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Constraint Satisfaction Problems 
•  Finite set of variables v ∈ V 

–  Each with finite domain D(v) 

•  Finite set of constraints C over V 
•  Find a value for each variable that satisfies all 

the constraints 
•  Example: 3 coloring 

–  V = {x,y,z,t,u},  
–  D(v) = {1,2,3}, v ∈ V 
–  C = {x ≠ y, x ≠ z, y ≠ u,  
           z ≠ t, z ≠ u, t ≠ u} 
–  Solution { x=1, y=2, z=2, t=1, u=3} 
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Constraint Satisfaction Problems

A finite set of variables v 2 V each with a finite set of possible values
D(v).

A finite set of constraints C over V

Find a value for each variable that satisfies all constraints
For example: 3 Coloring

V = {x , y , z , t, u}, D(v) = {1, 2, 3}, v 2 V
C = {x 6= y , x 6= z , y 6= u, z 6= t, z 6= u, t 6= u}

solution {x 7! 1, y 7! 2, z 7! 2, t 7! 1, u 7! 3}

x y

t u

z
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How much of CP search is repeated? 
•  4 colour the graph below 

 
•  Inorder labelling: 462672 failures 

–  With learning: 18 failures 
•  Value symmetries removed: 19728 failures 

–  With learning: 19 failures 
•  Reverse labelling: 24 failures 

–  With learning: 18 failures 
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Resource Constrained Project Scheduling (RCPSP)
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Schedule tasks satisfying precedences and cumulative resource usage

Benchmarks at PSPlib http://129.187.106.231/psplib/

Previous state of the art:
specific task modelling, specialized cumulative propagators
highly complex search strategy (author 10+ years on these problems)

Our solution
cumulative propagation with explanation
hybrid activity based search
⇡ 10⇥ faster, closed 71 open instances
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How much of CP search is repeated? 
•  Resource Constrained Project Scheduling 

–  BL instance (20 tasks) 

•  Input order: 934,535 failures 
–  With learning: 931 failures 

•  Smallest start time order: 296,567 failures 
–  With learning: 551 failures 

•  Activity-based search: > 2,000,000 failures 
–  With learning: 1144 failures 
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation  
–  Explaining propagators 
–  Conflict resolution 
–  How modern LCG solvers work 

•  The language of learning: Why search is dead! 
–  Lazy encoding 
–  Structure based extended resolution 

•  Lazy grounding and nested constraint programs 
•  The laziness principle 
•  Concluding remarks 6 
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Propagation Solving (CP) 
•  Complete solver for atomic constraints 

–  x = d, x ≠ d, x ≥ d, x ≤ d 
–  Domain D(x) records the result of solving (!) 

•  Propagators infer new atomic constraints from 
old ones 
–  x2 ≤ x5  infers from x2 ≥ 2 that x5 ≥ 2  
–  x1+x2+x3+x4 ≤ 9 infers from x1 ≥ 1∧x2 ≥ 2∧x3 ≥ 3 that  

x4 ≤ 3 
•  Inference is interleaved with search 

–  Try adding c if that fails add not c 

•  Optimization is repeated solving 
–  Find solution obj = k resolve with obj < k 

8 
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Finite Domain Propagation Ex. 

array[1..5] of var 1..4: x; 
constraint alldifferent([x[1],x[2],x[3],x[4]); 
constraint x[2] <= x[5]; 
constraint x[1] + x[2] + x[3] + x[4] <= 9; 

 
x1 
x2 
x3 
x4 
x5 

x1=1 
1 
1..4 
1..4 
1..4 
1..4 

alldiff 
1 
2..4 
2..4 
2..4 
1..4 

x2 ≤ x5 
1 
2..4 
2..4 
2..4 
2..4 

x5≤2 
1 
2..4 
2..4 
2..4 
2 

x2 ≤ x5 
1 
2 
2..4 
2..4 
2 

alldiff 
1 
2 
3..4 
3..4 
2 

sum≤9 
1 
2 
3 
3 
2 

alldiff 
1 
2 
✖ 
✖ 
2 

x5>2 
1 
2..4 
2..4 
2..4 
3..4 
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FD propagation 
•  Strengths 

–  High level modelling 
–  Specialized global propagators capture substructure 

•  and all work together 

–  Programmable search 

•  Weaknesses 
–  Weak autonomous search (improved recently) 
–  Optimization by repeated satisfaction 
–  Small models can be intractable 

10 
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation  
–  Explaining propagators 
–  Conflict resolution 
–  How modern LCG solvers work 

•  The language of learning: Why search is dead! 
–  Lazy encoding 
–  Structure based extended resolution 

•  Lazy grounding and nested constraint programs 
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Lazy Clause Generation (LCG) 
•  A hybrid SAT and CP solving approach 
•  Add explanation and nogood learning to a  
   propagation based solver 
•  Key change 

–  Modify propagators to explain their inferences as 
clauses 

–  Propagate these clauses to build up an implication 
graph 

–  Use SAT conflict resolution on the implication graph 
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LCG in a Nutshell 
•  Integer variable x in l..u encoded as Booleans 

–  [x ≤ d],  d in l..u-1 
–  [x = d],  d in l..u 

•  Dual representation of domain D(x) 
•  Restrict to atomic changes in domain (literals) 

–  x ≤ d  (itself) 
–  x ≥ d     ! [x ≤ d-1]  use [x ≥ d] as shorthand 
–  x = d  (itself) 
–  x ≠ d  ! [x = d]     use [x ≠ d] as shorthand 

•  Clauses DOM to model relationship of Booleans 
–  [x ≤ d] ![x ≤ d+1], d in l..u-2 
–  [x = d] " [x ≤ d] ∧ ! [x ≤ d-1], d in l+1..u-1  
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LCG in a Nutshell 
•  Propagation is clause generation 

–  e.g.    [x ≤ 2]  and x ≥ y means that   [y ≤ 2] 
–  clause [x ≤ 2] ![y ≤ 2] 

•  Consider  
–  alldifferent([x[1],x[2],x[3],x[4]); 

•  Setting x1 = 1 we generate new inferences 
–  x2 ≠ 1, x3 ≠ 1, x4 ≠ 1   

•  Add clauses  
–  [x1 = 1]![x2 ≠ 1], [x1 = 1]![x3 ≠ 1], [x1 = 1]![x4 ≠ 1] 
–  i.e. ![x1 = 1]∨![x2 = 1], … 

•  Propagate these new clauses  
14 
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Lazy Clause Generation Ex. 

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 x5≤2 x5=2 

x2 ≤2 x2=2 

x3≠2 

x4≠2 

x3≥3 

x4≥3 

x3≤3 

x4≤3 

x3=3 

x4=3 
fail 

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff 
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1UIP Nogood Creation 

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 x5≤2 x5=2 

x2 ≤2 x2=2 

x3≠2 

x4≠2 

x3≥3 

x4≥3 

x3≤3 

x4≤3 

x3=3 

x4=3 

fail 

x3=3∧x4=3! false 

x4=3 

x3=3 

x4≥3∧ x4≤3∧ x3=3! false 

x4≤3 

{x3≥3,x4≥3,x3≤3,x4≤3}! false 

x3≤3 

{x2  ≥2,x3≥3,x4≥3,x3≤3} ! false 

x3≥3 

x2  ≥2 

x4≥3 

{x2  ≥2, x3≥3, x4≥3} ! false {x2  ≥2,x4 ≥2,x4≠2,x3≥3} ! false 

x4≠2 x4 ≥2 

{x2 ≥2,x3 ≥2,x4 ≥2,x3≠2,x4≠2} ! false 

x3≠2 x3 ≥2 

{x2  ≥2,x3 ≥2,x4 ≥2,x2=2,x3≠2} ! false 

x2=2 

{x2 ≥2, x3 ≥2, x4 ≥2, x2= 2} ! false 
{[x2 ≤1],[x3 ≤1], [x4 ≤1],¬[x2 =2]}  

1 UIP Nogood 

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff 
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Backjumping 

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2} ! false 

alldiff x2 ≤ x5 

x2 ≠2 x2  ≥3 

x2 ≤ x5 

x5 ≥3 

•  Backtrack to second 
last level in nogood 

 •  Nogood will 
propagate 

 •  Note stronger domain 
than usual 
backtracking 
•  D(x2) = {3..4} 
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What’s Really Happening 
•  CP model = high level “Boolean” model 
•  Clausal representation of the Boolean model is 

generated “as we go”  
•  All generated clauses are redundant and can be 

removed at any time  
•  We can control the size of the active “Boolean” 

model 

18 
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Comparing to SAT 
•  For some models we can generate all possible 

explanation clauses before commencement 
–  usually this is too big 

•  Open Shop Scheduling (tai benchmark suite) 
–  averages 

19 

Time Solve only Fails Max Clauses 
SAT 318 89 3597 13.17 
LCG 62   6651 1.0 
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Lazy Clause Generation 
•  Strengths 

–  High level modelling  
–  Learning avoids repeating the same subsearch  
–  Strong autonomous search  
–  Programmable search  
–  Specialized global propagators (but requires work) 

•  Weaknesses 
–  Optimization by repeated satisfaction search  
–  Overhead compared to FD when nogoods are 

useless 

20 
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LCG Successes 
•  Scheduling 

–  Resource Constrained Project Scheduling Problems 
(RCPSP) 

•  (probably) the most studied scheduling problems 
•  LCG closed 71 open problems  
•  Solves more problems in 18s then previous SOTA in 1800s 

–  RCPSP/Max (more complex precedence constraints) 
•  LCG closed 578 open instances of 631 
•  LCG recreates or betters all best known solutions by any 

method on 2340 instances except 3 

–  RCPSP/DC (discounted cashflow) 
•  Always finds solution on 19440 instances, optimal in all but 

152 (versus 832 in previous SOTA) 
•  LCG is the SOTA complete method for this problem 
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LCG Successes 
•  Real World Application 

–  Carpet Cutting 
•  Complex packing problem 
•  Cut carpet pieces from a roll to minimize length 
•  Data from deployed solution 

–  Lazy Clause Generation Solution 
•  First approach to find and prove optimal solutions 
•  Faster than the current deployed solution 
•  Reduces waste by 35% 
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LCG Successes 
•  Real World Application 

–  Bulk Mineral Port Scheduling 
•  Combined scheduling problem and packing problem 
•  Pack placement of cargos on a pad over time (2d) 
•  Schedule reclaiming of cargo onto ship 
•  LCG solver produces much better solutions  
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LCG Successes 
•  MiniZinc Challenge 

–  comparing CP solvers on a series of challenging 
problems 

–  Competitors 
•  CP solvers such as Gecode, Eclipse, SICstus Prolog 
•  MIP solvers SCIP, CPLEX, Gurobi (encoding by us) 
•  Decompositions to SMT and SAT solvers 

–  LCG solvers (from our group) were 
•  First (Chuffed) and Second (CPX) in all categories in 2011 and 

2012 
•  First (Chuffed) in all categories in 2010 

–  Illustrates that the approach is strongly beneficial on a 
wide range of problems  
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Improving Lazy Clause Generation 
•  Don’t Save Explanations 
•  Lazy Literal Generation 
•  Lazy (Backwards) Explanation 
•  The Globality of Explanation 
•  Weak Propagation, Strong Explanation 
•  Search for LCG 
•  Symmetries and LCG 

25 
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Lazy Literal Generation 
•  Generate Boolean literals representing integer 

variables on demand 
•  E.g.   

–  decision x1 = 1 generates literal [x1 = 1]  
–  alldiff generates [x2 ≥ 2] (equivalently ![x2 ≠ 1] ) 

•  Integer domain maintains relationship of literals 
–  DOM clauses disappear 

•  A bit tricky to implement efficiently 

26 
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Lazy Literal Generation 
•  For constraint problems over large domains lazy 

literal generation is crucial (MiniZinc Chall. 2012) 

27 

amaze fastfood filters league mspsp nonogram patt-set 
Initial 8690 1043k 8204 341k 13534 448k 19916 
Root 6409 729k 6944 211k 9779 364k 19795 
Created 2214 9831 1310 967 6832 262k 15490 
Percent 34% 1.3% 19% 0.45% 70% 72% 78% 

proj-plan radiation shipshed solbat still-life tpp 
Initial 18720 145k 2071k 12144 18947 19335 
Root 18478 43144 2071k 9326 12737 18976 
Created 5489 1993 12943 10398 3666 9232 
Percent 30% 4.6% 0.62% 111% 29% 49% 
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Lazy Explanation 
•  Explanations only needed for nogood learning 

–  Forward: record propagator causing atomic constraint 
–  Backward: ask propagator to explain the constraint 

•  Standard for SMT and SAT extensions 
•  Only create needed explanations 
•  Scope for: 

–  Explaining a more general failure than occurred 
–  Making use of the current nogood in choosing an 

explanation 
•  Interacts well with lazy literal generation 

28 
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(Original) LCG propagation example 
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c 
•  Constraints:  

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,  
–  4x + 10y + 5z ≤ 71 (lin) 

•  Execution 

29 

[x ≥ 5] 

[y ≤ 5] 

b 

[y ≠ 3] 

c 

[y ≥ 3] [y ≥ 4] 

[x ≥ 6] 

[z ≥ 4] false 

lin b → y ≠ 3 c → y ≥ 3 

c → x ≥ 6 

lin z ≥ y D(y) 

1UIP nogood: c ∧ [y ≠ 3] ! false     or      [y ≠ 3] ! !c  
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LCG propagation example 
•  Execution 

30 

[x ≥ 5] 

[y ≤ 5] 

b 

[y ≠ 3] 

c 

[y ≥ 3] 

[x ≥ 6] 

[z ≥ 4] false 

lin b → y ≠ 3 c → y ≥ 3 

c → x ≥ 6 

lin z ≥ y 

Explanation: x ≥ 6 ∧y ≥ 4 ∧z ≥ 4 ∧4x + 10y + 5z ≤ 71 ! false    

Lifted Explanation: x ≥ 5 ∧y ≥ 4 ∧z ≥ 3 ∧4x + 10y + 5z ≤ 71 ! false    

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[z ≥ 3] ! false    

Explanation: y ≥ 4∧z ≥ y !z ≥ 4 

Lifted Explanation: y ≥ 3∧z ≥ y !z ≥ 3 

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[y ≥ 3] ! false    

Absorbtion 



NICTA Copyright 2012 From imagination to impact 

LCG propagation example 
•  Execution 

31 

[x ≥ 5] 

[y ≤ 5] 

b 

[y ≠ 3] 

c 

[y ≥ 3] 

[x ≥ 6] 

[z ≥ 4] false 

lin b → y ≠ 3 c → y ≥ 3 

c → x ≥ 6 

lin z ≥ y 

Nogood: [x ≥ 5] ∧[y ≥ 4] ! false    

1UIP Nogood: [x ≥ 5] ∧[y ≥ 4] ! false    

1UIP Nogood: [x ≥ 5] ![y ≤ 3] 
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LCG propagation example 
•  Backjump 

32 

[x ≥ 5] 

[y ≤ 5] 

lin 

Nogood: [x ≥ 5] ∧[y ≥ 4] ! false    

[y ≤ 3] 

x ≥ 5 !y ≤ 3 
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Backwards versus Forwards 

33 

14 Thibaut Feydy, Andreas Schutt, and Peter Stuckey

Table 2. Comparing average runtime, average number of failures (with number of
timeouts as superscript), and average learnt clause size for di↵erent explanation ap-
proaches.

Class n forward backward clausal

time fails len time fails len time fails len
amaze (5) 113 272546 16.8 96 267012 18.2 455 242110 22.2
fast-food (4) 345 241839 44.3 264 214918 45.6 >2617 580272 159.8
filters (4) 613 883948 11.2 625 906724 20.7 >901 73311 10.0
league (2) 11 74483 28.3 10 72737 31.1 14 81679 34.9
mspsp (6) 23 55021 24.3 29 62364 53.2 44 70511 24.6
nonogram (4) 1965 96461 141.5 2124 90672 168.2 >3126 328052 144.8
pattern-set (2) 451 81397 180.4 400 82410 180.8 >1016 39131 3505.3
proj-plan (4) 83 74531 42.1 78 82269 63.4 150 89860 46.2
radiation (2) 1.5 7407 17.3 1.3 7566 22.5 1.5 7382 19.9
ship-sched (5) 43 44897 16.0 37 41353 18.2 273 71120 23.2
solbat (5) 696 337692 201.2 679 357009 204.0 >1528 1114771 239.1
still-life (5) 735 745949 21.9 678 768155 30.2 >2640 2696642 23.7
tpp (4) 613 8486 27.4 126 8490 30.1 >902 83301 12.7

on each suite. In addition it shows the arithmetic mean of number of failures
number of literals generated, and average clause length for each solver, on the
instances that did not timeout. The number of timeouts (if any is shown as a
superscript on fails).

First we should note that there is no universal winning explanation strat-
egy, while backward is generally the best there are a number of problems were
forward performs better. Because it performs less explanation backward is faster
per fail, and even though it performs more search is often faster than forward.
clausal is not really competitive. Because backward generates more varied atomic
constraints its explanations clause lengths are longer, similarly clausal generates
more literals for explanations. Interestingly, Gent et al [4] compare forward and
backward explanation and find backward much better. This is possibly because
their system does not include bounds atomic constraints, and hence a (single)
bounds propagation creates many disequality propagations, which penalizes for-
ward explanation more.

Table 3 illustrates the importance of lazily generating literals. It shows for
each class the average number of Boolean variables that can be defined to rep-
resent all atomic constraints for all variables in the model both in the initial

model, and at the root node after it reaches its first fixpoint. It then shows the
average number of Boolean variables generated during the entire search when us-
ing forward, backward or clausal explanation. The results show that for problems
with large domains (e.g. fast-food and ship-sched) only a tiny proportion of
the possible literals are created. Very few problems (e.g mspsp and pattern-set)
generate more than half the possible literals. Comparing the explanation meth-
ods: clausal unsurprisingly generates more literals than the others, but still not
very many on the large domain examples. backward generates more literals than
forward since its explanations are not so restricted.
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Weak Propagation, Strong Explanation 
•  Explain a weak propagator strongly 
•  We get strong explanations, but later! 

•  TTEF propagation          Energetic explanation 
•  Strong propagation algorithms less important 

34 
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energetic
reasoning

detects
failure

TTEF
reasoning

detects failure

backjump

nogood
prevents
further
search

no learning
learning

Weak Propagation, Strong Explanation 
•  Late failure discovery doesn’t hurt so much 

 
 
•  Strong propagators are not so important! 
•  Strong explanations are important 

35 
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation  
–  Explaining propagators 
–  Conflict resolution 
–  How modern LCG solvers work 

•  The language of learning: Why search is dead! 
–  Lazy encoding 
–  Structure based extended resolution 

•  Lazy grounding and nested constraint programs 
•  The laziness principle 
•  Concluding remarks 36 
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Search is Dead, Long Live Proof 
•  Search is simply a proof method 

–  With learning its lemma generation 

•  Optimization problems 
–  Require us to prove there is no better solution  
–  As a side effect we find good solutions 

– Even if we cant prove optimality,  
• we should still aim to prove optimality 

•  Primal heuristics (good solutions fast) 
–  Reduce the size of optimality proof 

•  Dual heuristics (good lower bounds fast) 
–  Reduce the size of the optimality proof 

37 
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Search is Dead, Long Live Proof 
•  The role of Search 

–  Find good solutions 
•  Only if this helps the proof size to be reduced 

–  Find powerful nogoods (lemmas) 
•  That are reusable and hence reduce proof size 

•  Other inferences can reduce proof size 
–  Symmetries 
–  Dominance 
–  Stronger propagators (stronger base inference) 

•  And a critical factor for reducing proof size 
–  Stronger languages of learning 

38 



NICTA Copyright 2012 From imagination to impact 

The Language of Learning 
•  Is critical 
•  Consider the following MiniZinc model 

–  array[1..n] of var 1..n: x; 
–  constraint alldifferent(x); 
–  constraint sum(x) < n*(n+1) div 2; 

•  Unsatisfiable 
–            No learning 

39 

n Failures Time (s) 
6 240 0.00 
7 1680 0.01 
8 13440 0.08 
9 120960 0.42 

10 1209600 4.47 

n Failures Time (s) 
6 270 0.00 
7 1890 0.02 
8 15120 0.20 
9 136080 2.78 

10 1360800 31.30 

With learning 
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The Language of Learning 
•  Is critical 
•  Consider the following MiniZinc model 

–  array[1..n] of var 1..n: x; 
–  array[1..n] of var 0..n*(n+1)div 2: s; 
–  constraint alldifferent(x); 
–  constraint s[1] = x[1] /\ s[n] < n*(n+1) div 2; 
–  constraint forall(i in 2..n)(s[i]=x[i]+s[i-1]); 

•  Unsatisfiable 
–            No learning 
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n Failures Time (s) 
6 240 0.00 
7 1680 0.01 
8 13440 0.08 
9 120960 0.56 

10 1209600 5.45 

n Failures Time (s) 
6 99 0.00 
7 264 0.01 
8 657 0.01 
9 1567 0.04 

10 3635 0.12 

With learning 
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The Language of Lemmas 
•  Critical to improving proof size 
•  Choose the right language for expressing 

lemmas 
•  Constraint Programming has a massive 

advantage over other complete methods since 
we “know” the substructures of the problem 

•  Methods 
–  Lazy Encoding 
–  Structure based extended resolution 
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Propagation Versus Encoding to SAT 
•  Experience with cardinality problems 
•  501 instances of problems with a single 

cardinality constraint 
–  unsat-based MAXSAT solving 

•  50% of instances encoding is better, 50% worse 
•  Why can propagation be superior?  
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Suite TO 4 2 1.5 Win 1.5 2 4 TO Win 
Card 168 54 14 7 243 7 24 215 12 258 

Speed up if encoding Slow down if encoding 
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Example: Cardinality constraints 
•  x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ≤ 3 
•  Propagator 

–  If 3 of {x1, …, x8} are true, set the rest false. 

•  Encoding 
–  Cardinality or sorting network:  

•  z21 = z33 = z34 = z35 = z36 = 0 
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Comparison: Encoding vs Propagation 
•  A propagator 

–  Lazily generates an encoding 
–  This encoding is partially stored in nogoods 
–  The encoding uses no auxiliary Boolean variables 
–  Σi=1..n xi  ≤ k generates (n-k)nCk = O(nk) explanations  

•  If the problem is UNSAT (or optimization) 
–  CP solver runtime ≥ size of smallest resolution proof 
–  Cannot decide on auxiliary variables  

•  Exponentially larger proof 

–  Compare Σi=1..n xi  ≤ k encoding is O(n log2 k) 
•  But propagation is faster than encoding 
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Lazy Encoding 
•  Choose at runtime between encoding and 

propagation 
•  All constraints are initially propagators 
•  If a constraint generates many explanations 

–  Replace the propagator by an encoding 
–  At restart (just to make it simple) 

•  Policy: encode if either 
–  The number of different explanations is > 50% of the 

encoding size 
–  More than 70% of explanations are new and > 5000 
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Structure Based Extended Resolution 
•     Internal data structures of global constraints 
    = candidate variables for language of learning  
•  Examples 

–  linear constraints Σi=1..n ai xi  ≤ k :  
•  partial sums sj = Σi=1..j ai xi  

–  lexicographic  [x1,…,xi ,…,xn] ≤  [y1,…,yi ,…,yn]  
•  Example propagation [2, 5, 3, x4, x5] ≤ [2, 5, y3, y4, y5]  
•  x1 = 2 ∧ y1 = 2 ∧ x2 = 5 ∧ y2 = 5 ∧ x3 ≥ 3 !  y3 ≥ 3  
•  x1 < y1 ∨ (x1 = y1 ∧ (x2 < y2 ∨ (x2 = y2 ∧ … ) ) ) 
•  comparison literals: xi < yi    xi = yi  

•  x1 ≥ y1 ∧ x2 ≥ y2 ∧ x3 ≥ 3 !  y3 ≥ 3  
•  A much more reusable explanation! 
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Structure Based Extended Resolution 
•  Examples 

–  table constraints  
(x1,x2,x3,x4) ∈ { (1,2,3,4), (4,3,2,1), (1,2,2,3),     
                         (3,1,2,1), (1,1,1,1) }  
–  Example propagation: x1 = 1 ∧  x2 =  2 !   x4 ≠ 1 
–  Best explanation: x1 ≠ 4 ∧ x2 ≠  1 !   x4 ≠ 1 
–  OR                       x2 ≠ 3 ∧ x2 ≠  1 !   x4 ≠ 1 
–  ri = tuple i is selected 

•  r2 = (x1 = 4 ∧  x2 =  3 ∧ x3 = 2 ∧  x4 =  1) 

–  Maximally general explanation 
•  ! r2 ∧ ! r4 ∧ ! r5  !   x4 ≠ 1 
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Structure Based Extended Resolution 
•  Consider the following MiniZinc model 

–  array[1..n] of var 1..n: x; 
–  constraint alldifferent(x); 
–  constraint sum(x) < n*(n+1) div 2; 

•  Unsatisfiable 
–            With learning 
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n Failures Time (s) 
6 270 0.00 
7 1890 0.02 
8 15120 0.20 
9 136080 2.78 

10 1360800 31.30 

With extended resolution 

n Failures Time (s) 
6 99 0.00 
7 264 0.01 
8 657 0.01 
9 1567 0.04 

10 3635 0.12 
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Structure Based Extended Resolution 
•  Extend global propagators to 

–  Explain propagation using “internal literals” 
–  Maintain truth value of “internal literals” 

•  usually already part of the propagation algorithm 

•  Many benefits of lazy encoding 
–  not all, sometimes other literals are very useful 

•  e.g. cardinality encodings 

–  piggy back “extended resolution” on globals algorithm 

49 



NICTA Copyright 2012 From imagination to impact 

Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation  
–  Explaining propagators 
–  Conflict resolution 
–  How modern LCG solvers work 

•  The language of learning: Why search is dead! 
–  Lazy encoding 
–  Structure based extended resolution 

•  Lazy grounding and nested constraint programs 
•  The LAZINESS principle 
•  Concluding remarks 50 
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Lazy Grounding 
•  Before solving we usually have to 

–  ground (or flatten) the model 

•  For example (n = 4) 
–  constraint forall(i in 2..n)(s[i]=x[i]+s[i-1]); 
–  becomes s[2] = x[2] + s[1] /\ s[3] = 
x[3] + s[2] /\ s[4] = x[4] + s[3] 

•  For some models the grounding is enormous! 
•  Instead of grounding before solving 

–  ground during solve 
–  on demand 
–  ensure a solution for the non-grounded part 

•  See the next talk for more details! 
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Nested Constraint Programs 
•  A powerful language for nested optimization 

problems 
•  Based on aggregator constraints 

–  y = agg( [ f(x1,…,xn,z1,…,zm)  
                  | z1,…,zm where C(x1,…,xn,z1,…,zm) ])  
where agg is a function on multisets 
–  e.g. sum, min, max, average, median, exists, forall 

•  Lazy evaluation 
–  wait until x1,…,xn are fixed 
–  evaluate the multiset by search over z1,…,zm  
–  set y to the appropriate value 
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Nested Constraint Programs 
•  Highly expressive: 

–  #SAT, QBF, QCSP, Stochastic CP, … 

•  Find the minimal number of clues xikjk = dk 
required to make a proper sudoku problem 
(exactly one solution) 

•  y = min( [ sum([bk | k in 1..n]) | b1, …, bn where 
•       1 = sum([ 1 | x11 in 1..9, … x99 in 1..9 where 
•                         forall([ bk ! xikjk = dk  | k in 1..n]) /\ 
•                         sudoku(x11, …, x99) ] ) ] ) 
•  where sudoku are sudoku constraints 
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Nested Constraint Programs 
•  Naïve approach 

–  completely solved by grounding 
–  BUT completely impractical 

•  Actual approach 
–  one copy of constraints 
–  search on outer aggregator 

•  wake a new copy of inner aggregator 

•  Improvements 
–  learning (across invocations of inner aggregators) 
–  short circuiting (e.g. when we find two solns we stop) 
–  use grounding when known size and small  
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Nested Constraint Programs 
•  Book production (stochastic) planning problem 

–  uncertain demand 100..105 in each period 
–  plan a production run so that we can cover demand 

80% of the time 
•  Compare with stochastic CP using search and 

scenario generation (determinization) 
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stages NCP search scenario 
fails time fails time fails time 

1 8 0.01 10 0.01 4 0.00 
2 16 0.01 148 0.03 8 0.02 
3 24 0.01 3604 0.76 24 0.16 
4 32 0.01 95570 19.07 42 1.53 
5 40 0.01 2616858 509.95 218 18.52 

6 48 0.01 --- TO 1260 474.47 
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation  
–  Explaining propagators 
–  Conflict resolution 
–  How modern LCG solvers work 

•  The language of learning: Why search is dead! 
–  Lazy encoding 
–  Structure based extended resolution 

•  Lazy grounding and nested constraint programs 
•  The laziness principle 
•  Concluding remarks 56 
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The LAZINESS Principle 
•  “Never perform any work unless there is 

evidence that it will benefit” 
–  LCG = lazy SAT encoding  
–  Lazy literal generation = only when needed 
–  Lazy explanation = only when needed 
–  Lazy encoding = intermediate literals when needed 
–  Structure based ER = as for Lazy encoding 
–  Lazy grounding = model expansion as needed 
–  Nested constraint programs = copy the submodel as 

required 
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The LAZINESS principle 
•  “Never perform any work unless there is 

evidence that it will benefit” 
•  Where does it lead? 
•  Ideas: 

–  only do constraint checking until a constraint causes 
failure often, then start propagating it 

–  don’t learn at all until there are lots of failures 
•  Obviously other methods are instances of this 

–  Benders decomposition 
–  Column generation 
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation  
–  Explaining propagators 
–  Conflict resolution 
–  How modern LCG solvers work 

•  The language of learning: Why search is dead! 
–  Lazy encoding 
–  Structure based extended resolution 

•  Lazy grounding and nested constraint programs 
•  The laziness principle 
•  Concluding remarks 59 
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Conclusions (Slogans) 

• Most of CP search is 
• Search is Dead, 
•  Laziness is your friend 

• And finally 
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Whats coming 
•  ObjectiveCP 

–  CP based on a small micro kernel 

•  ObjectiveCPExplanation 
–  An LCG solver in the ObjectiveCP framework 

•  ObjectiveCPSchedule 
–  State of the art scheduling technology 

•  MiniZinc 2.0   
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MiniZinc 2.0 Beta (www.minizinc.org) 
•  Open LLVM-style architecture 
•  User-defined functions 

–  Functional constraint modelling, functional globals 
–  Better CSE 

•  Option types 
–  Concise modelling of decisions that are only relevant 

dependent on other decisions 
•  Half reification 

–  Better translation of complex logical constraints 
–  Substantial efficiency improvements 
–  More flexible use of globals 

•  Globalizer (powerful structural analysis) 
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