G12: From Solver Independent Models to Efficient Solutions

Peter J. Stuckey
NICTA Victoria Laboratory

University of Melbourne

NICTA is proudly supported by:

Australian Government
Department of Communications Information Technology and the Arts Australian Research Council

NICTA Members

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
- Zinc example and features
- Mapping models to algorithms
- Cadmium mapping tentative examples
- Efficient Solutions
- Mercury discussion
- Concluding Remarks

Underpants Gnomes Business Plan

- Phase 1: Collect underpants
 -Phase 2: ??????

- Phase 3: Profit

G12 Project Plan

- Phase 1: Solver Independent Modelling
- Phase 2: ?????
- Phase 3: Efficient Solutions

G12 Overview

- G12: a software platform for solving large scale industrial combinatorial optimisation problems.
- ZINC:
- A language to specify solver independent models
- CADMIUM:
- A mapping language from solver independent models to solvers
- A language for specifying search
- MERCURY: (For our purposes)
- A language to interface to external solvers
- A language to write solvers
- A language to combine solvers
- Providing debugging support

Group 12 of the Periodic Table
Periodic Table of the Elements

G12 Participants

- Peter Stuckey, NICTA Victoria
- Maria Garcia de la Banda, Monash University
- Michael Maher, NICTA Kensington (NSW)
- Kim Marriott, Monash University
- John Slaney, NICTA Canberra
- Zoltan Somogyi, NICTA Victoria
- Mark Wallace, Monash University
- Toby Walsh, NICTA Kensington (NSW)
- and others

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
- Zinc example and features
- Mapping models to algorithms
- Cadmium mapping tentative examples
- Efficient Solutions
- Mercury discussion
- Concluding Remarks

The Problem Solving Process

- "Find four different integers between 1 and 5 which sum to 14 "
- Conceptual Model
- User-oriented "declarative" problem statement
$-\exists S . S \subseteq\{1 . .5\} \wedge|S|=4 \wedge \operatorname{sum}(S)=14$.
- Design Model
- Correct efficient algorithm
- [W,X,Y,Z] :: 1..5, alldifferent([W,X,Y,Z]), W + X + Y + Z \#= 14, labeling([W,X,Y,Z]).

- Solution
$-W=2 \wedge X=3 \wedge Y=4 \wedge Z=5 \quad \mathrm{~S}=\{2,3,4,5\}$

The Problem Solving Process

- Conceptual Model
- User-oriented "declarative" problem statement

- Design Model
- Correct efficient algorithm

- Solution

From Conceptual Model to Design Model

- Conceptual Model: logical specification

$$
S \leadsto\{W, X, Y, Z\}
$$

Logical Transformation

- Mapping the logical constraints to behaviour

$$
|\{\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\}|=4 \Longleftrightarrow \text { alldifferent([W,X,Y,Z]) }
$$

- Adding a specification of search
- Design model: algorithmic specification

Behaviour: Choosing a Solving Technology

- Mixed Integer Programming (MIP)
- strong optimization, lower bounding
- limited expressiveness for constraints (linear only)
- able to handle huge problems 1,000s of vars and constraints
- Finite Domain Propagation (FD)
- strong satisfaction, poor optimization
- highly expressive constraints
- specialized algorithms for important sub-constraints
- DPLL Boolean Satisfaction (SAT)
- satisfaction principally,
- limited expressiveness (clauses or Boolean formulae)
- effective conflict learning, highly efficient propagation
- Local Search: SA, GSAT, DLM, Comet, genetic algorithms
- good optimization, poorer satisfaction (cant detect unsatisfiability)
- highly expressive constraints (arbitrary functions?)
- scale to large problems

Complete Solving Technologies

- Mixed Integer Programming (MIP)
- strong optimization, lower bounding
- limited expressiveness for constraints (linear only)
- able to handle huge problems 1,000s of vars and constraints
- Finite Domain Propagation (FD)
- strong satisfaction, poor optimization
- highly expressive constraints
- specialized algorithms for important sub-constraints
- DPLL Boolean Satisfaction (SAT)
- satisfaction principally,
- limited expressiveness (clauses or Boolean formulae)
- conflict learning, highly efficient propagation,

Incomplete Solving Technologies

- Good optimization, poorer satisfaction (cant detect unsatisfiability)
- Highly expressive constraints (arbitrary functions?)
- Scale to large problems
- Local Search:
- simulated annealing
- Lagrangian relaxation: DLM, GSAT, ...
- Comet (language for local search methods)
- Population Methods
- genetic algorithms
- ant colony optimization, ...

Behaviour: Hybrid Solving Approaches

- Design model using two or more solving approaches
- Only need partially model the problem in each part
- pass constraints from one model to another
- values of variables $\mathrm{W}=2$
- bounds of variables $W \geq 3$
- cuts $2 X+3 Y+4 Z \leq 15$
- pass upper or lower bounds from one technique to another
- Decompose the problem into two or more parts using different solving techniques
- Dantzig-Wolfe decomposition, Column generation, ...

Search:

- Generic search strategy:
- limited discrepancy search, first fail, maximum regret
- symmetry breaking,
- learn parameters
- Specific search strategy (programmed)
- Solving technology may restrict search
- Hybrid search:
- Support the search of one method with another
- Define heuristic function with one method
- support limited discrepancy search of other method
- Wide area local search, repair based methods

Environment

- The worst answer to a constraint problem?
- No
- An even worse answer to a constraint problem
- execution does not terminate in days!
- (Performance) Debugging the Design Model
- visualization of the "active" constraints
- visualization of the solver state (e.g. domains of variables)
- visualization of the search
- (preferably) mapped back to Conceptual Model
- Hybrid approaches complicate this!

G12 development model

G12 Project Diagram

Developing Constraint Solutions

- What modelling language is best to express the problem naturally?
- How do we map the problem to the most suitable combination of algorithms to solve it
- How do we support the search for the right algorithm, by high-level control and facilities to visualize and interact with the system as is solves?
- G12 aims to support these questions!

G12 Goals

- Richer Modelling
- Separate conceptual modelling from design modelling using
- solver independent conceptual models
- mapping from conceptual to design models
- Richer Mapping
- extensible user defined mappings
- hybridization of solvers
- Richer Solving
- hybridization of search
- Richer Environment
- visualization of search and constraint solving

Advantages of G12 model

- Checking the conceptual model
- trusted default mappings give basic design model
- test conceptual model on small examples this way
- Checking the design model
- check optimized mapping versus trusted default mapping
- Remembering good modelling approaches
- reuse of
- model independent mappings
- transformations/optimizations of design models
- Support for algorithmic debugging
- reverse mapping to visualize in terms of the conceptual model

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
- Zinc example and features
- Mapping models to algorithms
- Cadmium mapping tentative examples
- Efficient Solutions
- Mercury discussion
- Concluding Remarks

What is Solver Independent Modelling

- A model independent of the solver to be used
- Examples
- .cnf format for SAT
- AMPL for linear and quadratic programming
- HAL program using solver classes
- (?) ECLiPSe program (for eplex, ic, fd,etc solvers)
- (?) OPL (although it essentially connects to one solver)
- All the above fix the form of the constraints by the model
- All except .cnf fix the "solving paradigm"
- More independent
- ESRA [Uppsala]
- Essence and Conjure [York]
- model and transformation rules

Zinc: a solver independent modelling language

- mathematical notation like syntax (coercion, overloading, iteration, sets, arrays)
- expressive constraints (FD, set, linear arithmetic, integer)
- different kinds of problems (satisfaction, explicit optimisation, preference (soft constraints))
- separation of data from model
- high-level data structures and data encapsulation (lists, sets, arrays, records, constrained types)
- extensibility (user defined functions, constraints)
- reliability (type checking, assertions)
- simple, declarative semantics
- Zinc extends OPL and moves closer to CLP language such as ECLiPSe

Example Zinc model

- Social Golfers
- Given a set of players, a number of weeks and a size of playing groups.
- Devise a playing schedule so that
- each player plays each week
- no pairs play together twice
- Many symmetries (ignore for now)
- order of groups
- order of weeks
- order of players
- ...

Social Golfers in Zinc 0.1

- Type Declarations (to be read from data file)
enum Players = \{...\};
- Parameter Declarations (first 2 from data file)
int: Weeks;
int: GroupSize;
int: Groups = |Players| div GroupSize;
- Assertions on Parameters

```
assert("Players must be divisible by GroupSize")
    Groups * GroupSize == |Players|;
```

- Variable Declarations
array[1..Weeks,1..Groups] of var set of Player: group;

Social Golfers in Zinc 0.1

- Predicate (and Function) Declarations

predicate maxOverlap(var set of $\$ E: x, y$, int: m) = $\mid x$ inter $y \mid=<m ;$

```
predicate partition(list of var set of $E:sets,
    set of $E: univ) =
    forall (i,j in 1..length(sets) where i < j)
        maxOverlap(sets[i],sets[j],0)
    /\ unionlist(sets) == univ;
```


Social Golfers in Zinc 0.1

- Constraints

```
constraint forall (i in 1..Weeks)(
    partition([group[i,j] | j in 1..Groups], Players) /\
    forall (j in 1.. Groups) (
        |group[i,j]| == Groupsize /\
        forall (k in i+1..Weeks; l in 1..Groups)
        maxOverlap(group[i,j],group[k,l],1)
    ));
class("redundant"):: constraint
forall (a,b in Players where a < b)
    sum (i in 1..Weeks; j in 1..Groups)
        holds({a,b} subset group[i,j])
            =< 1;
```


Social Golfers in Zinc 0.1

```
int: Weeks;
int: GroupSize;
enum Players = {...};
int: Groups = |Players| div GroupSize;
assert("Players must be divisible by GroupSize") Groups * GroupSize = |Players|;
array[1..Weeks,1..Groups] of var set of Player: group;
predicate maxOverlap(var set of $E: x,y, int: m) =
    |x inter y| =< m;
predicate partition(list of var set of $E: sets, set of $E: universe) =
    (forall (i,j in 1..length(sets) where i < j)
            maxOverlap(sets[i],sets[j],0)
    \ unionlist(sets) == universe;
constraint forall (i in 1..Weeks)(
    partition([group[i,j] | j in 1..Groups], Players) /\
    forall (j in 1.. Groups) (|group[i,j]| == Groupsize /\
            forall (k in i+1..Weeks; l in 1..Groups)
            maxOverlap(group[i,j],group[k,l],1)
));
class("redundant"):: constraint forall (a,b in Players where a < b)
    sum (i in 1..Weeks; j in 1..Groups) holds({a,b} subset group[i,j]) =< 1;
```


Zinc Features

- Types:
- float, int, bool, string,
- tuples, records (with named fields), discriminated unions
- sets, lists, arrays (multidimensional = array of array of ...)
- var type
- arrays and lists of var types: array [1..12] of var int
- set var type of nonvar type: var set of bool
- coercion
- nonvar type to var type: float $->$ var float (x + 3.0)
- ground sets to lists: length (\{1, 2, 3, 5, 8\})
- lists to one-dimensional arrays:
- constrained types (assertions)

```
record Task = (int: Duration, var int: Start, Finish)
    where Finish == Start + Duration;
```


Zinc Features

- Comparisons

$-==, \quad!=,>,<,>=, \quad=<$

- generated automatically for all types (lexicographic)
- Reification
- predicates are functions to var bool
- Boolean operations:
- $/ \backslash$ (and), $\backslash /$ (or), $\sim(n o t)$, xor, $=>,<=,<=>$
- ZeroOne = 0..1;
function holds(var bool:b):var ZeroOne:h
- h is the integer coercion of the bool b
- Anything can be "reified"
- problem for solvers?

Zinc Features

- List and Set comprehensions
- generators + tests must be independent of vars
- list of int: $b=[2 * i \mid i \operatorname{in} 1 . .100$ where $\sim(k i n d[i]$ in $S)]$
- shorthand
- sum (i in 1..Weeks; j in 1..Groups) holds(c) =< 1;
- sum([holds(c) | i in 1..Weeks; j in 1..Groups]) =< 1;
- Functions and predicates
- local variables
- (non-recursive) but foldl, foldr, zip
- function unionlist(list of var set of $\$ E:$ sets): var set of \$E =

$$
\text { foldl(union, \{\},sets) }
$$

- starting point for mapping language Cadmium

Zinc Features

- Annotations

- classification constraints: class(string)
- (possible multiple) classifications for constraints
- used for guiding rewriting, debugging
- class("linear") : : constraint $x+3 * y+4 * z=<q$;
- soft constraints: level (int) and strength(float)
- lower levels are preferential
- strength gives relative priority over levels
- int: strong = 1;

```
level(strong) strength(2.0):: constraint x < 2 /\ y < 9;
```

- map to objective function if not supported by solver
- Objectives
- minimize/maximize <arithmetic expr>

Zinc Status and Challenges

- Status
- Initial language design
- Type checker
- Compiler in progress
- Challenges
- Easy to use for mathematical programmers
- Error messages, syntax
- Symmetry specification
- Multi parameter objective and/or robustness objective specification
- Recursion?
- Pattern matching

Zinc Challenges

- Easy to use for mathematical programmers
- Error messages, syntax
- Symmetry specification
- Multi parameter objective and/or robustness objective specification
- Recursion?
- Pattern matching

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
- Zinc example and features
- Mapping models to algorithms
- Cadmium mapping tentative examples
- Efficient Solutions
- Mercury discussion
- Concluding Remarks

Cadmium

- Maps solver independent models to solvers
- extension of Zinc
- term rewriting/constraint handling rules like features
- Model independent transformations! (as far as possible)
- Trying to extract some of the "internal transformations" performed by solvers, to make them
- visible
- reusable
- replaceable
- Also adds search strategy to model
- not really discussed here

Cadmium Examples (VAPOR)

- Simple Defaults

```
map = bdd_sets.map;
```

- Overriding Defaults

```
map = bdd_sets.map;
predicate partition(list of var set of $E: sets,
                                set of $E: univ) =
bdd_partition(sets, univ, [prop = cardinality]);
```

- Using Classes

```
class("redundant") :: c <=> delay(vars(c), c);
```

- Merging Constraints

```
map = bdd_sets.map;
partition(sets, univ), sorted(sets) <=>
    list of var set of $E: sets, set of $E: univ |
    bdd_and_prop(bdd_partition(sets,univ),bdd_sorted(sets));
```


Cadmium Examples (VAPOR)

- Variable Conversion
- creates mapping sat from original variables to new variables

```
var set of $E: s <=> array[$E] of var bool: sat(s);
```

- Mapping of Functions and Predicates

```
function ||(array[$E] of var bool:s): var int =
    sum (e in $E) holds(s[e]);
function inter(array[$E] of var bool:s,t):
    array[$E] of var bool = [ s[e] /\ t[e] | e in $E ];
```

function \{\}: array[\$E] of bool = [false | e in $\$ E] ;$ (?????)

- Refinement and Specialization of Constraints

```
s subset t <=> set of $E:s, var set of $E:t |
    forall (e in s) e in t;
maxOverlap(s,t,c1) \ maxOverlap(s,t,c2) <=>
    int: c1, int :c2, c1 =< c2 | true.
```


Cadmium Examples (VAPOR)

- Multiple levels of Mapping

```
- Mapping to CNF (conjunctive normal form)
x and y == z <=> var bool:x,y,z |
    (~z \/ x) /\ (~z \/ y) /\ (z \/ ~x \/ ~y)
partition(list of array[$E]of var bool:sets, set of $E:univ)=
    forall (e in univ) sum (s in sets) holds(s[e]) == 1
    /\ forall (s in sets) (s subset univ)
sum( [ holds(b) | b in bs]) <=>
    list of var bool:bs, var bool: b | sumb(bs)
sumb(bs) == c <=> sumb(bs) =< c /\ sumb(bs) >= c
sumb(bs) =< c <=> list of var bool: bs, int:c |
    forall (l in subsequences(bs,c+1)) exists (b in l) ~b;
- subsequences in Mercury? or add recursion to Cadmium
```


Cadmium Examples (VAPOR)

- Multiple Solvers

```
m1 = bdd_sets.map;
m2 = sat_sets.map;
m2::|_| = _ <=> true;
channeling {
        forall (var set of $E:s; $E:e)
        m1::e in bdds(s) ==> m2::sat(s)[e] == true /\
        m1::e notin bodds(s) ==> m2::sat(s)[e] == false /\
        m2::sat(s)[e] == true ==> m1::e in bdd(s) /\
        m2::sat(s)[e] == false ==> m1::e notin bdd(s) /\
}
```


Mapping to Local Search (VAPOR)

```
var set of $E: s, |s| = c <=> int :c | array [1..c] of var $E: local(s);
set of $E: s <=> int:c= |s|, array [1..c] of $E: local(s);
predicate subset(array[$R1] of $E: t, array[$R2]of var $E s) <=>
    forall (i in $R1) exists (j in $R2) s[j] == t[i];
predicate in($E: e, array[$R] of var $E:s) =
    exists (i in $R) s[i] == e
predicate partition(list of var array[$R] of $E: sets, set of $E: universe) =
    forall (e in universe)
        sum (i in 1..length(sets); j in $R) holds(sets[i][j] == e) == 1;
maxOverlap( , ,1) <=> true
var int:f = sum [holds(c) | class("redundant") :: c ];
var int:p = sum [holds(c) | c = partition(_,_) ];
.. move definition ..
.. tabu list definition ..
.. search (using f) ..
.. debugging check (using p) ..
```


Mapping to Local Search (VAPOR)

- Variable and Parameter mapping

```
var set of $E:S, |s| == c <=> int:c | array [1..c] of var $E:lcl(s);
set of $E: s <=> int:c= |s| | array [1..c] of $E: lcl(s);
```

- Predicate mapping

```
predicate subset(array[$R1] of var $E: s, t) =
    forall (i in $R1) exists (j in $R2) s[i] == t[j];
predicate partition(list of var array[$R] of $E: sets,
    set of $E: univ) =
    forall (e in univ)
    sum (i in 1..length(sets); j in $R) holds(sets[i][j]==e) == 1;
```

maxOverlap(_,_,1) <=> true

Mapping to Local Search (VAPOR)

- Defining Penalty Functions

```
violation(a =< b) <=> var int: a,b | max(0,a - b);
var int:f = sum [violation(c) | class("redundant") :: c ];
var int:p = sum [holds(c) | c = partition(__,_) ];
```

- Defining the algorithm
.. move definition ..
.. tabu list definition ..
.. search (using f) ..
. . debugging check (using p) ..

Cadmium Challenges ∞

- Specification: polymorphism, solver communication
- model independent mappings (polymorphism)
- solver communication
- full hybridization
- Rewriting: control, confluence?, interaction with subtypes
- Search: Salsa, Comet, CLP
- Error messages: unmapped constraints, etc
- Reverse mappings?
- The last step
- outputing the format required by an external solver

Cadmium Status and Challenges

- Status
- many discussions
- Challenges ∞
- Specification:
- model independent mappings (polymorphism)
- solver communication
- full hybridization
- Rewriting: control, confluence?, interaction with subtypes
- Search: Salsa, Comet, CLP
- Error messages: unmapped constraints, etc
- Reverse mappings?
- The last step
- outputing the format required by an external solver

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
- Zinc example and features
- Mapping models to algorithms
- Cadmium mapping tentative examples
- Efficient Solutions
- Mercury discussion and hybrid example
- Concluding Remarks

Mercury

- Purely declarative functional/logic programming language
- developed since October 1993 at University of Melbourne
- designed for "programming in the large"
- strong static typing: Hindley/Milner + type classes with functional dependencies + existential types
- strong static moding (tracking instantiation of arguments)
- strong static determinism (number of answers for predicates/functions)
- strong module system
- highly efficient, sophisticated compile-time optimizations

Extending Mercury

- No constraint solving (not even Herbrand)
- added solver types to Mercury
- Dual view of a type
- External view: pure declarative solver variable
- Internal view: data structure representing solver information
- adding solvers to Mercury
- herbrand, bdd_sets, sat (MiniSat), lp (cplex, clpr), fd
- Hybridization facilities (currently complete methods only)
- essentially attach arbitrary code to solver events
- variable is fixed
- bounds changes
- new cut/nogood generated

Mercury hybridization experiment

- bdd FD solver (JAIR 24)
- DPLL based SAT solver (MiniSAT)

BDD based solver

- CP2004, JAIR 24 (2005)
- Essentially a finite domain solver
- represents variables by "packages of Boolean variables"
- $\varnothing \subseteq S \subseteq\{1,2,3,4\}:: 1 \in S, 2 \in S, 3 \in S, 4 \in S$
- $0 \leq x \leq 3:: x=0, x=1, x=2, x=3$ OR $\quad x \bmod 2=1, x>=2$
- represents domains as Boolean formulae (ROBDDs)
- $D(S)=\{\{1\} . .\{1,3,4\}\}:: 1 \in S \wedge \neg(2 \in S)$
- represents constraints as Boolean formulae (ROBDDs)
- $|S|=x::(1 \in S \wedge 2 \in S \wedge 3 \in S \wedge \neg(4 \in S) \wedge x=3) v .$.
- Propagates constraints using Boolean operations
- $D^{\prime}(S)=$ exists $x . D(S) \wedge D(x) \wedge|S|=x$
- Highly competitive for finite set solving
- not competitive for finite integer solving

SAT DPLL solver (MiniSAT)

- http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
- by Niklas Eén, Niklas Sörensson
- DPLL based SAT solver
- watch literals
- 1UIP nogood learning, conflict clause minimization
- (improved) VSIDS dynamic variable order
- incremental
- Winner of silver medals in 2 Industrial and 1 Handmade classes of SAT 2005
- With preprocessor SatELite winner of gold medals in all 3 Industrial and 1 Handmade classes

Hybridizing BDD and MiniSAT

- Variable to variable propagation
- fixed variables in BDD <-> fixed variables in MiniSAT
- Scheduling
- Unit propagation in MiniSAT is one "propagator"
- higher priority than any BDD propagators
- Modelling
- all constraints represented in BDD solver
- NO constraints represented in MiniSAT!

Dynamic clausal representation

- Represent inferences of BDD propagators as clauses
$-D(S)=\{\{1,2\},\{1,2,4\}\}:: 1 \in S \wedge 2 \in S \wedge \neg(3 \in S)$
- $D(x)=\{0,1,2\}:: \neg(x=3)$
- Propagating $|\mathrm{S}|=x$
- Newly inferred propositions
- $\neg(4 \in S), \neg(x=0), \neg(x=1), x=2$
- simple inferences
- $1 \in S \wedge 2 \in S \wedge \neg(3 \in S) \wedge \neg(x=3) \rightarrow \neg(4 \in S)$
- $1 \in S \wedge 2 \in S \wedge \neg(3 \in S) \wedge \neg(x=3) \rightarrow \neg(x=0)$
-
- clausal representation
- $\neg(1 \in S) \vee \neg(2 \in S) \vee 3 \in S \vee x=3 \vee \neg(4 \in S)$
- $\neg(1 \in S) \vee \neg(2 \in S) \vee 3 \in S \vee x=3 \vee \neg(x=0)$
- ...

Minimal inferences

- A minimal reason for a new proposition p is a minimal subset of the reasons that ensure p hold
- Examples
$-1 \in S \wedge 2 \in S \wedge \neg(3 \in S) \wedge \neg(x=3) \rightarrow \neg(x=0)$
- minimal $1 \in S \rightarrow \neg(x=0)$
$-1 \in S \wedge 2 \in S \wedge \neg(3 \in S) \wedge \neg(x=3) \rightarrow \neg(4 \in S)$
- minimal $1 \in S \wedge 2 \in S \wedge \neg(x=3) \rightarrow \neg(4 \in S)$
- Add minimal clauses
$-\neg(1 \in S) \vee \neg(x=0)$
$-\neg(1 \in S) \vee \neg(2 \in S) \vee x=3 \vee \neg(4 \in S)$
- Efficient BDD operations to determine minimal reasons
- minimal unsatisfiable subset

Dynamic clause generation

- Propagation in the BDD solver represents inferences
- Initially $D(S)=\{\{ \}$.. $\{1,2,3,4\}\}, D(x)=\{0,1,2,3\}$
- $D(S)=\{\{1,2\} . .\{1,2,4\}\}, D(x)=\{0,1,2\},|S|=x$
- gives
- $D(S)=\{\{1,2\}\}, D(x)=\{2\}$
- Simple inference
- $1 \in S \wedge 2 \in S \wedge \neg(3 \in S) \wedge \neg(x=3) \rightarrow \neg(x=0)$
- Minimal inference
- $1 \in S \rightarrow \neg(x=0)$
- Pass the inferences made to the SAT solver
$-\neg(1 \in S) \vee \neg(x=0)$

Experiments

- Social Golfers Problems
- Versus bounds propagation bdd set solver using a sequential smallest element is set search strategy (18/20)
- simple inferences (18/20): fails 1/2-1 (0.70), time 4/5-2 (1.22)
- minimal inferences:
- just inferring (18/20): time 1-3 (1.76) (surprisingly low !)
- using inferences in implication graph only (19/20): fails 1/35-1 (0.29), time 1/10-2 (0.78)
- adding clauses (20/20): fails $1 / 157-1$ (0.10), time 1/62-2 (0.30)
- Versus (improved) VSIDS search strategy from miniSAT (20/20)
- miniSAT (16/20): fails 0.95-186 (10), time 1/14-58 (2.7)
- dual model (20/20): fails 1/12-16 (2.3), time 2/3-13 (3.0)
- sequential (20/20): fails $1 / 55-13(0.52)$, time $1 / 5-10(0.95)$

Experiments

- Social Golfers Problems
- Versus bounds propagation bdd set solver using a sequential smallest element is set search strategy (18/20)
- simple inferences (18/20): fails $1 / 2-1$ (0.70), time 4/5-2 (1.22)
- minimal inferences:
- just inferring (18/20): time 1-3 (1.76) (surprisingly low !)
- using inferences in implication graph only (19/20): fails $1 / 35-1$ (0.29), time 1/10-2 (0.78)
- adding clauses (20/20): fails 1/157-1 (0.10), time 1/62-2 (0.30)

Experiments

- Social Golfers Problems
- Versus bounds propagation bdd set solver using a sequential smallest element is set search strategy (18/20)
- simple inferences (18/20): fails $1 / 2-1$ (0.70), time 4/5-2 (1.22)
- minimal inferences:
- just inferring (18/20): time 1-3 (1.76) (surprisingly low !)
- using inferences in implication graph only (19/20): fails 1/35-1 (0.29), time 1/10-2 (0.78)
- adding clauses (20/20): fails $1 / 157-1$ (0.10), time $1 / 62-2$ (0.30)
- VSIDS search strategy (20/20)
- versus miniSAT (16/20): fails $1 / 186-1.05$ (0.10), time 1/58-14 (0.37)
- versus dual model (20/20): fails $1 / 16-12$ (0.44), time 1/13-3/2 (0.33)
- versus sequential (20/20): fails $1 / 13-55(1.9)$, time $1 / 10-5(1.05)$

What does it mean?

- Conflict directed backjumping in another guise?
- Related work
- PalM, E-constraints: uses decision cuts not 1-UIP
- Katsirelos and Bacchus CP2003: only forward checking, (appear to) only use FC inferences in implication graph
- finite domain propagation = clausal cut generation?

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
- Zinc example and features
- Mapping models to algorithms
- Cadmium mapping tentative examples
- Efficient Solutions
- Mercury discussion
- Concluding Remarks

G12 Progress

- Zinc
- Language design \checkmark
- Type checker \checkmark
- Starting compiler

- Cadmium
- Mercury
- building new solvers: fd, generic propagation structures, value propagation
- integrate solvers: bdd_sets, minisat, CPLEX \checkmark
- solver types \checkmark

Other Aspects of the G12 Project

- Logical Transformations (Zinc2Zinc): dualization, etc
- Robust solutions: insensitive to change in parameters
- Search
- Master-subproblem decompositions: Benders, Lagrangian relaxation, column generation
- Population search: evolutionary algorithms
- Solver visualization
- Default mappings
- Online optimization
- Scripting

Conclusion

- G12 is an ambitious project aiming to provide
- Solver independent modelling
- Model independent mappings from conceptual to design models
- Easy experimentation of hybrid approaches
- A good environment for exploring design models
- We have only just begun!
- The holy grail
- Default mappings are good enough: only conceptual model

Advertisement

- Constraint Programming positions available
- see http://nicta.com.au/jobs.html
- positions in Melbourne (Network Information Processing) and Sydney (Knowledge Representation and Reasoning)
- G12 postgraduates needed
- apply to University of Melbourne or University of New South Wales
- G12 visitors welcome
- are you interested in some of the things discussed here?

END

