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Chapter 1: Constraints

What are they, what do they do and 
what can I use them for.

2

Constraints

 What are constraints?

 Modelling problems

 Constraint solving

 Tree constraints

 Other constraint domains

 Properties of constraint solving
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Constraints

Variable: a place holder for values
X Y Z L U List, , , , ,3 21

Function Symbol: mapping of values to values

Relation Symbol: relation between values

+ − × ÷, , , , sin,cos,||

= ≤ ≠, ,

4

Constraints

X

X Y

≥
+ =

4

2 9

Primitive Constraint: constraint relation with 
arguments

Constraint: conjunction of primitive constraints

X X Y Y≤ ∧ = ∧ ≥3 4
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Satisfiability

Valuation: an assignment of values to variables

θ
θ

=
+ = + × =

{ , , }

( ) ( )

X Y Z

X Y

� � �3 4 2

2 3 2 4 11

Solution: valuation which satisfies constraint

θ ( )

( )

X Y X

true

≥ ∧ = +
= ≥ ∧ = + =

3 1

3 3 4 3 1
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Satisfiability

Satisfiable: constraint has a solution

Unsatisfiable: constraint does not have a 
solution

X Y X

X Y X Y

≤ ∧ = +
≤ ∧ = + ∧ ≥

3 1

3 1 6

satisfiable

unsatisfiable
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Constraints as Syntax

 Constraints are strings of symbols

 Brackets don't matter (don't use them)

 Order does matter

 Some algorithms will depend on order

( ) ( )X Y Z X Y Z= ∧ = ∧ = ≡ = ∧ = ∧ =0 1 2 0 1 2

X Y Z Y Z X= ∧ = ∧ = /≡ = ∧ = ∧ =0 1 2 1 2 0

8

Equivalent Constraints

Two different constraints can represent the same 
information

X X

X Y Y X

X Y Y X Y X

> ↔ <
= ∧ = ↔ = ∧ =

= + ∧ ≥ ↔ = + ∧ ≥

0 0

1 2 2 1

1 2 1 3

Two constraints are equivalent if they have the same 
set of solutions
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Modelling with constraints

 Constraints describe idealized behaviour of 
objects in the real world

I
I1

I2

V

+

--
3_

+

-
-

V1
V2

--

R1 R2

V I R

V I R

V V

V V

V V

I I I

I I I

1 1 1

2 2 2

1 0

2 0

1 2 0

1 2 0

1 2 0

= ×
= ×

− =
− =
− =

− − =
− + + =
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Modelling with constraints
B u ild in g  a H ou se

D oors
2  d ays

S tag e B

In terior W alls
4  d ays

C h im n ey
3  d ays

S tag e D

S tag e E

Tiles
3  d ays

R oof
2  d ays

W in d ows
3  d ays

S tag e C

E xterio r W alls
3  d ays

S tag e A

Fou n d ation s
7  d ays

S tag e ST

T T

T T

T T

T T

T T

T T

T T

T T

S

A S

B A

C A

D A

D C

E B

E D

E C

≥
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +

0

7

4

3

3

2

2

3

3

start

foundations

interior walls

exterior walls

chimney

roof

doors

tiles

windows



Constraint Logic Programming

Peter Stuckey 6

11

Constraint Satisfaction

 Given a constraint C two questions
� satisfaction: does it have a solution?
� solution: give me a solution, if it has one?

 The first is more basic

 A constraint solver answers the satisfaction 
problem

12

Constraint Satisfaction

 How do we answer the question?

 Simple approach try all valuations.

X Y

X Y false

X Y false

X Y false

>

•
•
•

{ , }

{ , }

{ , }

� �

� �

� �

1 1

1 2

1 3

X Y

X Y false

X Y true

X Y false

X Y true

X Y true

>

•
•

{ , }

{ , }

{ , }

{ , }

{ , }

� �

� �

� �

� �

� �

1 1

2 1

2 2

3 1

3 2
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Constraint Satisfaction

 The enumeration method wont work for 
Reals (why not?)

 A smarter version will be used for finite 
domain constraints

 How do we solve Real constraints

 Remember Gauss-Jordan elimination from 
high school

14

Gauss-Jordan elimination

 Choose an equation c from C

 Rewrite c into the form x = e

 Replace x everywhere else in C by e

 Continue until 
� all equations are in the form x = e
� or an equation is equivalent to d = 0 (d != 0)

 Return true in the first case else false
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Gauss-Jordan Example 1
1 2

3

5

+ = + ∧
− = ∧

+ = +

X Y Z

Z X

X Y Z

Replace X by   2Y+Z-1

X Y Z

Z Y Z

Y Z Y Z

= + − ∧
− − + = ∧

+ − + = +

2 1

2 1 3

2 1 5

Replace   Y by   -1

X Z

Y

Z Z

= − + − ∧
= − ∧

− + − − = +

2 1

1

2 1 1 5

1 2+ = +X Y Z

− =2 2Y

− =4 5

Return   false

16

Gauss-Jordan Example 2
1 2

3

+ = + ∧
− =

X Y Z

Z X

Replace X by   2Y+Z-1

X Y Z

Z Y Z

= + − ∧
− − + =

2 1

2 1 3

Replace   Y by   -1

X Z

Y

= − ∧
= −

3

1

1 2+ = +X Y Z

− =2 2Y

Solved form: constraints in this form are satisfiable
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Solved Form

 Non-parametric variable: appears on the 
left of one equation.

 Parametric variable: appears on the right 
of any number of equations.

 Solution: choose parameter values and 
determine non-parameters

X Z

Y

= − ∧
= −

3

1
Z = 4

X

Y

= − =
= −

4 3 1

1

18

Tree Constraints

 Tree constraints represent structured data

 Tree constructor: character string
� cons, node, null, widget, f

 Constant: constructor or number

 Tree:
� A constant is a tree
� A constructor with a list of  > 0 trees is a tree
� Drawn with constructor above children
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Tree Examples

order

part quantity date

77665 widget
widget

17 3 feb 1994

red moose

order(part(77665, widget(red, moose)), 
quantity(17), date(3, feb, 1994))

cons

cons

cons

red

blue

red

cons

cons(red,cons(blue,con
s(red,cons(…))))
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Tree Constraints

 Height of a tree:
� a constant has height 1
� a tree with children t1, …, tn has height one 

more than the maximum of trees t1,…,tn

 Finite tree: has finite height

 Examples: height 4 and height ∞



Constraint Logic Programming

Peter Stuckey 11

21

Terms

 A term is a tree with variables replacing
subtrees

 Term:
� A constant is a term
� A variable is a term
� A constructor with a list of  > 0 terms is a term
� Drawn with constructor above children

 Term equation: s = t   (s,t terms)

22

Term Examples

part Q date

77665 widget
widget

3 feb Y

C moose

order

order(part(77665, widget(C, moose)), 
Q, date(3, feb, Y))

cons

cons

L

red

B

red

cons

cons(red,cons(B,cons(r
ed,L)))
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Tree Constraint Solving

 Assign trees to variables so that the terms 
are identical

� cons(R, cons(B, nil)) = cons(red, L)

 Similar to Gauss-Jordan

 Starts with a set of term equations C and an 
empty set of  term equations S

 Continues until C is empty or it returns false

{ , ( , ), }R red L cons blue nil B blue� � �

24

Tree Constraint Solving

� unify(C)
� Remove equation c from C
� case x=x: do nothing
� case f(s1,..,sn)=g(t1,..,tn): return false
� case f(s1,..,sn)=f(t1,..,tn):

� add s1=t1, .., sn=tn to C
� case t=x (x variable): add x=t to C
� case x=t (x variable): add x=t to S

� substitute t for x everywhere else in C and S
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Tree Solving Example

cons Y nil cons X Z Y cons a T

Y X nil Z Y cons a T

nil Z X cons a T

Z nil X cons a T

X cons a T

true

( , ) ( , ) ( , )

( , )

( , )

( , )

( , )

= ∧ =
= ∧ = ∧ =
= ∧ =

= ∧ =
=

true

true

Y X

Y X

Y X Z nil

Y cons a T Z nil X cons a T

=
=

= ∧ =
= ∧ = ∧ =( , ) ( , )

C S

{ , ( , ), ( , ), }T nil X cons a nil Y cons a nil Z nil� � � �

Like Gauss-Jordan, variables are parameters or non-parameters. 
A solution results from setting parameters (I.e T) to any value.

26

One extra case

 Is there a solution to X = f(X) ?

 NO! 
� if the height of X in the solution is n
� then f(X) has height n+1

 Occurs check:
� before substituting t for x
� check that x does not occur in t
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Other Constraint Domains

 There are many
� Boolean constraints
� Sequence constraints
� Blocks world

 Many more, usually related to some well 
understood mathematical structure

28

Boolean Constraints

Used to model circuits, register allocation problems, etc.

X

Y

Z
O

A N

An exclusive or gate

O X Y

A X Y

N A

Z O N

↔ ∨ ∧
↔ ∧
↔ ¬ ∧
↔

( )

( & )

( & )

Boolean constraint 
describing the xor circuit
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Boolean Constraints
X

Y

Z
O

A N

¬ ↔ ↔ ∨ ∧
¬ ↔ ↔ ∧
¬ ↔ ↔ ¬ ∧
¬ ↔ ↔

FO O X Y

FA A X Y

FN N A

FG Z N O

( ( ))

( ( & ))

( )

( ( & )

Constraint modelling the circuit  with faulty variables
¬ ∧ ¬ ∧ ¬ ∧
¬ ∧ ¬ ∧ ¬

( & ) ( & ) ( & )

( & ) ( & ) ( & )

FO FA FO FN FO FG

FA FN FA FG FN FG
Constraint modelling that only one gate is faulty

{ , , }X Y Z� � �0 0 1

{ , , , ,

, , , , , }

FO FA FN FG

X Y O A N Z

� � � �

� � � � � �

1 0 0 0

0 0 1 0 1 1

Observed behaviour:
Solution:

30

Boolean Solver

let m be the number of primitive constraints in C

epsilon is between 0 and 1 and

determines the degree of incompleteness

for i := 1 to n do

generate a random valuation over the variables in C

if the valuation satisfies C then return true endif

endfor

return unknown

n

m
m

:
ln( )

ln( ( )
=

− −

















ε

1 1
1
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Boolean Constraints

 Something new?

 The Boolean solver can return unknown

 It is incomplete (doesnt answer all 
questions)

 It is polynomial time, where a complete 
solver is exponential (unless P = NP)

 Still such solvers can be useful!

32

Blocks World Constraints

Objects in the blocks world can be on the floor or on 
another object. Physics restricts which positions are 
stable. Primitive constraints are e.g. red(X), on(X,Y), 
not_sphere(Y).

floor

Constraints don't have to be mathematical
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Blocks World Constraints

A solution to a Blocks World constraint is a picture

with an annotation of which variable is which block

yellow Y

red X

on X Y

floor Z

red Z

( )

( )

( , )

( )

( )

∧
∧

∧
∧

Y

X

Z

34

Solver Definition

 A constraint solver is a function solv
which takes a constraint C and returns true, 
false or unknown depending on whether the 
constraint is satisfiable

� if solv(C) = true then C is satisfiable
� if solv(C) = false then C is unsatisfiable
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Properties of Solvers

 We desire solvers to have certain properties

 well-behaved:
� set based: answer depends only on set of 

primitive constraints
� monotonic: is solver fails for  C1 it also fails 

for  C1 /\ C2
� variable name independent: the solver gives 

the same answer regardless of names of vars

solv X Y Y Z solv T U U Z( ) ( )> ∧ > = > ∧ >1 1

36

Properties of Solvers

 The most restrictive property we can ask

 complete: A solver is complete if it always 
answers true or false. (never unknown)
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Constraints Summary

 Constraints are pieces of syntax used to 
model real world behaviour

 A constraint solver determines if a 
constraint has a solution

 Real arithmetic and tree constraints

 Properties of solver we expect (well-
behavedness)


