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Chameleon

Chameleon is Haskell-style language

I treats type problems using constraints

I gives expressive error messages

I has a programmable type system

I Developers: Martin Sulzmann, Jeremy Wazny

I http://www.comp.nus.edu.sg/~sulzmann/chameleon/
I Examples taken from Chameleon

I Caveat
I Previous versions of Chameleon supported some features
I No single version shows has all the behaviour we illustrate
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What are Types Good for?

I Type systems are important tools in the design, analysis, and
verification of programming languages.

I Well-typed programs dont “go wrong” for a reasonable class
or errors.

I Type systems need to
I Check types!
I (Preferably) Infer types
I (Definitely) Explain type errors!
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Type Systems are Getting More Complex

I “Fortran” types

I Hindley/Milner types: Higher-order, polymorphic
I Type Classes: controlled ad-hoc polymorphism

I Multiparameter Type Classes: relations among types

I Constructor Classes: classes with higher kinds

I Functional Dependencies: classes with improvement rules

I Existential Types: “objects”

I Lexically Scoped Annotations: more expressive type
declarations

I Guarded Abstract Data Types: types differ per constructor

I Extended Abstract Data Types: difference controlled by
classes

I . . .
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Thesis

Understanding types be first mapping them to constraints:
I improves understanding

I inference = satisfiability
I checking = implication tests

I eases implementation

I allows more useful error handling

I makes type systems easier to extend
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Hindley/Milner Types

I Types t ::=
I variable a
I function arrow t → t
I base types e.g. Char , Bool
I constructor types e.g. [t] (list of t)

I Type scheme σ ::= t | ∀ā.t
I Primitive Constraint p ::= t = t | True

I Constraint C ::= p | C ∧ C
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Hindley/Milner Type Inference

f u = g u ’t’ False
g x y z = if x then z else y

I Inferring type for g
tx = Bool {tx 7→ Bool}
tift = tz , tift = ty {tx 7→ Bool , tift 7→ tz , ty 7→ tz}
tg = tx → ty → tz → tift {tg 7→ Bool → tz → tz → tz}

I Inferring type for f
tg = Bool → t1 → t1 → t1 {tg 7→ Bool → t1 → t1 → t1}
tg = tu → tgu {tgu 7→ t1 → t1 → t1, tu 7→ Bool}
tgu = Char → tgut {tgut 7→ Char → Char , t1 7→ Char}
tgut = Bool → tbody FAILS
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Hindley/Milner Type Inference

f u = g u ’t’ False
g x y z = if x then z else y

I Error message:

Couldn’t match ‘Char’ against ‘Bool’
Expected type: Char
Inferred type: Bool

In the third argument of ‘g’, namely ‘False’
In the definition of ‘f’: f u = g u ’t’ False

I Fixed order of evaluation

I Only substitutions are maintained
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Hindley/Milner Type Inference

f u = g u ’t’ False
g x y z = if x then z else y

I Potential corrected versions of the program:
I

f u = g u True False
g x y z = if x then z else y

I

f u = g u ’t’ False
g x y z = if z then x else y

I

f u = g u ’t’ ’f’
g x y z = if x then z else y

I Only the last correction changes the indicated location!
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Locations

I Collect constraints (not substitutions)
I Remember locations of constraints

I Locations l (integers)
I Justification J ::= ε | l | [l , . . . l ]
I Primitive constraint p ::= (t = t)J | True

I Location annotated program

f u = (((g1 u2)3 ’t’4)5 False6)7

g x y z = (if11 x8 then z9 else y10)12

I Locations Annotated Type Constraints: (t1 = tg )1, (t2 = tu)2,
(t1 = t2 → t3)3, (t4 = Char)4, (t3 = t4 → t5)5, (t6 = Bool)6,
(t5 = t6 → t7)7, tf = tu → t7, (t8 = tx)8, (t8 = Bool)11,
(t9 = tz)9, (t10 = ty )10, (t12 = t9)12, (t12 = t10)12,
tg = tx → ty → tz → t12.
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Type Error = Unsatisfiable Constraint

I Failure of unification = unsatisfiable constraint
I Minimal unsatisfiable subset: E of constraint D

I E is unsatisfiable: |= ¬∃̃E
I all strict subsets of E are satisfiable: ∀e ∈ E . |= ∃̃(E − {e})

I Minimal unsatisfiable subset = minimal reason for type error!
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Displaying Type Errors

I Determine a minimal unsatisfiable subset

I For example: (t1 = tg )1, (t1 = t2 → t3)3, (t4 = Char)4,
(t3 = t4 → t5)5, (t6 = Bool)6, (t5 = t6 → t7)7, (t9 = tz)9,
(t10 = ty )10, (t12 = t9)12, (t12 = t10)12,
tg = tx → ty → tz → t12.

I Highlight locations of the minimal unsatisfiable subset

f u = g u ’t’ False
g x y z = if x then z else y

I Not restricted to a single function definition!

I At least one location highlighted must be changed!
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Multiple Minimal Unsatisfiable Subsets

Type information is usually highly redundant.

I f x = if x then (toUpper x) else (toLower x)
where toUpper,toLower :: Char -> Char

I f x = if x then (toUpper x) else (toLower x)

I f x = if x then (toUpper x) else (toLower x)

Locations appearing in all minimal unsatisfiable subsets are more
likely to be in error!

I You may be able to remove all errors changing one

f x = if x then (toUpper x) else (toLower x)
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Better Error Messages

I Choose a location from the minimal unsatisfiable subset E

I Remove the constraints for that location from E (satisfiable)
I Find conflicting types (via E ) at that location

I Assign a colour to each conflicting type
I Find the locations causing each conflicting type

I Report the error in terms of locations and conflicting types

I Highlight the causes of each conflicting type
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Better Error Messages Example

I Choose a location: 12

I Remove constraints for location: (t12 = t9)12, (t12 = t10)12
I Find conflicting types at location: t9 = Bool , t10 = Char

I Assign a colour to each conflicting type: t9, t10
I Find the locations causing each conflicting type: t9:

[1,3,5,6,9], t10: [1,3,4,10]

I Report the error in terms of locations and conflicting types

Problem : Then and else branch must have same type
Types : Bool

Char
Conflict: f u = g u ’t’ False

g x y z = if x then z else y
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Find Locations that Cause a Type?

How do we find a minimal set of constraints C that cause another
constraint c to hold?

I Implication: |= C → c
I Analogous to finding minimal unsatisfiable subset.

I Start with E := C
I Delete a constraint p ∈ E : E := E − {p}
I If |= E → c continue, otherwise replace
I Stop when no constraint p ∈ E can be deleted.
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A Type Error may not be just Two Conflicting Types!

f ’a’ b True = error "’a’"
f c True z = error "’b’"
f x y z = if z then x else y

GHC: Couldn’t match ‘Char’ against ‘Bool’
Expected type: Char
Inferred type: Bool

In the definition of ‘f’: f x y z = if z then x else y

Chameleon: Problem : Definition clauses not unifiable
Types : Char -> a -> b -> c

d -> Bool -> e -> f
g -> g -> h -> i

Conflict: f ’a’ b True = error "’a’"
f c True z = error "’b’"
f x y z = if z then x else y
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Failure of Type Checking

I Function type declaration as well as definition

h :: a -> (a,b)
h x = (x,x)

I Inferred type: h :: c -> (c,c)

I Find variable bound in the declared type w.r.t. inferred type b

I Find minimal implicant of binding b = a

I Highlight it

h.hs:2: ERROR: Inferred type does not subsume declared
Declared: forall a,b. a -> (a,b)
Inferred: forall a. a -> (a,a)
Problem : The variable ‘b’ makes the declared type too polymorphic

h x = (x, x)
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Type Classes: Controlled Overloading

A class of types that all supply the same interface:

I class declarations defined interface

class Num a where
(+), (-), (*) :: a -> a -> a
integer constant :: a

I instance declarations define members of class

instance Num Int where (+) = iplus; (-) = iminus; ...
instance Num Float where (+) = fplus; (-) = fminus; ...

I Allows overloading (like coercion) e.g.

I 3.1415 + 2 :: Float
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Type Classes: Controlled Overloading

A class of types that all supply the same interface:

I class declarations defined interface

class Eq a where
(==) :: a -> a -> Bool

I instance declarations define members of class

instance Eq Int where (==) = eqInt
instance Eq Bool where (==) = eqBool

I Overloading eqList:: Eq a => [a] -> [a] -> Bool

eqList [] [] = True
eqList (x:xs) (y:ys) = (x == y) && eqList xs ys
eqList = False
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Superclasses

Classes and instances can require that the members have instances
of other classes

I Class heirarchy

class Eq a => Ord a where
(>) :: a -> a -> Bool

I Members of Ord must be members of Eq

I Instances can also be constrained

instance Eq a => Eq [a] where
(==) = eqList
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Multi-Parameter Type Classes

I Single parameter type classes implicitly define sets

I Multi-parameter type classes define relationships among types

class Convert a b where
upcast :: a -> b
downcast :: b -> Maybe a

instance Convert Int Float where
upcast = fromInteger
downcast f = if (ceiling f == floor f)
then Just (floor f)
else Nothing

I Clearly classes define constraints!
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Type Classes

I Primitive constaint p ::= (t = t)J | U t̄ | True

I Type scheme σ ::= t | ∀ā.C ⇒ t

I Class decl cd ::= class (C ⇒ U ā)l where [m :: (C → t)l ]

I Instance decl id ::= instance (C ⇒ U t̄)l where [m = e]

We need the ability to

I Check satisfiability of constraints

I Check implication of constraints

I Simplify constraints

I Check classes and instances agree!
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Constraint Handling Rules (CHRs)

I Lightweight theorem prover for constraints

I Maps a set (conjunction) of constraints to an equivalent set
of constraints

I Simplification rules: c1, . . . , cn ⇐⇒ d1, . . . , dm

Replace lhs by rhs
Eq Int <=> True Eq Int is replaced by True (proved)
Eq Float <=> True Eq Float is replaced by True (proved)
Eq [a] <=> Eq a To prove Eq [a] prove Eq a

I Propagation rules: c1, . . . , cn =⇒ d1, . . . , dm

Add rhs to lhs
Ord a ==> Eq a Proving Ord a also requires proving Eq a

I Derivation
Ord [Int] −→ Ord [Int],Eq [Int] −→ Ord [Int],Eq Int −→ Ord [Int]
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Constraint Handling Rules with Justifications

Constraint operations need to maintain justifications:
I Applying a rule c1, . . . , cn ⇐⇒ d1, . . . , dm

I Find matching set c ′
1, . . . c

′
n

I Find equations E that force the match (minimal implicant)
I Collect justifications J for c ′

1, . . . c
′
n and E

I Remove c ′
1, . . . c

′
n

I Add d1, . . . , dm extending justifications by J.

I Applying Eq [a] <=> (Eq a)15 to
(t1 = Int)1, (t2 = [t1])2, (t3 = t2 → t4)4, (t3 = t5 → t6)6,
(Eq t5)7.

I minimal implicant of ∃a.t5 = [a] is
(t2 = [t1])2, (t3 = t2 → t4)4, (t3 = t5 → t6)6

I J = [2, 4, 6, 7]
I Result (t1 = Int)1, (t2 = [t1])2, (t3 = t2 → t4)4,

(t3 = t5 → t6)6, (Eq t1)[2,4,6,7,15].

Peter J. Stuckey Type Processing by Constraint Reasoning



Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

CHR Algorithms

Restrictions on CHR programs

I Confluent: all derivations for C lead to the same result

I Terminating: all derivations terminate

I Range-restricted: all vars in d1, . . . , dm appear in c1, . . . , cn

I Single-headed simplification: n = 1 for simplification rules

Under these restrictions: Key Results

I The rules define a canonical form: If P |= C1 ↔ C2 then
C1 −→∗ D and C2 −→∗ D

I Satisfiability is decidable

I Minimal unsatisfiable subsets can be determined

I Implication is decidable

I Minimal implicants can be determined

Peter J. Stuckey Type Processing by Constraint Reasoning
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Representing Typing Problems with CHRs

Use CHRs to represent types

f u = (((g1 u2)3 ’t’4)5 False6)7

class (True => Eq a)13 where (==) :: (a -> a -> Bool)14

instance (Eq a => Eq [a])15 where (==) = eqList16

is represented as

F tf <=> (G t1)1, (t2 = tu)2, (t1 = t2 → t3)3, (t4 = Char)4,
(t3 = t4 → t5)5, (t6 = Bool)6, (t5 = t6 → t7)7,
tf = tu → t7

Eq a ==> True13

(==) te <=> (Eq a)14, (t = a → a → Bool)14

Eq [a] <=> (Eq a)15
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Type Processing using CHRs

I Type inference:
I F tf −→∗ D
I Inferred type: ∃̄tf D
I For example

I G tg −→∗ (t8 = tx)8, (t8 = Bool)11, (t9 = tz)9, (t10 = ty )10,
(t12 = t9)12, (t12 = t10)12, tg = tx → ty → tz → t12

I Inferred type: ∃t12.tg = Bool → t12 → t12

I Type checking: f :: C ⇒ t
I F tf −→∗ D1

I tf = t,C −→∗ D2

I |= (∃̄tf D2) ⊃ (∃̄tf D1)

Peter J. Stuckey Type Processing by Constraint Reasoning



Hindley/Milner Types
Type Classes

Extended Type Systems

Constraint Handling Rules
Representing Typing Problems with CHRs
Type Class Errors

Type Errors with Classes

I Failure of inference:
I only possible through unsatisfiable equational constraints
I Report as before

I Failure of checking
I Also possible to have have unmatched type class constraints
I Extend to report reason (minimal implicant) for these

I New kinds of errors
I Missing instance errors
I Ambiguity errors
I Incompatible class and instance declarations
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Missing Instance Error

I Classic beginners mistake:

sum [] = [] -- should be 0
sum (x:xs) = x + sum xs

I Inferred type: sum :: Num [a] => [[a] -> [a]

I In Haskell 98, each type class constraint appearing in a
functions type must be of the form U a where a is a type
variable.

I For Num [a] find a minimal implicant of Num t ∧ ∃t ′.t = [t ′]

I Highlight the locations of the minimal implicant

sum.hs:4: ERROR: Missing instance
Instance:Num [a]: sum [] = [] -- should be 0

sum (x:xs) = x + sum xs
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Ambiguity Error

I f x y z = show (if x then read y else read z)
where read :: Read a => [Char] -> a
and show :: Show a => a -> [Char]

I Inferred type: f :: forall a.(Read a, Show a) => Bool
-> [Char] -> [Char] -> [Char]

I a does not appear in type part. Ambiguous

I Highlight the positions where a appears in type

Ambiguity can be resolved at these locations
f x y z = show (if x then read y else read z)

I For example
f x y z = show (if x then (read y)::Int else read z)
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Functional Dependencies

class Collects ce e | ce -> e where
empty :: ce
insert :: e -> ce -> ce

I Collection type ce functionally defines element type e

I Without this empty :: Collects ce e => ce is
ambiguous!

Peter J. Stuckey Type Processing by Constraint Reasoning



Hindley/Milner Types
Type Classes

Extended Type Systems
Functional Dependencies

Bibliography

I Theory P. J. Stuckey and M. Sulzmann. A theory of
overloading. ACM TOPLAS, 2005.

I EADTs M. Sulzmann, J. Wazny, and P.J. Stuckey. A
framework for extended algebraic data types. FLOPS 2006,

I Better error messages P.J. Stuckey, M. Sulzmann, and J.
Wazny. Improving type error diagnosis. 2004 ACM Haskell
Workshop,

I Functional dependencies G.J. Duck, S. Peyton-Jones, P.J.
Stuckey, and M. Sulzmann. Sound and decidable type
inference for functional dependencies. ESOP 2004,

I Type errors P.J. Stuckey, M. Sulzmann, and J. Wazny.
Interactive type debugging in Haskell. 2003 ACM Haskell
Workshop,

I More http://www.comp.nus.edu.sg/~sulzmann/

Peter J. Stuckey Type Processing by Constraint Reasoning


	Hindley/Milner Types
	Hindley Milner Type Inference
	Locations + Minimal Unsatisfiable Constraints
	Better Error Messages

	Type Classes
	Constraint Handling Rules
	Representing Typing Problems with CHRs
	Type Class Errors

	Extended Type Systems
	Functional Dependencies


