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Jorge Agustín Nicolás Ruiz de Santayana y Borrás, 
“Nunca me hablas de estas tema otra vez” 

George Santayana, 1863-1952 
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How much of CP search is repeated? 
•  4 colour the graph below 

 
•  Inorder labelling: 462672 failures 

–  With learning: 18 failures 
•  Value symmetries removed: 19728 failures 

–  With learning: 19 failures 
•  Reverse labelling: 24 failures 

–  With learning: 18 failures 
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Resource Constrained Project Scheduling (RCPSP)
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Schedule tasks satisfying precedences and cumulative resource usage

Benchmarks at PSPlib http://129.187.106.231/psplib/

Previous state of the art:
specific task modelling, specialized cumulative propagators
highly complex search strategy (author 10+ years on these problems)

Our solution
cumulative propagation with explanation
hybrid activity based search
⇡ 10⇥ faster, closed 71 open instances

Peter J. Stuckey Lazy Clause Generation

Universidad Complutense de Madrid November 2012 60

/ 94

How much of CP search is repeated? 
•  Resource Constrained Project Scheduling 

–  BL instance (20 tasks) 

•  Input order: 934,535 failures 
–  With learning: 931 failures 

•  Smallest start time order: 296,567 failures 
–  With learning: 551 failures 

•  Activity-based search: > 2,000,000 failures 
–  With learning: 1144 failures 
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How much of CP search is repeated? 
•  Short answer: a lot  

•  Methods to alleviate the problem 
–  Symmetry/dominance handling 
–  Restarts + dynamic search strategies 
–  Learning/Caching 

6 
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation basics 
–  Explaining propagators 
–  Conflict resolution 

•  LCG successes 
–  Scheduling, Packing 

•  Improving LCG 
–  How modern LCG solvers work 

•  Search is Dead 
•  Concluding remarks 
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Propagation Solving (CP) 
•  Complete solver for atomic constraints 

–  x = d, x ≠ d, x ≥ d, x ≤ d 
–  Domain D(x) records the result of solving (!) 

•  Propagators infer new atomic constraints from 
old ones 
–  x2 ≤ x5  infers from x2 ≥ 2 that x5 ≥ 2  
–  x1+x2+x3+x4 ≤ 9 infers from x1 ≥ 1∧x2 ≥ 2∧x3 ≥ 3 that  

x4 ≤ 3 
•  Inference is interleaved with search 

–  Try adding c if that fails add not c 

•  Optimization is repeated solving 
–  Find solution obj = k resolve with obj < k 

9 
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Finite Domain Propagation Ex. 

array[1..5] of var 1..4: x; 
constraint alldifferent([x[1],x[2],x[3],x[4]); 
constraint x[2] <= x[5]; 
constraint x[1] + x[2] + x[3] + x[4] <= 9; 

 
x1 
x2 
x3 
x4 
x5 

x1=1 
1 
1..4 
1..4 
1..4 
1..4 

alldiff 
1 
2..4 
2..4 
2..4 
1..4 

x2 ≤ x5 
1 
2..4 
2..4 
2..4 
2..4 

x5≤2 
1 
2..4 
2..4 
2..4 
2 

x2 ≤ x5 
1 
2 
2..4 
2..4 
2 

alldiff 
1 
2 
3..4 
3..4 
2 

sum≤9 
1 
2 
3 
3 
2 

alldiff 
1 
2 
✖ 
✖ 
2 

x5>2 
1 
2..4 
2..4 
2..4 
3..4 
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FD propagation 
•  Strengths 

–  High level modelling 
–  Specialized global propagators capture substructure 

•  and all work together 

–  Programmable search 

•  Weaknesses 
–  Weak autonomous search (improved recently) 
–  Optimization by repeated satisfaction 
–  Small models can be intractable 
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation basics 
–  Explaining propagators 
–  Conflict resolution 

•  LCG successes 
–  Scheduling, Packing 

•  Improving LCG 
–  How modern LCG solvers work 

•  Search is Dead 
•  Concluding remarks 
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Lazy Clause Generation (LCG) 
•  A hybrid SAT and CP solving approach 
•  Add explanation and nogood learning to a  
   propagation based solver 
•  Key change 

–  Modify propagators to explain their inferences as 
clauses 

–  Propagate these clauses to build up an implication 
graph 

–  Use SAT conflict resolution on the implication graph 

 

 
13 
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LCG in a Nutshell 
•  Integer variable x in l..u encoded as Booleans 

–  [x ≤ d],  d in l..u-1 
–  [x = d],  d in l..u 

•  Dual representation of domain D(x) 
•  Restrict to atomic changes in domain (literals) 

–  x ≤ d  (itself) 
–  x ≥ d     ! [x ≤ d-1]  use [x ≥ d] as shorthand 
–  x = d  (itself) 
–  x ≠ d  ! [x = d]     use [x ≠ d] as shorthand 

•  Clauses DOM to model relationship of Booleans 
–  [x ≤ d] [x ≤ d+1], d in l..u-2 
–  [x = d]  [x ≤ d] ∧ ! [x ≤ d-1], d in l+1..u-1  
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LCG in a Nutshell 
•  Propagation is clause generation 

–  e.g.    [x ≤ 2]  and x ≥ y means that   [y ≤ 2] 
–  clause [x ≤ 2] [y ≤ 2] 

•  Consider  
–  alldifferent([x[1],x[2],x[3],x[4]); 

•  Setting x1 = 1 we generate new inferences 
–  x2 ≠ 1, x3 ≠ 1, x4 ≠ 1   

•  Add clauses  
–  [x1 = 1][x2 ≠ 1], [x1 = 1][x3 ≠ 1], [x1 = 1][x4 ≠ 1] 
–  i.e. ![x1 = 1]∨![x2 = 1], … 

•  Propagate these new clauses  
15 
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Lazy Clause Generation Ex. 

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 x5≤2 x5=2 

x2 ≤2 x2=2 

x3≠2 

x4≠2 

x3≥3 

x4≥3 

x3≤3 

x4≤3 

x3=3 

x4=3 
fail 

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff 
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1UIP Nogood Creation 

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 x5≤2 x5=2 

x2 ≤2 x2=2 

x3≠2 

x4≠2 

x3≥3 

x4≥3 

x3≤3 

x4≤3 

x3=3 

x4=3 

fail 

x3=3∧x4=3 false 

x4=3 

x3=3 

x4≥3∧ x4≤3∧ x3=3 false 

x4≤3 

{x3≥3,x4≥3,x3≤3,x4≤3} false 

x3≤3 

{x2  ≥2,x3≥3,x4≥3,x3≤3}  false 

x3≥3 

x2  ≥2 

x4≥3 

{x2  ≥2, x3≥3, x4≥3}  false {x2  ≥2,x4 ≥2,x4≠2,x3≥3}  false 

x4≠2 x4 ≥2 

{x2 ≥2,x3 ≥2,x4 ≥2,x3≠2,x4≠2}  false 

x3≠2 x3 ≥2 

{x2  ≥2,x3 ≥2,x4 ≥2,x2=2,x3≠2}  false 

x2=2 

{x2 ≥2, x3 ≥2, x4 ≥2, x2= 2}  false 
{[x2 ≤1],[x3 ≤1], [x4 ≤1],¬[x2 =2]}  

1 UIP Nogood 

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff 
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Backjumping 

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2}  false 

alldiff x2 ≤ x5 

x2 ≠2 x2  ≥3 

x2 ≤ x5 

x5 ≥3 

•  Backtrack to second 
last level in nogood 

 •  Nogood will 
propagate 

 •  Note stronger domain 
than usual 
backtracking 
•  D(x2) = {3..4} 
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What’s Really Happening 
•  CP model = high level “Boolean” model 
•  Clausal representation of the Boolean model is 

generated “as we go”  
•  All generated clauses are redundant and can be 

removed at any time  
•  We can control the size of the active “Boolean” 

model 

19 
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Comparing to SAT 
•  For some models we can generate all possible 

explanation clauses before commencement 
–  usually this is too big 

•  Open Shop Scheduling (tai benchmark suite) 
–  averages 

20 

Time Solve only Fails Max Clauses 

SAT 318 89 3597 13.17 

LCG 62 6651 1.0 
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Lazy Clause Generation 
•  Strengths 

–  High level modelling  
–  Learning avoids repeating the same subsearch  
–  Strong autonomous search  
–  Programmable search  
–  Specialized global propagators (but requires work) 

•  Weaknesses 
–  Optimization by repeated satisfaction search  
–  Overhead compared to FD when nogoods are 

useless 

21 
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LCG for CSPs 
•  If you are solving extensional CSPs 

–  LCG ≅ SAT 

•  Hard to beat SAT on non-numeric CSPs 
•  Positive table of n tuples of length k 

–  k × n binary clauses 
–  1 n-ary clause 
–  (for domain propagation) k × n literals in reverse 

clauses 
–  Actually we can do better with MDDs 

•  Negative table of n tuples of length k 
–  n k-ary clauses 

22 
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation basics 
–  Explaining propagators 
–  Conflict resolution 

•  LCG successes 
–  Scheduling, Packing 

•  Improving LCG 
–  How modern LCG solvers work 

•  Search is Dead 
•  Concluding remarks 
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LCG Successes 
•  Scheduling 

–  Resource Constrained Project Scheduling Problems 
(RCPSP) 

•  (probably) the most studied scheduling problems 
•  LCG closed 71 open problems  
•  Solves more problems in 18s then previous SOTA in 1800s 

–  RCPSP/Max (more complex precedence constraints) 
•  LCG closed 578 open instances of 631 
•  LCG recreates or betters all best known solutions by any 

method on 2340 instances except 3 

–  RCPSP/DC (discounted cashflow) 
•  Always finds solution on 19440 instances, optimal in all but 

152 (versus 832 in previous SOTA) 
•  LCG is the SOTA complete method for this problem 
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LCG Successes 
•  Real World Application 

–  Carpet Cutting 
•  Complex packing problem 
•  Cut carpet pieces from a roll to minimize length 
•  Data from deployed solution 

–  Lazy Clause Generation Solution 
•  First approach to find and prove optimal solutions 
•  Faster than the current deployed solution 
•  Reduces waste by 35% 
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LCG Successes 
•  MiniZinc Challenge 

–  comparing CP solvers on a series of challenging 
problems 

–  Competitors 
•  CP solvers such as Gecode, Eclipse, SICstus Prolog 
•  MIP solvers SCIP, CPLEX, Gurobi (encoding by us) 
•  Decompositions to SMT and SAT solvers 

–  LCG solvers (from our group) were 
•  First (Chuffed) and Second (CPX) in all categories in 2011 and 

2012 
•  First (Chuffed) in all categories in 2010 

–  Illustrates that the approach is strongly beneficial on a 
wide range of problems  
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation basics 
–  Explaining propagators 
–  Conflict resolution 

•  LCG successes 
–  Scheduling, Packing 

•  Improving LCG 
–  How modern LCG solvers work 

•  Search is Dead 
•  Concluding remarks 
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Improving Lazy Clause Generation 
•  Don’t Save Explanations 
•  Lazy Literal Generation 
•  Lazy (Backwards) Explanation 
•  The Globality of Explanation 
•  Explaining Global Constraints  
•  Search for LCG 
•  Symmetries and LCG 

28 
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Don’t Save Explanations 
•  Explanation clauses are only needed for conflict 

resolution 
–  Don’t record them in the SAT solver 
–  Just record them in the implication graph 
–  Throw them away on backjumping 

•  Advantages 
–  Less memory required 
–  Faster 

•  Disadvantages 
–  Memoizing complex explanations 
–  Reprioritizing propagation to follow earlier paths 
–  All our scheduling results save explanations 

29 
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Lazy Literal Generation 
•  Generate Boolean literals representing integer 

variables on demand 
•  E.g.   

–  decision x1 = 1 generates literal [x1 = 1]  
–  alldiff generates [x2 ≥ 2] (equivalently ![x2 ≠ 1] ) 

•  Integer domain maintains relationship of literals 
–  DOM clauses disappear 

•  A bit tricky to implement efficiently 

30 
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Lazy Literal Generation 
•  For constraint problems over large domains lazy 

literal generation is crucial (MiniZinc Chall. 2012) 

31 

amaze fastfood filters league mspsp nonogram patt-set 
Initial 8690 1043k 8204 341k 13534 448k 19916 
Root 6409 729k 6944 211k 9779 364k 19795 
Created 2214 9831 1310 967 6832 262k 15490 
Percent 34% 1.3% 19% 0.45% 70% 72% 78% 

proj-plan radiation shipshed solbat still-life tpp 
Initial 18720 145k 2071k 12144 18947 19335 
Root 18478 43144 2071k 9326 12737 18976 
Created 5489 1993 12943 10398 3666 9232 
Percent 30% 4.6% 0.62% 111% 29% 49% 
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Lazy Explanation 
•  Explanations only needed for nogood learning 

–  Forward: record propagator causing atomic constraint 
–  Backward: ask propagator to explain the constraint 

•  Standard for SMT and SAT extensions 
•  Only create needed explanations 
•  Scope for: 

–  Explaining a more general failure than occurred 
–  Making use of the current nogood in choosing an 

explanation 
•  Interacts well with lazy literal generation 

32 
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(Original) LCG propagation example 
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c 
•  Constraints:  

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,  
–  4x + 10y + 5z ≤ 71 (lin) 

•  Execution 

33 

[x ≥ 5] 

[y ≤ 5] 

b 

[y ≠ 3] 

c 

[y ≥ 3] [y ≥ 4] 

[x ≥ 6] 

[z ≥ 4] false 

lin b → y ≠ 3 c → y ≥ 3 

c → x ≥ 6 

lin z ≥ y D(y) 

1UIP nogood: c ∧ [y ≠ 3]  false     or      [y ≠ 3]  !c  
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LCG propagation example 
•  Execution 

34 

[x ≥ 5] 

[y ≤ 5] 

b 

[y ≠ 3] 

c 

[y ≥ 3] 

[x ≥ 6] 

[z ≥ 4] false 

lin b → y ≠ 3 c → y ≥ 3 

c → x ≥ 6 

lin z ≥ y 

Explanation: x ≥ 6 ∧y ≥ 4 ∧z ≥ 4 ∧4x + 10y + 5z ≤ 71  false    

Lifted Explanation: x ≥ 5 ∧y ≥ 4 ∧z ≥ 3 ∧4x + 10y + 5z ≤ 71  false    

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[z ≥ 3]  false    

Explanation: y ≥ 4∧z ≥ y z ≥ 4 

Lifted Explanation: y ≥ 3∧z ≥ y z ≥ 3 

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[y ≥ 3]  false    

Absorbtion 
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LCG propagation example 
•  Execution 
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[x ≥ 5] 

[y ≤ 5] 

b 

[y ≠ 3] 

c 

[y ≥ 3] 

[x ≥ 6] 

[z ≥ 4] false 

lin b → y ≠ 3 c → y ≥ 3 

c → x ≥ 6 

lin z ≥ y 

Nogood: [x ≥ 5] ∧[y ≥ 4]  false    

1UIP Nogood: [x ≥ 5] ∧[y ≥ 4]  false    

1UIP Nogood: [x ≥ 5] [y ≤ 3] 
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LCG propagation example 
•  Backjump 

36 

[x ≥ 5] 

[y ≤ 5] 

lin 

Nogood: [x ≥ 5] ∧[y ≥ 4]  false    

[y ≤ 3] 

x ≥ 5 y ≤ 3 
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Backwards versus Forwards 

37 

14 Thibaut Feydy, Andreas Schutt, and Peter Stuckey

Table 2. Comparing average runtime, average number of failures (with number of
timeouts as superscript), and average learnt clause size for di↵erent explanation ap-
proaches.

Class n forward backward clausal

time fails len time fails len time fails len
amaze (5) 113 272546 16.8 96 267012 18.2 455 242110 22.2
fast-food (4) 345 241839 44.3 264 214918 45.6 >2617 580272 159.8
filters (4) 613 883948 11.2 625 906724 20.7 >901 73311 10.0
league (2) 11 74483 28.3 10 72737 31.1 14 81679 34.9
mspsp (6) 23 55021 24.3 29 62364 53.2 44 70511 24.6
nonogram (4) 1965 96461 141.5 2124 90672 168.2 >3126 328052 144.8
pattern-set (2) 451 81397 180.4 400 82410 180.8 >1016 39131 3505.3
proj-plan (4) 83 74531 42.1 78 82269 63.4 150 89860 46.2
radiation (2) 1.5 7407 17.3 1.3 7566 22.5 1.5 7382 19.9
ship-sched (5) 43 44897 16.0 37 41353 18.2 273 71120 23.2
solbat (5) 696 337692 201.2 679 357009 204.0 >1528 1114771 239.1
still-life (5) 735 745949 21.9 678 768155 30.2 >2640 2696642 23.7
tpp (4) 613 8486 27.4 126 8490 30.1 >902 83301 12.7

on each suite. In addition it shows the arithmetic mean of number of failures
number of literals generated, and average clause length for each solver, on the
instances that did not timeout. The number of timeouts (if any is shown as a
superscript on fails).

First we should note that there is no universal winning explanation strat-
egy, while backward is generally the best there are a number of problems were
forward performs better. Because it performs less explanation backward is faster
per fail, and even though it performs more search is often faster than forward.
clausal is not really competitive. Because backward generates more varied atomic
constraints its explanations clause lengths are longer, similarly clausal generates
more literals for explanations. Interestingly, Gent et al [4] compare forward and
backward explanation and find backward much better. This is possibly because
their system does not include bounds atomic constraints, and hence a (single)
bounds propagation creates many disequality propagations, which penalizes for-
ward explanation more.

Table 3 illustrates the importance of lazily generating literals. It shows for
each class the average number of Boolean variables that can be defined to rep-
resent all atomic constraints for all variables in the model both in the initial

model, and at the root node after it reaches its first fixpoint. It then shows the
average number of Boolean variables generated during the entire search when us-
ing forward, backward or clausal explanation. The results show that for problems
with large domains (e.g. fast-food and ship-sched) only a tiny proportion of
the possible literals are created. Very few problems (e.g mspsp and pattern-set)
generate more than half the possible literals. Comparing the explanation meth-
ods: clausal unsurprisingly generates more literals than the others, but still not
very many on the large domain examples. backward generates more literals than
forward since its explanations are not so restricted.
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The Globality of Explanation 
•  Nogoods extract global information from the 

problem 
•  Can overcome weaknesses of local propagators 
•  Example:  

–  D(x1)=D(x2)={0..100000}, x2 ≥x1∧(b⇔x1 >x2) 
–  Set b = true and 200000 propagations later failure. 

•  A global difference logic propagator immediately 
sets b = false! 

•  Lazy clause generation learns b = false after 
200000 propagations  
–  But never tries it again! 

38 
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Globals by Decomposition 
•  Globals defined by decomposition  

–  Don’t require implementation 
–  Automatically incremental  
–  Allow partial state relationships to be “learned”  
–  Much more attractive with lazy clause generation 

•  When propagation is not hampered, and size 
does not blowout:  
–  can be good enough! 
–  e.g. Resource constrained project scheduling! 

39 
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Explaining Globals 
•  Globals are better than decompositions 

–  More efficient  
–  Stronger propagation 

•  Instrument global constraint to also explain its 
propagations  
–  regular: each explanation as expensive as 

propagation  
–  cumulative: choices in how to explain 

•  Implementation complexity 
•  Can’t learn partial state 
•  More efficient + stronger propagation + control of 

explanation 
40 
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Explaining Globals Piecewise 
•  Splitting explanations makes them more 

reusable: e.g. cumulative constraint propagation 

41 

est

limit

timetable

old est

limit

timetable

new est
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Explaining Globals Piecewise 
•  Break it into parts 

42 

est

limit

timetable

est1

est

limit

timetable

est1 est2

est

limit

timetable

est1 est2
new est

s ≥ est ∧ red1 s ≥ est1 

s ≥ est1 ∧ red2 s ≥ est2 

s ≥ est2 ∧ red3 s ≥ new est 

s ≥ est ∧ red1 ∧ red2 ∧ red3 s ≥ new est 
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Weak Propagation, Strong Explanation 
•  Explain a weak propagator strongly 
•  We get strong explanations, but later! 

•  TTEF propagation          Energetic explanation 
•  Strong propagation algorithms less important 

43 

           
t2                 

t1                                        .

limit

timetable

t3             

t4             

t5             
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energetic
reasoning

detects
failure

TTEF
reasoning

detects failure

backjump

nogood
prevents
further
search

no learning
learning

Weak Propagation, Strong Explanation 
•  Late failure discovery doesn’t hurt so much 

 
 
•  Strong propagators are not so important! 
•  Strong explanations are important 

44 
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Search for LCG 
•  Strong Autonomous Search 
•  Activity based search 

–  Michel and Van Hentenryck CPAIOR 2012 
–  Chaff Moskewitz et al DAC 2001 

•  Bump activity of all literals seen in conflict resolution 
•  Decay activity of all literals periodically 

•  Concentrates search on literals causing local 
failure 

•  Highly local (1000 fails ago is irrelevant)  
•  The ONLY SEARCH used in SAT and SMT 

45 
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Search for LCG 
•  Restarts are (almost) FREE 

–  All failure detected in previous searches is recorded 
–  Restarting never repeats work 

•  Whether a fixed search 
•  Or a dynamic search 

•  Aggressive Restarting 
•  Works well with activity based search 

–  Concentrate on failure 

 

46 
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Activity-based search can be BAD 
•  Car sequencing problem 

–  production line scheduling 

•  Comparing different search strategies 
–  Static: selecting in order 
–  DomWDeg: weight variables appearing in constraints 

that fail 
–  Impact: prioritising decisions that reduce domains 
–  Activity based 

47 

Static DomWDeg Impact Activity 
Time (s) 206.3 0.8 951.3 1522.2 
Solved (70) 66 70 55 47 
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Hybrid Searches 
•  Most of our state-of-the-art results use 
•  Hybrid searches 

–  Problem specific objective based search 
•  To find good solutions early 

–  Switching to activity based search 
•  To prove optimality    

•  Sometimes alternating the two! 
•  Or throwing a weighted coin to decide which 
•  More on why this works later 

48 
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Symmetries and LCG 
•  LCG interacts well with symmetries 
•  Symmetry breaking constraints 

–  Problem: search strategy disagrees with constraints 
–  Solution: activity based search 

•  Either the search agrees and constraints get no activity 
•  Or the search disagrees and sym constraints get activity 

•  Dynamic symmetry breaking 
–  SBDS is a nogood method 
–  Adds symmetric versions of the decision nogood 
–  LCG adds symmetric versions of the 1UIP nogood 

•  Much stronger 

–  No other symmetry breaking method can find these! 
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Symmetries and LCG 

•  5-colour this graph (value symmetry) 
•  Already coloured x1, x2, x3, x4, x5 
•  Setting x6 = 1, x7 = 2, causes failure 
•  Dec. Nogood: x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 1  x7 ≠ 2 
•  No value symmetric versions are applicable 
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Symmetries and LCG 

•  5-colour this graph (value symmetry) 
•  Already coloured x1, x2, x3, x4, x5 
•  Setting x6 = 1, x7 = 2, causes failure 
•  1UIP Nogood: x4 = 4, x5 = 5, x6 = 1  x7 ≠ 2  
•  Value Symmetric version is relevant 

–  x4 = 4, x5 = 5, x6 = 1  x7 ≠ 3 
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Symmetries and LCG 

•  5-colour this graph (value symmetry) 
•  Already coloured x1, x2, x3, x4, x5 
•  Setting x6 = 1, x7 = 2, causes failure 
•  Adding the two nogoods immediately fails with nogood 

–  x4 = 4, x5 = 5  x6 ≠ 1  
–  Symmetry gives: x4 = 4, x5 = 5  x6 ≠ 2 and x4 = 4, x5 = 5  x6 ≠ 3  
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation basics 
–  Explaining propagators 
–  Conflict resolution 

•  LCG successes 
–  Scheduling, Packing 

•  Improving LCG 
–  How modern LCG solvers work 

•  Search is Dead 
•  Concluding remarks 
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Search is Dead, Long Live Proof 
•  Search is simply a proof method 

–  With learning its lemma generation 

•  Optimization problems 
–  Require us to prove there is no better solution  
–  As a side effect we find good solutions 

– Even if we cant prove optimality,  
• we should still aim to prove optimality 

•  Primal heuristics (good solutions fast) 
–  Reduce the size of optimality proof 

•  Dual heuristics (good lower bounds fast) 
–  Reduce the size of the optimality proof 
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Search is Dead, Long Live Proof 
•  The role of Search 

–  Find good solutions 
•  Only if this helps the proof size to be reduced 

–  Find powerful nogoods (lemmas) 
•  That are reusable and hence reduce proof size 

•  Other inferences can reduce proof size 
–  Symmetries 
–  Dominance 
–  Stronger propagators (stronger base inference) 

•  And a critical factor for reducing proof size 
–  Stronger languages of learning 
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Forget Consistency 
•  Domain consistency  

–  Is irrelevant unless its cheap 

•  Bounds(R) or Bounds(Z) consistency 
–  Also irrelevant 

•  A propagators value can be measured by 
–  Strength of lemmas generated per unit time 
–  This can clearly be problem dependent 
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The Language of Learning 
•  Is critical 
•  Consider the following MiniZinc model 

–  array[1..n] of var 1..n: x; 
–  constraint alldifferent(x); 
–  constraint sum(x) < n*(n+1) div 2; 

•  Unsatisfiable 
–            No learning 
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n Failures Time (s) 
6 240 0.00 
7 1680 0.01 
8 13440 0.08 
9 120960 0.42 

10 1209600 4.47 

n Failures Time (s) 
6 270 0.00 
7 1890 0.02 
8 15120 0.20 
9 136080 2.78 

10 1360800 31.30 

With learning 
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The Language of Learning 
•  Is critical 
•  Consider the following MiniZinc model 

–  array[1..n] of var 1..n: x; 
–  array[1..n] of var 0..n*(n+1)div 2: s; 
–  constraint alldifferent(x); 
–  constraint s[1] = x[1] /\ s[n] < n*(n+1) div 2; 
–  constraint forall(i in 2..n)(s[i]=x[i]+s[i-1]); 

•  Unsatisfiable 
–            No learning 
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n Failures Time (s) 
6 240 0.00 
7 1680 0.01 
8 13440 0.08 
9 120960 0.56 

10 1209600 5.45 

n Failures Time (s) 
6 99 0.00 
7 264 0.01 
8 657 0.01 
9 1567 0.04 

10 3635 0.12 

With learning 
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The Language of Lemmas 
•  Critical to improving proof size 
•  Choose the right language for expressing 

lemmas 
•  See 

–  Lazy encoding. CP2013 
–  Structure based extended resolution 

•  http://arxiv.org/abs/1306.4418 

•  Constraint Programming has a massive 
advantage over other complete methods since 
we “know” the substructures of the problem 
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Outline 
•  Propagation based solving 

–  Atomic constraints 

•  Lazy clause generation basics 
–  Explaining propagators 
–  Conflict resolution 

•  LCG successes 
–  Scheduling, Packing 

•  Improving LCG 
–  How modern LCG solvers work 

•  Search is Dead 
•  Concluding remarks 
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Conclusions 
•  Most of CP search is repeated 
•  Remember the past to avoid repeating it 
•  Search is only a mechanism for generating good 

lemmas 
•  Consider other mechanisms for proof size 

reduction 
–  inference, language, dominance, relaxation, 

decomposition, primal heuristics, CEGAR 
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Whats left to be done? 
•  Language of Learning 
•  Explaining propagators 

–  Sometime building strong explanation is hard 

•  Conflict directed explanation 
–  We can take into account the current conflict while 

explaining 
•  Dominances and LCG 

–  Dynamic dominance breaking search with learning 

•  Parallelizing LCG   
–  Good luck! It seems proof is essentially sequential 
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Whats coming 
•  ObjectiveCP 

–  CP based on a small micro kernel 
–  See Pascals talk 

•  ObjectiveCPExplanation 
–  An LCG solver in the ObjectiveCP framework 

•  ObjectiveCPSchedule 
–  State of the art scheduling technology 

•  MiniZinc 2.0   
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MiniZinc 2.0 
•  Open LLVM architecture 
•  User-defined functions 

–  Functional constraint modelling, functional globals 
–  Better CSE 

•  Option types 
–  Concise modelling of decisions that are only relevant 

dependent on other decisions 
•  Half reification 

–  Better translation of complex logical constraints 
–  Substantial efficiency improvements 
–  More flexible use of globals 

•  Globalizer (powerful structural analysis) 
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Lightning Model and Solve Competition 
•  Be crowned the worlds best optimizer  
•  Model and Solve Competition 

–  Teams of 3 
–  Solve 6 optimization problems with 5 instances each 

•  Using any optimization technology you like 
–  One laptop, 3 brains, 2 hours 

•  16:30 Thursday 19th September 
–  Lecture Hall X 

 
•  Signup now at the Registration Desk 

–  Places are limited!  First come first served. 
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Final Word 
•  NICTA optimization group is looking for a 

constraint programmer 
–  Supply chains and logistics 

•  University of Melbourne should be advertising for 
a lecturer position soon in Optimization 

•  We are always keen to host interns in the     
“worlds most livable city” 

•  So come and join us! 
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