

Laziness is next to Godliness

Peter J. Stuckey and countless others!

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

NICTA Funding and Supporting Members and Partners

Conspirators

- Ignasi Abio, Ralph Becket, Sebastian Brand, Geoffrey Chu, Michael Codish, Broes De Cat, Marc Denecker, Greg Duck, Nick Downing, Thibaut Feydy, Kathryn Francis, Graeme Gange, Vitaly Lagoon, Amit Metodi, Nick Nethercote, Roberto Nieuwenhuis, Olga Ohrimenko, Albert Oliveras, Enric Rodriguez Carbonell, Andreas Schutt, Guido Tack, Pascal Van Hentenryck, Mark Wallace
- All errors and outrageous lies are mine

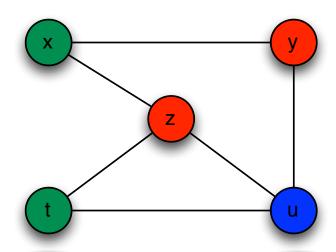
Constraint Satisfaction Problems

- Finite set of variables *v* ∈ *V*
 - Each with finite domain D(v)
- Finite set of constraints C over V
- Find a value for each variable that satisfies all the constraints
- Example: 3 coloring

$$- V = \{x, y, z, t, u\},\$$

$$-D(v) = \{1,2,3\}, v \in V$$

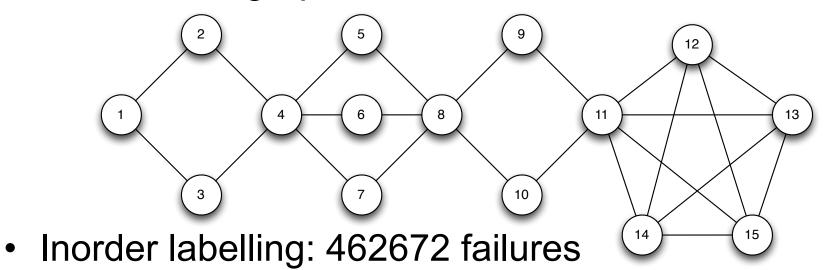
$$-C = \{x \neq y, x \neq z, y \neq u, z \neq t, z \neq u, t \neq u\}$$



- Solution $\{x=1, y=2, z=2, t=1, u=3\}$

How much of CP search is repeated?

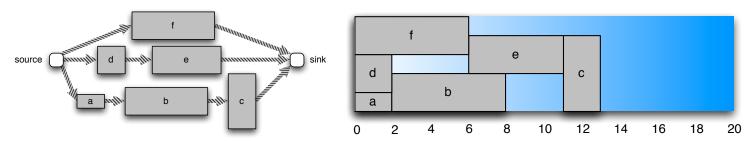
4 colour the graph below



- With learning: 18 failures
- Value symmetries removed: 19728 failures
 - With learning: 19 failures
- Reverse labelling: 24 failures
 - With learning: 18 failures

How much of CP search is repeated?

- Resource Constrained Project Scheduling
 - BL instance (20 tasks)



- Input order: 934,535 failures
 - With learning: 931 failures
- Smallest start time order: 296,567 failures
 - With learning: 551 failures
- Activity-based search: > 2,000,000 failures
 - With learning: 1144 failures

Outline

- Propagation based solving
 - Atomic constraints
- Lazy clause generation
 - Explaining propagators
 - Conflict resolution
 - How modern LCG solvers work
- The language of learning: Why search is dead!
 - Lazy encoding
 - Structure based extended resolution
- Lazy grounding and nested constraint programs
- The laziness principle
- Concluding remarks

Outline

- Propagation based solving
 - Atomic constraints
- Lazy clause generation
 - Explaining propagators
 - Conflict resolution
 - How modern LCG solvers work
- The language of learning: Why search is dead!
 - Lazy encoding
 - Structure based extended resolution
- Lazy grounding and nested constraint programs
- The laziness principle
- Concluding remarks

Propagation Solving (CP)

- Complete solver for atomic constraints
 - $-x = d, x \neq d, x \geq d, x \leq d$
 - Domain D(x) records the result of solving (!)
- Propagators infer new atomic constraints from old ones
 - $-x_2 \le x_5$ infers from $x_2 \ge 2$ that $x_5 \ge 2$
 - $-x_1+x_2+x_3+x_4 \le 9$ infers from $x_1 \ge 1 \land x_2 \ge 2 \land x_3 \ge 3$ that $x_{4} \leq 3$
- Inference is interleaved with search
 - Try adding c if that fails add not c
- Optimization is repeated solving
 - Find solution obj = k resolve with obj < k

Finite Domain Propagation Ex.


```
array[1..5] of var 1..4: x;
constraint alldifferent([x[1],x[2],x[3],x[4]);
constraint x[2] <= x[5];
constraint x[1] + x[2] + x[3] + x[4] <= 9;</pre>
```

	$x_1 = 1$	alldiff	$x_2 \le x_5$	<i>x</i> ₅ >2	$x_2 \le x_5$	alldiff	sum≤9	alldiff
<i>X</i> ₁			1					1
X_2	14	24	24	24	2	2	2	2
_			24					×
X ₄	14	24	24	24	24	34	3	×
X ₅	14	14	24	34	2	2	2	2
-								

FD propagation

Strengths

- High level modelling
- Specialized global propagators capture substructure
 - and all work together
- Programmable search

Weaknesses

- Weak autonomous search (improved recently)
- Optimization by repeated satisfaction
- Small models can be intractable

Outline

- Propagation based solving
 - Atomic constraints
- Lazy clause generation
 - Explaining propagators
 - Conflict resolution
 - How modern LCG solvers work
- The language of learning: Why search is dead!
 - Lazy encoding
 - Structure based extended resolution
- Lazy grounding and nested constraint programs
- The laziness principle
- Concluding remarks

Lazy Clause Generation (LCG)

- A hybrid SAT and CP solving approach
- Add explanation and nogood learning to a propagation based solver
- Key change
 - Modify propagators to explain their inferences as clauses
 - Propagate these clauses to build up an implication graph
 - Use SAT conflict resolution on the implication graph

LCG in a Nutshell

Integer variable x in I..u encoded as Booleans

```
- [x \le d], d \text{ in } I..u-1
- [x = d], d \text{ in } I..u
```

- Dual representation of domain D(x)
- Restrict to atomic changes in domain (literals)

```
-x \le d (itself)

-x \ge d ! [x \le d-1] use [x \ge d] as shorthand

-x = d (itself)

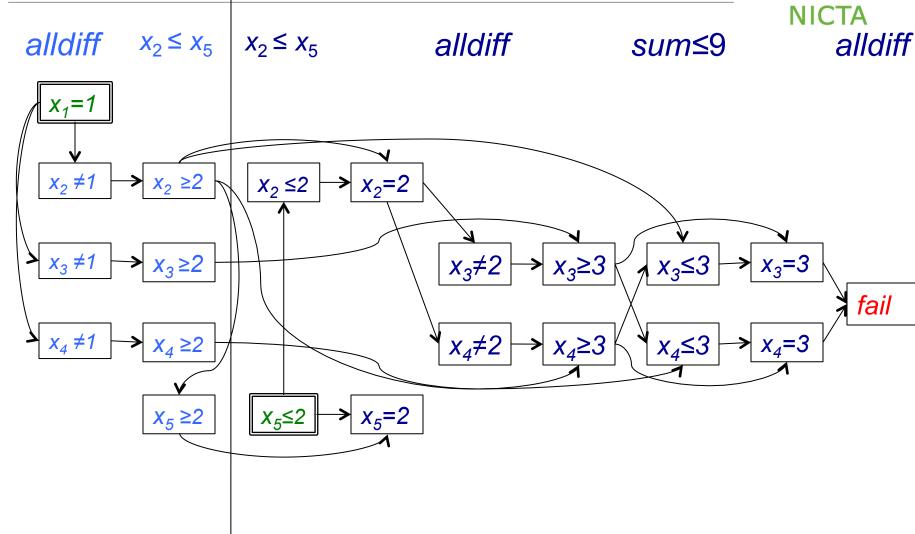
-x \ne d ! [x = d] use [x \ne d] as shorthand
```

Clauses DOM to model relationship of Booleans

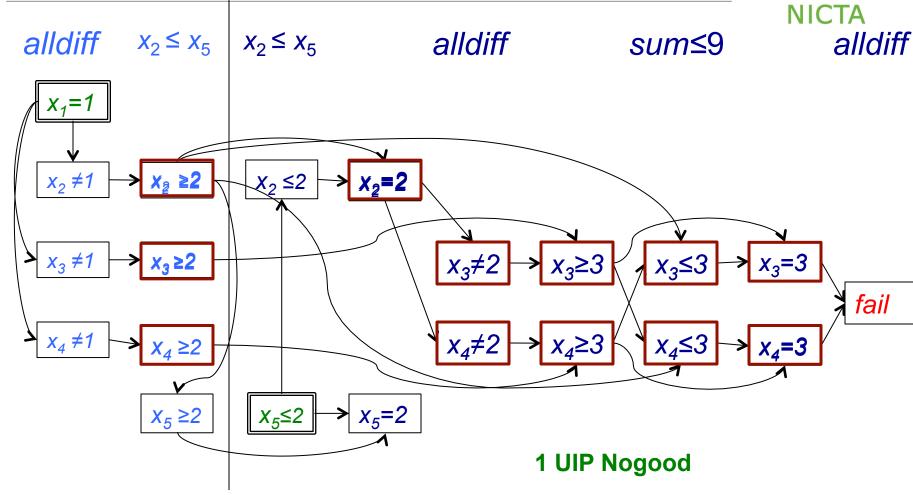
LCG in a Nutshell

- Propagation is clause generation
 - e.g. $[x \le 2]$ and $x \ge y$ means that $[y \le 2]$
 - clause $[x \le 2]$ → $[y \le 2]$
- Consider
 - all different ([x[1],x[2],x[3],x[4]);
- Setting $x_1 = 1$ we generate new inferences
 - $-x_2 \neq 1, x_3 \neq 1, x_4 \neq 1$
- Add clauses
 - $-[x_1 = 1] \rightarrow [x_2 \neq 1], [x_1 = 1] \rightarrow [x_3 \neq 1], [x_1 = 1] \rightarrow [x_4 \neq 1]$
 - i.e. $![x_1 = 1] \lor ![x_2 = 1], ...$
- Propagate these new clauses

Lazy Clause Generation Ex.



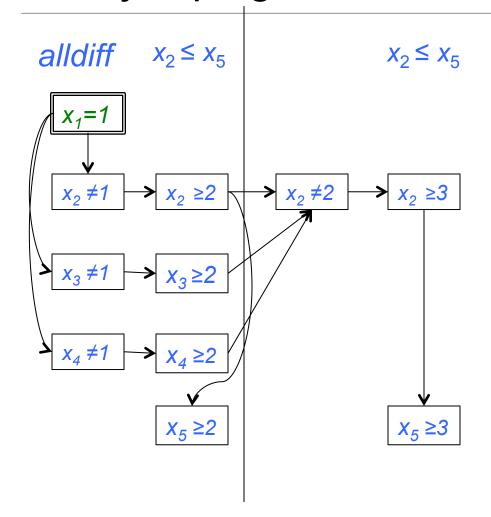
1UIP Nogood Creation



$$\{[x_2 \le 1], [x_3 \le 1], [x_4 \le 1], \neg [x_2 = 2]\}$$

$$\{x_2 \ge 2, x_3 \ge 2, x_4 \ge 2, x_2 = 2\} \rightarrow false$$

Backjumping



- Backtrack to second last level in nogood
 - Nogood will propagate
 - Note stronger domain than usual backtracking

•
$$D(x_2) = \{3..4\}$$

$$\{x_2 \ge 2, x_3 \ge 2, x_4 \ge 2, x_2 = 2\} \rightarrow false$$

What's Really Happening

- CP model = high level "Boolean" model
- Clausal representation of the Boolean model is generated "as we go"
- All generated clauses are redundant and can be removed at any time
- We can control the size of the active "Boolean" model

Comparing to SAT

- •
- For some models we can generate all possible explanation clauses before commencement
 - usually this is too big
- Open Shop Scheduling (tai benchmark suite)
 - averages

	Time	Solve only	Fails	Max Clauses
SAT	318	89	3597	13.17
LCG	62		6651	1.0

Lazy Clause Generation

Strengths

- High level modelling
- Learning avoids repeating the same subsearch
- Strong autonomous search
- Programmable search
- Specialized global propagators (but requires work)

Weaknesses

- Optimization by repeated satisfaction search
- Overhead compared to FD when nogoods are useless

Scheduling

- Resource Constrained Project Scheduling Problems (RCPSP)
 - (probably) the most studied scheduling problems
 - LCG closed 71 open problems
 - Solves more problems in 18s then previous SOTA in 1800s.
- RCPSP/Max (more complex precedence constraints)
 - LCG closed 578 open instances of 631
 - LCG recreates or betters all best known solutions by any method on 2340 instances except 3
- RCPSP/DC (discounted cashflow)
 - Always finds solution on 19440 instances, optimal in all but 152 (versus 832 in previous SOTA)
 - LCG is the SOTA complete method for this problem

Real World Application

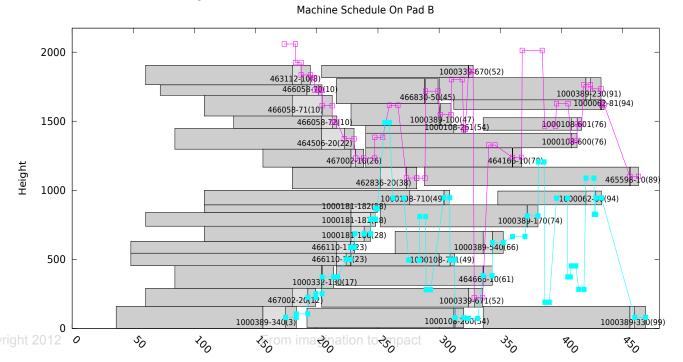
- Carpet Cutting
 - Complex packing problem
 - Cut carpet pieces from a roll to minimize length
 - Data from deployed solution



- Lazy Clause Generation Solution
 - First approach to find and prove optimal solutions
 - Faster than the current deployed solution
 - Reduces waste by 35%

Real World Application

- Bulk Mineral Port Scheduling
 - Combined scheduling problem and packing problem
 - Pack placement of cargos on a pad over time (2d)
 - Schedule reclaiming of cargo onto ship
 - LCG solver produces much better solutions



- MiniZinc Challenge
 - comparing CP solvers on a series of challenging problems
 - Competitors
 - CP solvers such as Gecode, Eclipse, SICstus Prolog
 - MIP solvers SCIP, CPLEX, Gurobi (encoding by us)
 - Decompositions to SMT and SAT solvers
 - LCG solvers (from our group) were
 - First (Chuffed) and Second (CPX) in all categories in 2011 and 2012
 - First (Chuffed) in all categories in 2010
 - Illustrates that the approach is strongly beneficial on a wide range of problems

Improving Lazy Clause Generation

- Don't Save Explanations
- Lazy Literal Generation
- Lazy (Backwards) Explanation
- The Globality of Explanation
- Weak Propagation, Strong Explanation
- Search for LCG
- Symmetries and LCG

Lazy Literal Generation

- Generate Boolean literals representing integer variables on demand
- E.g.
 - decision $x_1 = 1$ generates literal $[x_1 = 1]$
 - all diff generates $[x_2 \ge 2]$ (equivalently $[x_2 \ne 1]$)
- Integer domain maintains relationship of literals
 - DOM clauses disappear
- A bit tricky to implement efficiently

Lazy Literal Generation

 For constraint problems over large domains lazy literal generation is crucial (MiniZinc Chall. 2012)

	amaze	fastfood	filters	league	mspsp	nonogram	patt-set
Initial	8690	1043k	8204	341k	13534	448k	19916
Root	6409	729k	6944	211k	9779	364k	19795
Created	2214	9831	1310	967	6832	262k	15490
Percent	34%	1.3%	19%	0.45%	70%	72%	78%

	proj-plan	radiation	shipshed	solbat	still-life	tpp
Initial	18720	145k	2071k	12144	18947	19335
Root	18478	43144	2071k	9326	12737	18976
Created	5489	1993	12943	10398	3666	9232
Percent	30%	4.6%	0.62%	111%	29%	49%

Lazy Explanation

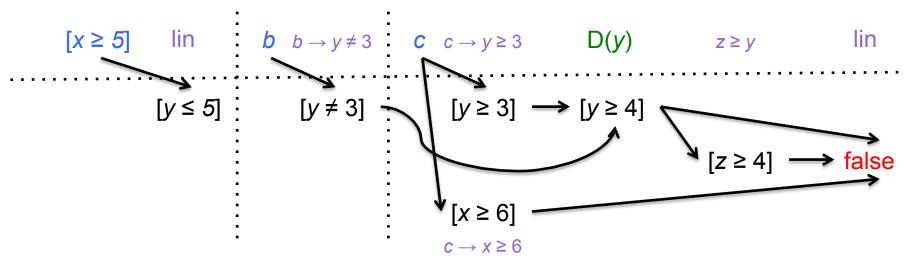
- Explanations only needed for nogood learning
 - Forward: record propagator causing atomic constraint
 - Backward: ask propagator to explain the constraint
- Standard for SMT and SAT extensions
- Only create needed explanations
- Scope for:
 - Explaining a more general failure than occurred
 - Making use of the current nogood in choosing an explanation
- Interacts well with lazy literal generation

(Original) LCG propagation example

- Variables: $\{x,y,z\}$ D(v) = [0..6] Booleans b,c
- Constraints:

$$-z \ge y$$
, $b \rightarrow y \ne 3$, $c \rightarrow y \ge 3$, $c \rightarrow x \ge 6$,

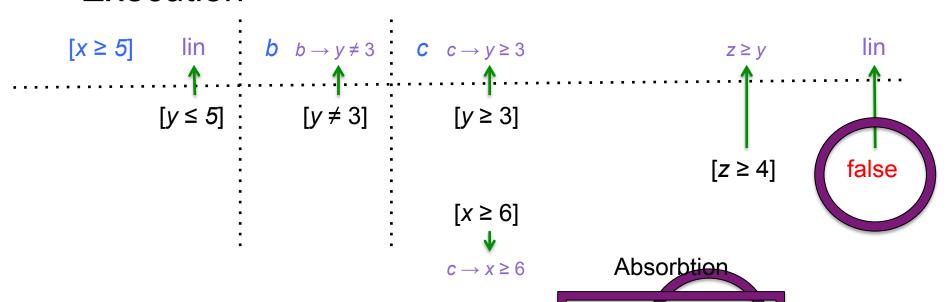
- $-4x + 10y + 5z \le 71$ (lin)
- Execution



1UIP nogood: $c \land [y \neq 3] \rightarrow false$ or $[y \neq 3] \rightarrow !c$

LCG propagation example

Execution



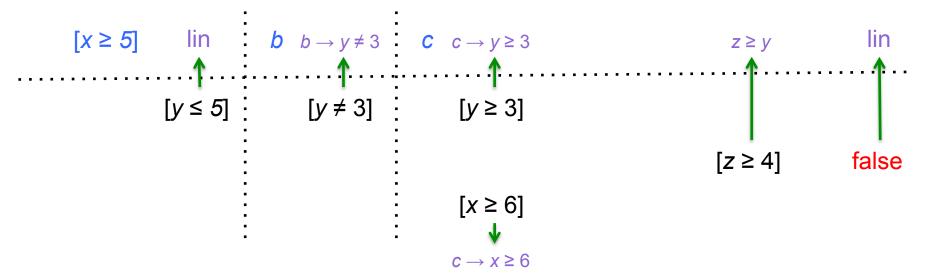
Explanation: $x \ge 6$ /Nogeodz[$x \ge 5$] 4 [$y \ge 04$] / $5[y \ge 73]$

Lifted Explanation: $x \ge 4 \text{ May} = 4 \text{ A} = 4 \text{ A}$

Lifted Explanation: $y \ge 3 \land \texttt{Megoetz} \not \ge 3 \land [y \ge 4] \land [z \ge 3] \rightarrow \texttt{false}$

LCG propagation example

Execution



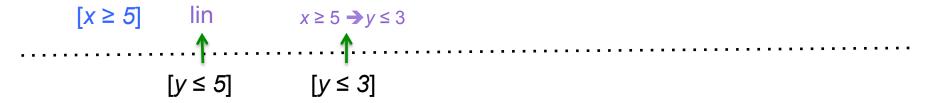
Nogood: $[x \ge 5] \land [y \ge 4] \rightarrow false$

1UIP Nogood: $[x \ge 5] \land [y \ge 4] \rightarrow false$

1UIP Nogood: $[x \ge 5] \rightarrow [y \le 3]$

LCG propagation example

Backjump



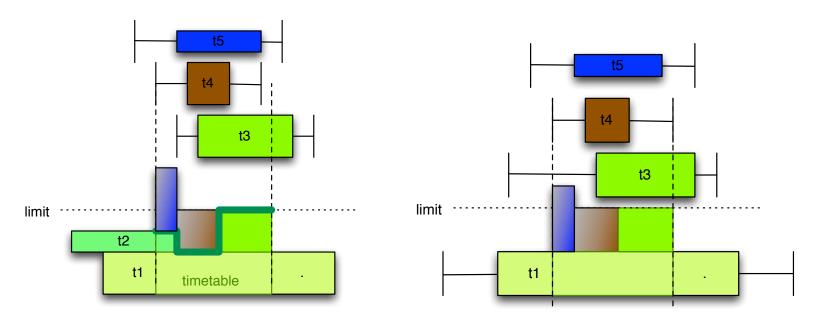
Nogood: $[x \ge 5] \land [y \ge 4] \rightarrow false$

Backwards versus Forwards

Class	n	forward			backward			clausal		
		time	fails	len	time	fails	len	time	fails	len
amaze	(5)	113	272546	16.8	96	267012	18.2	455	242110	22.2
fast-food	(4)	345	241839	44.3	264	214918	45.6	> 2617	58027^{2}	159.8
filters	(4)	613	883948	11.2	625	906724	20.7	>901	7331^{1}	10.0
league	(2)	11	74483	28.3	10	72737	31.1	14	81679	34.9
mspsp	(6)	23	$\boldsymbol{55021}$	24.3	29	62364	53.2	44	70511	24.6
nonogram	(4)	1965	96461	141.5	2124	90672	168.2	>3126	32805^{2}	144.8
pattern-set	(2)	451	81397	180.4	400	82410	180.8	>1016	3913^{1}	3505.3
proj-plan	(4)	83	74531	42.1	78	82269	63.4	150	89860	46.2
radiation	(2)	1.5	7407	17.3	1.3	7566	22.5	1.5	7382	19.9
ship-sched	(5)	43	44897	16.0	37	41353	18.2	273	71120	23.2
solbat	(5)	696	337692	201.2	679	357009	204.0	>1528	111477^1	239.1
still-life	(5)	735	745949	21.9	678	768155	30.2	>2640	269664^2	23.7
tpp	(4)	613	8486	27.4	126	8490	30.1	>902	8330^{1}	12.7

Weak Propagation, Strong Explanation

- Explain a weak propagator strongly
- We get strong explanations, but later!

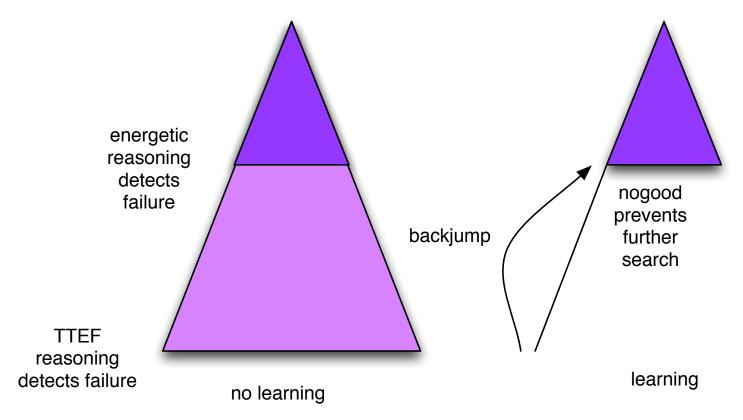


TTEF propagation

- **Energetic explanation**
- Strong propagation algorithms less important

Weak Propagation, Strong Explanation

Late failure discovery doesn't hurt so much



- Strong propagators are not so important!
- Strong explanations are important

Outline

- Propagation based solving
 - Atomic constraints
- Lazy clause generation
 - Explaining propagators
 - Conflict resolution
 - How modern LCG solvers work
- The language of learning: Why search is dead!
 - Lazy encoding
 - Structure based extended resolution
- Lazy grounding and nested constraint programs
- The laziness principle
- Concluding remarks

Search is Dead, Long Live Proof

- Search is simply a proof method
 - With learning its lemma generation
- Optimization problems
 - Require us to prove there is no better solution
 - As a side effect we find good solutions
 - Even if we cant prove optimality,
 - we should still aim to prove optimality
- Primal heuristics (good solutions fast)
 - Reduce the size of optimality proof
- Dual heuristics (good lower bounds fast)
 - Reduce the size of the optimality proof

Search is Dead, Long Live Proof

- The role of Search
 - Find good solutions
 - Only if this helps the proof size to be reduced
 - Find powerful nogoods (lemmas)
 - That are reusable and hence reduce proof size
- Other inferences can reduce proof size
 - Symmetries
 - Dominance
 - Stronger propagators (stronger base inference)
- And a critical factor for reducing proof size
 - Stronger languages of learning

The Language of Learning

- Is critical
- Consider the following MiniZinc model

```
- array[1..n] of var 1..n: x;
- constraint alldifferent(x);
- constraint sum(x) < n*(n+1) div 2;</pre>
```

Unsatisfiable

No learning

n	Failures	Time (s)
6	240	0.00
7	1680	0.01
8	13440	0.08
9	120960	0.42
10	1209600	4.47

With learning

n	Failures	Time (s)
6	270	0.00
7	1890	0.02
8	15120	0.20
9	136080	2.78
10	1360800	31.30

39

The Language of Learning

- Is critical
- Consider the following MiniZinc model

```
- array[1..n] of var 1..n: x;
- array[1..n] of var 0..n*(n+1)div 2: s;
- constraint alldifferent(x);
- constraint s[1] = x[1] /\ s[n] < n*(n+1) div 2;
- constraint forall(i in 2..n)(s[i]=x[i]+s[i-1]);</pre>
```

Unsatisfiable

No learning

n	Failures	Time (s)
6	240	0.00
7	1680	0.01
8	13440	0.08
9	120960	0.56
10	1209600	5.45

With learning

n	Failures	Time (s)
6	99	0.00
7	264	0.01
8	657	0.01
9	1567	0.04
10	3635	0.12

The Language of Lemmas

- Critical to improving proof size
- Choose the right language for expressing lemmas
- Constraint Programming has a massive advantage over other complete methods since we "know" the substructures of the problem
- Methods
 - Lazy Encoding
 - Structure based extended resolution

Propagation Versus Encoding to SAT

- Experience with cardinality problems
- 501 instances of problems with a single cardinality constraint
 - unsat-based MAXSAT solving

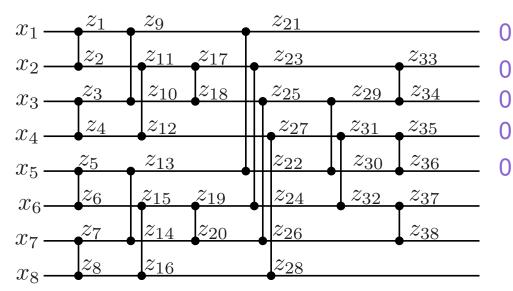
		Speed up if encoding				Slow down if encoding				
Suite	ТО	4	2	1.5	Win	1.5	2	4	TO	Win
Card	168	54	14	7	243	7	24	215	12	258

- 50% of instances encoding is better, 50% worse
- Why can propagation be superior?

Example: Cardinality constraints

•
$$x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 \le 3$$

- Propagator
 - If 3 of $\{x1, ..., x8\}$ are true, set the rest false.
- Encoding
 - Cardinality or sorting network:
 - z21 = z33 = z34 = z35 = z36 = 0



Comparison: Encoding vs Propagation

- A propagator
 - Lazily generates an encoding
 - This encoding is partially stored in nogoods
 - The encoding uses no auxiliary Boolean variables
 - $-\sum_{i=1}^{n} x_i \le k$ generates $(n-k)^n C_k = O(n^k)$ explanations
- If the problem is UNSAT (or optimization)
 - CP solver runtime ≥ size of smallest resolution proof
 - Cannot decide on auxiliary variables
 - Exponentially larger proof
 - Compare $\Sigma_{i=1}$ _n x_i ≤ k encoding is $O(n \log^2 k)$
- But propagation is faster than encoding

Lazy Encoding

- Choose at runtime between encoding and propagation
- All constraints are initially propagators
- If a constraint generates many explanations
 - Replace the propagator by an encoding
 - At restart (just to make it simple)
- Policy: encode if either
 - The number of different explanations is > 50% of the encoding size
 - More than 70% of explanations are new and > 5000

- Internal data structures of global constraints
 - = candidate variables for language of learning

Examples

- linear constraints $\sum_{i=1}^{n} a_i x_i \leq k$:
 - partial sums $s_i = \sum_{i=1..i} a_i x_i$
- lexicographic $[x_1,...,x_i,...,x_n] \le [y_1,...,y_i,...,y_n]$
 - Example propagation [2, 5, 3, x_4 , x_5] \leq [2, 5, y_3 , y_4 , y_5]
 - $x_1 = 2 \land y_1 = 2 \land x_2 = 5 \land y_2 = 5 \land x_3 \ge 3 \implies y_3 \ge 3$
 - $x_1 < y_1 \lor (x_1 = y_1 \land (x_2 < y_2 \lor (x_2 = y_2 \land ...)))$
 - comparison literals: $x_i < y_i$ $x_i = y_i$
 - $x_1 \ge y_1 \land x_2 \ge y_2 \land x_3 \ge 3 \implies y_3 \ge 3$
 - A much more reusable explanation!

Examples

table constraints

$$(x_1, x_2, x_3, x_4) \in \{ (1,2,3,4), (4,3,2,1), (1,2,2,3), (3,1,2,1), (1,1,1,1) \}$$

- Example propagation: $x_1 = 1 \land x_2 = 2 \rightarrow x_4 \neq 1$
- Best explanation: $x_1 \neq 4$ ∧ $x_2 \neq 1$ → $x_4 \neq 1$
- $x_2 \neq 3 \land x_2 \neq 1 \rightarrow x_4 \neq 1$ - OR
- $-r_i$ = tuple *i* is selected

•
$$r_2 = (x_1 = 4 \land x_2 = 3 \land x_3 = 2 \land x_4 = 1)$$

Maximally general explanation

•
$$!r_2 \wedge !r_4 \wedge !r_5 \rightarrow x_4 \neq 1$$

Consider the following MiniZinc model

```
- array[1..n] of var 1..n: x;
- constraint alldifferent(x);
- constraint sum(x) < n*(n+1) div 2;
```

Unsatisfiable

With learning

n	Failures	Time (s)
6	270	0.00
7	1890	0.02
8	15120	0.20
9	136080	2.78
10	1360800	31.30

With extended resolution

n	Failures	Time (s)
6	99	0.00
7	264	0.01
8	657	0.01
9	1567	0.04
10	3635	0.12

- Extend global propagators to
 - Explain propagation using "internal literals"
 - Maintain truth value of "internal literals"
 - usually already part of the propagation algorithm
- Many benefits of lazy encoding
 - not all, sometimes other literals are very useful
 - e.g. cardinality encodings
 - piggy back "extended resolution" on globals algorithm

Outline

- Propagation based solving
 - Atomic constraints
- Lazy clause generation
 - Explaining propagators
 - Conflict resolution
 - How modern LCG solvers work
- The language of learning: Why search is dead!
 - Lazy encoding
 - Structure based extended resolution
- Lazy grounding and nested constraint programs
- The LAZINESS principle
- Concluding remarks

Lazy Grounding

- Before solving we usually have to
 - ground (or flatten) the model
- For example (n = 4)

```
- constraint forall(i in 2..n)(s[i]=x[i]+s[i-1]);
- becomes s[2] = x[2] + s[1] /   <math>s[3] =
```

- For some models the grounding is enormous!
- Instead of grounding before solving
 - ground during solve
 - on demand
 - ensure a solution for the non-grounded part
- See the next talk for more details!

- A powerful language for nested optimization problems
- Based on aggregator constraints

```
- y = \mathbf{agg}( [ f(x_1, ..., x_n, z_1, ..., z_m) 
| z_1, ..., z_m \text{ where } C(x_1, ..., x_n, z_1, ..., z_m) ])
```

where agg is a function on multisets

- e.g. sum, min, max, average, median, exists, forall
- Lazy evaluation
 - wait until $x_1, ..., x_n$ are fixed
 - evaluate the multiset by search over z_1, \dots, z_m
 - set y to the appropriate value

- Highly expressive:
 - #SAT, QBF, QCSP, Stochastic CP, ...
- Find the minimal number of clues $x_{ikjk} = d_k$ required to make a proper sudoku problem (exactly one solution)
- $y = \min([b_k | k \text{ in } 1..n]) | b_1, ..., b_n \text{ where}$
- 1 = sum([1 | x_{11} in 1..9, ... x_{99} in 1..9 where
- forall([$b_k \rightarrow x_{ikjk} = d_k \mid k \text{ in } 1..n]$) \land
- sudoku $(x_{11}, ..., x_{99})])])$
- where sudoku are sudoku constraints

- Naïve approach
 - completely solved by grounding
 - BUT completely impractical
- Actual approach
 - one copy of constraints
 - search on outer aggregator
 - wake a new copy of inner aggregator

Improvements

- learning (across invocations of inner aggregators)
- short circuiting (e.g. when we find two solns we stop)
- use grounding when known size and small

- Book production (stochastic) planning problem
 - uncertain demand 100..105 in each period
 - plan a production run so that we can cover demand 80% of the time
- Compare with stochastic CP using search and scenario generation (determinization)

stages	NCP		sear	ch	scenario	
	fails	time	fails	time	fails	time
1	8	0.01	10	0.01	4	0.00
2	16	0.01	148	0.03	8	0.02
3	24	0.01	3604	0.76	24	0.16
4	32	0.01	95570	19.07	42	1.53
5	40	0.01	2616858	509.95	218	18.52
6	48	0.01		TO	1260	474.47

Outline

- Propagation based solving
 - Atomic constraints
- Lazy clause generation
 - Explaining propagators
 - Conflict resolution
 - How modern LCG solvers work
- The language of learning: Why search is dead!
 - Lazy encoding
 - Structure based extended resolution
- Lazy grounding and nested constraint programs
- The laziness principle
- Concluding remarks

The LAZINESS Principle

- "Never perform any work unless there is evidence that it will benefit"
 - LCG = lazy SAT encoding
 - Lazy literal generation = only when needed
 - Lazy explanation = only when needed
 - Lazy encoding = intermediate literals when needed
 - Structure based ER = as for Lazy encoding
 - Lazy grounding = model expansion as needed
 - Nested constraint programs = copy the submodel as required

The LAZINESS principle

- "Never perform any work unless there is evidence that it will benefit"
- Where does it lead?
- Ideas:
 - only do constraint checking until a constraint causes failure often, then start propagating it
 - don't learn at all until there are lots of failures
- Obviously other methods are instances of this
 - Benders decomposition
 - Column generation

Outline

- Propagation based solving
 - Atomic constraints
- Lazy clause generation
 - Explaining propagators
 - Conflict resolution
 - How modern LCG solvers work
- The language of learning: Why search is dead!
 - Lazy encoding
 - Structure based extended resolution
- Lazy grounding and nested constraint programs
- The laziness principle
- Concluding remarks

Conclusions (Slogans)

- Most of CP search is repeated
- Search is Dead, Long Live Proof
- Laziness is your friend
 - Follow the LAZINESS principle!
- And finally

Whats coming

- ObjectiveCP
 - CP based on a small micro kernel
- ObjectiveCPExplanation
 - An LCG solver in the ObjectiveCP framework
- ObjectiveCPSchedule
 - State of the art scheduling technology
- MiniZinc 2.0

MiniZinc 2.0 Beta (www.minizinc.org)

- Open LLVM-style architecture
- User-defined functions
 - Functional constraint modelling, functional globals
 - Better CSE
- Option types
 - Concise modelling of decisions that are only relevant dependent on other decisions
- Half reification
 - Better translation of complex logical constraints
 - Substantial efficiency improvements
 - More flexible use of globals
- Globalizer (powerful structural analysis)