
Discrete Optimization for
Multi-Agent Path Finding

Peter J. Stuckey

Pierre Le Bodic, Graeme Gange, Daniel Harabor, Edward Lam, Jiaoyang Li, Sven Koenig

Outline
• Multi Agent Path Finding (MAPF)

• Why should we be interested in this problem

• MAPF Solving Methods

• CP for MAPF: Lazy CBS

• CBS Weaknesses

• Lazy CBS

• Experiments

• MIP for MAPF: Branch and Cut and Price (BCP)

• MIP Background

• A MIP model of MAPF

• Path Planning in BCP

• Experiments

• Conclusion: What do Path Planning and Discrete Optimization have to say to each other

Multi-agent Pathfinding

• Consider an infinite time horizon with
discrete time steps

• Consider a grid called the map

• The map is divided into cells

• Cells can be passable or obstacles

Multi-agent Pathfinding

• Consider a set of agents

• Every agent needs to move from its start
cell to its end cell

Multi-agent Pathfinding

• At any time step, an agent can move north,
south, east or west, or wait at the same
cell

Multi-agent Pathfinding

• Vertex collision: two or more agents cannot
occupy a cell at any given time

Multi-agent Pathfinding

• Swap (edge) collision: two or more agents
cannot cross in opposite directions at any
given time

Multi-agent Pathfinding
• Minimise sum of individual costs (SIC) (sum of path lengths)

• alternate makespan (maximum path length) is much easier

• Assumptions:

• Centralized Solver

• Offline Task

• Optimal Solution

Why should we be interested in
MAPF

The future of road travel

• From Peter Stone's website

http://www.cs.utexas.edu/~pstone/

http://www.cs.utexas.edu/~pstone/

The present of road travel

• Uncontrolled intersection in
Ethiopia

• https://youtu.be/SQ3rxwVYs5c

Motivation
• Robotics
• Video games
• Transportation applications
• Warehouse management
• Product assembly

Multi-agent Pathfinding
• The quintessential multi-agent movement coordination problem

• Real world problems are harder but always have this underlying difficulty

• MAPF is NP-hard

• Who needs optimality?

• Problems that arise for the optimal version

• Also hit the bounded sub-optimal case

• Unbounded sub-optimal solutions can be very bad!

MAPF Solving Methods

MAPF Solving Approaches
• A* (and variations e.g. M*)

• Conflict Based Search (and variations)

• Encoding/Reduction

• SAT, ASP, CP, MIP

• Suboptimal methods (we wont talk about)

• ECBS

• Push and Swap

• Pebble rotation coordination (complete)

A* Approach
•State space: Permutations of n agents into V locations=O(Vn)
•Operators: Locations of all agent in the next time step
•Heuristic function: Sum of Individual Costs (SIC)

1

2

3

4

1

2

3

Even for this tiny example

m2 state space

Conflict Based Search
• Plan each agent individually

• repeat

• if the plans for pair of agents A, B conflict (use resource X at same time t)

• split the problem into two

• left child: A cannot use X at time t

• right child: B cannot use X at time t

• pick a subproblem to work on

• replan for the affected agent (enforcing the constraints)

• else return plans

CBS Example

1

2

3

1

2

3

• Initial Plans

•Conflict at location C
•Two subproblems: mouse {1,2} cannot use C at time 2 ⟨m1,C,2⟩ ⟨m2,C,2⟩

CBS Example

1

3

4

1

2

3

•Select first subproblem

•Replan mouse 1: avoiding C at time 2
•Solution!

2

⟨m1,C,2⟩ ⟨m2,C,2⟩

Encodings/Reductions
• MIP solution

• [makespan] multi-commodity flow model, small graphs, ≤ 50 agents (Yu and LaValle, 2013)

• SAT solution

• [SIC]: on small maps may eventually beat CBS (Surynek et al, 2016)

• CP solution

• [makespan] Variables choose a path for each agent, dynamic variable domain (J Wang et al, 2019)

• SMT solution

• [SIC]: Lazy construction of SAT model, better than CBS on tight maps, small number of agents (Surynek, 2019)

• ASP solution

• [SIC] a tighter model, uses unsatisfiable core based optimization, small graphs ≤ 16 agents (Gomez et al, 2020)

Encodings/Reductions
• Essential Problem for Naive encodings

• xapt. agent a is at position p at time t

• O(nVT) n is number of agents, V is number of vertices, T is time bound

• Too many variables, even for smallish cases

• 2 x (2m+5) x 4 at least for our trivial example

• Tight T is hard to determine, O(V3) for sum of costs

Constraint Programming for MAPF
Lazy-CBS

CP for MAPF

• CP is an integrative solving approach

• we can hide subproblems inside global constraints

• We can essentially reimplement CBS inside a CP solver

• What the advantage?

• Lazy-CBS: a CP based approach like CBS for solving MAPF

Lazy CBS

Abstract CP MODEL
% MASTER PROBLEM
enum AGENT; % set of agents
enum LOCATION; % set of locations
int: max_time; % maximum time allowed
set of int: TIME = 1..max_time;
% start and end locations
array[AGENT] of LOCATION: start;
array[AGENT] of LOCATION: end;
% cost of each agents path
array[AGENT] of var 0..infinity: c; % cost of each agents path
% which agent is permitted at location l at time t (edges omitted)
array[LOCATION, TIME] of var AGENT: permitted;
constraint forall(a in AGENT)
 (cost_of_path(a,start[a],end[a],permitted,c[a]));
solve minimize sum(c);

CP Path Propagator
• A specialized propagator to update path costs!

• cost_of_path(a,start[a],end[a],permitted,c)

• update the lower bound on c

• compute the shortest path p from start[a] to end[a] that satisfies the
permitted constraints. e.g. permitted[p[t],t] = a for all t in path p

• c ≥ length(p)

• Should update permitted to ensure no resource conflicts (ignore for now)

• EXACTLY the same algorithm as the CBS individual agent path finder

Cheating
• Wait a minute!

• Size of the model is still O(nVT)

• array[LOCATION, TIME] of var AGENT: permitted;

• Solution:

• lazily create the permitted variables as required

• Bonus

• max_time no longer required

• A permitted variable is only required when two agents use the same
location at the same time

• EXACTLY the same as the CBS strategy for adding constraints

WHY? (Reimplement CBS)

• Search is not the same!

• CBS (best first search)

• Lazy-CBS (depth first search)

• Learning is possible

• Avoiding repeated work

CBS Weaknesses

• Two independent conflicts

• purple/yellow and green/blue

The setting

Conflicts
Two agents conflict if they attempt to occupy the same location
(vertex/edge) at the same time.

Gange et al Lazy CBS 2 / 24

CBS Weaknesses

The setting

Conflicts
Two agents conflict if they attempt to occupy the same location
(vertex/edge) at the same time.

Gange et al Lazy CBS 2 / 24

Conflict-based Search

Use best-first search (A?) to explore possible conflict resolutions.

0

Gange et al Lazy CBS 4 / 24

• Two independent conflicts

• purple/yellow and green/blue

CBS Weaknesses

The setting

Conflicts
Two agents conflict if they attempt to occupy the same location
(vertex/edge) at the same time.

Gange et al Lazy CBS 2 / 24

Conflict-based Search

Use best-first search (A?) to explore possible conflict resolutions.

0

1 1

ha1, u, 1i ha2, u, 1i

Gange et al Lazy CBS 5 / 24

• Two independent conflicts

• purple/yellow and green/blue

CBS Weaknesses

The setting

Conflicts
Two agents conflict if they attempt to occupy the same location
(vertex/edge) at the same time.

Gange et al Lazy CBS 2 / 24

Conflict-based Search

Use best-first search (A?) to explore possible conflict resolutions.

0

1

2 2

1

ha1, u, 1i ha2, u, 1i

ha3, v , 1i ha4, v , 1i

Gange et al Lazy CBS 6 / 24

• Two independent conflicts

• purple/yellow and green/blue

Unexpanded node
looks promising

Still contains a3,a4
conflict

CBS has to resolve the same problem in multiple nodes

Lazy CBS Search
• CP solvers are astoundingly bad at optimizing sum objectives

• e.g. Sum of path costs ∑a ∈ agents ca

• Core-guided optimization

• Assume the best possible solution: each path cost c is the shortest

• Find a contradiction (core)

• Rewrite the objective with this knowledge

• Assume the best possible solution under the rewriting

• repeat until solution found

• Core guided optimization requires explanation of failure

Why is a path is too long

• Bound c1 ≤ 5. Explain why the path from s1 to g1 is more than 5

• Search backwards from goal at time 5

• Mark as forbidden blocked resources that are reached (pink)

• Search from start at time 0

• Skip over unmarked blocked resources (black) , i.e. treat them as available

• Collect reached marked blocked resources R (blue)

• Explanation is R → c1 > 5

Explaining that a path is too long

Here we see some key differences from ‘traditional’ CBS:
exploration proceeds depth-first, observed constraints re-
main persistent across branches of the search tree, and –
most critically – so is information we learn about cost and
feasibility of partial plans. This allows us to avoid the be-
havior we observe in Example 1: each time a subproblem
fails because of the bound on c3, conflict analysis discovers
that it is dependent only on constraints involving a3 and a4,
so does not need to explore other ways of resolving (a1, a2)
conflicts.

Explaining path costs
In order to make use of LCG solving, we must also equip
our path propagators with explanations: whenever we con-
clude ci � k because the shortest path for agent i must be
at least length k given the values of the p variables, we must
also be able to identify a subset of obstacles (constraints on
the p variables) sufficient to force the bound change. A sim-
ple strategy, which is certainly sound, is to collect the set of
obstacles, O, which are currently enforced for agent ai (as a
set of atomic constraints), i.e. O = {hp[l, t] 6= ii | p[l, t] 6=
i}.

However, this produces explanations with limited re-
usability. By modifying algorithms used for explanations on
MDDs (Gange, Stuckey, and Szymanek 2011), we can iden-
tify minimal explanations. The intuition for the algorithm
is reasonably simple. Starting from the goal location, we
sweep backwards, identifying forbidden (l, t) pairs which,
if they were reachable from the start, would complete a path
of cost less than k. Then, we sweep forward from the start,
discarding any obstacles which do not complete a forbidden
path.

An algorithm for collecting explanations is give in Fig-
ure 3. G is the input graph, s and g the start and goal loca-
tions, O the set of active obstacles for the agent, and k the
bound to be explained. EXPLAIN-LB(G, i, s, g, O, k) returns
a minimal subset of constraints O (though not necessarily
minimum-size) which require agent i to take a path of length
at least k. The algorithms make use of a heuristic H(l1, l2)
which returns a lower bound on the distance from location
l1 to location l2. This can be precomputed for the map G
for MAPF problems, or a simple Manhattan distance can be
used.

Example 6 Recall the problem illustrated in Figure 1. As-
sume a1 has been forbidden entering all of {u, v, w, x} at its
optimal time, blocking all paths of length 5.

Figure 4 illustrates the computation of EXPLAIN-LB.
During MARK-FORBIDDEN, we explore backwards from g1;
in this case, {v, w, x} all admit paths to g1 which do not
pass through any other obstacles. u is not marked as forbid-
den, because any sufficiently short path through u must later
pass through either v or w.

Then, COLLECT-SUFFICIENT explores forward from s1,
collecting a minimal set of obstacles. Here u and v are
both reachable and forbidden, so must remain part of
the explanation. x is never reached during the COLLECT-
SUFFICIENT, because all sufficiently short paths through x

1: function EXPLAIN-LB(G, i, s, g, O, k)
2: F � MARK-FORBIDDEN(G, i, s, g, O, k)
3: E � COLLECT-SUFFICIENT(G, i, s, g, O, k, F)
4: return E
5: function MARK-FORBIDDEN(G, i, s, g, O, k)
6: F � �
7: Q � {(g, k � 1)}
8: while Q 6= � do
9: (l, t) � POP(Q)

10: if hp[l, t] 6= ii 2 O then
11: F � F � {hp[l, t] 6= ii}
12: else
13: for l� 2 {l} � ADJACENT(G, l) do
14: if H(s, l) t � 1 � (l�, t � 1) /2 Q then
15: Q � Q � {(l�, t � 1)}
16: return F
17: function COLLECT-SUFFICIENT(G, i, s, g, O, k, F)
18: E � �
19: Q � {(s, 0)}
20: while Q 6= � do
21: (l, t) � POP(Q)
22: if hp[l, t] 6= ii 2 F then
23: E � E � {hp[l, t] 6= ii}
24: else
25: for l� 2 {l} � ADJACENT(G, l) do
26: tE � t + 1 + H(l�, g)
27: if tE < k � (l�, t + 1) /2 Q then
28: Q � Q � {(l�, t + 1)}

Figure 3: Explaining lower bound changes for a single
agent.

s1 u v

w x

g1

s1

g1

(a) MARK-FORBIDDEN (b) COLLECT-SUFFICIENT

Figure 4: Explaining ci � 6. Filled nodes are obsta-
cles, red nodes are explored by MARK-FORBIDDEN, blue
nodes explored by COLLECT-SUFFICIENT. Dashed nodes
were pruned due to H .

are eliminated by including u and v. We thus return the ex-
planation p[v, 2] 6= a1 � p[w, 2] 6= a1 ! c1 � 6.

Best-first search with unsatisfiable cores
Core-guided search makes assumptions that a set of literals
are true, and then either finds a solution where all literals
are true or returns a subset of the assumptions which cannot
all be simultaneously true. In our case, the assumptions are
about the path length of the agents as well as some artificial
terms added to implement OLL core-guided search (Andres
et al. 2012). The algorithm is shown in Figure 5. Given a
core of size m we first add a nogood defining the core to the
solver. We introduce a variable t taking values in the range

Explanation
Bound ci l is not possible, e.g. shortest path is l + 1
Search backwards from goal at time l

Mark as forbidden blocked resources that are reachable (red)
Search from start at time 0
Skip over unmarked blocked resources (Treat them as available)
Collect marked blocked resources R (blue)
Explanation: R ! ci � l + 1.

Gange et al Lazy CBS 11 / 24

Lazy CBS in Action

• Initial Problem

• Each Agent constrained to have path cost no greater than shortest path

Lazy CBS

u

c1 : [0, 9]
c2 : [0, 9]

permitted[u,5] 2 {1, 2}

Gange et al Lazy CBS 12 / 24

Lazy CBS in Action

• Path propagator for agent 1 discovers lower bound on path length

• Generates example path

Lazy CBS

u

c1 : [9, 9]
c2 : [0, 9]

permitted[u,5] 2 {1, 2}

Gange et al Lazy CBS 12 / 24

Lazy CBS in Action

• Similarly for agent 2

• Conflict discovered

Lazy CBS

u

c1 : [0, 9]
c2 : [0, 9]

permitted[u,5] 2 {1, 2}

Gange et al Lazy CBS 12 / 24

Lazy CBS

u

c1 : [9, 9]
c2 : [9, 9]

permitted[u,5] 2 {1, 2}

Gange et al Lazy CBS 12 / 24

Lazy CBS in Action

• Introduce permitted variable for overloaded resource

Lazy CBS

u

c1 : [9, 9]
c2 : [9, 9]

permitted[u,5] 2 {1, 2}

Gange et al Lazy CBS 12 / 24

Lazy CBS in Action

• On left branch, discover conflict, and derive explanation

Lazy CBS

5

5
c1 : [9, 9]

c2 : [10, 9]
permitted[u,5] = 1

hpermitted[u, 5] 6= 2i ! hc2 � 10i

hpermitted[u, 5] 6= 1i ! hc1 � 10i
hc1 � 10i _ hc2 � 10i

The clauses we learned are independent of any other agents!

Gange et al Lazy CBS 13 / 24

Lazy CBS in Action
Lazy CBS

5

5

c1 : [10, 9]
c2 : [9, 9]

permitted[u,5] = 2

hpermitted[u, 5] 6= 2i ! hc2 � 10i
hpermitted[u, 5] 6= 1i ! hc1 � 10i

hc1 � 10i _ hc2 � 10i

The clauses we learned are independent of any other agents!

Gange et al Lazy CBS 13 / 24

• Right branch, discover conflict, add explanation

Lazy CBS in Action

• Learned nogood is independent of other agents

Lazy CBS

5 5

c1 : [10, 9]
c2 : [9, 9]

permitted[u,5] = 2

hpermitted[u, 5] 6= 2i ! hc2 � 10i
hpermitted[u, 5] 6= 1i ! hc1 � 10i

hc1 � 10i _ hc2 � 10i

The clauses we learned are independent of any other agents!

Gange et al Lazy CBS 13 / 24

Lazy CBS in Action
• Lower Bound: 44

• Assumptions

• c1 ≤ 11

• c2 ≤ 11

• c3 ≤ 11

• c4 ≤ 11

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Lazy CBS in Action
• Lower Bound: 44

• Assumptions

• c1 ≤ 11

• c2 ≤ 11

• c3 ≤ 11

• c4 ≤ 11

• Nogood ⟨ c1 ≥ 12 ⟩ ⋁ ⟨ c2 ≥ 12 ⟩

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Lazy CBS in Action
• Lower Bound: 45

• Assumptions

• c1 ≤ 12

• c2 ≤ 12

• c3 ≤ 11

• c4 ≤ 11

• z1 ≤ 1

• z1 = ⟨ c1 ≥ 12 ⟩ + ⟨ c2 ≥ 12 ⟩

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Lazy CBS in Action
• Lower Bound: 45

• Assumptions

• c1 ≤ 12

• c2 ≤ 12

• c3 ≤ 11

• c4 ≤ 11

• z1 ≤ 1

• ⟨ c3 ≥ 12 ⟩ ⋁ ⟨ c4 ≥ 12 ⟩

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Core-guided optimisation

LB = 45
c1 12
c2 12
c3 11
c4 11

z1 1

z2 1

z1 = hc1 � 12i + hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Lazy CBS in Action
• Lower Bound: 46

• Assumptions

• c1 ≤ 12

• c2 ≤ 12

• c3 ≤ 12

• c4 ≤ 12

• z1 ≤ 1

• z2 ≤ 1

• z2 = ⟨ c3 ≥ 12 ⟩ + ⟨ c4 ≥ 12 ⟩

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Core-guided optimisation

LB = 45
c1 12
c2 12
c3 11
c4 11

z1 1

z2 1

z1 = hc1 � 12i + hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Lazy CBS in Action
• Lower Bound: 46

• Assumptions

• c1 ≤ 12

• c2 ≤ 12

• c3 ≤ 12

• c4 ≤ 12

• z1 ≤ 1

• z2 ≤ 1

• Solution Found: Optimal

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Core-guided optimisation

LB = 45
c1 12
c2 12
c3 11
c4 11

z1 1

z2 1

z1 = hc1 � 12i + hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Independence Detection
• Independence Detection

• split agents into sets that never interact

• solve MAPF problems separately

• Problem

• as number of agents grow

• nothing is independent

Core-guided optimisation

LB = 44
c1 11
c2 11
c3 11
c4 11

z1 1
z2 1

hc1 � 12i _ hc2 � 12i

hc3 � 12i _ hc4 � 12i

Gange et al Lazy CBS 15 / 24

Comparison to CBS
• Similar to Iterative Deepening CBS (IJCAI 2020)

• Each solve is essentially exploring a whole CBS tree

• Branches on permitted[l,t] are analogous to CBS branches

• COST more high-level nodes explored

• Lazy introduction of permitted[l,t]

• In a leaf node (all existing permitted[l,t] fixed)

• New conflict between two agents at location l time t

• Add a new permitted[l,t] variable, branch on it

• Path propagators = low level search in CBS

• NEW: nogoods are universal

• prevent repeated work across subtrees

• prevent repeated work in resolves

Lazy CBS Experiments

Lazy-CBS ExperimentsResults: 20 x 20 grids, 10% obstacles

50 instances per size, 5 minute timeout

Gange et al Lazy CBS 18 / 24

Lazy-CBS ExperimentsResults: 20 x 20 grids, 10% obstacles

50 instances per size, 5 minute timeout

Gange et al Lazy CBS 18 / 24

Results: lak303d

50 instances per size, 5 minute timeout

Gange et al Lazy CBS 19 / 24

Lazy-CBS ExperimentsResults: 20 x 20 grids, 10% obstacles

50 instances per size, 5 minute timeout

Gange et al Lazy CBS 18 / 24

Results: lak303d

50 instances per size, 5 minute timeout

Gange et al Lazy CBS 19 / 24

Bonus results: Rectangle symmetry breaking!

30 40 50 60 70 80 90 100
number of agents

10

20

30

40

50

in
st

an
ce

s
co

m
pl

et
ed

lak503d

CBS

CBSH

ECBS(1.01)

Lazy CBS

Lazy CBS+R

Gange et al Lazy CBS 22 / 24

Mixed Integer Programming
Approach to MAPF

BCP

Branch and Cut and Price

• A very complicated way of solving a Mixed Integer Program

• Lazily constructing the linear model during solving

• Guaranteed to find optimal solutions

• Allows us to avoid the problem of too big an encoding.

Branch and Cut and Price
(roughly)

BCP (roughly)
• Linear Program

• a set of linear constraints with a linear objective

• solved by the SIMPLEX algorithm (for our purposes)

• Integer Program

• (some) variables must take integer variables

• solved by Branch and Bound

• Branch and Cut and Price

• Generalisation of Branch-and-Bound

• Start with small matrix and progressively add rows and columns

Simple Example
x3

x1x2

Linear Programming
x3

x1x2

Linear Programming
x3

x1x2

Linear Programming
x3

x1x2

Branch-and-cut-and-price

x2

Branch-and-cut-and-price

x2

Branch-and-cut-and-price

x2

Branch-and-cut-and-price

x1x2

Branch-and-cut-and-price

x1x2

Branch-and-cut-and-price

x3

x1x2

Branch-and-cut-and-price

BCP Algorithm for MAPF

BCP Algorithm for MAPF

• Master problem: select good paths for the agents using LP relaxation

• Pricing problem: find better paths for each agent using A*

• Separation problems: check for collisions in the selected paths using
complete enumeration

Problem Graph
• Define a time-expanded graph:

• A vertex v = (c,t) is a cell-time pair

• An edge e = (v1,v2) = ((c1,t),(c2,t+1)) is a pair of vertices such that:

• Cell in second vertex is adjacent cell or same cell (wait)

• Time in second vertex = time in first vertex + 1

• A path is a sequence of vertices such that adjacent vertices are edges

Master Problem
• For each agent a, assume a set Pa of all possible

paths

• MIP master problem:

• Variable represents proportion of
selecting path p

• Path selection constraints: for each agent a,
select one path from Pa

• Vertex collision constraints: each vertex
used by at most one agent

• Edge collision constraints: each edge and
its reverse used by at most one agent

P1

P2

P3

λp ∈ {0,1}

Master Problem
Variable representing

proportion of

selecting path p

Cost of path p

Minimise total cost

Every agent must use

(at least) one path Constant = 1 if path

p uses vertex v

Constant = 1 if path

p uses edge e = (i,j)

Constant = 1 if path

p uses edge e’ = (j,i)

Vertex v used at most once

across all selected paths

Edge e and its reverse used at

most once across all selected paths

Master Problem

• Enough to work with a finite subset

Why use this long path…

when this short path exists?

(provided it doesn’t conflict)

P′�a ⊂ Pa

Pa

Restricted Master Problem

Minimise total cost

Every agent must use

(at least) one path

′�

′�

′�

Separating Vertex Conflicts

• Project to network flow formulation:

• Create constraint if

Separating Edge Conflicts

• Project to network flow formulation:

• Create constraint if

Pricing Problem
• Use existing A* code with modified objective function: 

 
 
 

Variable = 1 if path

p uses vertex v

Variable = 1 if path

p uses edge e = (i,j)

Variable = 1 if path

p uses edge e’ = (j,i)

Value of dual
variable for set

cover constraint

Value of dual variable
for vertex collision

constraint
Value of dual

variable for edge
collision constraint

Original cost
of path p

Reduced cost
of path p

• Path p may improve the master problem LP solution if < 0 
(necessary but not sufficient)

Branching on Vertex
• Solutions have fractional value for ℷp

• Require branching to ensure they are integer {0,1}

• Select a vertex v that is fractionally used by an agent a

• Agent a must:

• visit v in one child. (set ℷp = 0 for paths p where it does not visit)

• not visit v in other child. (set ℷp = 0 for paths p where it does visit)

BCP
• BCP iteratively calls three subproblems:

• Restricted Master problem: select good paths using LP relaxation

• Column (variable) represents the proportion of a path selected

• Row (constraint) represents resolving a conflict

• Pricing problem: find better paths for each agent using A*

• Separation problems: check for collisions in the selected paths using complete enumeration

• Master problem selects fractional proportion of a path

• Resolve fractionality by branching on agent-vertex: agent must and must not use vertex
(disjoint branching)

BCP

• Implemented in BCP-B algorithm – basic branch-and-cut-and-price

• Now make some improvements:

• 2 classes of redundant constraints

• Hierarchical branching rule

Rectangle Symmetry

a1a2

a1

a2

a1

a2

a1
a2

a1

a2

a1

a2

a1

a2

a1
a2

Rectangle Conflicts
a1

a2
0 1

2 3 4

0

1

3

4

2

Fractional Corridor Conflicts

a2a1

a2 a2
a1 a1 a2 a1

a1 a2

1 2

3 4

Corridor Conflicts

a1 a2l1 l2

Branching on Path Length
Agent 1 Selected Paths

(c1,c2,c3,c4,c5) – cost 5, proportion 0.5

(c1,c2,c3,c3,c4,c5) – cost 6, proportion 0.5

Agent 1 cost = 0.5 × 5 + 0.5 × 6 = 5.5

Agent 1 Selected Paths
(c1,c2,c3,c4,c5) – cost 5, proportion 1

(c1,c2,c3,c3,c4,c5) – cost 6, proportion 0

Agent 1 cost ≤ 5

Agent 1 path length ≤ 5 Agent 1 path length ≥ 6

Agent 1 Selected Paths
(c1,c2,c3,c4,c5) – cost 5, proportion 0.0

(c1,c2,c3,c3,c4,c5) – cost 6, proportion 1

Agent 1 cost ≥ 6

BCP
• BCP-B

• basic branch and cut and price

• vertex and edge separation

• pricing problem solved by A*

• branching on agent uses vertex (location,time) or does not

• BCB

• add rectangle conflict cuts

• add corridor conflict cuts

• first branch on path length of agents

Experiments

Set-up
• Test 4 algorithms on Intel Xeon E5-2660 V3 CPU at 2.6 GHz with 5 min time limit:

• BCP

• BCP-B

• CBSH

• CBSH-RM – state-of-the-art as of AAAI19 (Jan 2019)

• 1350 standard benchmarks on 4 maps: 
 
 
 
 
 

Results

• Close all but 15 instances

• Improved to 6 instances in new unpublished work

Objective Bound
lak503dmap-70agents-11

O
bj

ec
tiv

e
Va

lu
e

7950

7962.5

7975

7987.5

8000

Time (s)
0 15 30 45 60 75 90

Lower Bound Upper Bound

Comparison to CBS
Pros

• Reasons across all conflicts and agents
simultaneously

• Immediately recalls all paths generated anywhere
in high-level search tree

• Extendable with other types of conflicts

• Exploits advances in MIP

• Primal heuristics!

• Anytime

• Tight lower bound even if no feasible solution
(upper bound) is found

Cons

• Difficult to understand

• Difficult to implement

• 2000 lines of code for A*

• 12000 lines of code for separators and glue
to A*

• ??? million lines of code for MIP solver (SCIP)

• ??? million lines of code for LP solver
(CPLEX)

Conclusions

Conclusions
• Straight CP solution to MAPF doesnt scale

• Lazy CBS

• Benders decomposition (relaxing permitted)

• Lazy variable addition

• Core-guided search

• Straight MIP solution to MAPF doesnt scale

• BCP

• Dantzig-Wolfe decomposition

• Specialized Column generator (low level path finding with arbitrary costs)

• Specialised Cuts (rectangle, corridor, ...)

Discrete Optimization (DO)

• If your problem in NP-hard consider DO techniques

• Straight out of the box may not work

• But there are lots of DO decomposition approaches

• Benders, Dantzig-Wolfe, and Lagrangian Decomposition (MIP)

• Logic-Based Benders, Subproblem encapsulation (CP)

MAPF Arms Race
• Methods from path planning (PP) and discrete optimization (DO) crossover

• PP to DO:

• rectangle symmetries

• low-level search

• DO to PP

• corridor symmetries

• disjoint splitting

• "depth-first" search

"Better than A*"
• Core-guided search versus A*

• Use Core-guided search as a plug in replacement for A*

• Features required

• Combinatorial state space

• Poor heuristics

• "repeated subproblems"

The End

