Type Processing by Constraint Reasoning

Peter J. Stuckey, Martin Sulzmann, Jeremy Wazny

8th November 2006

- - 4 回 ト - 4 回 ト

Chameleon

Chameleon is Haskell-style language

- treats type problems using constraints
- gives expressive error messages
- has a programmable type system
- Developers: Martin Sulzmann, Jeremy Wazny
- http://www.comp.nus.edu.sg/~sulzmann/chameleon/
- Examples taken from Chameleon
 - Caveat
 - Previous versions of Chameleon supported some features
 - ► No single version shows has all the behaviour we illustrate

- 4 同 6 4 日 6 4 日 6

Hindley/Milner Types

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Type Classes

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Extended Type Systems

Functional Dependencies

・ 同 ト ・ ヨ ト ・ ヨ ト

What are Types Good for?

- Type systems are important tools in the design, analysis, and verification of programming languages.
- Well-typed programs dont "go wrong" for a reasonable class or errors.
- Type systems need to
 - Check types!
 - (Preferably) Infer types
 - (Definitely) Explain type errors!

・ 同 ト ・ ヨ ト ・ ヨ ト

Type Systems are Getting More Complex

"Fortran" types

...

- Hindley/Milner types: Higher-order, polymorphic
- Type Classes: controlled ad-hoc polymorphism
 - Multiparameter Type Classes: relations among types
- Constructor Classes: classes with higher kinds
- Functional Dependencies: classes with improvement rules
- Existential Types: "objects"
- Lexically Scoped Annotations: more expressive type declarations
- Guarded Abstract Data Types: types differ per constructor
- Extended Abstract Data Types: difference controlled by classes

イロト イポト イヨト イヨト

Thesis

Understanding types be first mapping them to constraints:

- improves understanding
 - inference = satisfiability
 - checking = implication tests
- eases implementation
- allows more useful error handling
- makes type systems easier to extend

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Hindley/Milner Types

- ► Types t ::=
 - variable a
 - function arrow $t \rightarrow t$
 - base types e.g. Char, Bool
 - constructor types e.g. [t] (list of t)
- **•** Type scheme $\sigma ::= t \mid \forall \bar{a}.t$
- **Primitive Constraint** p ::= t = t | True
- Constraint $C ::= p \mid C \land C$

・ロン ・回と ・ヨン・

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Hindley/Milner Type Inference

・ロト ・回ト ・ヨト ・ヨト

æ

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Hindley/Milner Type Inference

```
f u = g u 't' False
```

g x y z = if x then z else y

Error message:

Couldn't match 'Char' against 'Bool' Expected type: Char Inferred type: Bool In the third argument of 'g', namely 'False' In the definition of 'f': f u = g u 't' False

- Fixed order of evaluation
- Only substitutions are maintained

(ロ) (同) (E) (E) (E)

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Hindley/Milner Type Inference

```
f u = g u 't' False
```

```
g x y z = if x then z else y
```

Potential corrected versions of the program:

```
f u = g u True False
g x y z = if x then z else y
f u = g u 't' False
g x y z = if z then x else y
f u = g u 't' 'f'
g x y z = if x then z else y
> Only the last correction changes the indicated location!
```

イロン イボン イヨン イヨン 三日

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Locations

- Collect constraints (not substitutions)
- Remember locations of constraints
 - Locations / (integers)
 - Justification $J ::= \epsilon \mid I \mid [I, \dots I]$
 - Primitive constraint $p ::= (t = t)_J | True$
- Location annotated program

f u =
$$(((g_1 u_2)_3 't'_4)_5 False_6)_7$$

g x y z = $(if_{11} x_8 then z_9 else y_{10})_{12}$

▶ Locations Annotated Type Constraints: $(t_1 = t_g)_1$, $(t_2 = t_u)_2$, $(t_1 = t_2 \rightarrow t_3)_3$, $(t_4 = Char)_4$, $(t_3 = t_4 \rightarrow t_5)_5$, $(t_6 = Bool)_6$, $(t_5 = t_6 \rightarrow t_7)_7$, $t_f = t_u \rightarrow t_7$, $(t_8 = t_x)_8$, $(t_8 = Bool)_{11}$, $(t_9 = t_z)_9$, $(t_{10} = t_y)_{10}$, $(t_{12} = t_9)_{12}$, $(t_{12} = t_{10})_{12}$, $t_g = t_x \rightarrow t_y \rightarrow t_z \rightarrow t_{12}$.

イロト イポト イヨト イヨト

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Type Error = Unsatisfiable Constraint

- Failure of unification = unsatisfiable constraint
- Minimal unsatisfiable subset: E of constraint D
 - *E* is unsatisfiable: $\models \neg \tilde{\exists} E$
 - ▶ all strict subsets of *E* are satisfiable: $\forall e \in E$. $\models \tilde{\exists}(E \{e\})$
- Minimal unsatisfiable subset = minimal reason for type error!

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Displaying Type Errors

- Determine a minimal unsatisfiable subset
- ▶ For example: $(t_1 = t_g)_1$, $(t_1 = t_2 \rightarrow t_3)_3$, $(t_4 = Char)_4$, $(t_3 = t_4 \rightarrow t_5)_5$, $(t_6 = Bool)_6$, $(t_5 = t_6 \rightarrow t_7)_7$, $(t_9 = t_z)_9$, $(t_{10} = t_y)_{10}$, $(t_{12} = t_9)_{12}$, $(t_{12} = t_{10})_{12}$, $t_g = t_x \rightarrow t_y \rightarrow t_z \rightarrow t_{12}$.
- Highlight locations of the minimal unsatisfiable subset

f u = g u 't' False

g x y z = if x then z else y

- Not restricted to a single function definition!
- At least one location highlighted must be changed!

(ロ) (同) (E) (E) (E)

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Multiple Minimal Unsatisfiable Subsets

Type information is usually highly redundant.

- f x = if x then (toUpper x) else (toLower x)
 where toUpper,toLower :: Char -> Char
- f x = if x then (toUpper x) else (toLower x)

f x = if x then (toUpper x) else (toLower x)

Locations appearing in all minimal unsatisfiable subsets are more likely to be in error!

You may be able to remove all errors changing one

f x = if x then (toUpper x) else (toLower x)

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Better Error Messages

- Choose a location from the minimal unsatisfiable subset E
- Remove the constraints for that location from E (satisfiable)
- Find conflicting types (via E) at that location
 - Assign a colour to each conflicting type
 - Find the locations causing each conflicting type
- Report the error in terms of locations and conflicting types
- Highlight the causes of each conflicting type

イロト イポト イヨト イヨト

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Better Error Messages Example

- Choose a location: 12
- Remove constraints for location: $(t_{12} = t_9)_{12}$, $(t_{12} = t_{10})_{12}$
- Find conflicting types at location: $t_9 = Bool$, $t_{10} = Char$
 - Assign a colour to each conflicting type: t_9 , t_{10}
 - Find the locations causing each conflicting type: t₉: [1,3,5,6,9], t₁₀: [1,3,4,10]
- Report the error in terms of locations and conflicting types
 - Problem : Then and else branch must have same type
 Types : Bool
 Char
 Conflict: f u = g u 't' False
 g x y z = if x then z else y

・ロト ・回ト ・ヨト ・ヨト

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Find Locations that Cause a Type?

How do we find a minimal set of constraints C that cause another constraint c to hold?

- Implication: $\models C \rightarrow c$
- Analogous to finding minimal unsatisfiable subset.
 - Start with E := C
 - Delete a constraint $p \in E$: $E := E \{p\}$
 - If $\models E \rightarrow c$ continue, otherwise replace
 - Stop when no constraint $p \in E$ can be deleted.

・ロン ・回と ・ヨン ・ヨン

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

A Type Error may not be just Two Conflicting Types!

f 'a' b True	= error "'a'"
f c True z	= error "'b'"
fxyz	= if z then x else y
GHC: Couldn't ma Expecte Inferre In the defi	atch 'Char' against 'Bool' ed type: Char ed type: Bool nition of 'f': f x y z = if z then x else y
Chameleon: Prob Type	<pre>olem : Definition clauses not unifiable es : Char -> a -> b -> c d -> Bool -> e -> f g -> g -> h -> i</pre>
Conf	<pre>Elict: f 'a' b True = error "'a'" f c True z = error "'b'" f x y z = if z then x else y </pre>

Hindley Milner Type Inference Locations + Minimal Unsatisfiable Constraints Better Error Messages

Failure of Type Checking

Function type declaration as well as definition

- h x = (x, x)
- ▶ Inferred type: h :: c -> (c,c)
- Find variable bound in the declared type w.r.t. inferred type b
- Find minimal implicant of binding b = a
- Highlight it

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Type Classes: Controlled Overloading

A class of types that all supply the same interface:

class declarations defined interface

class Num a where
 (+), (-), (*) :: a -> a -> a
 integer constant :: a

instance declarations define members of class

instance Num Int where (+) = iplus; (-) = iminus; ... instance Num Float where (+) = fplus; (-) = fminus; ...

- Allows overloading (like coercion) e.g.
- ▶ 3.1415 + 2 :: Float

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Type Classes: Controlled Overloading

A class of types that all supply the same interface:

class declarations defined interface

class Eq a where (==) :: a -> a -> Bool

- instance declarations define members of class instance Eq Int where (==) = eqInt instance Eq Bool where (==) = eqBool
- > Overloading eqList:: Eq a => [a] -> [a] -> Bool eqList [] [] = True eqList (x:xs) (y:ys) = (x == y) && eqList xs ys eqList _ _ _ = False

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Superclasses

Classes and instances can require that the members have instances of other classes

Class heirarchy

class Eq a => Ord a where (>) :: a -> a -> Bool

- Members of Ord must be members of Eq
- Instances can also be constrained

・ロト ・回ト ・ヨト ・ヨト

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Multi-Parameter Type Classes

- Single parameter type classes implicitly define sets
- Multi-parameter type classes define relationships among types

class Convert a b where upcast :: a -> b downcast :: b -> Maybe a instance Convert Int Float where upcast = fromInteger downcast f = if (ceiling f == floor f) then Just (floor f) else Nothing

Clearly classes define constraints!

ヘロン 人間 とくほど くほとう

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Type Classes

- Primitive constaint $p ::= (t = t)_J \mid U \overline{t} \mid True$
- Type scheme $\sigma ::= t \mid \forall \bar{a}. C \Rightarrow t$
- ▶ Class decl $cd ::= class (C \Rightarrow U \bar{a})_I$ where $[m :: (C \rightarrow t)_I]$
- ▶ Instance decl id ::= instance $(C \Rightarrow U \ \overline{t})_I$ where [m = e]

We need the ability to

- Check satisfiability of constraints
- Check implication of constraints
- Simplify constraints
- Check classes and instances agree!

・ロト ・回ト ・ヨト ・ヨト

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Constraint Handling Rules (CHRs)

- Lightweight theorem prover for constraints
- Maps a set (conjunction) of constraints to an equivalent set of constraints
- Simplification rules: $c_1, \ldots, c_n \iff d_1, \ldots, d_m$ Replace lhs by rhs
 Eq Int <=> True Eq Int is replaced by True (proved)
 Eq Float <=> True Eq Float is replaced by True (proved)
 Eq [a] <=> Eq a To prove Eq [a] prove Eq a
- ▶ Propagation rules: $c_1, \ldots, c_n \Longrightarrow d_1, \ldots, d_m$ Add rhs to lhs

Ord a ==> Eq a Proving Ord a also requires proving Eq a

Derivation

 $\textit{Ord}~[\textit{Int}] \longrightarrow \textit{Ord}~[\textit{Int}], \textit{Eq}~[\textit{Int}] \longrightarrow \textit{Ord}~[\textit{Int}], \textit{Eq}~\textit{Int} \longrightarrow \textit{Ord}~[\textit{Int}]$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Constraint Handling Rules with Justifications

Constraint operations need to maintain justifications:

- Applying a rule $c_1, \ldots, c_n \iff d_1, \ldots, d_m$
 - Find matching set $c'_1, \ldots c'_n$
 - Find equations E that force the match (minimal implicant)
 - Collect justifications J for c'_1, \ldots, c'_n and E
 - Remove $c'_1, \ldots c'_n$
 - Add d_1, \ldots, d_m extending justifications by J.
- ▶ Applying Eq [a] <=> (Eq a)₁₅ to $(t_1 = Int)_1$, $(t_2 = [t_1])_2$, $(t_3 = t_2 \rightarrow t_4)_4$, $(t_3 = t_5 \rightarrow t_6)_6$, $(Eq t_5)_7$.
 - ▶ minimal implicant of $\exists a.t_5 = [a]$ is $(t_2 = [t_1])_2, (t_3 = t_2 \rightarrow t_4)_4, (t_3 = t_5 \rightarrow t_6)_6$
 - J = [2, 4, 6, 7]• Result $(t_1 - Int)_{t_1}$ $(t_2 - Int)_{t_3}$
 - ▶ Result $(t_1 = Int)_1$, $(t_2 = [t_1])_2$, $(t_3 = t_2 \rightarrow t_4)_4$, $(t_3 = t_5 \rightarrow t_6)_6$, $(Eq \ t_1)_{[2,4,6,7,15]}$.

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

CHR Algorithms

Restrictions on CHR programs

- Confluent: all derivations for C lead to the same result
- Terminating: all derivations terminate
- ▶ Range-restricted: all vars in d_1, \ldots, d_m appear in c_1, \ldots, c_n
- Single-headed simplification: n = 1 for simplification rules

Under these restrictions: $\operatorname{Key}\,\operatorname{Results}$

- ► The rules define a canonical form: If $P \models C_1 \leftrightarrow C_2$ then $C_1 \longrightarrow^* D$ and $C_2 \longrightarrow^* D$
- Satisfiability is decidable
- Minimal unsatisfiable subsets can be determined
- Implication is decidable
- Minimal implicants can be determined

(ロ) (同) (E) (E) (E)

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Representing Typing Problems with CHRs

Use CHRs to represent types

f u = (((g₁ u₂)₃ 't'₄)₅ False₆)₇ class (True => Eq a)₁₃ where (==) :: (a -> a -> Bool)₁₄ instance (Eq a => Eq [a])₁₅ where (==) = eqList₁₆

is represented as

$$\begin{array}{l} F \ t_f <=> \ (G \ t_1)_1, \ (t_2 = t_u)_2, \ (t_1 = t_2 \to t_3)_3, \ (t_4 = Char)_4, \\ (t_3 = t_4 \to t_5)_5, \ (t_6 = Bool)_6, \ (t_5 = t_6 \to t_7)_7, \\ t_f = t_u \to t_7 \\ Eq \ a ==> \ True_{13} \\ (==) \ t_e <=> \ (Eq \ a)_{14}, \ (t = a \to a \to Bool)_{14} \\ Eq \ [a] <=> \ (Eq \ a)_{15} \end{array}$$

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Type Processing using CHRs

Type inference: *F* t_f →* *D*Inferred type: ∃_{t_f}*D*For example *G* t_g →* (t₈ = t_x)₈, (t₈ = Bool)₁₁, (t₉ = t_z)₉, (t₁₀ = t_y)₁₀, (t₁₂ = t₉)₁₂, (t₁₂ = t₁₀)₁₂, t_g = t_x → t_y → t_z → t₁₂
Inferred type: ∃t₁₂.t_g = Bool → t₁₂ → t₁₂
Type checking: *f* :: *C* ⇒ *t F* t_f →* *D*₁
t_x = t C →* *D*₂

$$\models (\bar{\exists}_{t_f} D_2) \supset (\bar{\exists}_{t_f} D_1)$$

イロト イポト イヨト イヨト

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Type Errors with Classes

- Failure of inference:
 - only possible through unsatisfiable equational constraints
 - Report as before
- Failure of checking
 - Also possible to have have unmatched type class constraints
 - Extend to report reason (minimal implicant) for these
- New kinds of errors
 - Missing instance errors
 - Ambiguity errors
 - Incompatible class and instance declarations

イロン イヨン イヨン イヨン

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Missing Instance Error

Classic beginners mistake:

sum [] = [] -- should be 0
sum (x:xs) = x + sum xs

- ▶ Inferred type: sum :: Num [a] => [[a] -> [a]
- In Haskell 98, each type class constraint appearing in a functions type must be of the form U a where a is a type variable.
- For Num [a] find a minimal implicant of Num $t \land \exists t'.t = [t']$
- Highlight the locations of the minimal implicant
 sum.hs:4: ERROR: Missing instance
 Instance:Num [a]: sum [] = [] -- should be 0
 sum (x:xs) = x + sum xs

Constraint Handling Rules Representing Typing Problems with CHRs Type Class Errors

Ambiguity Error

- f x y z = show (if x then read y else read z)
 where read :: Read a => [Char] -> a
 and show :: Show a => a -> [Char]
- Inferred type: f :: forall a.(Read a, Show a) => Bool
 -> [Char] -> [Char] -> [Char]
- a does not appear in type part. Ambiguous
- Highlight the positions where a appears in type Ambiguity can be resolved at these locations f x y z = show (if x then read y else read z)
- For example

f x y z = show (if x then (read y)::Int else read z)

(ロ) (同) (E) (E) (E)

Functional Dependencies

Functional Dependencies

```
class Collects ce e | ce -> e where
  empty :: ce
  insert :: e -> ce -> ce
```

- Collection type ce functionally defines element type e
- Without this empty :: Collects ce e => ce is ambiguous!

イロト イヨト イヨト イヨト

Functional Dependencies

Bibliography

- Theory P. J. Stuckey and M. Sulzmann. A theory of overloading. ACM TOPLAS, 2005.
- EADTs M. Sulzmann, J. Wazny, and P.J. Stuckey. A framework for extended algebraic data types. FLOPS 2006,
- Better error messages P.J. Stuckey, M. Sulzmann, and J. Wazny. Improving type error diagnosis. 2004 ACM Haskell Workshop,
- Functional dependencies G.J. Duck, S. Peyton-Jones, P.J. Stuckey, and M. Sulzmann. Sound and decidable type inference for functional dependencies. ESOP 2004,
- Type errors P.J. Stuckey, M. Sulzmann, and J. Wazny. Interactive type debugging in Haskell. 2003 ACM Haskell Workshop,
- More http://www.comp.nus.edu.sg/~sulzmann/