
NICTA Copyright 2012 From imagination to impact

Laziness
is next to
Godliness

Peter J. Stuckey and countless others!

NICTA Copyright 2012 From imagination to impact

Conspirators
•  Ignasi Abio, Ralph Becket, Sebastian Brand,

Geoffrey Chu, Michael Codish, Broes De Cat,
Marc Denecker, Greg Duck, Nick Downing,
Thibaut Feydy, Kathryn Francis, Graeme Gange,
Vitaly Lagoon, Amit Metodi, Nick Nethercote,
Roberto Nieuwenhuis, Olga Ohrimenko, Albert
Oliveras, Enric Rodriguez Carbonell, Andreas
Schutt, Guido Tack, Pascal Van Hentenryck,
Mark Wallace

•  All errors and outrageous lies are mine

2

NICTA Copyright 2012 From imagination to impact

Constraint Satisfaction Problems
•  Finite set of variables v ∈ V

–  Each with finite domain D(v)

•  Finite set of constraints C over V
•  Find a value for each variable that satisfies all

the constraints
•  Example: 3 coloring

–  V = {x,y,z,t,u},
–  D(v) = {1,2,3}, v ∈ V
–  C = {x ≠ y, x ≠ z, y ≠ u,
 z ≠ t, z ≠ u, t ≠ u}
–  Solution { x=1, y=2, z=2, t=1, u=3}

3

Constraint Satisfaction Problems

A finite set of variables v 2 V each with a finite set of possible values
D(v).

A finite set of constraints C over V

Find a value for each variable that satisfies all constraints
For example: 3 Coloring

V = {x , y , z , t, u}, D(v) = {1, 2, 3}, v 2 V
C = {x 6= y , x 6= z , y 6= u, z 6= t, z 6= u, t 6= u}

solution {x 7! 1, y 7! 2, z 7! 2, t 7! 1, u 7! 3}

x y

t u

z

Peter J. Stuckey Lazy Clause Generation

Universidad Complutense de Madrid November 2012 5

/ 94

Constraint Satisfaction Problems

A finite set of variables v 2 V each with a finite set of possible values
D(v).

A finite set of constraints C over V

Find a value for each variable that satisfies all constraints
For example: 3 Coloring

V = {x , y , z , t, u}, D(v) = {1, 2, 3}, v 2 V
C = {x 6= y , x 6= z , y 6= u, z 6= t, z 6= u, t 6= u}
solution {x 7! 1, y 7! 2, z 7! 2, t 7! 1, u 7! 3}

x y

t u

z

x y

t u

z

Peter J. Stuckey Lazy Clause Generation

Universidad Complutense de Madrid November 2012 5

/ 94

NICTA Copyright 2012 From imagination to impact

1

2

103

4

5

6

7

8

9

11

12

13

14 15

How much of CP search is repeated?
•  4 colour the graph below

•  Inorder labelling: 462672 failures

–  With learning: 18 failures
•  Value symmetries removed: 19728 failures

–  With learning: 19 failures
•  Reverse labelling: 24 failures

–  With learning: 18 failures
4

NICTA Copyright 2012 From imagination to impact

Resource Constrained Project Scheduling (RCPSP)

f

d

c

e

ba

source sink

0 2

a
b

4 6 8 10 12 14

cd
e

f

16 18 20

Schedule tasks satisfying precedences and cumulative resource usage

Benchmarks at PSPlib http://129.187.106.231/psplib/

Previous state of the art:
specific task modelling, specialized cumulative propagators
highly complex search strategy (author 10+ years on these problems)

Our solution
cumulative propagation with explanation
hybrid activity based search
⇡ 10⇥ faster, closed 71 open instances

Peter J. Stuckey Lazy Clause Generation

Universidad Complutense de Madrid November 2012 60

/ 94

How much of CP search is repeated?
•  Resource Constrained Project Scheduling

–  BL instance (20 tasks)

•  Input order: 934,535 failures
–  With learning: 931 failures

•  Smallest start time order: 296,567 failures
–  With learning: 551 failures

•  Activity-based search: > 2,000,000 failures
–  With learning: 1144 failures

5

NICTA Copyright 2012 From imagination to impact

Outline
•  Propagation based solving

–  Atomic constraints

•  Lazy clause generation
–  Explaining propagators
–  Conflict resolution
–  How modern LCG solvers work

•  The language of learning: Why search is dead!
–  Lazy encoding
–  Structure based extended resolution

•  Lazy grounding and nested constraint programs
•  The laziness principle
•  Concluding remarks 6

NICTA Copyright 2012 From imagination to impact

Outline
•  Propagation based solving

–  Atomic constraints

•  Lazy clause generation
–  Explaining propagators
–  Conflict resolution
–  How modern LCG solvers work

•  The language of learning: Why search is dead!
–  Lazy encoding
–  Structure based extended resolution

•  Lazy grounding and nested constraint programs
•  The laziness principle
•  Concluding remarks 7

NICTA Copyright 2012 From imagination to impact

Propagation Solving (CP)
•  Complete solver for atomic constraints

–  x = d, x ≠ d, x ≥ d, x ≤ d
–  Domain D(x) records the result of solving (!)

•  Propagators infer new atomic constraints from
old ones
–  x2 ≤ x5 infers from x2 ≥ 2 that x5 ≥ 2
–  x1+x2+x3+x4 ≤ 9 infers from x1 ≥ 1∧x2 ≥ 2∧x3 ≥ 3 that

x4 ≤ 3
•  Inference is interleaved with search

–  Try adding c if that fails add not c

•  Optimization is repeated solving
–  Find solution obj = k resolve with obj < k

8

NICTA Copyright 2012 From imagination to impact

Finite Domain Propagation Ex.

array[1..5] of var 1..4: x;
constraint alldifferent([x[1],x[2],x[3],x[4]);
constraint x[2] <= x[5];
constraint x[1] + x[2] + x[3] + x[4] <= 9;

x1
x2
x3
x4
x5

x1=1
1
1..4
1..4
1..4
1..4

alldiff
1
2..4
2..4
2..4
1..4

x2 ≤ x5
1
2..4
2..4
2..4
2..4

x5≤2
1
2..4
2..4
2..4
2

x2 ≤ x5
1
2
2..4
2..4
2

alldiff
1
2
3..4
3..4
2

sum≤9
1
2
3
3
2

alldiff
1
2
✖
✖
2

x5>2
1
2..4
2..4
2..4
3..4

NICTA Copyright 2012 From imagination to impact

FD propagation
•  Strengths

–  High level modelling
–  Specialized global propagators capture substructure

•  and all work together

–  Programmable search

•  Weaknesses
–  Weak autonomous search (improved recently)
–  Optimization by repeated satisfaction
–  Small models can be intractable

10

NICTA Copyright 2012 From imagination to impact

Outline
•  Propagation based solving

–  Atomic constraints

•  Lazy clause generation
–  Explaining propagators
–  Conflict resolution
–  How modern LCG solvers work

•  The language of learning: Why search is dead!
–  Lazy encoding
–  Structure based extended resolution

•  Lazy grounding and nested constraint programs
•  The laziness principle
•  Concluding remarks 11

NICTA Copyright 2012 From imagination to impact

Lazy Clause Generation (LCG)
•  A hybrid SAT and CP solving approach
•  Add explanation and nogood learning to a
 propagation based solver
•  Key change

–  Modify propagators to explain their inferences as
clauses

–  Propagate these clauses to build up an implication
graph

–  Use SAT conflict resolution on the implication graph

12

NICTA Copyright 2012 From imagination to impact

LCG in a Nutshell
•  Integer variable x in l..u encoded as Booleans

–  [x ≤ d], d in l..u-1
–  [x = d], d in l..u

•  Dual representation of domain D(x)
•  Restrict to atomic changes in domain (literals)

–  x ≤ d (itself)
–  x ≥ d ! [x ≤ d-1] use [x ≥ d] as shorthand
–  x = d (itself)
–  x ≠ d ! [x = d] use [x ≠ d] as shorthand

•  Clauses DOM to model relationship of Booleans
–  [x ≤ d] ![x ≤ d+1], d in l..u-2
–  [x = d] " [x ≤ d] ∧ ! [x ≤ d-1], d in l+1..u-1

NICTA Copyright 2012 From imagination to impact

LCG in a Nutshell
•  Propagation is clause generation

–  e.g. [x ≤ 2] and x ≥ y means that [y ≤ 2]
–  clause [x ≤ 2] ![y ≤ 2]

•  Consider
–  alldifferent([x[1],x[2],x[3],x[4]);

•  Setting x1 = 1 we generate new inferences
–  x2 ≠ 1, x3 ≠ 1, x4 ≠ 1

•  Add clauses
–  [x1 = 1]![x2 ≠ 1], [x1 = 1]![x3 ≠ 1], [x1 = 1]![x4 ≠ 1]
–  i.e. ![x1 = 1]∨![x2 = 1], …

•  Propagate these new clauses
14

NICTA Copyright 2012 From imagination to impact

Lazy Clause Generation Ex.

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2 x5≤2 x5=2

x2 ≤2 x2=2

x3≠2

x4≠2

x3≥3

x4≥3

x3≤3

x4≤3

x3=3

x4=3
fail

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff

NICTA Copyright 2012 From imagination to impact

1UIP Nogood Creation

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2 x5≤2 x5=2

x2 ≤2 x2=2

x3≠2

x4≠2

x3≥3

x4≥3

x3≤3

x4≤3

x3=3

x4=3

fail

x3=3∧x4=3! false

x4=3

x3=3

x4≥3∧ x4≤3∧ x3=3! false

x4≤3

{x3≥3,x4≥3,x3≤3,x4≤3}! false

x3≤3

{x2 ≥2,x3≥3,x4≥3,x3≤3} ! false

x3≥3

x2 ≥2

x4≥3

{x2 ≥2, x3≥3, x4≥3} ! false {x2 ≥2,x4 ≥2,x4≠2,x3≥3} ! false

x4≠2 x4 ≥2

{x2 ≥2,x3 ≥2,x4 ≥2,x3≠2,x4≠2} ! false

x3≠2 x3 ≥2

{x2 ≥2,x3 ≥2,x4 ≥2,x2=2,x3≠2} ! false

x2=2

{x2 ≥2, x3 ≥2, x4 ≥2, x2= 2} ! false
{[x2 ≤1],[x3 ≤1], [x4 ≤1],¬[x2 =2]}

1 UIP Nogood

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff

NICTA Copyright 2012 From imagination to impact

Backjumping

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2} ! false

alldiff x2 ≤ x5

x2 ≠2 x2 ≥3

x2 ≤ x5

x5 ≥3

•  Backtrack to second
last level in nogood

 •  Nogood will
propagate

 •  Note stronger domain
than usual
backtracking
•  D(x2) = {3..4}

NICTA Copyright 2012 From imagination to impact

What’s Really Happening
•  CP model = high level “Boolean” model
•  Clausal representation of the Boolean model is

generated “as we go”
•  All generated clauses are redundant and can be

removed at any time
•  We can control the size of the active “Boolean”

model

18

NICTA Copyright 2012 From imagination to impact

Comparing to SAT
•  For some models we can generate all possible

explanation clauses before commencement
–  usually this is too big

•  Open Shop Scheduling (tai benchmark suite)
–  averages

19

Time Solve only Fails Max Clauses
SAT 318 89 3597 13.17
LCG 62 6651 1.0

NICTA Copyright 2012 From imagination to impact

Lazy Clause Generation
•  Strengths

–  High level modelling
–  Learning avoids repeating the same subsearch
–  Strong autonomous search
–  Programmable search
–  Specialized global propagators (but requires work)

•  Weaknesses
–  Optimization by repeated satisfaction search
–  Overhead compared to FD when nogoods are

useless

20

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  Scheduling

–  Resource Constrained Project Scheduling Problems
(RCPSP)

•  (probably) the most studied scheduling problems
•  LCG closed 71 open problems
•  Solves more problems in 18s then previous SOTA in 1800s

–  RCPSP/Max (more complex precedence constraints)
•  LCG closed 578 open instances of 631
•  LCG recreates or betters all best known solutions by any

method on 2340 instances except 3

–  RCPSP/DC (discounted cashflow)
•  Always finds solution on 19440 instances, optimal in all but

152 (versus 832 in previous SOTA)
•  LCG is the SOTA complete method for this problem

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  Real World Application

–  Carpet Cutting
•  Complex packing problem
•  Cut carpet pieces from a roll to minimize length
•  Data from deployed solution

–  Lazy Clause Generation Solution
•  First approach to find and prove optimal solutions
•  Faster than the current deployed solution
•  Reduces waste by 35%

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  Real World Application

–  Bulk Mineral Port Scheduling
•  Combined scheduling problem and packing problem
•  Pack placement of cargos on a pad over time (2d)
•  Schedule reclaiming of cargo onto ship
•  LCG solver produces much better solutions

23 0

 500

 1000

 1500

 2000

 0 50 100
 150

 200
 250

 300
 350

 400
 450

H
ei

gh
t

Time (hours)

Machine Schedule On Pad B

1000389-340(3)

463112-10(8)
466058-70(10)

466058-71(10)
466058-72(10)

467002-20(12)

1000332-130(17)

464506-20(22)

466110-10(23)
466110-11(23)

467002-10(26)

1000181-180(28)
1000181-181(28)
1000181-182(28)

462836-20(38)

466830-50(45)

1000389-100(47)

1000108-710(49)

1000108-711(49)

1000339-670(52)

1000339-671(52)

1000108-260(54)

1000108-261(54)

464666-10(61)

1000389-540(66)

464166-10(70)

1000389-170(74)

1000108-600(76)

1000108-601(76)

465598-10(89)

1000389-230(91)

1000062-80(94)

1000062-81(94)

1000389-330(99)

R459 R460

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  MiniZinc Challenge

–  comparing CP solvers on a series of challenging
problems

–  Competitors
•  CP solvers such as Gecode, Eclipse, SICstus Prolog
•  MIP solvers SCIP, CPLEX, Gurobi (encoding by us)
•  Decompositions to SMT and SAT solvers

–  LCG solvers (from our group) were
•  First (Chuffed) and Second (CPX) in all categories in 2011 and

2012
•  First (Chuffed) in all categories in 2010

–  Illustrates that the approach is strongly beneficial on a
wide range of problems

NICTA Copyright 2012 From imagination to impact

Improving Lazy Clause Generation
•  Don’t Save Explanations
•  Lazy Literal Generation
•  Lazy (Backwards) Explanation
•  The Globality of Explanation
•  Weak Propagation, Strong Explanation
•  Search for LCG
•  Symmetries and LCG

25

NICTA Copyright 2012 From imagination to impact

Lazy Literal Generation
•  Generate Boolean literals representing integer

variables on demand
•  E.g.

–  decision x1 = 1 generates literal [x1 = 1]
–  alldiff generates [x2 ≥ 2] (equivalently ![x2 ≠ 1])

•  Integer domain maintains relationship of literals
–  DOM clauses disappear

•  A bit tricky to implement efficiently

26

NICTA Copyright 2012 From imagination to impact

Lazy Literal Generation
•  For constraint problems over large domains lazy

literal generation is crucial (MiniZinc Chall. 2012)

27

amaze fastfood filters league mspsp nonogram patt-set
Initial 8690 1043k 8204 341k 13534 448k 19916
Root 6409 729k 6944 211k 9779 364k 19795
Created 2214 9831 1310 967 6832 262k 15490
Percent 34% 1.3% 19% 0.45% 70% 72% 78%

proj-plan radiation shipshed solbat still-life tpp
Initial 18720 145k 2071k 12144 18947 19335
Root 18478 43144 2071k 9326 12737 18976
Created 5489 1993 12943 10398 3666 9232
Percent 30% 4.6% 0.62% 111% 29% 49%

NICTA Copyright 2012 From imagination to impact

Lazy Explanation
•  Explanations only needed for nogood learning

–  Forward: record propagator causing atomic constraint
–  Backward: ask propagator to explain the constraint

•  Standard for SMT and SAT extensions
•  Only create needed explanations
•  Scope for:

–  Explaining a more general failure than occurred
–  Making use of the current nogood in choosing an

explanation
•  Interacts well with lazy literal generation

28

NICTA Copyright 2012 From imagination to impact

(Original) LCG propagation example
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c
•  Constraints:

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,
–  4x + 10y + 5z ≤ 71 (lin)

•  Execution

29

[x ≥ 5]

[y ≤ 5]

b

[y ≠ 3]

c

[y ≥ 3] [y ≥ 4]

[x ≥ 6]

[z ≥ 4] false

lin b → y ≠ 3 c → y ≥ 3

c → x ≥ 6

lin z ≥ y D(y)

1UIP nogood: c ∧ [y ≠ 3] ! false or [y ≠ 3] ! !c

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Execution

30

[x ≥ 5]

[y ≤ 5]

b

[y ≠ 3]

c

[y ≥ 3]

[x ≥ 6]

[z ≥ 4] false

lin b → y ≠ 3 c → y ≥ 3

c → x ≥ 6

lin z ≥ y

Explanation: x ≥ 6 ∧y ≥ 4 ∧z ≥ 4 ∧4x + 10y + 5z ≤ 71 ! false

Lifted Explanation: x ≥ 5 ∧y ≥ 4 ∧z ≥ 3 ∧4x + 10y + 5z ≤ 71 ! false

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[z ≥ 3] ! false

Explanation: y ≥ 4∧z ≥ y !z ≥ 4

Lifted Explanation: y ≥ 3∧z ≥ y !z ≥ 3

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[y ≥ 3] ! false

Absorbtion

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Execution

31

[x ≥ 5]

[y ≤ 5]

b

[y ≠ 3]

c

[y ≥ 3]

[x ≥ 6]

[z ≥ 4] false

lin b → y ≠ 3 c → y ≥ 3

c → x ≥ 6

lin z ≥ y

Nogood: [x ≥ 5] ∧[y ≥ 4] ! false

1UIP Nogood: [x ≥ 5] ∧[y ≥ 4] ! false

1UIP Nogood: [x ≥ 5] ![y ≤ 3]

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Backjump

32

[x ≥ 5]

[y ≤ 5]

lin

Nogood: [x ≥ 5] ∧[y ≥ 4] ! false

[y ≤ 3]

x ≥ 5 !y ≤ 3

NICTA Copyright 2012 From imagination to impact

Backwards versus Forwards

33

14 Thibaut Feydy, Andreas Schutt, and Peter Stuckey

Table 2. Comparing average runtime, average number of failures (with number of
timeouts as superscript), and average learnt clause size for di↵erent explanation ap-
proaches.

Class n forward backward clausal

time fails len time fails len time fails len
amaze (5) 113 272546 16.8 96 267012 18.2 455 242110 22.2
fast-food (4) 345 241839 44.3 264 214918 45.6 >2617 580272 159.8
filters (4) 613 883948 11.2 625 906724 20.7 >901 73311 10.0
league (2) 11 74483 28.3 10 72737 31.1 14 81679 34.9
mspsp (6) 23 55021 24.3 29 62364 53.2 44 70511 24.6
nonogram (4) 1965 96461 141.5 2124 90672 168.2 >3126 328052 144.8
pattern-set (2) 451 81397 180.4 400 82410 180.8 >1016 39131 3505.3
proj-plan (4) 83 74531 42.1 78 82269 63.4 150 89860 46.2
radiation (2) 1.5 7407 17.3 1.3 7566 22.5 1.5 7382 19.9
ship-sched (5) 43 44897 16.0 37 41353 18.2 273 71120 23.2
solbat (5) 696 337692 201.2 679 357009 204.0 >1528 1114771 239.1
still-life (5) 735 745949 21.9 678 768155 30.2 >2640 2696642 23.7
tpp (4) 613 8486 27.4 126 8490 30.1 >902 83301 12.7

on each suite. In addition it shows the arithmetic mean of number of failures
number of literals generated, and average clause length for each solver, on the
instances that did not timeout. The number of timeouts (if any is shown as a
superscript on fails).

First we should note that there is no universal winning explanation strat-
egy, while backward is generally the best there are a number of problems were
forward performs better. Because it performs less explanation backward is faster
per fail, and even though it performs more search is often faster than forward.
clausal is not really competitive. Because backward generates more varied atomic
constraints its explanations clause lengths are longer, similarly clausal generates
more literals for explanations. Interestingly, Gent et al [4] compare forward and
backward explanation and find backward much better. This is possibly because
their system does not include bounds atomic constraints, and hence a (single)
bounds propagation creates many disequality propagations, which penalizes for-
ward explanation more.

Table 3 illustrates the importance of lazily generating literals. It shows for
each class the average number of Boolean variables that can be defined to rep-
resent all atomic constraints for all variables in the model both in the initial

model, and at the root node after it reaches its first fixpoint. It then shows the
average number of Boolean variables generated during the entire search when us-
ing forward, backward or clausal explanation. The results show that for problems
with large domains (e.g. fast-food and ship-sched) only a tiny proportion of
the possible literals are created. Very few problems (e.g mspsp and pattern-set)
generate more than half the possible literals. Comparing the explanation meth-
ods: clausal unsurprisingly generates more literals than the others, but still not
very many on the large domain examples. backward generates more literals than
forward since its explanations are not so restricted.

NICTA Copyright 2012 From imagination to impact

Weak Propagation, Strong Explanation
•  Explain a weak propagator strongly
•  We get strong explanations, but later!

•  TTEF propagation Energetic explanation
•  Strong propagation algorithms less important

34

t2

t1 .

limit

timetable

t3

t4

t5

t1 .

limit

t3

t4

t5

NICTA Copyright 2012 From imagination to impact

energetic
reasoning

detects
failure

TTEF
reasoning

detects failure

backjump

nogood
prevents
further
search

no learning
learning

Weak Propagation, Strong Explanation
•  Late failure discovery doesn’t hurt so much

•  Strong propagators are not so important!
•  Strong explanations are important

35

NICTA Copyright 2012 From imagination to impact

Outline
•  Propagation based solving

–  Atomic constraints

•  Lazy clause generation
–  Explaining propagators
–  Conflict resolution
–  How modern LCG solvers work

•  The language of learning: Why search is dead!
–  Lazy encoding
–  Structure based extended resolution

•  Lazy grounding and nested constraint programs
•  The laziness principle
•  Concluding remarks 36

NICTA Copyright 2012 From imagination to impact

Search is Dead, Long Live Proof
•  Search is simply a proof method

–  With learning its lemma generation

•  Optimization problems
–  Require us to prove there is no better solution
–  As a side effect we find good solutions

– Even if we cant prove optimality,
• we should still aim to prove optimality

•  Primal heuristics (good solutions fast)
–  Reduce the size of optimality proof

•  Dual heuristics (good lower bounds fast)
–  Reduce the size of the optimality proof

37

NICTA Copyright 2012 From imagination to impact

Search is Dead, Long Live Proof
•  The role of Search

–  Find good solutions
•  Only if this helps the proof size to be reduced

–  Find powerful nogoods (lemmas)
•  That are reusable and hence reduce proof size

•  Other inferences can reduce proof size
–  Symmetries
–  Dominance
–  Stronger propagators (stronger base inference)

•  And a critical factor for reducing proof size
–  Stronger languages of learning

38

NICTA Copyright 2012 From imagination to impact

The Language of Learning
•  Is critical
•  Consider the following MiniZinc model

–  array[1..n] of var 1..n: x;
–  constraint alldifferent(x);
–  constraint sum(x) < n*(n+1) div 2;

•  Unsatisfiable
–  No learning

39

n Failures Time (s)
6 240 0.00
7 1680 0.01
8 13440 0.08
9 120960 0.42

10 1209600 4.47

n Failures Time (s)
6 270 0.00
7 1890 0.02
8 15120 0.20
9 136080 2.78

10 1360800 31.30

With learning

NICTA Copyright 2012 From imagination to impact

The Language of Learning
•  Is critical
•  Consider the following MiniZinc model

–  array[1..n] of var 1..n: x;
–  array[1..n] of var 0..n*(n+1)div 2: s;
–  constraint alldifferent(x);
–  constraint s[1] = x[1] /\ s[n] < n*(n+1) div 2;
–  constraint forall(i in 2..n)(s[i]=x[i]+s[i-1]);

•  Unsatisfiable
–  No learning

40

n Failures Time (s)
6 240 0.00
7 1680 0.01
8 13440 0.08
9 120960 0.56

10 1209600 5.45

n Failures Time (s)
6 99 0.00
7 264 0.01
8 657 0.01
9 1567 0.04

10 3635 0.12

With learning

NICTA Copyright 2012 From imagination to impact

The Language of Lemmas
•  Critical to improving proof size
•  Choose the right language for expressing

lemmas
•  Constraint Programming has a massive

advantage over other complete methods since
we “know” the substructures of the problem

•  Methods
–  Lazy Encoding
–  Structure based extended resolution

41

NICTA Copyright 2012 From imagination to impact

Propagation Versus Encoding to SAT
•  Experience with cardinality problems
•  501 instances of problems with a single

cardinality constraint
–  unsat-based MAXSAT solving

•  50% of instances encoding is better, 50% worse
•  Why can propagation be superior?

42

Suite TO 4 2 1.5 Win 1.5 2 4 TO Win
Card 168 54 14 7 243 7 24 215 12 258

Speed up if encoding Slow down if encoding

NICTA Copyright 2012 From imagination to impact

Example: Cardinality constraints
•  x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ≤ 3
•  Propagator

–  If 3 of {x1, …, x8} are true, set the rest false.

•  Encoding
–  Cardinality or sorting network:

•  z21 = z33 = z34 = z35 = z36 = 0

43

x1

x2

x3

x4

x5

x6

x7

x8

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

z26

z27

z28

z29

z30

z31

z32

z33

z34

z35

z36

z37

z38

0
0
0
0
0

NICTA Copyright 2012 From imagination to impact

Comparison: Encoding vs Propagation
•  A propagator

–  Lazily generates an encoding
–  This encoding is partially stored in nogoods
–  The encoding uses no auxiliary Boolean variables
–  Σi=1..n xi ≤ k generates (n-k)nCk = O(nk) explanations

•  If the problem is UNSAT (or optimization)
–  CP solver runtime ≥ size of smallest resolution proof
–  Cannot decide on auxiliary variables

•  Exponentially larger proof

–  Compare Σi=1..n xi ≤ k encoding is O(n log2 k)
•  But propagation is faster than encoding

44

NICTA Copyright 2012 From imagination to impact

Lazy Encoding
•  Choose at runtime between encoding and

propagation
•  All constraints are initially propagators
•  If a constraint generates many explanations

–  Replace the propagator by an encoding
–  At restart (just to make it simple)

•  Policy: encode if either
–  The number of different explanations is > 50% of the

encoding size
–  More than 70% of explanations are new and > 5000

45

NICTA Copyright 2012 From imagination to impact

Structure Based Extended Resolution
•  Internal data structures of global constraints
 = candidate variables for language of learning
•  Examples

–  linear constraints Σi=1..n ai xi ≤ k :
•  partial sums sj = Σi=1..j ai xi

–  lexicographic [x1,…,xi ,…,xn] ≤ [y1,…,yi ,…,yn]
•  Example propagation [2, 5, 3, x4, x5] ≤ [2, 5, y3, y4, y5]
•  x1 = 2 ∧ y1 = 2 ∧ x2 = 5 ∧ y2 = 5 ∧ x3 ≥ 3 ! y3 ≥ 3
•  x1 < y1 ∨ (x1 = y1 ∧ (x2 < y2 ∨ (x2 = y2 ∧ …)))
•  comparison literals: xi < yi xi = yi

•  x1 ≥ y1 ∧ x2 ≥ y2 ∧ x3 ≥ 3 ! y3 ≥ 3
•  A much more reusable explanation!

46

NICTA Copyright 2012 From imagination to impact

Structure Based Extended Resolution
•  Examples

–  table constraints
(x1,x2,x3,x4) ∈ { (1,2,3,4), (4,3,2,1), (1,2,2,3),
 (3,1,2,1), (1,1,1,1) }
–  Example propagation: x1 = 1 ∧ x2 = 2 ! x4 ≠ 1
–  Best explanation: x1 ≠ 4 ∧ x2 ≠ 1 ! x4 ≠ 1
–  OR x2 ≠ 3 ∧ x2 ≠ 1 ! x4 ≠ 1
–  ri = tuple i is selected

•  r2 = (x1 = 4 ∧ x2 = 3 ∧ x3 = 2 ∧ x4 = 1)

–  Maximally general explanation
•  ! r2 ∧ ! r4 ∧ ! r5 ! x4 ≠ 1

47

NICTA Copyright 2012 From imagination to impact

Structure Based Extended Resolution
•  Consider the following MiniZinc model

–  array[1..n] of var 1..n: x;
–  constraint alldifferent(x);
–  constraint sum(x) < n*(n+1) div 2;

•  Unsatisfiable
–  With learning

48

n Failures Time (s)
6 270 0.00
7 1890 0.02
8 15120 0.20
9 136080 2.78

10 1360800 31.30

With extended resolution

n Failures Time (s)
6 99 0.00
7 264 0.01
8 657 0.01
9 1567 0.04

10 3635 0.12

NICTA Copyright 2012 From imagination to impact

Structure Based Extended Resolution
•  Extend global propagators to

–  Explain propagation using “internal literals”
–  Maintain truth value of “internal literals”

•  usually already part of the propagation algorithm

•  Many benefits of lazy encoding
–  not all, sometimes other literals are very useful

•  e.g. cardinality encodings

–  piggy back “extended resolution” on globals algorithm

49

NICTA Copyright 2012 From imagination to impact

Outline
•  Propagation based solving

–  Atomic constraints

•  Lazy clause generation
–  Explaining propagators
–  Conflict resolution
–  How modern LCG solvers work

•  The language of learning: Why search is dead!
–  Lazy encoding
–  Structure based extended resolution

•  Lazy grounding and nested constraint programs
•  The LAZINESS principle
•  Concluding remarks 50

NICTA Copyright 2012 From imagination to impact

Lazy Grounding
•  Before solving we usually have to

–  ground (or flatten) the model

•  For example (n = 4)
–  constraint forall(i in 2..n)(s[i]=x[i]+s[i-1]);
–  becomes s[2] = x[2] + s[1] /\ s[3] =
x[3] + s[2] /\ s[4] = x[4] + s[3]

•  For some models the grounding is enormous!
•  Instead of grounding before solving

–  ground during solve
–  on demand
–  ensure a solution for the non-grounded part

•  See the next talk for more details!
51

NICTA Copyright 2012 From imagination to impact

Nested Constraint Programs
•  A powerful language for nested optimization

problems
•  Based on aggregator constraints

–  y = agg([f(x1,…,xn,z1,…,zm)
 | z1,…,zm where C(x1,…,xn,z1,…,zm)])
where agg is a function on multisets
–  e.g. sum, min, max, average, median, exists, forall

•  Lazy evaluation
–  wait until x1,…,xn are fixed
–  evaluate the multiset by search over z1,…,zm
–  set y to the appropriate value

52

NICTA Copyright 2012 From imagination to impact

Nested Constraint Programs
•  Highly expressive:

–  #SAT, QBF, QCSP, Stochastic CP, …

•  Find the minimal number of clues xikjk = dk
required to make a proper sudoku problem
(exactly one solution)

•  y = min([sum([bk | k in 1..n]) | b1, …, bn where
•  1 = sum([1 | x11 in 1..9, … x99 in 1..9 where
•  forall([bk ! xikjk = dk | k in 1..n]) /\
•  sudoku(x11, …, x99)])])
•  where sudoku are sudoku constraints

53

NICTA Copyright 2012 From imagination to impact

Nested Constraint Programs
•  Naïve approach

–  completely solved by grounding
–  BUT completely impractical

•  Actual approach
–  one copy of constraints
–  search on outer aggregator

•  wake a new copy of inner aggregator

•  Improvements
–  learning (across invocations of inner aggregators)
–  short circuiting (e.g. when we find two solns we stop)
–  use grounding when known size and small

54

NICTA Copyright 2012 From imagination to impact

Nested Constraint Programs
•  Book production (stochastic) planning problem

–  uncertain demand 100..105 in each period
–  plan a production run so that we can cover demand

80% of the time
•  Compare with stochastic CP using search and

scenario generation (determinization)

55

stages NCP search scenario
fails time fails time fails time

1 8 0.01 10 0.01 4 0.00
2 16 0.01 148 0.03 8 0.02
3 24 0.01 3604 0.76 24 0.16
4 32 0.01 95570 19.07 42 1.53
5 40 0.01 2616858 509.95 218 18.52

6 48 0.01 --- TO 1260 474.47

NICTA Copyright 2012 From imagination to impact

Outline
•  Propagation based solving

–  Atomic constraints

•  Lazy clause generation
–  Explaining propagators
–  Conflict resolution
–  How modern LCG solvers work

•  The language of learning: Why search is dead!
–  Lazy encoding
–  Structure based extended resolution

•  Lazy grounding and nested constraint programs
•  The laziness principle
•  Concluding remarks 56

NICTA Copyright 2012 From imagination to impact

The LAZINESS Principle
•  “Never perform any work unless there is

evidence that it will benefit”
–  LCG = lazy SAT encoding
–  Lazy literal generation = only when needed
–  Lazy explanation = only when needed
–  Lazy encoding = intermediate literals when needed
–  Structure based ER = as for Lazy encoding
–  Lazy grounding = model expansion as needed
–  Nested constraint programs = copy the submodel as

required

57

NICTA Copyright 2012 From imagination to impact

The LAZINESS principle
•  “Never perform any work unless there is

evidence that it will benefit”
•  Where does it lead?
•  Ideas:

–  only do constraint checking until a constraint causes
failure often, then start propagating it

–  don’t learn at all until there are lots of failures
•  Obviously other methods are instances of this

–  Benders decomposition
–  Column generation

58

NICTA Copyright 2012 From imagination to impact

Outline
•  Propagation based solving

–  Atomic constraints

•  Lazy clause generation
–  Explaining propagators
–  Conflict resolution
–  How modern LCG solvers work

•  The language of learning: Why search is dead!
–  Lazy encoding
–  Structure based extended resolution

•  Lazy grounding and nested constraint programs
•  The laziness principle
•  Concluding remarks 59

NICTA Copyright 2012 From imagination to impact

Conclusions (Slogans)

• Most of CP search is
• Search is Dead,
•  Laziness is your friend

• And finally

60

NICTA Copyright 2012 From imagination to impact

Whats coming
•  ObjectiveCP

–  CP based on a small micro kernel

•  ObjectiveCPExplanation
–  An LCG solver in the ObjectiveCP framework

•  ObjectiveCPSchedule
–  State of the art scheduling technology

•  MiniZinc 2.0

61

NICTA Copyright 2012 From imagination to impact

MiniZinc 2.0 Beta (www.minizinc.org)
•  Open LLVM-style architecture
•  User-defined functions

–  Functional constraint modelling, functional globals
–  Better CSE

•  Option types
–  Concise modelling of decisions that are only relevant

dependent on other decisions
•  Half reification

–  Better translation of complex logical constraints
–  Substantial efficiency improvements
–  More flexible use of globals

•  Globalizer (powerful structural analysis)
62

