

G12: From Solver Independent Models to
Efficient Solutions

Peter J. Stuckey
NICTA Victoria Laboratory

University of Melbourne

May 4-5 2005 Copy right 2005 National ICT Australia Limited 2

Outline

• G12 Project Overview
• Developing Constraint Solutions
• Solver Independent Modelling

– Zinc example and features

• Mapping models to algorithms
– Cadmium mapping tentative examples

• Efficient Solutions
– Mercury discussion

• Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited 3

Underpants Gnomes Business Plan

• Phase 1: Collect underpants
• Phase 2: ??????
• Phase 3: Profit

May 4-5 2005 Copy right 2005 National ICT Australia Limited 4

G12 Project Plan

• Phase 1: Solver Independent
 Modelling
• Phase 2: ?????
• Phase 3: Efficient Solutions

May 4-5 2005 Copy right 2005 National ICT Australia Limited 5

G12 Overview

• G12: a software platform for solving large scale industrial
combinatorial optimisation problems.
– ZINC:

• A language to specify solver independent models
– CADMIUM:

• A mapping language from solver independent models to solvers
• A language for specifying search

– MERCURY: (For our purposes)
• A language to interface to external solvers
• A language to write solvers
• A language to combine solvers
• Providing debugging support

May 4-5 2005 Copy right 2005 National ICT Australia Limited 6

Group 12 of the Periodic Table

May 4-5 2005 Copy right 2005 National ICT Australia Limited 7

G12 Participants

• Peter Stuckey, NICTA Victoria
• Maria Garcia de la Banda, Monash University
• Michael Maher, NICTA Kensington (NSW)
• Kim Marriott, Monash University
• John Slaney, NICTA Canberra
• Zoltan Somogyi, NICTA Victoria
• Mark Wallace, Monash University
• Toby Walsh, NICTA Kensington (NSW)
• and others

May 4-5 2005 Copy right 2005 National ICT Australia Limited 8

Outline

• G12 Project Overview
• Developing Constraint Solutions
• Solver Independent Modelling

– Zinc example and features

• Mapping models to algorithms
– Cadmium mapping tentative examples

• Efficient Solutions
– Mercury discussion

• Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited 9

The Problem Solving Process

• “Find four different integers between 1 and 5 which sum to 14”
• Conceptual Model

– User-oriented “declarative” problem statement
– ∃ S. S ⊆ {1..5} ∧ |S| = 4 ∧ sum(S) = 14.

• Design Model
– Correct efficient algorithm
– [W,X,Y,Z] :: 1..5, alldifferent([W,X,Y,Z]), W + X + Y + Z #= 14,

labeling([W,X,Y,Z]).

• Solution
– W = 2 ∧ X = 3 ∧ Y = 4 ∧ Z = 5 S = {2,3,4,5}

May 4-5 2005 Copy right 2005 National ICT Australia Limited 10

The Problem Solving Process

• Conceptual Model
– User-oriented “declarative” problem statement

• Design Model
– Correct efficient algorithm

• Solution

May 4-5 2005 Copy right 2005 National ICT Australia Limited 11

From Conceptual Model to Design Model

• Conceptual Model: logical specification

– Mapping the logical constraints to behaviour

– Adding a specification of search

• Design model: algorithmic specification

Logical Transformation

|{W,X,Y,Z}| = 4 alldifferent([W,X,Y,Z])

labeling([W,X,Y,Z])

S {W,X,Y,Z}

May 4-5 2005 Copy right 2005 National ICT Australia Limited 12

Behaviour: Choosing a Solving Technology

• Mixed Integer Programming (MIP)
– strong optimization, lower bounding
– limited expressiveness for constraints (linear only)
– able to handle huge problems 1,000s of vars and constraints

• Finite Domain Propagation (FD)
– strong satisfaction, poor optimization
– highly expressive constraints
– specialized algorithms for important sub-constraints

• DPLL Boolean Satisfaction (SAT)
– satisfaction principally,
– limited expressiveness (clauses or Boolean formulae)
– effective conflict learning, highly efficient propagation

• Local Search: SA, GSAT, DLM, Comet, genetic algorithms
– good optimization, poorer satisfaction (cant detect unsatisfiability)
– highly expressive constraints (arbitrary functions?)
– scale to large problems

May 4-5 2005 Copy right 2005 National ICT Australia Limited 13

Complete Solving Technologies

• Mixed Integer Programming (MIP)
– strong optimization, lower bounding
– limited expressiveness for constraints (linear only)
– able to handle huge problems 1,000s of vars and constraints

• Finite Domain Propagation (FD)
– strong satisfaction, poor optimization
– highly expressive constraints
– specialized algorithms for important sub-constraints

• DPLL Boolean Satisfaction (SAT)
– satisfaction principally,
– limited expressiveness (clauses or Boolean formulae)
– conflict learning, highly efficient propagation,

May 4-5 2005 Copy right 2005 National ICT Australia Limited 14

Incomplete Solving Technologies

• Good optimization, poorer satisfaction (cant detect unsatisfiability)
• Highly expressive constraints (arbitrary functions?)
• Scale to large problems
• Local Search:

– simulated annealing
– Lagrangian relaxation: DLM, GSAT, ...
– Comet (language for local search methods)

• Population Methods
– genetic algorithms
– ant colony optimization, ...

May 4-5 2005 Copy right 2005 National ICT Australia Limited 15

Behaviour: Hybrid Solving Approaches

• Design model using two or more solving approaches
– Only need partially model the problem in each part
– pass constraints from one model to another

• values of variables W = 2
• bounds of variables W ≥ 3
• cuts 2X + 3Y + 4Z ≤ 15

– pass upper or lower bounds from one technique to another

• Decompose the problem into two or more parts using
different solving techniques
– Dantzig-Wolfe decomposition, Column generation, ...

May 4-5 2005 Copy right 2005 National ICT Australia Limited 16

Search:

• Generic search strategy:
– limited discrepancy search, first fail, maximum regret
– symmetry breaking,
– learn parameters

• Specific search strategy (programmed)
• Solving technology may restrict search
• Hybrid search:

– Support the search of one method with another
– Define heuristic function with one method

• support limited discrepancy search of other method
– Wide area local search, repair based methods

May 4-5 2005 Copy right 2005 National ICT Australia Limited 17

Environment

• The worst answer to a constraint problem?
– No

• An even worse answer to a constraint problem
– execution does not terminate in days!

• (Performance) Debugging the Design Model
– visualization of the “active” constraints
– visualization of the solver state (e.g. domains of variables)
– visualization of the search
– (preferably) mapped back to Conceptual Model
– Hybrid approaches complicate this!

May 4-5 2005 Copy right 2005 National ICT Australia Limited 18

G12 development model

May 4-5 2005 Copy right 2005 National ICT Australia Limited 19

G12 Project Diagram

May 4-5 2005 Copy right 2005 National ICT Australia Limited 20

Developing Constraint Solutions

• What modelling language is best to express the problem
naturally?

• How do we map the problem to the most suitable
combination of algorithms to solve it

• How do we support the search for the right algorithm, by
high-level control and facilities to visualize and interact
with the system as is solves?

• G12 aims to support these questions!

May 4-5 2005 Copy right 2005 National ICT Australia Limited 21

G12 Goals

• Richer Modelling
– Separate conceptual modelling from design modelling using

• solver independent conceptual models
• mapping from conceptual to design models

• Richer Mapping
– extensible user defined mappings
– hybridization of solvers

• Richer Solving
– hybridization of search

• Richer Environment
– visualization of search and constraint solving

May 4-5 2005 Copy right 2005 National ICT Australia Limited 22

Advantages of G12 model

• Checking the conceptual model
– trusted default mappings give basic design model
– test conceptual model on small examples this way

• Checking the design model
– check optimized mapping versus trusted default mapping

• Remembering good modelling approaches
– reuse of

• model independent mappings
• transformations/optimizations of design models

• Support for algorithmic debugging
– reverse mapping to visualize in terms of the conceptual model

May 4-5 2005 Copy right 2005 National ICT Australia Limited 23

Outline

• G12 Project Overview
• Developing Constraint Solutions
• Solver Independent Modelling

– Zinc example and features

• Mapping models to algorithms
– Cadmium mapping tentative examples

• Efficient Solutions
– Mercury discussion

• Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited 24

What is Solver Independent Modelling

• A model independent of the solver to be used
• Examples

– .cnf format for SAT
– AMPL for linear and quadratic programming
– HAL program using solver classes
– (?) ECLiPSe program (for eplex, ic, fd,etc solvers)
– (?) OPL (although it essentially connects to one solver)

• All the above fix the form of the constraints by the model
• All except .cnf fix the “solving paradigm”
• More independent

– ESRA [Uppsala]
– Essence and Conjure [York]

• model and transformation rules

May 4-5 2005 Copy right 2005 National ICT Australia Limited 25

Zinc: a solver independent modelling language

• mathematical notation like syntax (coercion, overloading, iteration,
sets, arrays)

• expressive constraints (FD, set, linear arithmetic, integer)
• different kinds of problems (satisfaction, explicit optimisation,

preference (soft constraints))
• separation of data from model
• high-level data structures and data encapsulation (lists, sets,

arrays, records, constrained types)
• extensibility (user defined functions, constraints)
• reliability (type checking, assertions)
• simple, declarative semantics
• Zinc extends OPL and moves closer to CLP language such as

ECLiPSe

May 4-5 2005 Copy right 2005 National ICT Australia Limited 26

Example Zinc model

• Social Golfers
– Given a set of players, a number of weeks and a size of playing

groups.
– Devise a playing schedule so that

• each player plays each week
• no pairs play together twice

– Many symmetries (ignore for now)
• order of groups
• order of weeks
• order of players
• ...

May 4-5 2005 Copy right 2005 National ICT Australia Limited 27

Social Golfers in Zinc 0.1

• Type Declarations (to be read from data file)
enum Players = {...};

• Parameter Declarations (first 2 from data file)
int: Weeks;
int: GroupSize;

int: Groups = |Players| div GroupSize;

• Assertions on Parameters
assert(“Players must be divisible by GroupSize”)

Groups * GroupSize == |Players|;

• Variable Declarations
array[1..Weeks,1..Groups] of var set of Player: group;

May 4-5 2005 Copy right 2005 National ICT Australia Limited 28

Social Golfers in Zinc 0.1

• Predicate (and Function) Declarations
predicate maxOverlap(var set of $E: x,y, int: m) =

|x inter y| =< m;

predicate partition(list of var set of $E:sets,

 set of $E: univ) =

 forall (i,j in 1..length(sets) where i < j)

 maxOverlap(sets[i],sets[j],0)

 /\ unionlist(sets) == univ;

May 4-5 2005 Copy right 2005 National ICT Australia Limited 29

Social Golfers in Zinc 0.1

• Constraints
constraint forall (i in 1..Weeks)(

partition([group[i,j] | j in 1..Groups], Players) /\

forall (j in 1.. Groups) (

 |group[i,j]| == Groupsize /\

 forall (k in i+1..Weeks; l in 1..Groups)

 maxOverlap(group[i,j],group[k,l],1)
));

class(“redundant”):: constraint

 forall (a,b in Players where a < b)

 sum (i in 1..Weeks; j in 1..Groups)

 holds({a,b} subset group[i,j])

 =< 1;

May 4-5 2005 Copy right 2005 National ICT Australia Limited 30

Social Golfers in Zinc 0.1

int: Weeks;
int: GroupSize;
enum Players = {...};
int: Groups = |Players| div GroupSize;
assert(“Players must be divisible by GroupSize”) Groups * GroupSize = |Players|;

array[1..Weeks,1..Groups] of var set of Player: group;

predicate maxOverlap(var set of $E: x,y, int: m) =
|x inter y| =< m;

predicate partition(list of var set of $E: sets, set of $E: universe) =
 (forall (i,j in 1..length(sets) where i < j)

maxOverlap(sets[i],sets[j],0)

 /\ unionlist(sets) == universe;

constraint forall (i in 1..Weeks)(
partition([group[i,j] | j in 1..Groups], Players) /\
forall (j in 1.. Groups) (|group[i,j]| == Groupsize /\

 forall (k in i+1..Weeks; l in 1..Groups)
 maxOverlap(group[i,j],group[k,l],1)

));
class(“redundant”):: constraint forall (a,b in Players where a < b)
 sum (i in 1..Weeks; j in 1..Groups) holds({a,b} subset group[i,j]) =< 1;

May 4-5 2005 Copy right 2005 National ICT Australia Limited 31

Zinc Features

• Types:
– float, int, bool, string,
– tuples, records (with named fields), discriminated unions
– sets, lists, arrays (multidimensional = array of array of ...)
– var type

• arrays and lists of var types: array [1..12] of var int
• set var type of nonvar type: var set of bool

– coercion
• nonvar type to var type: float -> var float (x + 3.0)
• ground sets to lists: length({1,2,3,5,8})
• lists to one-dimensional arrays:

– constrained types (assertions)
record Task = (int: Duration, var int: Start, Finish)

where Finish == Start + Duration;

May 4-5 2005 Copy right 2005 National ICT Australia Limited 32

Zinc Features

• Comparisons
– ==, !=, >, <, >= , =<

– generated automatically for all types (lexicographic)

• Reification
– predicates are functions to var bool
– Boolean operations:

• /\ (and), \/ (or), ~ (not), xor, =>, <=, <=>

– ZeroOne = 0..1;

function holds(var bool:b):var ZeroOne:h

• h is the integer coercion of the bool b
– Anything can be “reified”

• problem for solvers?

May 4-5 2005 Copy right 2005 National ICT Australia Limited 33

Zinc Features

• List and Set comprehensions
– generators + tests must be independent of vars
– list of int: b = [2*i | i in 1..100 where ~(kind[i] in S)]

– shorthand
• sum (i in 1..Weeks; j in 1..Groups) holds(c) =< 1;

• sum([holds(c) | i in 1..Weeks; j in 1..Groups]) =< 1;

• Functions and predicates
– local variables
– (non-recursive) but foldl, foldr, zip
– function unionlist(list of var set of $E: sets):

 var set of $E =
foldl(union,{},sets)

– starting point for mapping language Cadmium

May 4-5 2005 Copy right 2005 National ICT Australia Limited 34

Zinc Features

• Annotations
– classification constraints: class(string)

• (possible multiple) classifications for constraints
• used for guiding rewriting, debugging
• class(“linear”) :: constraint x + 3*y + 4*z =< q;

– soft constraints: level(int) and strength(float)
• lower levels are preferential
• strength gives relative priority over levels
• int: strong = 1;
level(strong) strength(2.0):: constraint x < 2 /\ y < 9;

• map to objective function if not supported by solver

• Objectives
– minimize/maximize <arithmetic expr>

May 4-5 2005 Copy right 2005 National ICT Australia Limited 35

Zinc Status and Challenges

• Status
– Initial language design
– Type checker
– Compiler in progress

• Challenges
– Easy to use for mathematical programmers

• Error messages, syntax
– Symmetry specification
– Multi parameter objective and/or robustness objective

specification
– Recursion?
– Pattern matching

May 4-5 2005 Copy right 2005 National ICT Australia Limited 36

Zinc Challenges

• Easy to use for mathematical programmers
– Error messages, syntax

• Symmetry specification
• Multi parameter objective and/or robustness objective

specification
• Recursion?
• Pattern matching

May 4-5 2005 Copy right 2005 National ICT Australia Limited 37

Outline

• G12 Project Overview
• Developing Constraint Solutions
• Solver Independent Modelling

– Zinc example and features

• Mapping models to algorithms
– Cadmium mapping tentative examples

• Efficient Solutions
– Mercury discussion

• Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited 38

Cadmium

• Maps solver independent models to solvers
– extension of Zinc
– term rewriting/constraint handling rules like features

• Model independent transformations! (as far as possible)
• Trying to extract some of the “internal transformations”

performed by solvers, to make them
– visible
– reusable
– replaceable

• Also adds search strategy to model
– not really discussed here

May 4-5 2005 Copy right 2005 National ICT Australia Limited 39

Cadmium Examples (VAPOR)

• Simple Defaults
map = bdd_sets.map;

• Overriding Defaults
map = bdd_sets.map;
predicate partition(list of var set of $E: sets,

 set of $E: univ) =
 bdd_partition(sets, univ, [prop = cardinality]);

• Using Classes
class(“redundant”) :: c <=> delay(vars(c), c);

• Merging Constraints
map = bdd_sets.map;
partition(sets, univ), sorted(sets) <=>

 list of var set of $E: sets, set of $E: univ |
bdd_and_prop(bdd_partition(sets,univ),bdd_sorted(sets));

May 4-5 2005 Copy right 2005 National ICT Australia Limited 40

Cadmium Examples (VAPOR)

• Variable Conversion
– creates mapping sat from original variables to new variables
var set of $E: s <=> array[$E] of var bool: sat(s);

• Mapping of Functions and Predicates
function ||(array[$E] of var bool:s): var int =

 sum (e in $E) holds(s[e]);
function inter(array[$E] of var bool:s,t):

 array[$E] of var bool = [s[e] /\ t[e] | e in $E];

function {}: array[$E] of bool = [false | e in $E]; (?????)

• Refinement and Specialization of Constraints
s subset t <=> set of $E:s, var set of $E:t |

 forall (e in s) e in t;

maxOverlap(s,t,c1) \ maxOverlap(s,t,c2) <=>
 int: c1, int :c2, c1 =< c2 | true.

May 4-5 2005 Copy right 2005 National ICT Australia Limited 41

Cadmium Examples (VAPOR)

• Multiple levels of Mapping
– Mapping to CNF (conjunctive normal form)
x and y == z <=> var bool:x,y,z |

 (~z \/ x) /\ (~z \/ y) /\ (z \/ ~x \/ ~y)
partition(list of array[$E]of var bool:sets, set of $E:univ)=

 forall (e in univ) sum (s in sets) holds(s[e]) == 1
 /\ forall (s in sets) (s subset univ)

sum([holds(b) | b in bs]) <=>
 list of var bool:bs, var bool: b | sumb(bs)

sumb(bs) == c <=> sumb(bs) =< c /\ sumb(bs) >= c
sumb(bs) =< c <=> list of var bool: bs, int:c |

 forall (l in subsequences(bs,c+1)) exists (b in l) ~b;

– subsequences in Mercury? or add recursion to Cadmium

May 4-5 2005 Copy right 2005 National ICT Australia Limited 42

Cadmium Examples (VAPOR)

• Multiple Solvers
m1 = bdd_sets.map;

m2 = sat_sets.map;

m2::|_| = _ <=> true;

channeling {

forall (var set of $E:s; $E:e)

m1::e in bdds(s) ==> m2::sat(s)[e] == true /\

 m1::e notin bdds(s) ==> m2::sat(s)[e] == false /\

m2::sat(s)[e] == true ==> m1::e in bdd(s) /\

m2::sat(s)[e] == false ==> m1::e notin bdd(s) /\

}

May 4-5 2005 Copy right 2005 National ICT Australia Limited 43

Mapping to Local Search (VAPOR)

var set of $E: s, |s| = c <=> int :c | array [1..c] of var $E: local(s);

set of $E: s <=> int:c = |s|, array [1..c] of $E: local(s);

predicate subset(array[$R1] of $E: t, array[$R2]of var $E s) <=>
forall (i in $R1) exists (j in $R2) s[j] == t[i];

predicate in($E: e, array[$R] of var $E:s) =
exists (i in $R) s[i] == e

predicate partition(list of var array[$R] of $E: sets, set of $E: universe) =

forall (e in universe)

sum (i in 1..length(sets); j in $R) holds(sets[i][j] == e) == 1;

maxOverlap(_,_,1) <=> true

var int:f = sum [holds(c) | class(“redundant”) :: c];
var int:p = sum [holds(c) | c = partition(_,_)];

.. move definition ..

.. tabu list definition ..

.. search (using f) ..

.. debugging check (using p) ..

May 4-5 2005 Copy right 2005 National ICT Australia Limited 44

Mapping to Local Search (VAPOR)

• Variable and Parameter mapping
var set of $E:s, |s| == c <=> int:c | array [1..c] of var $E:lcl(s);

set of $E: s <=> int:c = |s| | array [1..c] of $E: lcl(s);

• Predicate mapping
predicate subset(array[$R1] of var $E: s, t) =

forall (i in $R1) exists (j in $R2) s[i] == t[j];

predicate partition(list of var array[$R] of $E: sets,

 set of $E: univ) =

 forall (e in univ)

 sum (i in 1..length(sets); j in $R) holds(sets[i][j]==e) == 1;

maxOverlap(_,_,1) <=> true

May 4-5 2005 Copy right 2005 National ICT Australia Limited 45

Mapping to Local Search (VAPOR)

• Defining Penalty Functions
violation(a =< b) <=> var int: a,b | max(0,a - b);
var int:f = sum [violation(c) | class(“redundant”) :: c];

var int:p = sum [holds(c) | c = partition(_,_)];

• Defining the algorithm
.. move definition ..
.. tabu list definition ..

.. search (using f) ..

.. debugging check (using p) ..

May 4-5 2005 Copy right 2005 National ICT Australia Limited 46

Cadmium Challenges ∞

• Specification: polymorphism, solver communication
– model independent mappings (polymorphism)
– solver communication
– full hybridization

• Rewriting: control, confluence?, interaction with subtypes
• Search: Salsa, Comet, CLP
• Error messages: unmapped constraints, etc
• Reverse mappings?
• The last step

– outputing the format required by an external solver

May 4-5 2005 Copy right 2005 National ICT Australia Limited 47

Cadmium Status and Challenges

• Status
– many discussions

• Challenges ∞
– Specification:

• model independent mappings (polymorphism)
• solver communication
• full hybridization

– Rewriting: control, confluence?, interaction with subtypes
– Search: Salsa, Comet, CLP
– Error messages: unmapped constraints, etc
– Reverse mappings?
– The last step

• outputing the format required by an external solver

May 4-5 2005 Copy right 2005 National ICT Australia Limited 48

Outline

• G12 Project Overview
• Developing Constraint Solutions
• Solver Independent Modelling

– Zinc example and features

• Mapping models to algorithms
– Cadmium mapping tentative examples

• Efficient Solutions
– Mercury discussion and hybrid example

• Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited 49

Mercury

• Purely declarative functional/logic programming
language
– developed since October 1993 at University of Melbourne
– designed for “programming in the large”
– strong static typing: Hindley/Milner + type classes with

functional dependencies + existential types
– strong static moding (tracking instantiation of arguments)
– strong static determinism (number of answers for

predicates/functions)
– strong module system
– highly efficient, sophisticated compile-time optimizations

May 4-5 2005 Copy right 2005 National ICT Australia Limited 50

Extending Mercury

• No constraint solving (not even Herbrand)
– added solver types to Mercury

• Dual view of a type
– External view: pure declarative solver variable
– Internal view: data structure representing solver information

– adding solvers to Mercury
• herbrand, bdd_sets, sat (MiniSat), lp (cplex, clpr), fd

• Hybridization facilities (currently complete methods only)
– essentially attach arbitrary code to solver events

• variable is fixed
• bounds changes
• new cut/nogood generated

May 4-5 2005 Copy right 2005 National ICT Australia Limited 51

 Mercury hybridization experiment

• bdd FD solver (JAIR 24)
• DPLL based SAT solver (MiniSAT)

May 4-5 2005 Copy right 2005 National ICT Australia Limited 52

BDD based solver

• CP2004, JAIR 24 (2005)
• Essentially a finite domain solver

– represents variables by “packages of Boolean variables”
• ∅ ⊆ S ⊆ {1,2,3,4} :: 1 ∈ S, 2 ∈ S, 3 ∈ S, 4 ∈ S
• 0 ≤ x ≤ 3 :: x = 0, x = 1, x = 2, x = 3 OR x mod 2 = 1, x >= 2

– represents domains as Boolean formulae (ROBDDs)
• D(S) = {{1}..{1,3,4}} :: 1 ∈ S ∧ ¬(2 ∈ S)

– represents constraints as Boolean formulae (ROBDDs)
• |S| = x :: (1 ∈ S ∧ 2 ∈ S ∧ 3 ∈ S ∧ ¬ (4 ∈ S) ∧ x = 3) ∨ ...

• Propagates constraints using Boolean operations
– D’(S) = exists x. D(S) ∧ D(x) ∧ |S| = x

• Highly competitive for finite set solving
– not competitive for finite integer solving

May 4-5 2005 Copy right 2005 National ICT Australia Limited 53

SAT DPLL solver (MiniSAT)

• http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
• by Niklas Eén, Niklas Sörensson
• DPLL based SAT solver

– watch literals
– 1UIP nogood learning, conflict clause minimization
– (improved) VSIDS dynamic variable order
– incremental

• Winner of silver medals in 2 Industrial and 1 Handmade classes of
SAT 2005

• With preprocessor SatELite winner of gold medals in all 3 Industrial
and 1 Handmade classes

May 4-5 2005 Copy right 2005 National ICT Australia Limited 54

Hybridizing BDD and MiniSAT

• Variable to variable propagation
– fixed variables in BDD <-> fixed variables in MiniSAT

• Scheduling
– Unit propagation in MiniSAT is one “propagator”
– higher priority than any BDD propagators

• Modelling
– all constraints represented in BDD solver
– NO constraints represented in MiniSAT!

May 4-5 2005 Copy right 2005 National ICT Australia Limited 55

Dynamic clausal representation

• Represent inferences of BDD propagators as clauses
– D(S) = {{1,2},{1,2,4}} :: 1 ∈ S ∧ 2 ∈ S ∧ ¬(3 ∈ S)
– D(x) = {0,1,2} :: ¬(x = 3)
– Propagating |S| = x
– Newly inferred propositions

• ¬(4 ∈ S), ¬(x = 0), ¬(x = 1), x = 2
– simple inferences

• 1 ∈ S ∧ 2 ∈ S ∧ ¬(3 ∈ S) ∧ ¬(x = 3) → ¬(4 ∈ S)
• 1 ∈ S ∧ 2 ∈ S ∧ ¬(3 ∈ S) ∧ ¬(x = 3) → ¬(x = 0)
• ...

– clausal representation
• ¬ (1 ∈ S) ∨ ¬ (2 ∈ S) ∨ 3 ∈ S ∨ x = 3 ∨ ¬(4 ∈ S)
• ¬ (1 ∈ S) ∨ ¬ (2 ∈ S) ∨ 3 ∈ S ∨ x = 3 ∨ ¬(x = 0)
• ...

May 4-5 2005 Copy right 2005 National ICT Australia Limited 56

Minimal inferences

• A minimal reason for a new proposition p
is a minimal subset of the reasons that ensure p hold

• Examples
– 1 ∈ S ∧ 2 ∈ S ∧ ¬(3 ∈ S) ∧ ¬(x = 3) → ¬(x = 0)
– minimal 1 ∈ S → ¬(x = 0)
– 1 ∈ S ∧ 2 ∈ S ∧ ¬(3 ∈ S) ∧ ¬(x = 3) → ¬(4 ∈ S)
– minimal 1 ∈ S ∧ 2 ∈ S ∧ ¬(x = 3) → ¬(4 ∈ S)

• Add minimal clauses
– ¬ (1 ∈ S) ∨ ¬(x = 0)
– ¬ (1 ∈ S) ∨ ¬ (2 ∈ S) ∨ x = 3 ∨ ¬(4 ∈ S)

• Efficient BDD operations to determine minimal reasons
– minimal unsatisfiable subset

May 4-5 2005 Copy right 2005 National ICT Australia Limited 57

Dynamic clause generation

• Propagation in the BDD solver represents inferences
– Initially D(S) = {{} .. {1,2,3,4}}, D(x) = {0,1,2,3}
– D(S) = {{1,2} .. {1,2,4}}, D(x) = {0,1,2}, |S| = x

• gives
• D(S) = {{1,2}}, D(x) = {2}

– Simple inference
• 1 ∈ S ∧ 2 ∈ S ∧ ¬(3 ∈ S) ∧ ¬(x = 3) → ¬(x = 0)

– Minimal inference
• 1 ∈ S → ¬(x = 0)

• Pass the inferences made to the SAT solver
– ¬ (1 ∈ S) ∨ ¬(x = 0)

May 4-5 2005 Copy right 2005 National ICT Australia Limited 58

Experiments

• Social Golfers Problems
• Versus bounds propagation bdd set solver using a sequential smallest

element is set search strategy (18/20)
– simple inferences (18/20): fails 1/2 - 1 (0.70), time 4/5 - 2 (1.22)
– minimal inferences:

• just inferring (18/20): time 1 - 3 (1.76) (surprisingly low !)
• using inferences in implication graph only (19/20): fails 1/35 - 1 (0.29), time 1/10 - 2

(0.78)
• adding clauses (20/20): fails 1/157 - 1 (0.10), time 1/62 - 2 (0.30)

• Versus (improved) VSIDS search strategy from miniSAT (20/20)
– miniSAT (16/20): fails 0.95 - 186 (10), time 1/14 - 58 (2.7)
– dual model (20/20): fails 1/12 - 16 (2.3), time 2/3 - 13 (3.0)
– sequential (20/20): fails 1/55 - 13 (0.52), time 1/5 - 10 (0.95)

May 4-5 2005 Copy right 2005 National ICT Australia Limited 59

Experiments

• Social Golfers Problems
• Versus bounds propagation bdd set solver using a

sequential smallest element is set search strategy
(18/20)
– simple inferences (18/20): fails 1/2 - 1 (0.70), time 4/5 - 2 (1.22)
– minimal inferences:

• just inferring (18/20): time 1 - 3 (1.76) (surprisingly low !)
• using inferences in implication graph only (19/20): fails 1/35 - 1

(0.29), time 1/10 - 2 (0.78)
• adding clauses (20/20): fails 1/157 - 1 (0.10), time 1/62 - 2 (0.30)

May 4-5 2005 Copy right 2005 National ICT Australia Limited 60

Experiments

• Social Golfers Problems
• Versus bounds propagation bdd set solver using a sequential

smallest element is set search strategy (18/20)
– simple inferences (18/20): fails 1/2 - 1 (0.70), time 4/5 - 2 (1.22)
– minimal inferences:

• just inferring (18/20): time 1 - 3 (1.76) (surprisingly low !)
• using inferences in implication graph only (19/20): fails 1/35 - 1 (0.29), time

1/10 - 2 (0.78)
• adding clauses (20/20): fails 1/157 - 1 (0.10), time 1/62 - 2 (0.30)

• VSIDS search strategy (20/20)
– versus miniSAT (16/20): fails 1/186 - 1.05 (0.10), time 1/58 - 14 (0.37)
– versus dual model (20/20): fails 1/16 - 12 (0.44), time 1/13 - 3/2 (0.33)
– versus sequential (20/20): fails 1/13 - 55 (1.9), time 1/10 - 5 (1.05)

May 4-5 2005 Copy right 2005 National ICT Australia Limited 61

What does it mean?

• Conflict directed backjumping in another guise?
• Related work

– PalM, E-constraints: uses decision cuts not 1-UIP
– Katsirelos and Bacchus CP2003: only forward checking,

(appear to) only use FC inferences in implication graph

• finite domain propagation = clausal cut generation?

May 4-5 2005 Copy right 2005 National ICT Australia Limited 62

Outline

• G12 Project Overview
• Developing Constraint Solutions
• Solver Independent Modelling

– Zinc example and features

• Mapping models to algorithms
– Cadmium mapping tentative examples

• Efficient Solutions
– Mercury discussion

• Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited 63

G12 Progress

• Zinc
– Language design
– Type checker
– Starting compiler

• Cadmium

• Mercury
– building new solvers: fd, generic propagation structures, value

propagation
– integrate solvers: bdd_sets, minisat, CPLEX
– solver types

May 4-5 2005 Copy right 2005 National ICT Australia Limited 64

Other Aspects of the G12 Project

• Logical Transformations (Zinc2Zinc): dualization, etc
• Robust solutions: insensitive to change in parameters
• Search
• Master-subproblem decompositions: Benders,

Lagrangian relaxation, column generation
• Population search: evolutionary algorithms
• Solver visualization
• Default mappings
• Online optimization
• Scripting

May 4-5 2005 Copy right 2005 National ICT Australia Limited 65

Conclusion

• G12 is an ambitious project aiming to provide
– Solver independent modelling
– Model independent mappings from conceptual to design models
– Easy experimentation of hybrid approaches
– A good environment for exploring design models

• We have only just begun!
• The holy grail

– Default mappings are good enough: only conceptual model

May 4-5 2005 Copy right 2005 National ICT Australia Limited 66

Advertisement

• Constraint Programming positions available
– see http://nicta.com.au/jobs.html
– positions in Melbourne (Network Information Processing) and

Sydney (Knowledge Representation and Reasoning)

• G12 postgraduates needed
– apply to University of Melbourne or University of New South

Wales

• G12 visitors welcome
– are you interested in some of the things discussed here?

End

END

May 4-5 2005 Copy right 2005 National ICT Australia Limited 68

