value m of E found (handled by a catch literal)
- Then execute $E=m,G$

Backtracking Optimization

- case L is minimization literal minimize(G,E)
 - $i := \text{save}_\text{store}()$
 - $m := +\infty$
 - inc_backtrack($G, \text{catch}(m,E)$)
 - restore_store(i)
 - return inc_backtrack($E=m,G,G'$)
- case L is a catch subgoal catch(m,E)
 - if isolv($E < m$) != false then
 - $m := \text{minimize}_\text{store}(E)$
 - return false
Backtracking Example

\[
\text{inc_backtrack(butterfly}(S,P),\text{catch}(+, -P))
\]
\[
\text{inc_backtrack(}\text{catch}(+, -P))
\]
\[
\text{store: } P = -100 \land 0 \leq S \leq 1 \text{ sets } m := 100
\]
\[
\text{inc_backtrack(}\text{catch}(100, -P))
\]
\[
\text{store: } P = 100S - 200 \land 1 \leq S \leq 3 \text{ sets } m := -100
\]
\[
\text{inc_backtrack(}\text{catch}(-100, -P))
\]
\[
\text{store: } P = -100S + 400 \land 3 \leq S \leq 5
\]
\[
\text{isolv}(P < -100) \text{ fails no update}
\]
\[
\text{inc_backtrack(}\text{catch}(100, -P))
\]
\[
\text{store: } P = -100 S >= 5 \text{ fails no update}
\]
\[
\text{inc_backtrack(-P = -100, butterfly}(S,P))
\]
\[
\text{answers: } P = 100 \land S = 3 \text{ (twice)}
\]

Other Incremental Solvers

- Incremental Tree Solving
 - Use the store to eliminate variables and solve remainder as before, then use it to eliminate
 - inc_tree_solve(c)
 - c := eliminate(c, S)
 - R := unify(c)
 - if R = false then return false
 - S := eliminate(S,R) \land R
 - return true
Incremental Tree Solving Ex.

Constraints collected by goal \(\text{append([a], [b, c], L)} \)

\[
[a] = [F|R], \ [b, c] = Y, \ L = [F|Z], \ R = [], \ Y = Z
\]

<table>
<thead>
<tr>
<th>(c)</th>
<th>(S)</th>
<th>(\text{elim}(c))</th>
<th>(\text{unify}(c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>([a] = [F</td>
<td>R])</td>
<td>true</td>
<td>([a] = [F</td>
</tr>
<tr>
<td>([b, c] = Y)</td>
<td>(F = a \land R = [] \land Y = [b, c])</td>
<td>([b, c] = Y)</td>
<td>(Y = [b, c])</td>
</tr>
<tr>
<td>(L = [F</td>
<td>Z])</td>
<td>(F = a \land R = [] \land Y = [b, c] \land L = [a</td>
<td>Z])</td>
</tr>
<tr>
<td>(R = [])</td>
<td>(F = a \land R = [] \land Y = [b, c] \land L = [a</td>
<td>Z] \land [b, c] = Z)</td>
<td>([b, c] = Z)</td>
</tr>
</tbody>
</table>

Data Structures for Trees

- Tree constraints are stored/manipulated as dynamic data structures
 - **variable**: unique memory cell (pointer)
 - unconstrained: self-pointer
 - equated to term: pointer at term rep
 - **term** \(f(t_1, \ldots, t_n) \): \(n+1 \) memory cells
 - first: constructor info \(f/1 \)
 - rest: pointers to \(t_1, \ldots, t_n \)
 - optimization: store subtrees with no children directly
Data Structures for Trees

Handling the equation $f(a, W) = f(a, V)$

Match constructor/arities and each arg. Eqn $W = V$ binds W to V

Data Structures for Trees

Incrementally adding $g(W) = g(g(a))$

Represents solved form: $V = g(a) \land W = g(a)$
Occurs Check Revisited

- Most implementations ignore the occurs check!
- Problems: e.g. \(Y = g(Y) \)
- Builds cyclic structures
- Infinite computation
- e.g. \(Y = g(Y), Z = g(Z), Y = Z \)

Incremental Bounds Cons.

- Propagation is essentially incremental
- incremental bounds consistency:
 - Add new prim. constraint to store and queue
 - Pick prim. constraint from queue
 - Enforce its bounds consistency
 - Add prim. constraint with modified variables to queue
 - Repeat until queue is empty, or empty domain
Incremental Bounds Ex.

Smugglers knapsack, no whiskey

\[
\begin{align*}
\text{capacity} & : 4W + 3P + 2C \leq 9 \land 15W + 10P + 7C \geq 30 \\
D(W) &= [0..0], D(P) = [1..3], D(C) = [0..3]
\end{align*}
\]

Add first constraint
Add second constraint

CLP Systems Summary

- Incremental constraint solving
 - essential for efficiency
- Global constraint store
 - require efficient save and restore
- The Cut!
 - implements if-then-else, once + negation
- Minimization
 - many possible implementations