
Constraint Logic Programming

Peter Stuckey 1

1

Chapter 1: Constraints

What are they, what do they do and
what can I use them for.

2

Constraints

 What are constraints?

 Modelling problems

 Constraint solving

 Tree constraints

 Other constraint domains

 Properties of constraint solving

Constraint Logic Programming

Peter Stuckey 2

3

Constraints

Variable: a place holder for values
X Y Z L U List, , , , ,3 21

Function Symbol: mapping of values to values

Relation Symbol: relation between values

+ − × ÷, , , , sin,cos,||

= ≤ ≠, ,

4

Constraints

X

X Y

≥
+ =

4

2 9

Primitive Constraint: constraint relation with
arguments

Constraint: conjunction of primitive constraints

X X Y Y≤ ∧ = ∧ ≥3 4

Constraint Logic Programming

Peter Stuckey 3

5

Satisfiability

Valuation: an assignment of values to variables

θ
θ

=
+ = + × =

{ , , }

() ()

X Y Z

X Y

� � �3 4 2

2 3 2 4 11

Solution: valuation which satisfies constraint

θ ()

()

X Y X

true

≥ ∧ = +
= ≥ ∧ = + =

3 1

3 3 4 3 1

6

Satisfiability

Satisfiable: constraint has a solution

Unsatisfiable: constraint does not have a
solution

X Y X

X Y X Y

≤ ∧ = +
≤ ∧ = + ∧ ≥

3 1

3 1 6

satisfiable

unsatisfiable

Constraint Logic Programming

Peter Stuckey 4

7

Constraints as Syntax

 Constraints are strings of symbols

 Brackets don't matter (don't use them)

 Order does matter

 Some algorithms will depend on order

() ()X Y Z X Y Z= ∧ = ∧ = ≡ = ∧ = ∧ =0 1 2 0 1 2

X Y Z Y Z X= ∧ = ∧ = /≡ = ∧ = ∧ =0 1 2 1 2 0

8

Equivalent Constraints

Two different constraints can represent the same
information

X X

X Y Y X

X Y Y X Y X

> ↔ <
= ∧ = ↔ = ∧ =

= + ∧ ≥ ↔ = + ∧ ≥

0 0

1 2 2 1

1 2 1 3

Two constraints are equivalent if they have the same
set of solutions

Constraint Logic Programming

Peter Stuckey 5

9

Modelling with constraints

 Constraints describe idealized behaviour of
objects in the real world

I
I1

I2

V

+

--
3_

+

-
-

V1
V2

--

R1 R2

V I R

V I R

V V

V V

V V

I I I

I I I

1 1 1

2 2 2

1 0

2 0

1 2 0

1 2 0

1 2 0

= ×
= ×

− =
− =
− =

− − =
− + + =

10

Modelling with constraints
B u ild in g a H ou se

D oors
2 d ays

S tag e B

In terior W alls
4 d ays

C h im n ey
3 d ays

S tag e D

S tag e E

Tiles
3 d ays

R oof
2 d ays

W in d ows
3 d ays

S tag e C

E xterio r W alls
3 d ays

S tag e A

Fou n d ation s
7 d ays

S tag e ST

T T

T T

T T

T T

T T

T T

T T

T T

S

A S

B A

C A

D A

D C

E B

E D

E C

≥
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +

0

7

4

3

3

2

2

3

3

start

foundations

interior walls

exterior walls

chimney

roof

doors

tiles

windows

Constraint Logic Programming

Peter Stuckey 6

11

Constraint Satisfaction

 Given a constraint C two questions
� satisfaction: does it have a solution?
� solution: give me a solution, if it has one?

 The first is more basic

 A constraint solver answers the satisfaction
problem

12

Constraint Satisfaction

 How do we answer the question?

 Simple approach try all valuations.

X Y

X Y false

X Y false

X Y false

>

•
•
•

{ , }

{ , }

{ , }

� �

� �

� �

1 1

1 2

1 3

X Y

X Y false

X Y true

X Y false

X Y true

X Y true

>

•
•

{ , }

{ , }

{ , }

{ , }

{ , }

� �

� �

� �

� �

� �

1 1

2 1

2 2

3 1

3 2

Constraint Logic Programming

Peter Stuckey 7

13

Constraint Satisfaction

 The enumeration method wont work for
Reals (why not?)

 A smarter version will be used for finite
domain constraints

 How do we solve Real constraints

 Remember Gauss-Jordan elimination from
high school

14

Gauss-Jordan elimination

 Choose an equation c from C

 Rewrite c into the form x = e

 Replace x everywhere else in C by e

 Continue until
� all equations are in the form x = e
� or an equation is equivalent to d = 0 (d != 0)

 Return true in the first case else false

Constraint Logic Programming

Peter Stuckey 8

15

Gauss-Jordan Example 1
1 2

3

5

+ = + ∧
− = ∧

+ = +

X Y Z

Z X

X Y Z

Replace X by 2Y+Z-1

X Y Z

Z Y Z

Y Z Y Z

= + − ∧
− − + = ∧

+ − + = +

2 1

2 1 3

2 1 5

Replace Y by -1

X Z

Y

Z Z

= − + − ∧
= − ∧

− + − − = +

2 1

1

2 1 1 5

1 2+ = +X Y Z

− =2 2Y

− =4 5

Return false

16

Gauss-Jordan Example 2
1 2

3

+ = + ∧
− =

X Y Z

Z X

Replace X by 2Y+Z-1

X Y Z

Z Y Z

= + − ∧
− − + =

2 1

2 1 3

Replace Y by -1

X Z

Y

= − ∧
= −

3

1

1 2+ = +X Y Z

− =2 2Y

Solved form: constraints in this form are satisfiable

Constraint Logic Programming

Peter Stuckey 9

17

Solved Form

 Non-parametric variable: appears on the
left of one equation.

 Parametric variable: appears on the right
of any number of equations.

 Solution: choose parameter values and
determine non-parameters

X Z

Y

= − ∧
= −

3

1
Z = 4

X

Y

= − =
= −

4 3 1

1

18

Tree Constraints

 Tree constraints represent structured data

 Tree constructor: character string
� cons, node, null, widget, f

 Constant: constructor or number

 Tree:
� A constant is a tree
� A constructor with a list of > 0 trees is a tree
� Drawn with constructor above children

Constraint Logic Programming

Peter Stuckey 10

19

Tree Examples

order

part quantity date

77665 widget
widget

17 3 feb 1994

red moose

order(part(77665, widget(red, moose)),
quantity(17), date(3, feb, 1994))

cons

cons

cons

red

blue

red

cons

cons(red,cons(blue,con
s(red,cons(…))))

20

Tree Constraints

 Height of a tree:
� a constant has height 1
� a tree with children t1, …, tn has height one

more than the maximum of trees t1,…,tn

 Finite tree: has finite height

 Examples: height 4 and height ∞

Constraint Logic Programming

Peter Stuckey 11

21

Terms

 A term is a tree with variables replacing
subtrees

 Term:
� A constant is a term
� A variable is a term
� A constructor with a list of > 0 terms is a term
� Drawn with constructor above children

 Term equation: s = t (s,t terms)

22

Term Examples

part Q date

77665 widget
widget

3 feb Y

C moose

order

order(part(77665, widget(C, moose)),
Q, date(3, feb, Y))

cons

cons

L

red

B

red

cons

cons(red,cons(B,cons(r
ed,L)))

Constraint Logic Programming

Peter Stuckey 12

23

Tree Constraint Solving

 Assign trees to variables so that the terms
are identical

� cons(R, cons(B, nil)) = cons(red, L)

 Similar to Gauss-Jordan

 Starts with a set of term equations C and an
empty set of term equations S

 Continues until C is empty or it returns false

{ , (,), }R red L cons blue nil B blue� � �

24

Tree Constraint Solving

� unify(C)
� Remove equation c from C
� case x=x: do nothing
� case f(s1,..,sn)=g(t1,..,tn): return false
� case f(s1,..,sn)=f(t1,..,tn):

� add s1=t1, .., sn=tn to C
� case t=x (x variable): add x=t to C
� case x=t (x variable): add x=t to S

� substitute t for x everywhere else in C and S

Constraint Logic Programming

Peter Stuckey 13

25

Tree Solving Example

cons Y nil cons X Z Y cons a T

Y X nil Z Y cons a T

nil Z X cons a T

Z nil X cons a T

X cons a T

true

(,) (,) (,)

(,)

(,)

(,)

(,)

= ∧ =
= ∧ = ∧ =
= ∧ =

= ∧ =
=

true

true

Y X

Y X

Y X Z nil

Y cons a T Z nil X cons a T

=
=

= ∧ =
= ∧ = ∧ =(,) (,)

C S

{ , (,), (,), }T nil X cons a nil Y cons a nil Z nil� � � �

Like Gauss-Jordan, variables are parameters or non-parameters.
A solution results from setting parameters (I.e T) to any value.

26

One extra case

 Is there a solution to X = f(X) ?

 NO!
� if the height of X in the solution is n
� then f(X) has height n+1

 Occurs check:
� before substituting t for x
� check that x does not occur in t

Constraint Logic Programming

Peter Stuckey 14

27

Other Constraint Domains

 There are many
� Boolean constraints
� Sequence constraints
� Blocks world

 Many more, usually related to some well
understood mathematical structure

28

Boolean Constraints

Used to model circuits, register allocation problems, etc.

X

Y

Z
O

A N

An exclusive or gate

O X Y

A X Y

N A

Z O N

↔ ∨ ∧
↔ ∧
↔ ¬ ∧
↔

()

(&)

(&)

Boolean constraint
describing the xor circuit

Constraint Logic Programming

Peter Stuckey 15

29

Boolean Constraints
X

Y

Z
O

A N

¬ ↔ ↔ ∨ ∧
¬ ↔ ↔ ∧
¬ ↔ ↔ ¬ ∧
¬ ↔ ↔

FO O X Y

FA A X Y

FN N A

FG Z N O

(())

((&))

()

((&)

Constraint modelling the circuit with faulty variables
¬ ∧ ¬ ∧ ¬ ∧
¬ ∧ ¬ ∧ ¬

(&) (&) (&)

(&) (&) (&)

FO FA FO FN FO FG

FA FN FA FG FN FG
Constraint modelling that only one gate is faulty

{ , , }X Y Z� � �0 0 1

{ , , , ,

, , , , , }

FO FA FN FG

X Y O A N Z

� � � �

� � � � � �

1 0 0 0

0 0 1 0 1 1

Observed behaviour:
Solution:

30

Boolean Solver

let m be the number of primitive constraints in C

epsilon is between 0 and 1 and

determines the degree of incompleteness

for i := 1 to n do

generate a random valuation over the variables in C

if the valuation satisfies C then return true endif

endfor

return unknown

n

m
m

:
ln()

ln(()
=

− −

















ε

1 1
1

Constraint Logic Programming

Peter Stuckey 16

31

Boolean Constraints

 Something new?

 The Boolean solver can return unknown

 It is incomplete (doesnt answer all
questions)

 It is polynomial time, where a complete
solver is exponential (unless P = NP)

 Still such solvers can be useful!

32

Blocks World Constraints

Objects in the blocks world can be on the floor or on
another object. Physics restricts which positions are
stable. Primitive constraints are e.g. red(X), on(X,Y),
not_sphere(Y).

floor

Constraints don't have to be mathematical

Constraint Logic Programming

Peter Stuckey 17

33

Blocks World Constraints

A solution to a Blocks World constraint is a picture

with an annotation of which variable is which block

yellow Y

red X

on X Y

floor Z

red Z

()

()

(,)

()

()

∧
∧

∧
∧

Y

X

Z

34

Solver Definition

 A constraint solver is a function solv
which takes a constraint C and returns true,
false or unknown depending on whether the
constraint is satisfiable

� if solv(C) = true then C is satisfiable
� if solv(C) = false then C is unsatisfiable

Constraint Logic Programming

Peter Stuckey 18

35

Properties of Solvers

 We desire solvers to have certain properties

 well-behaved:
� set based: answer depends only on set of

primitive constraints
� monotonic: is solver fails for C1 it also fails

for C1 /\ C2
� variable name independent: the solver gives

the same answer regardless of names of vars

solv X Y Y Z solv T U U Z() ()> ∧ > = > ∧ >1 1

36

Properties of Solvers

 The most restrictive property we can ask

 complete: A solver is complete if it always
answers true or false. (never unknown)

Constraint Logic Programming

Peter Stuckey 19

37

Constraints Summary

 Constraints are pieces of syntax used to
model real world behaviour

 A constraint solver determines if a
constraint has a solution

 Real arithmetic and tree constraints

 Properties of solver we expect (well-
behavedness)

