G12: From Solver Independent Models to Efficient Solutions

Peter J. Stuckey
NICTA Victoria Laboratory
University of Melbourne
Outline

• G12 Project Overview
• Developing Constraint Solutions
• Solver Independent Modelling
 – Zinc example and features
• Mapping models to algorithms
 – Cadmium mapping tentative examples
• Efficient Solutions
 – Mercury discussion
• Concluding Remarks
Underpants Gnomes Business Plan

• Phase 1: Collect underpants
• Phase 2: ???????
• Phase 3: Profit
G12 Project Plan

• Phase 1: Solver Independent Modelling
• Phase 2: ?????
• Phase 3: Efficient Solutions
G12 Overview

- **G12**: a software platform for solving large scale industrial combinatorial optimisation problems.
 - **ZINC**:
 - A language to specify solver independent models
 - **CADMIUM**:
 - A mapping language from solver independent models to solvers
 - A language for specifying search
 - **MERCURY**: (For our purposes)
 - A language to interface to external solvers
 - A language to write solvers
 - A language to combine solvers
 - Providing debugging support
G12 Participants

• Peter Stuckey, NICTA Victoria
• Maria Garcia de la Banda, Monash University
• Michael Maher, NICTA Kensington (NSW)
• Kim Marriott, Monash University
• John Slaney, NICTA Canberra
• Zoltan Somogyi, NICTA Victoria
• Mark Wallace, Monash University
• Toby Walsh, NICTA Kensington (NSW)
• and others
Outline

• G12 Project Overview
• Developing Constraint Solutions
 • Solver Independent Modelling
 – Zinc example and features
 • Mapping models to algorithms
 – Cadmium mapping tentative examples
• Efficient Solutions
 – Mercury discussion
• Concluding Remarks
The Problem Solving Process

- “Find four different integers between 1 and 5 which sum to 14”
- **Conceptual Model**
 - User-oriented “declarative” problem statement
 - \(\exists S. S \subseteq \{1..5\} \land |S| = 4 \land \text{sum}(S) = 14 \).

- **Design Model**
 - Correct efficient algorithm
 - \([W,X,Y,Z] :: 1..5, \text{alldifferent}([W,X,Y,Z]), W + X + Y + Z \neq 14, \text{labeling}([W,X,Y,Z]).\)

- **Solution**
 - \(W = 2 \land X = 3 \land Y = 4 \land Z = 5 \), \(S = \{2,3,4,5\} \)
The Problem Solving Process

• Conceptual Model
 – User-oriented “declarative” problem statement

• Design Model
 – Correct efficient algorithm

• Solution
From Conceptual Model to Design Model

- Conceptual Model: logical specification
 - Mapping the logical constraints to behaviour
 - \(|\{W,X,Y,Z\}| = 4 \) \rightarrow alldifferent([W,X,Y,Z])
 - Adding a specification of search
 - labeling([W,X,Y,Z])

- Design model: algorithmic specification
Behaviour: Choosing a Solving Technology

- **Mixed Integer Programming (MIP)**
 - **strong optimization**, lower bounding
 - **limited expressiveness for constraints** (linear only)
 - able to handle huge problems 1,000s of vars and constraints

- **Finite Domain Propagation (FD)**
 - **strong satisfaction**, **poor optimization**
 - highly expressive constraints
 - specialized algorithms for important sub-constraints

- **DPLL Boolean Satisfaction (SAT)**
 - satisfaction principally,
 - **limited expressiveness** (clauses or Boolean formulae)
 - effective conflict learning, highly efficient propagation

- **Local Search: SA, GSAT, DLM, Comet, genetic algorithms**
 - good optimization, poorer satisfaction (**can't detect unsatisfiability**)
 - highly expressive constraints (arbitrary functions?)
 - scale to large problems
Complete Solving Technologies

• Mixed Integer Programming (MIP)
 – strong optimization, lower bounding
 – limited expressiveness for constraints (linear only)
 – able to handle huge problems 1,000s of vars and constraints

• Finite Domain Propagation (FD)
 – strong satisfaction, poor optimization
 – highly expressive constraints
 – specialized algorithms for important sub-constraints

• DPLL Boolean Satisfaction (SAT)
 – satisfaction principally,
 – limited expressiveness (clauses or Boolean formulae)
 – conflict learning, highly efficient propagation,
Incomplete Solving Technologies

• Good optimization, poorer satisfaction (can’t detect unsatisfiability)
• Highly expressive constraints (arbitrary functions?)
• Scale to large problems
• Local Search:
 – simulated annealing
 – Lagrangian relaxation: DLM, GSAT, ...
 – Comet (language for local search methods)
• Population Methods
 – genetic algorithms
 – ant colony optimization, ...
Behaviour: Hybrid Solving Approaches

- Design model using two or more solving approaches
 - Only need partially model the problem in each part
 - pass constraints from one model to another
 - values of variables \(W = 2 \)
 - bounds of variables \(W \geq 3 \)
 - cuts \(2X + 3Y + 4Z \leq 15 \)
 - pass upper or lower bounds from one technique to another

- Decompose the problem into two or more parts using different solving techniques
 - Dantzig-Wolfe decomposition, Column generation, ...
Search:

• Generic search strategy:
 – limited discrepancy search, first fail, maximum regret
 – symmetry breaking,
 – learn parameters

• Specific search strategy (programmed)

• Solving technology may restrict search

• Hybrid search:
 – Support the search of one method with another
 – Define heuristic function with one method
 • support limited discrepancy search of other method
 – Wide area local search, repair based methods
Environment

• The worst answer to a constraint problem?
 – No
• An even worse answer to a constraint problem
 – execution does not terminate in days!
• (Performance) Debugging the Design Model
 – visualization of the “active” constraints
 – visualization of the solver state (e.g. domains of variables)
 – visualization of the search
 – (preferably) mapped back to Conceptual Model
 – Hybrid approaches complicate this!
G12 development model

Conceptual Modelling Phase
- ZINC model
- ZINC compiler
- Constraint model

Design Modelling Phase
- CADMIUM mapping
- CADMIUM Compiler
- Constraint executable

Solving Phase
- ILOG SOLVER
- Xpress MP
- MERCURY
- Specialized solvers
G12 Project Diagram

- ZINC Declarative Modelling Language
 - Data Structures: arrays, sets, sequences, extensible
 - Looping: forall, sum
 - Predicates and Functions
 - Reification

- CADMIUM Search Language
 - Labelling strategies
 - Reflection
 - Hybrid approaches

- Visualization
 - Search tree
 - Active constraints
 - Constraint graph

- Richer Modelling

- CADMIUM Mapping Language
 - To solvers
 - Solver coordination

- Richer Mapping

- MERCURY Solver extensions
 - Solver specification language
 - Specific solvers

- Current Mercury

- Profiling and Trace Information

- Richer Environment

The imagination driving Australia's ICT future.
Developing Constraint Solutions

• What modelling language is best to express the problem naturally?
• How do we map the problem to the most suitable combination of algorithms to solve it
• How do we support the search for the right algorithm, by high-level control and facilities to visualize and interact with the system as it solves?
• G12 aims to support these questions!
G12 Goals

• Richer Modelling
 – Separate conceptual modelling from design modelling using
 • solver independent conceptual models
 • mapping from conceptual to design models

• Richer Mapping
 – extensible user defined mappings
 – hybridization of solvers

• Richer Solving
 – hybridization of search

• Richer Environment
 – visualization of search and constraint solving
Advantages of G12 model

• Checking the conceptual model
 – trusted default mappings give basic design model
 – test conceptual model on small examples this way

• Checking the design model
 – check optimized mapping versus trusted default mapping

• Remembering good modelling approaches
 – reuse of
 • model independent mappings
 • transformations/optimizations of design models

• Support for algorithmic debugging
 – reverse mapping to visualize in terms of the conceptual model
Outline

• G12 Project Overview
• Developing Constraint Solutions
• **Solver Independent Modelling**
 – Zinc example and features
• Mapping models to algorithms
 – Cadmium mapping tentative examples
• Efficient Solutions
 – Mercury discussion
• Concluding Remarks
What is Solver Independent Modelling

- A model independent of the solver to be used
- Examples
 - .cnf format for SAT
 - AMPL for linear and quadratic programming
 - HAL program using solver classes
 - (?) ECLiPSe program (for eplex, ic, fd,etc solvers)
 - (?) OPL (although it essentially connects to one solver)
- All the above fix the form of the constraints by the model
- All except .cnf fix the “solving paradigm”
- More independent
 - ESRA [Uppsala]
 - Essence and Conjure [York]
 - model and transformation rules
Zinc: a solver independent modelling language

- mathematical notation like syntax (coercion, overloading, iteration, sets, arrays)
- expressive constraints (FD, set, linear arithmetic, integer)
- different kinds of problems (satisfaction, explicit optimisation, preference (soft constraints))
- separation of data from model
- high-level data structures and data encapsulation (lists, sets, arrays, records, constrained types)
- extensibility (user defined functions, constraints)
- reliability (type checking, assertions)
- simple, declarative semantics
- Zinc extends OPL and moves closer to CLP language such as ECLiPSe
Example Zinc model

• **Social Golfers**
 - Given a set of players, a number of weeks and a size of playing groups.
 - Devise a playing schedule so that
 • each player plays each week
 • no pairs play together twice
 - Many symmetries (ignore for now)
 • order of groups
 • order of weeks
 • order of players
 • ...
Social Golfers in Zinc 0.1

- **Type Declarations (to be read from data file)**

  ```
  enum Players = {...};
  ```

- **Parameter Declarations (first 2 from data file)**

  ```
  int: Weeks;
  int: GroupSize;
  int: Groups = |Players| div GroupSize;
  ```

- **Assertions on Parameters**

  ```
  assert("Players must be divisible by GroupSize")
  Groups * GroupSize == |Players|;
  ```

- **Variable Declarations**

  ```
  array[1..Weeks,1..Groups] of var set of Player: group;
  ```
Predicate (and Function) Declarations

predicate maxOverlap(var set of $E: x,y, int: m) =
 |x inter y| <= m;

predicate partition(list of var set of $E: sets,
 set of $E: univ) =
 forall (i,j in 1..length(sets) where i < j)
 maxOverlap(sets[i],sets[j],0)
 /
 unionlist(sets) == univ;
• **Constraints**

```plaintext
constraint forall (i in 1..Weeks)(
    partition([group[i,j] | j in 1..Groups], Players) \/
    forall (j in 1..Groups) (
        |group[i,j]| == Groupsize \/
        forall (k in i+1..Weeks; l in 1..Groups)
            maxOverlap(group[i,j],group[k,l],1)
    ));

class("redundant"):: constraint
    forall (a,b in Players where a < b)
        sum (i in 1..Weeks; j in 1..Groups)
            holds({a,b} subset group[i,j])
        <= 1;
```
Social Golfers in Zinc 0.1

int: Weeks;
int: GroupSize;
enum Players = {...};
int: Groups = |Players| div GroupSize;
assert("Players must be divisible by GroupSize") Groups * GroupSize = |Players|;
array[1..Weeks,1..Groups] of var set of Player: group;

predicate maxOverlap(var set of E: x,y, int: m) =
|x inter y| <= m;
predicate partition(list of var set of E: sets, set of E: universe) =
(forall (i,j in 1..length(sets) where i < j)
 maxOverlap(sets[i],sets[j],0)
 \ unionlist(sets) == universe;

constraint forall (i in 1..Weeks)(
 partition([group[i,j] | j in 1..Groups], Players) \/
 forall (j in 1.. Groups) (|group[i,j]| == Groupsize \/
 forall (k in i+1..Weeks; l in 1..Groups)
 maxOverlap(group[i,j],group[k,l],1)
));
class("redundant"):: constraint forall (a,b in Players where a < b)
 sum (i in 1..Weeks; j in 1..Groups) holds({a,b} subset group[i,j]) <= 1;
Zinc Features

• Types:
 – float, int, bool, string,
 – tuples, records (with named fields), discriminated unions
 – sets, lists, arrays (multidimensional = array of array of ...)
 – var type
 • arrays and lists of var types: \(\text{array } [1..12] \text{ of var int} \)
 • set var type of nonvar type: \(\text{var set of bool} \)
 – coercion
 • nonvar type to var type: \(\text{float } \rightarrow \text{ var float } \ (x + 3.0) \)
 • ground sets to lists: \(\text{length}\{1,2,3,5,8\} \)
 • lists to one-dimensional arrays:
 – constrained types (assertions)
 record Task = (int: Duration, var int: Start, Finish)
 where Finish == Start + Duration;
Zinc Features

- **Comparisons**
 - `==, !=, >, <, >=, <=`
 - generated automatically for all types (lexicographic)

- **Reification**
 - predicates are functions to `var bool`
 - Boolean operations:
 - `/\ (and), \/ (or), ~ (not), xor, =>, <=, <=>`
 - `ZeroOne = 0..1;
 function holds(var bool:b):var ZeroOne:h`
 - `h` is the integer coercion of the `bool b`
 - Anything can be “reified”
 - problem for solvers?
Zinc Features

• List and Set comprehensions
 – generators + tests must be independent of vars
 – list of int: \(b = [2*i \mid i \in 1..100 \text{ where } \neg (\text{kind}[i] \in S)] \)
 – shorthand
 • \(\sum (i \in 1..\text{Weeks}; j \in 1..\text{Groups}) \text{ holds}(c) =< 1; \)
 • \(\sum([\text{ holds}(c) \mid i \in 1..\text{Weeks}; j \in 1..\text{Groups }]) =< 1; \)

• Functions and predicates
 – local variables
 – (non-recursive) but foldl, foldr, zip
 – function unionlist(list of var set of E: sets):

 \[
 \text{var set of } E = \text{foldl}(\text{union},\{\},\text{sets})
 \]
 – starting point for mapping language Cadmium
Zinc Features

• Annotations
 – classification constraints: `class(string)`
 • (possible multiple) classifications for constraints
 • used for guiding rewriting, debugging
 • `class(“linear”) :: constraint x + 3*y + 4*z =< q;`
 – soft constraints: `level(int) and strength(float)`
 • lower levels are preferential
 • strength gives relative priority over levels
 • `int: strong = 1;
 level(strong) strength(2.0):: constraint x < 2 /
 y < 9;`
 • map to objective function if not supported by solver

• Objectives
 – minimize/maximize `<arithmetic expr>`
Zinc Status and Challenges

• Status
 – Initial language design
 – Type checker
 – Compiler in progress

• Challenges
 – Easy to use for mathematical programmers
 • Error messages, syntax
 – Symmetry specification
 – Multi parameter objective and/or robustness objective specification
 – Recursion?
 – Pattern matching
Zinc Challenges

- Easy to use for mathematical programmers
 - Error messages, syntax
- Symmetry specification
- Multi parameter objective and/or robustness objective specification
- Recursion?
- Pattern matching
Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
 - Zinc example and features
- Mapping models to algorithms
 - Cadmium mapping tentative examples
- Efficient Solutions
 - Mercury discussion
- Concluding Remarks
Cadmium

• Maps solver independent models to solvers
 – extension of Zinc
 – term rewriting/constraint handling rules like features
• Model independent transformations! (as far as possible)
• Trying to extract some of the “internal transformations” performed by solvers, to make them
 – visible
 – reusable
 – replaceable
• Also adds search strategy to model
 – not really discussed here
Cadmium Examples (VAPOR)

- **Simple Defaults**

  ```python
  map = bdd_sets.map;
  ```

- **Overriding Defaults**

  ```python
  map = bdd_sets.map;
  predicate partition(list of var set of $E$: sets,
  set of $E$: univ) =
  bdd_partition(sets, univ, [prop = cardinality]);
  ```

- **Using Classes**

  ```python
  class("redundant") :: c <=> delay(vars(c), c);
  ```

- **Merging Constraints**

  ```python
  map = bdd_sets.map;
  partition(sets, univ), sorted(sets) <=>
  list of var set of $E$: sets, set of $E$: univ |
  bdd_and_prop(bdd_partition(sets,univ),bdd_sorted(sets));
  ```
Cadmium Examples (VAPOR)

- **Variable Conversion**
 - creates mapping sat from original variables to new variables

 var set of $E: s \leftrightarrow$ array[E] of var bool: sat(s);

- **Mapping of Functions and Predicates**

 function ||(array[E] of var bool:s): var int =
 sum (e in E) holds(s[e]);

 function inter(array[E] of var bool:s,t):
 array[E] of var bool = [s[e] \ t[e] | e in E];

 function {}: array[E] of bool = [false | e in $E]; (?????)

- **Refinement and Specialization of Constraints**

 s subset t <=> set of $E:s$, var set of $E:t |$

 forall (e in s) e in t;

 maxOverlap(s,t,c1) \ maxOverlap(s,t,c2) <=>
 int: c1, int :c2, c1 <= c2 | true.
Cadmium Examples (VAPOR)

- Multiple levels of Mapping
 - Mapping to CNF (conjunctive normal form)
 \[
 \begin{align*}
 x \land y &= z \iff \text{var bool}:x,y,z \mid \\
 & (\neg z \lor x) \land (\neg z \lor y) \land (z \lor \neg x \lor \neg y) \\
 \text{partition} & \left(\text{list of array[E]of var bool:sets, set of E:univ} \right) = \\
 & \forall (e \in \text{univ}) \sum (s \in \text{sets}) \text{holds}(s[e]) = 1 \\
 & \land \forall (s \in \text{sets}) (s \subseteq \text{univ}) \\
 \sum (\left[\text{holds}(b) \mid b \in bs \right]) & \iff \\
 & \text{list of var bool:bs, var bool: b} \mid \sum b(bs) \\
 \sum b(bs) & = c \iff \sum b(bs) \leq c \land \sum b(bs) \geq c \\
 \sum b(bs) & \leq c \iff \text{list of var bool: bs, int:c} \mid \\
 & \forall (l \in \text{subsequences(bs,c+1)}) \exists (b \in l) \neg b; \\
 & \text{subsequences in Mercury? or add recursion to Cadmium}
 \end{align*}
 \]
Cadmium Examples (VAPOR)

• **Multiple Solvers**

```plaintext
m1 = bdd_sets.map;
m2 = sat_sets.map;

m2::|_| = _ <=> true;
channeling {
    forall (var set of $E:s; $E:e)
    m1::e in bdds(s) ==> m2::sat(s)[e] == true /
    m1::enotin bdds(s) ==> m2::sat(s)[e] == false /
    m2::sat(s)[e] == true ==> m1::e in bdd(s) /
    m2::sat(s)[e] == false ==> m1::enotin bdd(s) /
}
```
Mapping to Local Search (VAPOR)

var set of $E: s, |s| = c <=> int : c | array [1..c] of var $E: local(s);
set of $E: s <=> int : c = |s|, array [1..c] of $E: local(s);

predicate subset(array[$R1] of $E: t, array[$R2]of var $E s) <=>
 forall (i in $R1) exists (j in $R2) s[j] == t[i];
predicate in($E: e, array[$R] of var $E:s) =
 exists (i in $R) s[i] == e

predicate partition(list of var array[$R] of $E: sets, set of $E: universe) =
 forall (e in universe)
 sum (i in 1..length(sets); j in $R) holds(sets[i][j] == e) == 1;
maxOverlap(_,_,1) <=> true

var int:f = sum [holds(c) | class("redundant") :: c];
var int:p = sum [holds(c) | c = partition(_,_)];

.. move definition ..
.. tabu list definition ..
.. search (using f) ..
.. debugging check (using p) ..
Mapping to Local Search (VAPOR)

• Variable and Parameter mapping
 \[\text{var set of } E:s, \ |s| = c \iff \text{int:}c \ | \text{array [1..c] of } E:lcl(s); \]
 \[\text{set of } E: s \iff \text{int:}c = |s| \ | \text{array [1..c] of } E: lcl(s); \]

• Predicate mapping
 \[\text{predicate subset(array[R1] of var } E: s, t) = \]
 \[\forall i \in R1 \exists j \in R2 \ s[i] = t[j]; \]

 \[\text{predicate partition(list of var array[R] of } E: \text{sets,} \]
 \[\forall e \in \text{univ) =} \]
 \[\sum (i \in 1..\text{length(sets)}; j \in R) \text{holds(sets[i][j]==e)} = 1; \]

 \[\text{maxOverlap(_,_,1) } \iff \text{true} \]
• Defining Penalty Functions

\[
\text{violation}(a \leq b) \iff \text{var int: } a, b \mid \text{max}(0, a - b);
\]

\[
\text{var int: } f = \text{sum} [\text{violation}(c) \mid \text{class(“redundant”)} :: c];
\]

\[
\text{var int: } p = \text{sum} [\text{holds}(c) \mid c = \text{partition}(_,_)];
\]

• Defining the algorithm

.. move definition ..
.. tabu list definition ..
.. search (using f) ..
.. debugging check (using p) ..
Cadmium Challenges

- Specification: polymorphism, solver communication
 - model independent mappings (polymorphism)
 - solver communication
 - full hybridization
- Rewriting: control, confluence?, interaction with subtypes
- Search: Salsa, Comet, CLP
- Error messages: unmapped constraints, etc
- Reverse mappings?
- The last step
 - outputing the format required by an external solver
Cadmium Status and Challenges

• Status
 – many discussions

• Challenges ∞
 – Specification:
 • model independent mappings (polymorphism)
 • solver communication
 • full hybridization
 – Rewriting: control, confluence?, interaction with subtypes
 – Search: Salsa, Comet, CLP
 – Error messages: unmapped constraints, etc
 – Reverse mappings?
 – The last step
 • outputing the format required by an external solver
Outline

• G12 Project Overview
• Developing Constraint Solutions
• Solver Independent Modelling
 – Zinc example and features
• Mapping models to algorithms
 – Cadmium mapping tentative examples
• Efficient Solutions
 – Mercury discussion and hybrid example
• Concluding Remarks
Mercury

- Purely declarative functional/logic programming language
 - developed since October 1993 at University of Melbourne
 - designed for “programming in the large”
 - strong static typing: Hindley/Milner + type classes with functional dependencies + existential types
 - strong static moding (tracking instantiation of arguments)
 - strong static determinism (number of answers for predicates/functions)
 - strong module system
 - highly efficient, sophisticated compile-time optimizations
Extending Mercury

- No constraint solving (not even Herbrand)
 - added solver types to Mercury
 - Dual view of a type
 - External view: pure declarative solver variable
 - Internal view: data structure representing solver information
 - adding solvers to Mercury
 - herbrand, bdd_sets, sat (MiniSat), lp (cplex, clpr), fd

- Hybridization facilities (currently complete methods only)
 - essentially attach arbitrary code to solver events
 - variable is fixed
 - bounds changes
 - new cut/nogood generated
Mercury hybridization experiment

- bdd FD solver (JAIR 24)
- DPLL based SAT solver (MiniSAT)
BDD based solver

- Essentially a finite domain solver
 - represents variables by “packages of Boolean variables”
 - $\emptyset \subseteq S \subseteq \{1,2,3,4\} :: 1 \in S, 2 \in S, 3 \in S, 4 \in S$
 - $0 \leq x \leq 3 :: x = 0, x = 1, x = 2, x = 3$ OR $x \mod 2 = 1, x \geq 2$
 - represents domains as Boolean formulae (ROBDDs)
 - $D(S) = \{1\}..\{1,3,4\} :: 1 \in S \land \neg(2 \in S)$
 - represents constraints as Boolean formulae (ROBDDs)
 - $|S| = x :: (1 \in S \land 2 \in S \land 3 \in S \land \neg(4 \in S) \land x = 3) \lor ...$
- Propagates constraints using Boolean operations
 - $D'(S) = \exists x. D(S) \land D(x) \land |S| = x$
- Highly competitive for finite set solving
 - not competitive for finite integer solving
SAT DPLL solver (MiniSAT)

- by Niklas Eén, Niklas Sörensson
- DPLL based SAT solver
 - watch literals
 - 1UIP nogood learning, conflict clause minimization
 - (improved) VSIDS dynamic variable order
 - incremental
- Winner of **silver** medals in 2 Industrial and 1 Handmade classes of SAT 2005
- With preprocessor SatELite winner of **gold** medals in all 3 Industrial and 1 Handmade classes
Hybridizing BDD and MiniSAT

- Variable to variable propagation
 - fixed variables in BDD <-> fixed variables in MiniSAT
- Scheduling
 - Unit propagation in MiniSAT is one “propagator”
 - higher priority than any BDD propagators
- Modelling
 - all constraints represented in BDD solver
 - NO constraints represented in MiniSAT!
Dynamic clausal representation

- Represent inferences of BDD propagators as clauses
 - \(D(S) = \{\{1,2\}\},\{1,2,4\}\) :: \(1 \in S \land 2 \in S \land \neg (3 \in S) \)
 - \(D(x) = \{0,1,2\} :: \neg (x = 3) \)
 - Propagating \(|S| = x\)
 - Newly inferred propositions
 - \(\neg (4 \in S), \neg (x = 0), \neg (x = 1), x = 2 \)
 - Simple inferences
 - \(1 \in S \land 2 \in S \land \neg (3 \in S) \land \neg (x = 3) \rightarrow \neg (4 \in S) \)
 - \(1 \in S \land 2 \in S \land \neg (3 \in S) \land \neg (x = 3) \rightarrow \neg (x = 0) \)
 - ...
 - Clausal representation
 - \(\neg (1 \in S) \lor \neg (2 \in S) \lor 3 \in S \lor x = 3 \lor \neg (4 \in S) \)
 - \(\neg (1 \in S) \lor \neg (2 \in S) \lor 3 \in S \lor x = 3 \lor \neg (x = 0) \)
 - ...

Minimal inferences

- A minimal reason for a new proposition p
 is a minimal subset of the reasons that ensure p hold
- Examples
 - $1 \in S \land 2 \in S \land \neg(3 \in S) \land \neg(x = 3) \rightarrow \neg(x = 0)$
 - minimal $1 \in S \rightarrow \neg(x = 0)$
 - $1 \in S \land 2 \in S \land \neg(3 \in S) \land \neg(x = 3) \rightarrow \neg(4 \in S)$
 - minimal $1 \in S \land 2 \in S \land \neg(x = 3) \rightarrow \neg(4 \in S)$
- Add minimal clauses
 - $\neg(1 \in S) \lor \neg(x = 0)$
 - $\neg(1 \in S) \lor \neg(2 \in S) \lor x = 3 \lor \neg(4 \in S)$
- Efficient BDD operations to determine minimal reasons
 - minimal unsatisfiable subset
Dynamic clause generation

- Propagation in the BDD solver represents inferences
 - Initially $D(S) = \{\emptyset \ldots \{1,2,3,4\}\}$, $D(x) = \{0,1,2,3\}$
 - $D(S) = \{\{1,2\} \ldots \{1,2,4\}\}$, $D(x) = \{0,1,2\}$, $|S| = x$
 - gives
 - $D(S) = \{\{1,2\}\}$, $D(x) = \{2\}$
 - Simple inference
 - $1 \in S \land 2 \in S \land \neg(3 \in S) \land \neg(x = 3) \rightarrow \neg(x = 0)$
 - Minimal inference
 - $1 \in S \rightarrow \neg(x = 0)$

- Pass the inferences made to the SAT solver
 - $\neg(1 \in S) \lor \neg(x = 0)$
Experiments

- Social Golfers Problems
- Versus bounds propagation bdd set solver using a sequential smallest element is set search strategy (18/20)
 - simple inferences (18/20): fails 1/2 - 1 (0.70), time 4/5 - 2 (1.22)
 - minimal inferences:
 - just inferring (18/20): time 1 - 3 (1.76) (surprisingly low !)
 - using inferences in implication graph only (19/20): fails 1/35 - 1 (0.29), time 1/10 - 2 (0.78)
 - adding clauses (20/20): fails 1/157 - 1 (0.10), time 1/62 - 2 (0.30)
- Versus (improved) VSIDS search strategy from miniSAT (20/20)
 - miniSAT (16/20): fails 0.95 - 186 (10), time 1/14 - 58 (2.7)
 - dual model (20/20): fails 1/12 - 16 (2.3), time 2/3 - 13 (3.0)
 - sequential (20/20): fails 1/55 - 13 (0.52), time 1/5 - 10 (0.95)
Experiments

- Social Golfers Problems
- Versus bounds propagation bdd set solver using a sequential smallest element is set search strategy (18/20)
 - simple inferences (18/20): fails 1/2 - 1 (0.70), time 4/5 - 2 (1.22)
 - minimal inferences:
 - just inferring (18/20): time 1 - 3 (1.76) (surprisingly low !)
 - using inferences in implication graph only (19/20): fails 1/35 - 1 (0.29), time 1/10 - 2 (0.78)
 - adding clauses (20/20): fails 1/157 - 1 (0.10), time 1/62 - 2 (0.30)
Experiments

- Social Golfers Problems
- Versus bounds propagation bdd set solver using a sequential smallest element is set search strategy (18/20)
 - simple inferences (18/20): fails 1/2 - 1 (0.70), time 4/5 - 2 (1.22)
 - minimal inferences:
 - just inferring (18/20): time 1 - 3 (1.76) (surprisingly low !)
 - using inferences in implication graph only (19/20): fails 1/35 - 1 (0.29), time 1/10 - 2 (0.78)
 - adding clauses (20/20): fails 1/157 - 1 (0.10), time 1/62 - 2 (0.30)
- VSIDS search strategy (20/20)
 - versus miniSAT (16/20): fails 1/186 - 1.05 (0.10), time 1/58 - 14 (0.37)
 - versus dual model (20/20): fails 1/16 - 12 (0.44), time 1/13 - 3/2 (0.33)
 - versus sequential (20/20): fails 1/13 - 55 (1.9), time 1/10 - 5 (1.05)
What does it mean?

• Conflict directed backjumping in another guise?
• Related work
 – PalM, E-constraints: uses decision cuts not 1-UlP
 – Katsirelos and Bacchus CP2003: only forward checking, (appear to) only use FC inferences in implication graph
• finite domain propagation = clausal cut generation?
Outline

• G12 Project Overview
• Developing Constraint Solutions
• Solver Independent Modelling
 – Zinc example and features
• Mapping models to algorithms
 – Cadmium mapping tentative examples
• Efficient Solutions
 – Mercury discussion
• Concluding Remarks
G12 Progress

- Zinc
 - Language design ✓
 - Type checker ✓
 - Starting compiler

- Cadmium

- Mercury
 - building new solvers: fd, generic propagation structures, value propagation
 - integrate solvers: bdd_sets, minisat, CPLEX ✓
 - solver types ✓
Other Aspects of the G12 Project

- Logical Transformations (Zinc2Zinc): dualization, etc
- Robust solutions: insensitive to change in parameters
- Search
- Master-subproblem decompositions: Benders, Lagrangian relaxation, column generation
- Population search: evolutionary algorithms
- Solver visualization
- Default mappings
- Online optimization
- Scripting
Conclusion

- G12 is an ambitious project aiming to provide
 - Solver independent modelling
 - Model independent mappings from conceptual to design models
 - Easy experimentation of hybrid approaches
 - A good environment for exploring design models
- We have only just begun!
- The holy grail
 - Default mappings are good enough: only conceptual model
Advertisement

- Constraint Programming positions available
 - positions in Melbourne (Network Information Processing) and Sydney (Knowledge Representation and Reasoning)
- G12 postgraduates needed
 - apply to University of Melbourne or University of New South Wales
- G12 visitors welcome
 - are you interested in some of the things discussed here?
END
The imagination driving Australia’s ICT future.