
Programming Search!

How can we control the search in a finite
domain programming solver	

Overview!

•  Finite Domain Search	

•  Variable Selection	

•  Value Selection	

•  Splitting	

•  Complex Search Strategies	

•  Autonomous Search	

Search with finite domain prop.!
•  search(F0, Fn, D)	

	
 	
D := isolv(F0, Fn, D)	

	
 	
if (D is a false domain) return false	

	
 	
if (D is not a valuation domain)	

	
 	
 	
choose {c1,..,cm} where C∧D 	

	
 	
 	
 	
implies c1 ∨ … ∨cm	

	
 	
 	
for (i in 1..m)	

	
 	
 	
 	
if (search(F0 union Fn, prop(ci), D))	

	
 	
 	
 	
 	
return true	

	
 	
 	
return false	

	
 	
return true	

	
 	
 	
	

Choice!
•  choose {c1,..,cm} where 	

–  C∧D implies c1 ∨ … ∨cm	

•  Usually (Labelling): 	

–  select a variable v	

–  select a value d	

–  c1 ≈ v = d, c2 ≈ v ≠ d	

•  Although sometimes (Splitting):	

–  c1 ≈ v ≤ d, c2 ≈ v > d	

•  Rarely, something more complex	

–  value set: c1 ≈ v1 = d, c2 ≈ v2 = d, …, cn ≈ vn = d	

–  constraint split: c1 ≈ v1 = v2, c2 ≈ v1 ≠ v2	

Labelling in MiniZinc!

•  We can add solver specific information to MiniZinc
models using annotations	

•  solve :: int_search([S,E,N,D,M,O,R,Y], input_order, indomain_min, complete)!
! !satisfy;!

•  Label the variables [S,E,N,D,M,O,R,Y] in order (input_order)
trying the lowest value first (indomain_min), ignoring fixed
variables	

include "all_different.mzn";!
var 1..9: S; !
var 0..9: E; !
var 0..9: N; !
var 0..9: D; !
var 1..9: M; !
var 0..9: O;!
var 0..9: R; !
var 0..9: Y;!

constraint 1000 * S + 100 * E + 10 * N + D !
 + 1000 * M + 100 * O + 10 * R + E!
 = 10000 * M + 1000 * O + 100 * N + 10 * E + Y;!

constraint all_different([S,E,N,D,M,O,R,Y]);!

solve satisfy;!

Labelling example!

S = 9, E in 4..7, N in 5..8, D in 2..8,
M = 1, O = 0, R in 2..8, Y in 2..8

after initial
propagation

E = 4 E ≠ 4

False
domain

S = 9, E in 5..7, N in 6..8, D in 2..8,
M = 1, O = 0, R in 2..8, Y in 2..8

E = 5 E ≠ 5
S = 9, E = 5, N = 6, D = 7,
M = 1, O = 0, R = 8, Y = 2

S = 9, E in 6..7, N in 7..8, D in 2..8,
M = 1, O = 0, R in 2..8, Y in 2..8

False
domain

False
domain

E = 6 E ≠ 6

Variable selection!

•  int_search(vars, var_select, choice, explore)	

•  Variable selection strategies	

–  input_order: in the given order	

–  first_fail: choose the variable v with smallest domain	

–  smallest: choose the variable v with smallest value in

domain	

–  largest: choose the variable v with largest value in

domain	

–  max_regret: choose the variable v with largest

difference between the two smallest values in its
domain	

First Fail Labelling!

•  One useful heuristic is the first-fail
principle	

	
“To succeed, try first where you are most
likely to fail”	

•  At each step choose the variable with the
smallest domain.	

•  Do this dynamically based on the domain
size after propagation.	

First fail labelling: Ex. N queens!

q[6] != 4q[6]=4

q[3] != 5q[3] = 5

q[2] != 3q[2] = 3

q[1]=1 q[1] != 1

a

b c

q[1] q[2] q[3] q[4] q[5] q[6] q[7] q[8] q[9]

1

2

3

4

5

6

7

8

9

q[1] q[2] q[3] q[4] q[5] q[6] q[7] q[8] q[9]

1

2

3

4

5

6

7

8

9

solve :: int_search(q, first_fail, indomain_min, complete) satisfy;!

minimum domain
size = 2

variable fixed

false
domain

Regret Based Search!
•  max_regret: choose the variable v with largest difference

between the two smallest values in its domain	

•  Usually tied with indomain_min!
•  Used when selecting to minimize costs	

•  pw[i] = profit from worker I	

•  max regret search	

€

p1 p2 p3 p4
w1 7 2 5 5

w2 8 2 5 1

w3 4 3 7 2

w4 3 1 3 3

•  pw1 (regret 3)

•  pw3 (regret 3)
•  pw2 (regret 4)

•  Total cost = 10

Smallest Search!
•  smallest: choose the variable v with smallest value in its

domain	

•  Again usually tied with indomain_min!
•  Used when selecting to minimize costs	

•  pw[i] = profit from worker I	

•  smallest search	

€

p1 p2 p3 p4
w1 7 2 5 5

w2 8 2 5 1

w3 4 3 7 2

w4 3 1 3 3

•  pw2 (smallest 1)

•  pw3 (smallest 4)
•  pw4 (smallest 1)

•  Total cost = 11

Value selection!

•  int_search(vars, var_select, choice, explore)	

•  Value selection strategies:	

–  indomain_min: d = smallest value in domain	

–  indomain_man: d = largest value in domain	

–  indomain_median: d = median domain value	

–  indomain_random: d is a random value from the domain	

–  indomain: try all values in order lowest to highest	

•  value set search, not a labelling search	

indomain labelling example!

S = 9, E in 4..7, N in 5..8, D in 2..8,
M = 1, O = 0, R in 2..8, Y in 2..8

after initial
propagation

E = 4

False
domain

E = 5
S = 9, E = 5, N = 6, D = 7,
M = 1, O = 0, R = 8, Y = 2

False
domain

False
domain

E = 6

E = 7

solve :: int_search([S,E,N,D,M,O,R,Y], input_order, , complete)!
 satisfy;!

Value selection question!

•  What is the difference between	

–  indomain, and	

–  indomain_min ?	

Splitting!

•  Particularly with strongly arithmetic variables it
can be better to split the domain	

•  Splitting choice strategies:	

–  indomain_split: v ≤ d ∨ v > d 	

•  where d = (min(D,v) + max(D,v)) div 2	

–  indomain_reverse_split: v > d ∨v ≤ d 	

•  Splitting doesn’t make sense unless there are

constraints that can propagate bounds	

Splitting example!
S = 9, E in 4..7, N in 5..8, D in 2..8,

M = 1, O = 0, R in 2..8, Y in 2..8
after initial
propagation

E ≤ 5 E > 5

False
domain

S = 9, E in 6..7, N in 7..8, D in 2..8,
M = 1, O = 0, R in 2..8, Y in 2..8

E ≤ 4

S = 9, E = 5, N = 6, D = 7,
M = 1, O = 0, R = 8, Y = 2

False
domain

False
domain

S = 9, E in 4..5, N in 5..6, D in 2..8,
M = 1, O = 0, R in 2..8, Y in 2..8

E > 4
E ≤ 6 E > 6

Search variables!

•  int_search(vars, var_select, choice, explore)	

•  The variables to be searched on are an important

part of any search strategy	

–  usually enough so that fixing them fixes all variables	

•  The search does not need to fix the C1,C2,C3 vars	

–  they are fixed when [S,E,N,D,M,O,R,Y] are fixed	

include "all_different.mzn";!
var 1..9: S; !
var 0..9: E; !
var 0..9: N; !
var 0..9: D; !
var 1..9: M; !
var 0..9: O;!
var 0..9: R; !
var 0..9: Y;!

var 0..1: C1;!
var 0..1: C2;!
var 0..1: C3;!

constraint D + E = 10*C1 + Y;!
constraint N + R = 10*C2 + E;!
constraint E + O = 10*C3 + N;!
constraint S + M = 10*M + O;!

constraint all_different
([S,E,N,D,M,O,R,Y]);!

solve :: int_search(!
! [S,E,N,D,M,O,R,Y],!

 input_order,!
 indomain_min,!
 complete)!
 satisfy;!

Search Variables Example!

include "all_different.mzn";!
int: n;!
array[1..n] of var 1..n: x; % sequence of numbers!
array[1..n-1] of var 1..n-1: u; % sequence of differences!

constraint all_different(x);!
constraint all_different(u)!
constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i])));!

solve :: int_search(x, first_fail, indomain_min, complete)!
 satisfy;!
output ["x = ",show(x),"\n"];!

allinterval problem: Find a sequence of numbers 1..n such that all
the differences between adjacent numbers are also different	

Search on x variables is enough to fix u variables	

Search Variables Example!

include "inverse.mzn";!
int: n;!
array[1..n] of var 1..n: x; % sequence of numbers!
array[1..n-1] of var 1..n-1: u; % sequence of differences!
constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i])); !
array[1..n] of var 1..n: y; % position of each number!
array[1..n-1] of var 1..n-1: v; % position of difference I!
constraint inverse(x,y); !
constraint inverse(u,v);!
constraint abs(y[1] - y[n]) = 1 /\ v[n-1] = min(y[1], y[n]); % redundant!

solve :: int_search(y, first_fail, indomain_min, complete) satisfy;!

output ["x = ",show(x),"\n"];!

A better search: search on which position each number is in	

But how? Dual model with channeling!	

For n = 10 this model requires 1714 choices for all sols vs 84598	

Programming Search!

•  Variable selection can make a big difference	

–  in size of search tree	

–  The right variable order is thus very important	

•  Value selection just "reorders" the tree	

–  moves solutions more to the left	

–  "irrelevant" if finding all solutions	

–  not irrelevant for optimization	

•  finding good solutions early reduces search!	

Comparing Searches: N Queens!
•  int_search(q, input_order, indomain_min, complete); !
•  int_search(q, input_order, indomain_median, complete); !
•  int_search(q, first_fail, indomain_min, complete); !
•  int_search(q, input_order, indomain_median, complete);!

Number of choices to find first solution !

nqueens-ann.mzn

annotation bitdomain(int:nwords);

include "all_different.mzn";

int: n;
array [1..n] of var 1..n: q :: bitdomain(n div 32);

constraint all_different(q) :: domain;
constraint all_different([q[i] + i | i in 1..n]) :: domain;
constraint all_different([q[i] - i | i in 1..n]) :: domain;

ann: search_ann;

solve :: search_ann satisfy;

output [if fix(q[j]) == i then "Q" else "." endif ++
if j == n then "\n" else "" endif | i,j in 1..n]

Figure 38: Annotated model for n-queens (nqueens-ann.mzn).

Different search strategies can make a significant difference in how easy it is to
find solutions. A small comparison of the number of choices made to find the first
solution of the n-queens problems using the 4 different search strategies is shown
in the table below (where — means more than 100,000 choices). Clearly the right
search strategy can make a significant difference.

n input-min input-median ff-min ff-median
10 28 15 16 20
15 248 34 23 15
20 37330 97 114 43
25 7271 846 2637 80
30 — 385 1095 639
35 — 4831 — 240
40 — — — 236

50

Complex Searches!

•  Actually very many different complex search
strategies have been used/defined for FD solvers	

•  MiniZinc only supports one complex search
constructor: sequential search	

–  seq_search([search_ann, …, search_ann])	

•  Complete the first search before starting the next
one.	

Jobshop scheduling!

include "disjunctive.mzn";!
int: jobs; % no of jobs!
int: tasks; % no of tasks per job!
array [1..jobs,1..tasks] of int: d; % task durations!
int: total = sum(i in 1..jobs, j in 1..tasks) (d[i,j]); % total duration!
array [1..jobs,1..tasks] of var 0..total: s; % start times!
var 0..total: end; % total end time!
constraint %% ensure the tasks occur in sequence!
 forall(i in 1..jobs) (forall(j in 1..tasks-1) !
 (s[i,j] + d[i,j] <= s[i,j+1]) /\!
 s[i,tasks] + d[i,tasks] <= end);!
constraint %% ensure no overlap of tasks!
 forall(j in 1..tasks) (disjunctive([s[i,j] | i in 1..jobs], [d[i,j] | i in 1..jobs]));!
solve minimize end;!

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Jobshop search strategies!

•  seq_search([!
!int_search([s[i.j]| i in 1..jobs, j in 1..tasks],!
! ! ! smallest, indomain_min, complete),!
!int_search([end], input_order, indomain_min, complete)!

])!
Place earliest tasks first, when finished set end to minimum time!	

•  seq_search([!
!int_search([end], input_order, indomain_min, complete),!
!int_search([s[i.j]| i in 1..jobs, j in 1..tasks],!
! ! ! smallest, indomain_min, complete)!

])!
Optimistic search: Search for a solution with least end time, if that fails

search for one higher. Search for solutions using earliest start time.	

Annotations!
•  Annotations are how to communicate information

to the solver from a MiniZinc model	

–  first class object: type ann, annotation variables	

–  can be defined in data files	

–  you can create your own new annotations	

•  annotation <ann-name> (<arg-def> .. <arg-def>)	

ann: search;!
ann: subsearch = int_search([s[i.j]| i in 1..jobs, j in 1..tasks],!

! ! ! smallest, indomain_min, complete);!
solve :: search minimize end;!
(data file 1) search = subsearch;!
(data file 2) search = seq_search([subsearch, int_search

([end], input_order, indomain_min, complete)]);!

Annotations apart from search!
•  Annotations can be used to transmit information to

the solver by annotating variables and constraints	

–  mzn2fzn adds annotations	

•  :: is_defined_var variable is and introduced variable with
defn	

•  :: defines_var(x) this constraint defined variable 	

–  Possible variable annotations	

•  :: bounds_only only store bounds for variable	

•  :: bitdomain(32) store domain as bit string	

–  Possible constraint annotations	

•  :: bounds use bounds propagation	

•  :: domain use domain propagation 	

•  Dependent on solver, allowed to be ignored!	

Restarts + Heavy tails!

Standard Distribution
(finite mean &

variance)

Power series
decay

Exponential
decay

Heavy Tailed Behaviour!

75% ≤ 30 5% ≥ 100000

Searching for solutions to Quasigroup completion problems

Restarts!

•  If 75% finish in 30 backtracks	

–  after 50 backtracks why not start again	

–  you might be in one of the 5% that require > 100,000	

•  Restarting conquers heavy tailed behaviour	

X X X XX

solved
10 10 10 10 10

Sequential: 50 +1 = 51 seconds

Parallel: 10 machines --- 1 second
51 x speedup

Interleaved (1 machine): 10 x 1 = 10 seconds
 5 x speedup

Super linear speedups!

Restart Strategies!

Policy for when to restart 	

•  Constant restart – after using L resources	

•  Geometric restart	

–  restart after using L resources, with new limit α L	

•  Luby restart	

–  1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, … 	

–  "universally optimal" for randomized algorithms: 	

•  no worse than a log factor slower than optimal policy	

•  not bettered by more than a constant factor by other universal

policies	

Limits + Restart in MiniZinc!
•  Not in MiniZinc 1.1.5 (but is on slippers2 ..)	

•  limit(<Measure>, <Limit>, <Search>)	

–  <Measure> is one of fails, solutions, nodes, time!
–  <Limit> is the limit where we fail	

–  <Search> is the search we limit	

•  Examples	

limit(time, 10, !
 int_search(x, smallest, indomain, complete)!

limit(time, 600, !
 seq_search([!
 int_search(x,input_order,indomain_random,complete),!
! ! int_search(y, smallest, indomain_min, complete)!

])!
)!

Restarts in MiniZinc!
•  Geometric Restart only on fails	

•  restart_geometric(<IncrementF>, <LimitF>, <Search>)	

–  <IncrementF> is float we multiply fail limit by	

–  <LimitF> is initial (float) fail limit	

–  <Search> is the search strategy	

•  Example (for n-queens)	

	
restart_geometric(1.2, int2float(2 * n), !

! !int_search(q, first_fail, indomain_random, complete))!

•  Note restart makes no sense if nothing changes 	

Autonomous Search!
•  A highly active research area in constraint

programming (all rely on restarting)	

•  Automatic search strategies examples	

–  dom_w_deg: choose a variable with minimum	

•  domain size / sum of failures caused by constraints it is in	

–  impact: record for each v = d constraint	

•  the average change in product of domain sizes when this

choice is made = impact of decision	

•  choose the variable v with maximum impact	

•  choose the value d for v with minimum impact	

–  activity: record for v = d, v ≤ d, v ≥ d, v ≠ d 	

•  when it is involved in a failure (requires tracking implications)	

•  decay activities, to focus on more recent failures	

•  choose the constraint with highest activity	

Dom_w_deg!

•  Domain / weighted degree	

–  degree in the number of constraints the var is in	

•  dom_w_deg: choose a variable with minimum	

–  domain size / sum of failures by constraints it is in	

•  Each variable gets a fail count (= number of
constraints initially)	

•  Each time a constraint detects failure 	

–  increment fail count for all variables involved	

•  Choose the variable with minimum	

–  domain size / failcount	

b1

b2

b3

b15

x x

x

x

x

Dom_w_deg!
•  Why does it work	

include "all_different.mzn”;!
array[1..15] of var 0..1: b;!
array[1..4] of var 1..10: x;!
constraint sum(b) >= 1 /\ exists([b[i] == 1 | i in 1..15]);!
constraint all_different(x) /\ sum(i in 1..4)(x[i]) = 9;!
solve :: int_search(b++x, first_fail, indomain_min, complete)

satisfy;	

–  491504 choices to fail	

•  Change to dom_w_deg!
–  182 choices to fail 	

•  first branch choose bs then xs	

•  since all failure is on xs we never rechoose a 	

	
b on backtracking	

x x x

b

Impact!
•  Measure the impact on total domain size of each

decision	

–  make decisions on variables with high impact	

•  small search tree	

–  take values with low impact	

•  solutions more likely	

•  Raw search space 	

•  Impact(v=d) = size(D) / size(D') where D' is
domain after propagation	

€

size(D) = | D(v) |
v∈var(D)
∏

Impact!
•  For each v = d	

–  keep track of (log of) total impact	

–  total number of times selected as choice	

–  can determine average impact	

•  Impact of v	

–  average impact of (v = d) for d in Dinit(v)	

•  Simpler implementation	

–  keep track of average impact	

–  avimpact' = (avimpact + impact)/2	

Impact in MiniZinc!

•  Can use impact currently only with
indomain_split!

•  Jobshop scheduling: schedule start times s[i,j]	

•  solve :: int_search([s[i,j] | i in 1..jobs, j in 1..tasks], impact,!

! indomain_split, complete)!
! minimize end;!

•  Will concentrate on tasks that cause the most
change in domains	

–  those which precede many tasks (since we set there

start time)	

Activity-based Search!

•  We will examine after we have studied	

–  Boolean Satisfiability Search	

	
where it was devised.	

Comparing Search Strategies!

•  Simple jobshop scheduling problem 5x5	

1.  first_fail + indomain_min	

2.  smallest + indomain_min	

3.  dom_w_deg + indomain_min	

4.  impact + indomain_split	

5.  default (first_fail on all variables + indomain_min) 	

Search	
 Choices	
 Time (s)	
 Solns to Opt.	

1	
 1116263	
 1m30	
 9	

2	
 6493819	
 5m7	
 7	

3	
 191	
 0.10	
 6	

4	
 425	
 0.14	
 8	

5	
 306	
 0.11	
 6	

Limited Discrepancy Search!

•  Programmed search difficulties	

–  most important decisions at top of tree	

–  where least information is available	

•  Restarting fixes this to some degree	

–  restart with better information	

•  Restarting usually changes the order of variables
selected	

•  What about changing the order of values selected?	

Limited Discrepancy Search!
•  Assume binary choice	

–  assume left choice is good, right is discrepancy	

•  Search first 	

–  no discrepancies, 1 discrepancy, 2 discrepancy, …	

x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

10 1 2 1 2 2 3 1 2 2 3 2 3 3 4

Limited Discrepancy Search!
•  Assume binary choice	

–  assume left choice is good, right is discrepancy	

•  Search first 	

–  no discrepancies, 1 discrepancy, 2 discrepancy, …	

x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

10 1 2 1 2 2 3 1 2 2 3 2 3 3 4

Limited Discrepancy Search!
•  Assume binary choice	

–  assume left choice is good, right is discrepancy	

•  Search first 	

–  no discrepancies, 1 discrepancy, 2 discrepancy, …	

x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

10 1 2 1 2 2 3 1 2 2 3 2 3 3 4

Limited Discrepancy Search!
•  Assume binary choice	

–  assume left choice is good, right is discrepancy	

•  Search first 	

–  no discrepancies, 1 discrepancy, 2 discrepancy, …	

x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

10 1 2 1 2 2 3 1 2 2 3 2 3 3 4

Limited Discrepancy Search!
•  Effectively reorders the way we visit leaves	

•  Implemented by restarting	

•  Note unless we know the depth of the tree 	

–  we have to visit all < k discrepancies to find all k
discrepancies	

•  Simple jobshop scheduling 5x5: 	

	
smallest + indomain_min first_fail + indomain_min	

LDS
Limit	

Best
sol	

Time
(s)	

Solns to
Best	

not lds	
 30	
 5m7	
 7	

1	
 31	
 0.06	
 4	

2	
 30	
 0.08	
 5	

4	
 30	
 0.29	
 5	

8	
 30	
 5.1	
 5	

LDS
Limit	

Best
sol	

Time
(s)	

Solns to
Best	

not lds	
 30	
 1m30	
 9	

1	
 41	
 0.06	
 1	

2	
 33	
 0.22	
 5	

4	
 30	
 0.36	
 6	

8	
 30	
 1.7	
 6	

Summary!

•  Constraint programming techniques are based on backtracking
search	

•  Reduce the search using consistency methods	

–  incomplete but faster	

–  	
 node, arc, bound, generalized	

•  Optimization can be based on a branch & bound with a
backtracking search	

•  Very general approach, not restricted to linear constraints.	

•  Programmer can add new global constraints and program their

propagation behaviour.	

Exercise 1: Send-most-money!

•  The send-most-money problem is to find different
digits that make the cryptarithmetic problem:	

	
 	
SEND + MOST = MONEY	

	
hold while maximizing MONEY (ie. 10000*M+
1000*O+100*N_10*E+Y)	

•  Write a MiniZinc model and try out different
search strategies to solve it. Which requires the
least choices?	

Comparison between CP and MIP!

•  What are the similarities?	

•  What are the strengths of MIP?	

•  What are the strengths of CP?	

•  Does it make sense to combine them?	

Homework!

•  Read Chapter 3 of Marriott&Stuckey, 1998	

•  Solve the Australian Map Colouring problem by hand

using simple backtracking, then with arc consistency and
backtracking.	

•  Give propagation rules for constraints of form	

	
 	
a1 X1 + … + an Xn ≤ b1 Y1 + … + bm Ym + c	

	
where each ai, , bi > 0.	

Homework!

•  Read Chapter 3 of Marriott&Stuckey, 1998	

•  Solve the Australian Map Colouring problem by hand

using simple backtracking, then with arc consistency and
backtracking.	

•  Give propagation rules for constraints of form	

	
 	
a1 X1 + … + an Xn ≤ b1 Y1 + … + bm Ym + c	

	
where each ai, , bi > 0.	

•  MiniZinc provides decision variables which are sets of
integer and normal set operations including cardinality.
How would you 	

–  Represent sets?	

–  Program these constraints using propagation rules?	

