Programming Search

How can we control the search in a finite
domain programming solver



Overview

Finite Domain Search
Variable Selection

Value Selection

Splitting

Complex Search Strategies

Autonomous Search



g Search with finite domain prop.

® search(F,, F, D)
D :=isolv(F,, F , D)
if (D 1s a false domain) return false
if (D 1s not a valuation domain)
choose {c,,..,c,,} where CAD
impliesc; V ... V¢,
for (iin 1..m)
if (search(F, union F, prop(c,), D))
return frue
return false

return rrue



Choice

choose {c,,..,c, } where
— CADimpliesc; V ... V¢,
Usually (Labelling):

— select a variable v
— select a value d
—c,=v=d,c,=v#d
Although sometimes (Splitting):
- c;=v=<d,c,=v>d
Rarely, something more complex
— value set: ¢, =v,=d,c,=v,=d,...,c,=V

— constraint split: ¢, = v, =v,,c, = v, Z Vv,

n

=d



3 Labelling in MiniZinc

 We can add solver specific information to MiniZinc
models using annotations

include "all_different.mzn"; constraint 1000*S+100*E+10*N+D
var 1..9: §; + 1000*M+100*0+10*R+E
var 0..9: =10000*M+1000*O0O+ 1T00*N+10*E +Y;
var 0..9:
var 0..9:
var 1..9:
var 0..9:
var 0..9:
var 0..9:

constraint all_different([S,E,N,D,M,0,R,Y]);

solve satisfy;

XFOZTOD=ZzM

e solve :: int_search([S,E,N,D,M,0O,R,Y], input_order, indomain_min, complete)
satisfy;

e [abel the variables [S,E,N,D.M,O.,R,Y] in order (input_order)
trying the lowest value first (indomain_min), 1ignoring fixed
variables



Labelling example

after initial S .7,Nin5..8,Din 2..8,
propagation 0,Rin2.8 Yin2.8

Ezél/\%4

False S=9,Ein5.7, Nin 6..8, D in 2..8,
domain M=1,0=0,Rm2.8, Yin2.8
E=3 E+5
S=9,E=5N=6,D=7,|| S=9,Emn6.7,Nin7..8, D in 2..8,
M=1,0=0,R=8,Y=2 M=1,0=0,Rmn2..8,Yin2.8

E=6 — \, E#6

False False
domain domain
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Variable selection

e int_search(vars, var_select, choice, explore)

e Variable selection strategies

input_order: 1n the given order
first_fail: choose the variable v with smallest domain

smallest: choose the variable v with smallest value in
domain

largest: choose the variable v with largest value in
domain

max_regret: choose the variable v with largest
difference between the two smallest values in its
domain



3 First Fail Labelling

e One useful heuristic 1s the first-fail
principle

“To succeed, try first where you are most
likely to fail”

* At each step choose the variable with the
smallest domain.

e Do this dynamically based on the domain
size after propagation.



First fail labelling: Ex. N queens

solve :: int_search(q, first_fail, indomain_min, complete) satisfy;
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Regret Based Search

max_regret: choose the variable v with largest difference
between the two smallest values 1n 1ts domain

Usually tied with indomain_min

Used when selecting to minimize costs

pwli] = profit from worker /
max regret search

* pwl (regret 3)

* pw2 (regret 4)

* pw3 (regret 3)
Total cost =10

pl p2 p3 pi

wl
w2
w3

wi
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Smallest Search

smallest: choose the variable v with smallest value in its

domain

Again usually tied with indomain_min

Used when selecting to minimize costs

pwli] = profit from worker /
smallest search

* pw2 (smallest 1)
* pw4 (smallest 1)

* pw3 (smallest 4)
Total cost =11
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Value selection

e int_search(vars, var_select, choice, explore)

e Value selection strategies:

indomain_min: d = smallest value in domain
indomain_man: d = largest value in domain
indomain_median: d = median domain value
indomain_random: d 1s a random value from the domain

indomain: try all values in order lowest to highest

e value set search, not a labelling search



indomain labelling example

after initial S=9, Emn4.7,Nin5..8, Din 2..8,
propagation M=1,0=0,Rmn2.8, Yin2.8
E
False
domain
S=9,E=5,N=6,D=7, False False
M=1,0=0,R=8,Y=2 domain domain

solve :: int_search([S,E,N,D,M,0,R,Y], input_order, indomain, complete)
satisfy;



EI Value selection question

e What 1s the difference between
- indomain, and
— indomain_min ?



Splitting

Particularly with strongly arithmetic variables it
can be better to split the domain

Splitting choice strategies:
— indomain_split: v=d V v>d
e where d = (min(D,v) + max(D,v)) div 2
— indomain_reverse_split: v>d Vv =<d
Splitting doesn’t make sense unless there are
constraints that can propagate bounds



after 1nitial S=9,Emn4.7, Nin5..8, Din 2..8,
propagation M=1,0=0,Rmn2.8,Yin2.8

Splitting example

WS

S

9,Ein4..5,
=1,0=0,

Nin5..6,Din 2..8, S=9,Ein6.7,Nin7..8, D1n 2..8,
Rin2.8,Y1in2.8 M=1,0=0,Rmn2.8,Yin2..8

in
O

False
domain

E_N4

False False
domain domain



u Search variables

¢ int_search(vars, var_select, choice, explore)

e The variables to be searched on are an important
part of any search strategy

— usually enough so that fixing them fixes all variables

include "all_different.mzn"; var 0..1: C1; constraint all_different

var 1..9: S; var 0..1: C2; ([S,E,;N,D,M,0,R,Y]);

var 0..9: E; var 0..1: C3;

var 0..9: N; solve :: int_search(

var 0..9: D; constraint D + E = 10*C1 + Y; [S,E,N,D,M,0,R,Y],
var 1..9: M; constraint N + R = 10*C2 + E; input_order,

var 0..9: 0; constraint E + O = 10*C3 + N; indomain_min,
var 0..9: R; constraint S + M = 10*M + O; complete)

var 0..9: Y; satisfy;

e The search does not need to fix the C1.,C2.,C3 vars
— they are fixed when [S,E.N.DM,O,R,Y] are fixed



Search Variables Example

allinterval problem: Find a sequence of numbers 1..n such that all
the differences between adjacent numbers are also different

include "all_different.mzn";

int: n;

array[1..n] of var 1..n: x; % sequence of numbers
array[1..n-1] of var 1..n-1: u; % sequence of differences

constraint all_different(x);
constraint all_different(u)
constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i])));

solve :: int_search(x, first_fail, indomain_min, complete)

satisfy;
output ["x = ",show(x),"\n"];

Search on x variables 1s enough to fix u variables



Search Variables Example

A better search: search on which position each number is in
But how? Dual model with channeling!

include "inverse.mzn";

int: n;

array[1..n] of var 1..n: x; % sequence of numbers

array[1..n-1] of var 1..n-1: u; % sequence of differences

constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i]));

array[1..n] of var 1..n: y; % position of each number

array[1..n-1] of var 1..n-1: v; % position of difference |

constraint inverse(x,y);

constraint inverse(u,v);

constraint abs(y[1] - y[n]) =1 /\ v[n-1] = min(y[1], y[n]); % redundant

solve :: int_search(y, first_fail, indomain_min, complete) satisfy;

output ["x = ",show(x),"\n"];

For n = 10 this model requires 1714 choices for all sols vs 84598



n Programming Search

e Variable selection can make a big difference

— 1n size of search tree

— The right variable order is thus very important

* Value selection just "reorders"” the tree
— moves solutions more to the left
— "rrelevant” 1f finding all solutions

— not irrelevant for optimization

» finding good solutions early reduces search!



n Comparing Searches: N Queens

¢ int_search(q, input_order, indomain_min, complete);

¢ int_search(q, input_order, indomain_median, complete);
e int_search(q, first_fail, indomain_min, complete);

e int_search(q, input_order, indomain_median, complete);

Number of choices to find first solution

n | input-min input-median ff-min ff-median
10 28 15 16 20
15 248 34 23 15
20 37330 97 114 43
25 7271 846 2637 80
30 — 385 1095 639
35 — 4831 — 240
40 — — — 236




n Complex Searches

e Actually very many different complex search
strategies have been used/defined for FD solvers

e MiniZinc only supports one complex search
constructor: sequential search
— seqg_search([ search_ann, ..., search_ann])

 Complete the first search before starting the next
one.



Jobshop scheduling

E @ @
= & ® Gl ()

include "disjunctive.mzn";

int: jobs; % no of jobs

int: tasks; % no of tasks per job
array [1..jobs,1..tasks] of int: d; % task durations

int: total = sum(iin 1..jobs, jin 1..tasks) (d[i,j]); % total duration
array [1..jobs,1..tasks] of var O..total: s; % start times

var O..total: end; % total end time

constraint %% ensure the tasks occur in sequence
forall(i in 1..jobs) ( forall(j in 1..tasks-1)
(sli,y] + d[i,j] <= s[i,j+1]) /\
s[i,tasks] + d[i,tasks] <= end );
constraint %% ensure no overlap of tasks
forall(j in 1..tasks) ( disjunctive([s[i,j] | iin 1..jobs], [d[i,j] [ iin 1..jobs]) );
solve minimize end;



n Jobshop search strategies

e seqg_search([
int_search([s[i.j]l i in 1..jobs, jin 1..tasks],
smallest, indomain_min, complete),
int_search([end], input_order, indomain_min, complete)
D
Place earliest tasks first, when finished set end to minimum time!
e seg_search([
int_search([end], input_order, indomain_min, complete),
int_search([s[i.j]l i in 1..jobs, jin 1..tasks],
smallest, indomain_min, complete)

D

Optimistic search: Search for a solution with least end time, if that fails
search for one higher. Search for solutions using earliest start time.



u Annotations

e Annotations are how to communicate information
to the solver from a MiniZinc model
— first class object: type ann, annotation variables
— can be defined in data files

— you can create your own new annotations
e annotation <ann-name> ( <arg-def> .. <arg-def>)
ann: search;
ann: subsearch = int_search([s[i.j]l iin 1..jobs, j in 1..tasks],
smallest, indomain_min, complete);
solve :: search minimize end;

(data file 1) search = subsearch;

(data file 2) search = seq_search([subsearch, int_search
([end], input_order, indomain_min, complete)]);



n Annotations apart from search

e Annotations can be used to transmit information to
the solver by annotating variables and constraints

— mzn2fzn adds annotations

e :: is_defined_var variable is and introduced variable with
defn

e :: defines_var(x) this constraint defined variable

— Possible variable annotations
e :: bounds_only only store bounds for variable
e :: bitdomain(32) store domain as bit string

— Possible constraint annotations
e :: bounds use bounds propagation
e :: domain use domain propagation

* Dependent on solver, allowed to be 1gnored!



Restarts + Heavy tails

Power series

decay
HEAVY TAILED DISTRIBUTION
{infinite mean & variance)
Exponential
decay

Standard Distribution
(finite mean &
variance)



Heavy Tailed Behaviour

Searching for solutions to Quasigroup completion problems
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n Restarts

e If 75% finish 1n 30 backtracks

— after 50 backtracks why not start again
— you might be in one of the 5% that require > 100,000

e Restarting conquers heavy tailed behaviour



Super linear speedups

X X X X X

10 10 10 10 10
solved

Sequential: 50 +1 = 51 seconds

— Parallel: 10 machines --- 1 second
51 x speedup

— Interleaved (1 machine): 10 x 1 = 10 seconds
— 5 x speedup



n Restart Strategies

Policy for when to restart
e Constant restart — after using L resources

e (Geometric restart

— restart after using L resources, with new limit o L

 Luby restart
- 1,12,1,124,1,12,1,1,248, ...

— "universally optimal" for randomized algorithms:
e no worse than a log factor slower than optimal policy

* not bettered by more than a constant factor by other universal
policies



¥Y  Limits + Restart in MiniZinc

e Not in MiniZinc 1.1.5 (but is on slippers?2 ..)

¢ |imit(<Measure>, <Limit>, <Search>)
— <Measure> 1s one of fails, solutions, nodes, time
— <Limit> 1s the limit where we fail

— <Search> is the search we limit

e Examples
limit(time, 10,
int search(x, smallest, indomain, complete)

limit(time, 600,
seq search ([
int search(x,input order,indomain random,complete),
int search(y, smallest, indomain min, complete)
1)
)



Restarts in MiniZinc

Geometric Restart only on fails

restart_geometric(<IncrementF>, <LimitF>, <Search>)
— <IncrementF> is float we multiply fail limit by
— <LimitF> 1s initial (float) fail limit
— <Search> 1s the search strategy

Example (for n-queens)

restart_geometric(1.2, int2float(2 * n),
int_search(q, first_fail, indomain_random, complete))

Note restart makes no sense if nothing changes



n Autonomous Search

* A highly active research area in constraint
programming (all rely on restarting)

e Automatic search strategies examples

- dom_w_deg: choose a variable with minimum

e domain size / sum of failures caused by constraints it is in

- impact: record for each v = d constraint

 the average change in product of domain sizes when this
choice 1s made = impact of decision

* choose the variable v with maximum impact

* choose the value d for v with minimum impact
— activity: record forv=d,v=<d,v=d,v#d
e when it is involved in a failure (requires tracking implications)

e decay activities, to focus on more recent failures

e choose the constraint with highest activity



n Dom_w_deg

 Domain / weighted degree
— degree 1n the number of constraints the var is in
e dom_w_deg: choose a variable with minimum

— domain size / sum of failures by constraints it 1s in

* Each variable gets a fail count (= number of
constraints 1nitially)

e Each time a constraint detects failure

— 1ncrement fail count for all variables involved

e Choose the variable with minimum

— domain size / failcount



g Dom_w_deg

* Why does it work

include "all_different.mzn”;

array[1..15] of var 0O..1: b;

array[1..4] of var 1..10: x;

constraint sum(b) >= 1 /\ exists([b[i]==11iin 1..15]);
constraint all_different(x) /\ sum(i in 1..4)(x[i]) = 9;

solve :: int_search(b++x, first_fail, indomain_min, complete) ()
satisfy;

— 491504 choices to fail
e Change to dom_w_deg b
— 182 choices to fail k

e first branch choose bs then xs

e since all failure is on xs we never rechoose a
b on backtracking




n Impact

 Measure the impact on total domain size of each
decision

— make decisions on variables with high impact

e small search tree

— take values with low impact

e solutions more likely

e Raw search space size(D) = H| D) |

e Impact(v=d) = size(D) / size(D") where D' 1s
domain after propagation



n Impact

e Foreachv=d
— keep track of (log of) total impact
— total number of times selected as choice
— can determine average impact
e Impactofv
— average impact of (v=d) fordin D, (v)
e Simpler implementation
— keep track of average impact

— avimpact' = (avimpact + impact)/2



Impact in MiniZinc

Can use impact currently only with
indomain_split

Jobshop scheduling: schedule start times s[1,]]
solve ::int_search([s[i,j] | i in 1..jobs, j in 1..tasks], impact,
indomain_split, complete)
minimize end;

Will concentrate on tasks that cause the most
change in domains

— those which precede many tasks (since we set there
start time)



g Activity-based Search

e We will examine after we have studied
— Boolean Satisfiability Search

where 1t was devised.



n Comparing Search Strategies

e Simple jobshop scheduling problem 5x5
1. first fail + indomain_min

smallest + indomain_min

dom_w_deg + indomain_min

impact + indomain_split

Nk »n

default (first_fail on all variables + indomain_min)

Search  Choices Time (s) Solns to Opt.

I 1116263 Im30 9
2 6493819 S5m7 7
3 191 0.10 6
4 425 0.14 8

6

5 306 0.11




g Limited Discrepancy Search

* Programmed search ditficulties

— most important decisions at top of tree

— where least information 1s available

e Restarting fixes this to some degree

— restart with better information

e Restarting usually changes the order of variables
selected

e What about changing the order of values selected?



n Limited Discrepancy Search

e Assume binary choice

— assume left choice 1s good, right 1s discrepancy
e Search first

— no discrepancies, 1 discrepancy, 2 discrepancy, ...



n Limited Discrepancy Search

e Assume binary choice

— assume left choice 1s good, right 1s discrepancy
e Search first

— no discrepancies, 1 discrepancy, 2 discrepancy, ...



n Limited Discrepancy Search

e Assume binary choice

— assume left choice 1s good, right 1s discrepancy
e Search first

— no discrepancies, 1 discrepancy, 2 discrepancy, ...



H Limited Discrepancy Search

e Assume binary choice

— assume left choice 1s good, right 1s discrepancy
e Search first

— no discrepancies, 1 discrepancy, 2 discrepancy, ...

oco112122 °122°>2°°":



Effectively reorders the way we visit leaves

Implemented by restarting

g Limited Discrepancy Search

Note unless we know the depth of the tree

— we have to visit all < k discrepancies to find all &
discrepancies

e Simple jobshop scheduling 5x5:

smallest + indomain_min first_fail + indomain_min
LDS Best Time Solns to LDS Best Time Solns to

Limit  sol (s) Best Limit  sol (s) Best
not Ids 30 Sm7 7 not Ids 30 I1m30 9
1 31 0.06 4 1 41 0.06 1
2 30 0.08 5 2 33 0.22 5
4 30 0.29 5 4 30 0.36 6
8 30 5.1 5 8 30 1.7 6




Summary

Constraint programming techniques are based on backtracking
search

Reduce the search using consistency methods
— 1ncomplete but faster
— node, arc, bound, generalized

Optimization can be based on a branch & bound with a
backtracking search

Very general approach, not restricted to linear constraints.

Programmer can add new global constraints and program their
propagation behaviour.



g Exercise 1: Send-most-money

* The send-most-money problem is to find different
digits that make the cryptarithmetic problem:

SEND + MOST = MONEY

hold while maximizing MONEY (ie. 10000*M+
1000*O+100*N_10*E+Y)

* Write a MiniZinc model and try out different
search strategies to solve it. Which requires the
least choices?



n Comparison between CP and MIP

 What are the similarities?
 What are the strengths of MIP?
 What are the strengths of CP?

e Does it make sense to combine them?
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Homework

Read Chapter 3 of Marriott&Stuckey, 1998

Solve the Australian Map Colouring problem by hand
using simple backtracking, then with arc consistency and
backtracking.

Give propagation rules for constraints of form
where each a; , b, > 0.



Homework

Read Chapter 3 of Marriott&Stuckey, 1998

Solve the Australian Map Colouring problem by hand
using simple backtracking, then with arc consistency and
backtracking.

Give propagation rules for constraints of form
where each a; , b, > 0.

MiniZinc provides decision variables which are sets of
integer and normal set operations including cardinality.
How would you

— Represent sets?

— Program these constraints using propagation rules?



