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Chapter 1. Constraints

What are they, what do they do and
what can | use them for.

P} U
tu 3 Constraints

v What are constraints?

v Modelling problems

¥ Constraint solving

¥ Tree constraints

¥ Other constraint domains

¥ Properties of constraint solving
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Variable: aplace holder for values
X,Y,Z,L,,U,,, List

Function Symbol: mapping of values to values
+,—,%X,+,sin,cos, ||

Relation Symbol: relation between values

=<, %
<« =) _
L€ Constraints
- >
Primitive Constraint: constraint relation with
arguments
X=4
X+2Y=9

Constraint: conjunction of primitive constraints

X<3UX=YUY=4
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t'lg Satisfiability

Valuation: an assignment of values to variables
6={X—>3Y—>4,7Z— 2}
B(X +2Y)=(3+2x4) =11

Solution: vauation which satisfies constraint

6(X =30Y = X +1)
=(3=2304=3+1) =true

“ . . g
t'lg Satisfiability

Satisfiable: constraint has a solution

Unsatisfiable: constraint does not have a
solution

X<3[Y=X+1 satisfiable
X<3LY=X+1Y=6 unsatisfiable
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tu 3 Constraints as Syntax

¥ Constraints are strings of symbals
¥ Bradkets dont matter (dont use them)
(X=00Y=1)0z=2= X=00(Y=10Z=2)
¥ Order does matter
X =00Y=10Z2=2 # Y=10Z2=20X=0
¥ Some dgorithms will depend on ader

“ . .
tu 3 Equivalent Constraints

Two dff erent constraints can represent the same
information
X>0 0<X

X=10¥=2 - Y=20X =1
X=Y+110¥Y22 o X=Y+11X 23

Two constraints are equivalent if they have the same
set of solutions
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objectsin therea world
V1=11xR1
V2=12xR2

V-V2=0
V1-V2=0 ,[
1 -11-12=0
—1+11+12=0

-
LI 3 Modelling with constraints
-

¥ Constraints describe idealized behaviour of

V-V1=0 —

V1

3]
~
stat 1520
foundations Ta 2 Ts+7
interiorwalls Tz 2T, +4
exteriorwalls Tc =T, +3
chimney Tp=2T,+3
roof Tp=T.+2
doors To =T, +2
tiles T 2T, +3

windows Tg =T, +3

H . . .
S"U Modelling with constraints

Building a House
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tu ¥ Constraint Satisfaction

¥ Given aconstraint C two questions
v satisfaction: does it have a solution?
v solution: give me asolution, if it has one?

v~ Thefirst iIsmore basic

v A constraint solver answers the satisfaction
problem

11

“ . . -
tu ¥ Constraint Satisfaction

¥ How do we answer the question?
v Simple approach try all valuations.

X >Y
{X—>1lY—1 false
{X>2 YT true
{X+—>2Y— 2} false
{X—>3Y—1 true
{XH—3Y>2} true

X>Y
{ X 1LY 1 false
{ X 1Y 2} false
{ X 1LY 3 false

12
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tu ¥ Constraint Satisfaction

¥ The enumeration method wont work for
Reals (why not?)

¥ A smarter version will be used for finite
domain constraints

¥ How do we solve Real constraints

¥ Remember Gauss-Jordan elimination from
high school

13

tu ¥ Gauss-Jordan elimination

¥ Choose an equation ¢ from C
¥ Rewrite cinto theformx= e
v Replace x everywhere elsein C by e

¥ Continue until

v adl equationsareintheformx= e

¥ or an equation isequivaenttod = 0 (d!= 0)
¥ Return truein the first case else false

14
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tu 3 Gauss-Jordan Example 1

1+ X =2Y + Z2 0 1+ X =2Y+Z
Z - X =310
X +Y =5+ 27

Replace X by 2Y+Z-1

2Y + Z - 10

Z -2Y -2Z +1=30 -2Y=2
2Y + Z -1+Y =5+ Z
Replace Y by -1
X = -2+ 272 -10
Y = -10
-2+ Z7Z-1-1=5+1Z —4=5
15
Return false

P J U
t'u'J Gauss-Jordan Example 2

1+ X
Z - X

2Y + Z O 1+ X=2Y+Z
3

Replace X by 2Y+Z-1

X 2Y +Z -10
Z -2Y -2Z +1=3 -2Y=2

Replace Y by -1

X =2Z -30
Y = -1

Solved form: constraints in this form are satisfiable
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tu: Solved Form

¥ Non-parametric variable: appears on the
left of one equation.

v Parametric variable: appears on the right
of any number of equations.

¥ Solution: choose parameter values and
determine non-parameters

X =Z_3D—>Z:4—>X =4-3=1
Y = -1 Y = -1
tu: Tree Constraints

¥ Tree constraints represent structured data
¥ Treeconstructor: character string
¥ cons, node, null, widget, f
¥ Constant: constructor or number
v Tree
¥ A constant isatree

¥ A constructor with alist of > 0treesisatree
~ Drawn with constructor above children

18
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tu 3 TreeExamples
order
part/quantlity \date / \4
Y R VAN
77665 widget 17 3 feb 1994 biue e
o e LN
7 N\
order(part(77665,widget(red, moose)),  cons(red,cons(blue,con
quartity(17), date(3, feb, 1999) s(red,cons(...))))
“ -
tu 3 TreeConstraints

v Height of atree:
¥ aconstant has height 1

v atree with childrentl, ..., tn has height one
more than the maximum of treestl,...tn

¥ Finitetree: hasfinite height
v Examples: height 4 and height OO

20

10
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439 Terms

¥ A termisatree with variables replacing

subtrees

v Term:
¥ A constant isaterm
v A variableisaterm

¥ A constructor with alist of >0termsisaterm
~ Drawn with constructor above children

v Term equation: s=1t (Stterms)

21

Qe |
Red Term Examples

order

part Q date

/N <N

77665 widget 3 feb Y

C moose

order (part(77665, widget(C, moose)),
Q, date(3, feb, Y))

cons

SN
AN
g

I

cons(red,cons(B,cons(r
ed,L)))

22
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tu 3 Tree Constraint Solving

¥ Assign trees to variables so that the terms
are identical

¥ cons(R, cons(B, nil)) = cons(red, L)
{R red, L — cons(blue,nil), B blue}
¥ Similar to Gauss-Jordan
¥ Starts with a set of term equations C and an
empty set of term equations S

¥ Continues until C isempty or it returns false

23

“ . .
tu 3 Tree Constraint Solving

¥ unify(C)
¥ Remove equation ¢ from C
¥ case x=X: do nothing
v case f(sl,..,sn)=g(tl,..,tn): return false
v case f(sl,..,sn)=f(t1,..,tn):
vadd sl=t1, .., sn=tnto C
v caset=x (x variable): add x=tto C
v case x=t (x variable): add x=tto S

v substitute t for x everywhereelsein Cand S
24
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tu 3 Tree Solving Example
c S
cons(Y,nil) = cons( X,Z) Y = cons(a, T) true
Y =X 0Onil =Z0Y =cong(a, T) true
nil =Z0X =cong(a,T) Y=X
Z=nil OX =cong(a,T) Y=X
Y=X0OZ=nil

X =cons(a,T)
true Y =cons(a, T) JZ =nil 0 X =cons(a, T)
Like Gauss-Jordan, variables are parameters or non-parameters.
A solution results from setting parameters (1.e T) to any value.

{T  nil, X - cons(a,nil),Y - cons(a,nil),Z - nil}

P} U
tu 3 One extra case

v Isthere asolution to X = f(X) ?

¥ NO!
¥ if the height of X in the solutionisn
¥ then f(X) has height n+1

¥ Occur s check:

~ before substituting t for x
¥ check that x does not occur in't

26
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LY, I Other Constraint Domains
-

¥ There are many
~ Boolean constraints
¥ Seguence constraints
¥ Blocks world
¥ Many more, usually related to some well
understood mathematical structure

27

L€ Boolean Constraints

Used to model circuits, register allocation problems, etc.

Hoer T v
N Z o (O& N)

An exclusive or gate Boolean constraint

O - (XOY)O
_._Q)O—LDL Ao (X&Y)O

describing the xor circuig

14
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tu ¥ Boolean Constraints

X
@)
ZFO « (O - (XOY) O ~
AFA o (Ao (X&Y)D }

AFN o (N o =A) 0
“FG o (Z - (N&O) v A N

|
Constraint modelling the circuit with faulty variables
- (FO& FA) 0~ (FO& FN) O~ (FO& FG) O
- (FA& FN) 0~ (FA& FG) 0-(FN& FG)
Constraint modelling that only one gate is faulty

Observed behaviour: { X 0,Y— 0,2+ 1

Solution: {FO—1L,FA— 0,FN - 0,FG - 0,
29

X0Y—»00~1LA0ONPHLZ-> T

P} U
tu 3 Boolean Solver

let m be the number of primitive constraintsin C
B E In(e) E epsilon is between 0 and 1 and
e Hn(l—(l—;)mé determines the degree of incompl eteness
fori:=1tondo
generate a random valuation over the variablesin C
if the valuation satisfies C then return true endif
endfor

return unknown
30
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v Something new?
v The Boolean solver can return unknown

¥ [t isincomplete (doesnt answer all
guestions)

¥ Itispolynomial time, where a complete
solver is exponential (unless P = NP)

¥ Still such solvers can be useful!

31

L€ 3 Blocks World Constraints

@A -

Constraintsdon't have to be mathematical

Objects in the blocks world can be on the floor or on
another object. Physics restricts which positions are
stable. Primitive constraints are e.g. red(X), on(X,Y),

not_spher&(Y).

32
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t'lg Blocks World Constraints

A solution to a Blocks World constraint is a picture

with an annotation of which variable is which block

yellow(Y) O
red(X) O

on(X,Y) O
floor (Z) O A
| @

33

“ . -
t'lf_.! Solver Definition

v A constraint solver isafunction solv
which takes a constraint C and returns true,
false or unknown depending on whether the
constraint is satisfiable

v if solv(C) = true then C is satisfiable
¥ if solv(C) = false then C is unsatisfiable

17
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t'lg Properties of Solvers

¥ We desire solversto have certain properties

v~ well-behaved:

¥ set based: answer depends only on set of
primitive constraints

¥ monotonic: is solver failsfor Clit alsofails
for CLNAC2

v variable name independent: the solver gives
the same answer regardless of names of vars

SolV(X >YOY >Z) = sv(T >U, (U, >2)

P} U
t'lg Properties of Solvers

¥ The most restrictive property we can ask

v complete: A solver iscompleteif it always
answers true or false. (never unknown)

36
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tu 3 Constraints Summary

¥ Constraints are pieces of syntax used to
model real world behaviour

¥ A constraint solver determinesif a
constraint has a solution

v Real arithmetic and tree constraints

¥ Properties of solver we expect (well-
behavedness)

37
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