
Hindley/Milner Types
Type Classes

Extended Type Systems

Type Processing by Constraint Reasoning

Peter J. Stuckey, Martin Sulzmann, Jeremy Wazny

8th November 2006

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Chameleon

Chameleon is Haskell-style language

I treats type problems using constraints

I gives expressive error messages

I has a programmable type system

I Developers: Martin Sulzmann, Jeremy Wazny

I http://www.comp.nus.edu.sg/~sulzmann/chameleon/
I Examples taken from Chameleon

I Caveat
I Previous versions of Chameleon supported some features
I No single version shows has all the behaviour we illustrate

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley/Milner Types
Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Type Classes
Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Extended Type Systems
Functional Dependencies

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

What are Types Good for?

I Type systems are important tools in the design, analysis, and
verification of programming languages.

I Well-typed programs dont “go wrong” for a reasonable class
or errors.

I Type systems need to
I Check types!
I (Preferably) Infer types
I (Definitely) Explain type errors!

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Type Systems are Getting More Complex

I “Fortran” types

I Hindley/Milner types: Higher-order, polymorphic
I Type Classes: controlled ad-hoc polymorphism

I Multiparameter Type Classes: relations among types

I Constructor Classes: classes with higher kinds

I Functional Dependencies: classes with improvement rules

I Existential Types: “objects”

I Lexically Scoped Annotations: more expressive type
declarations

I Guarded Abstract Data Types: types differ per constructor

I Extended Abstract Data Types: difference controlled by
classes

I . . .

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Thesis

Understanding types be first mapping them to constraints:
I improves understanding

I inference = satisfiability
I checking = implication tests

I eases implementation

I allows more useful error handling

I makes type systems easier to extend

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Hindley/Milner Types

I Types t ::=
I variable a
I function arrow t → t
I base types e.g. Char , Bool
I constructor types e.g. [t] (list of t)

I Type scheme σ ::= t | ∀ā.t
I Primitive Constraint p ::= t = t | True

I Constraint C ::= p | C ∧ C

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Hindley/Milner Type Inference

f u = g u ’t’ False
g x y z = if x then z else y

I Inferring type for g
tx = Bool {tx 7→ Bool}
tift = tz , tift = ty {tx 7→ Bool , tift 7→ tz , ty 7→ tz}
tg = tx → ty → tz → tift {tg 7→ Bool → tz → tz → tz}

I Inferring type for f
tg = Bool → t1 → t1 → t1 {tg 7→ Bool → t1 → t1 → t1}
tg = tu → tgu {tgu 7→ t1 → t1 → t1, tu 7→ Bool}
tgu = Char → tgut {tgut 7→ Char → Char , t1 7→ Char}
tgut = Bool → tbody FAILS

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Hindley/Milner Type Inference

f u = g u ’t’ False
g x y z = if x then z else y

I Error message:

Couldn’t match ‘Char’ against ‘Bool’
Expected type: Char
Inferred type: Bool

In the third argument of ‘g’, namely ‘False’
In the definition of ‘f’: f u = g u ’t’ False

I Fixed order of evaluation

I Only substitutions are maintained

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Hindley/Milner Type Inference

f u = g u ’t’ False
g x y z = if x then z else y

I Potential corrected versions of the program:
I

f u = g u True False
g x y z = if x then z else y

I

f u = g u ’t’ False
g x y z = if z then x else y

I

f u = g u ’t’ ’f’
g x y z = if x then z else y

I Only the last correction changes the indicated location!

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Locations

I Collect constraints (not substitutions)
I Remember locations of constraints

I Locations l (integers)
I Justification J ::= ε | l | [l , . . . l]
I Primitive constraint p ::= (t = t)J | True

I Location annotated program

f u = (((g1 u2)3 ’t’4)5 False6)7

g x y z = (if11 x8 then z9 else y10)12

I Locations Annotated Type Constraints: (t1 = tg)1, (t2 = tu)2,
(t1 = t2 → t3)3, (t4 = Char)4, (t3 = t4 → t5)5, (t6 = Bool)6,
(t5 = t6 → t7)7, tf = tu → t7, (t8 = tx)8, (t8 = Bool)11,
(t9 = tz)9, (t10 = ty)10, (t12 = t9)12, (t12 = t10)12,
tg = tx → ty → tz → t12.

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Type Error = Unsatisfiable Constraint

I Failure of unification = unsatisfiable constraint
I Minimal unsatisfiable subset: E of constraint D

I E is unsatisfiable: |= ¬∃̃E
I all strict subsets of E are satisfiable: ∀e ∈ E . |= ∃̃(E − {e})

I Minimal unsatisfiable subset = minimal reason for type error!

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Displaying Type Errors

I Determine a minimal unsatisfiable subset

I For example: (t1 = tg)1, (t1 = t2 → t3)3, (t4 = Char)4,
(t3 = t4 → t5)5, (t6 = Bool)6, (t5 = t6 → t7)7, (t9 = tz)9,
(t10 = ty)10, (t12 = t9)12, (t12 = t10)12,
tg = tx → ty → tz → t12.

I Highlight locations of the minimal unsatisfiable subset

f u = g u ’t’ False
g x y z = if x then z else y

I Not restricted to a single function definition!

I At least one location highlighted must be changed!

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Multiple Minimal Unsatisfiable Subsets

Type information is usually highly redundant.

I f x = if x then (toUpper x) else (toLower x)
where toUpper,toLower :: Char -> Char

I f x = if x then (toUpper x) else (toLower x)

I f x = if x then (toUpper x) else (toLower x)

Locations appearing in all minimal unsatisfiable subsets are more
likely to be in error!

I You may be able to remove all errors changing one

f x = if x then (toUpper x) else (toLower x)

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Better Error Messages

I Choose a location from the minimal unsatisfiable subset E

I Remove the constraints for that location from E (satisfiable)
I Find conflicting types (via E) at that location

I Assign a colour to each conflicting type
I Find the locations causing each conflicting type

I Report the error in terms of locations and conflicting types

I Highlight the causes of each conflicting type

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Better Error Messages Example

I Choose a location: 12

I Remove constraints for location: (t12 = t9)12, (t12 = t10)12
I Find conflicting types at location: t9 = Bool , t10 = Char

I Assign a colour to each conflicting type: t9, t10
I Find the locations causing each conflicting type: t9:

[1,3,5,6,9], t10: [1,3,4,10]

I Report the error in terms of locations and conflicting types

Problem : Then and else branch must have same type
Types : Bool

Char
Conflict: f u = g u ’t’ False

g x y z = if x then z else y

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Find Locations that Cause a Type?

How do we find a minimal set of constraints C that cause another
constraint c to hold?

I Implication: |= C → c
I Analogous to finding minimal unsatisfiable subset.

I Start with E := C
I Delete a constraint p ∈ E : E := E − {p}
I If |= E → c continue, otherwise replace
I Stop when no constraint p ∈ E can be deleted.

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

A Type Error may not be just Two Conflicting Types!

f ’a’ b True = error "’a’"
f c True z = error "’b’"
f x y z = if z then x else y

GHC: Couldn’t match ‘Char’ against ‘Bool’
Expected type: Char
Inferred type: Bool

In the definition of ‘f’: f x y z = if z then x else y

Chameleon: Problem : Definition clauses not unifiable
Types : Char -> a -> b -> c

d -> Bool -> e -> f
g -> g -> h -> i

Conflict: f ’a’ b True = error "’a’"
f c True z = error "’b’"
f x y z = if z then x else y

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Hindley Milner Type Inference
Locations + Minimal Unsatisfiable Constraints
Better Error Messages

Failure of Type Checking

I Function type declaration as well as definition

h :: a -> (a,b)
h x = (x,x)

I Inferred type: h :: c -> (c,c)

I Find variable bound in the declared type w.r.t. inferred type b

I Find minimal implicant of binding b = a

I Highlight it

h.hs:2: ERROR: Inferred type does not subsume declared
Declared: forall a,b. a -> (a,b)
Inferred: forall a. a -> (a,a)
Problem : The variable ‘b’ makes the declared type too polymorphic

h x = (x, x)

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Type Classes: Controlled Overloading

A class of types that all supply the same interface:

I class declarations defined interface

class Num a where
(+), (-), (*) :: a -> a -> a
integer constant :: a

I instance declarations define members of class

instance Num Int where (+) = iplus; (-) = iminus; ...
instance Num Float where (+) = fplus; (-) = fminus; ...

I Allows overloading (like coercion) e.g.

I 3.1415 + 2 :: Float

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Type Classes: Controlled Overloading

A class of types that all supply the same interface:

I class declarations defined interface

class Eq a where
(==) :: a -> a -> Bool

I instance declarations define members of class

instance Eq Int where (==) = eqInt
instance Eq Bool where (==) = eqBool

I Overloading eqList:: Eq a => [a] -> [a] -> Bool

eqList [] [] = True
eqList (x:xs) (y:ys) = (x == y) && eqList xs ys
eqList = False

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Superclasses

Classes and instances can require that the members have instances
of other classes

I Class heirarchy

class Eq a => Ord a where
(>) :: a -> a -> Bool

I Members of Ord must be members of Eq

I Instances can also be constrained

instance Eq a => Eq [a] where
(==) = eqList

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Multi-Parameter Type Classes

I Single parameter type classes implicitly define sets

I Multi-parameter type classes define relationships among types

class Convert a b where
upcast :: a -> b
downcast :: b -> Maybe a

instance Convert Int Float where
upcast = fromInteger
downcast f = if (ceiling f == floor f)
then Just (floor f)
else Nothing

I Clearly classes define constraints!

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Type Classes

I Primitive constaint p ::= (t = t)J | U t̄ | True

I Type scheme σ ::= t | ∀ā.C ⇒ t

I Class decl cd ::= class (C ⇒ U ā)l where [m :: (C → t)l]

I Instance decl id ::= instance (C ⇒ U t̄)l where [m = e]

We need the ability to

I Check satisfiability of constraints

I Check implication of constraints

I Simplify constraints

I Check classes and instances agree!

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Constraint Handling Rules (CHRs)

I Lightweight theorem prover for constraints

I Maps a set (conjunction) of constraints to an equivalent set
of constraints

I Simplification rules: c1, . . . , cn ⇐⇒ d1, . . . , dm

Replace lhs by rhs
Eq Int <=> True Eq Int is replaced by True (proved)
Eq Float <=> True Eq Float is replaced by True (proved)
Eq [a] <=> Eq a To prove Eq [a] prove Eq a

I Propagation rules: c1, . . . , cn =⇒ d1, . . . , dm

Add rhs to lhs
Ord a ==> Eq a Proving Ord a also requires proving Eq a

I Derivation
Ord [Int] −→ Ord [Int],Eq [Int] −→ Ord [Int],Eq Int −→ Ord [Int]

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Constraint Handling Rules with Justifications

Constraint operations need to maintain justifications:
I Applying a rule c1, . . . , cn ⇐⇒ d1, . . . , dm

I Find matching set c ′
1, . . . c

′
n

I Find equations E that force the match (minimal implicant)
I Collect justifications J for c ′

1, . . . c
′
n and E

I Remove c ′
1, . . . c

′
n

I Add d1, . . . , dm extending justifications by J.

I Applying Eq [a] <=> (Eq a)15 to
(t1 = Int)1, (t2 = [t1])2, (t3 = t2 → t4)4, (t3 = t5 → t6)6,
(Eq t5)7.

I minimal implicant of ∃a.t5 = [a] is
(t2 = [t1])2, (t3 = t2 → t4)4, (t3 = t5 → t6)6

I J = [2, 4, 6, 7]
I Result (t1 = Int)1, (t2 = [t1])2, (t3 = t2 → t4)4,

(t3 = t5 → t6)6, (Eq t1)[2,4,6,7,15].

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

CHR Algorithms

Restrictions on CHR programs

I Confluent: all derivations for C lead to the same result

I Terminating: all derivations terminate

I Range-restricted: all vars in d1, . . . , dm appear in c1, . . . , cn

I Single-headed simplification: n = 1 for simplification rules

Under these restrictions: Key Results

I The rules define a canonical form: If P |= C1 ↔ C2 then
C1 −→∗ D and C2 −→∗ D

I Satisfiability is decidable

I Minimal unsatisfiable subsets can be determined

I Implication is decidable

I Minimal implicants can be determined

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Representing Typing Problems with CHRs

Use CHRs to represent types

f u = (((g1 u2)3 ’t’4)5 False6)7

class (True => Eq a)13 where (==) :: (a -> a -> Bool)14

instance (Eq a => Eq [a])15 where (==) = eqList16

is represented as

F tf <=> (G t1)1, (t2 = tu)2, (t1 = t2 → t3)3, (t4 = Char)4,
(t3 = t4 → t5)5, (t6 = Bool)6, (t5 = t6 → t7)7,
tf = tu → t7

Eq a ==> True13

(==) te <=> (Eq a)14, (t = a → a → Bool)14

Eq [a] <=> (Eq a)15

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Type Processing using CHRs

I Type inference:
I F tf −→∗ D
I Inferred type: ∃̄tf D
I For example

I G tg −→∗ (t8 = tx)8, (t8 = Bool)11, (t9 = tz)9, (t10 = ty)10,
(t12 = t9)12, (t12 = t10)12, tg = tx → ty → tz → t12

I Inferred type: ∃t12.tg = Bool → t12 → t12

I Type checking: f :: C ⇒ t
I F tf −→∗ D1

I tf = t,C −→∗ D2

I |= (∃̄tf D2) ⊃ (∃̄tf D1)

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Type Errors with Classes

I Failure of inference:
I only possible through unsatisfiable equational constraints
I Report as before

I Failure of checking
I Also possible to have have unmatched type class constraints
I Extend to report reason (minimal implicant) for these

I New kinds of errors
I Missing instance errors
I Ambiguity errors
I Incompatible class and instance declarations

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Missing Instance Error

I Classic beginners mistake:

sum [] = [] -- should be 0
sum (x:xs) = x + sum xs

I Inferred type: sum :: Num [a] => [[a] -> [a]

I In Haskell 98, each type class constraint appearing in a
functions type must be of the form U a where a is a type
variable.

I For Num [a] find a minimal implicant of Num t ∧ ∃t ′.t = [t ′]

I Highlight the locations of the minimal implicant

sum.hs:4: ERROR: Missing instance
Instance:Num [a]: sum [] = [] -- should be 0

sum (x:xs) = x + sum xs

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Ambiguity Error

I f x y z = show (if x then read y else read z)
where read :: Read a => [Char] -> a
and show :: Show a => a -> [Char]

I Inferred type: f :: forall a.(Read a, Show a) => Bool
-> [Char] -> [Char] -> [Char]

I a does not appear in type part. Ambiguous

I Highlight the positions where a appears in type

Ambiguity can be resolved at these locations
f x y z = show (if x then read y else read z)

I For example
f x y z = show (if x then (read y)::Int else read z)

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems
Functional Dependencies

Functional Dependencies

class Collects ce e | ce -> e where
empty :: ce
insert :: e -> ce -> ce

I Collection type ce functionally defines element type e

I Without this empty :: Collects ce e => ce is
ambiguous!

Peter J. Stuckey Type Processing by Constraint Reasoning

Hindley/Milner Types
Type Classes

Extended Type Systems
Functional Dependencies

Bibliography

I Theory P. J. Stuckey and M. Sulzmann. A theory of
overloading. ACM TOPLAS, 2005.

I EADTs M. Sulzmann, J. Wazny, and P.J. Stuckey. A
framework for extended algebraic data types. FLOPS 2006,

I Better error messages P.J. Stuckey, M. Sulzmann, and J.
Wazny. Improving type error diagnosis. 2004 ACM Haskell
Workshop,

I Functional dependencies G.J. Duck, S. Peyton-Jones, P.J.
Stuckey, and M. Sulzmann. Sound and decidable type
inference for functional dependencies. ESOP 2004,

I Type errors P.J. Stuckey, M. Sulzmann, and J. Wazny.
Interactive type debugging in Haskell. 2003 ACM Haskell
Workshop,

I More http://www.comp.nus.edu.sg/~sulzmann/

Peter J. Stuckey Type Processing by Constraint Reasoning

	Hindley/Milner Types
	Hindley Milner Type Inference
	Locations + Minimal Unsatisfiable Constraints
	Better Error Messages

	Type Classes
	Constraint Handling Rules
	Representing Typing Problems with CHRs
	Type Class Errors

	Extended Type Systems
	Functional Dependencies

