
Programming Search!

How can we control the search in a finite 
domain programming solver	




Overview!

•  Finite Domain Search	

•  Variable Selection	

•  Value Selection	

•  Splitting	

•  Complex Search Strategies	

•  Autonomous Search	




Search with finite domain prop.!
•  search(F0, Fn, D)	

	
 	
D := isolv(F0, Fn, D)	

	
 	
if (D is a false domain) return false	

	
 	
if (D is not a valuation domain)	

	
 	
 	
choose {c1,..,cm} where C∧D 	

	
 	
 	
 	
implies c1 ∨ … ∨cm	


	
 	
 	
for (i in 1..m)	

	
 	
 	
 	
if (search(F0 union Fn, prop(ci), D))	

	
 	
 	
 	
 	
return true	

	
 	
 	
return false	

	
 	
return true	


	
 	
 	
	




Choice!
•  choose {c1,..,cm} where 	


–  C∧D implies c1 ∨ … ∨cm	


•  Usually (Labelling): 	

–  select a variable v	

–  select a value d	

–  c1 ≈ v = d, c2 ≈ v ≠ d	


•  Although sometimes (Splitting):	

–  c1 ≈ v ≤ d, c2 ≈ v > d	


•  Rarely, something more complex	

–  value set: c1 ≈ v1 = d, c2 ≈ v2 = d, …, cn ≈ vn = d	

–  constraint split: c1 ≈ v1 = v2, c2 ≈ v1 ≠ v2	




Labelling in MiniZinc!

•  We can add solver specific information to MiniZinc 
models using annotations	


•  solve :: int_search([S,E,N,D,M,O,R,Y], input_order, indomain_min, complete)!
! !satisfy;!

•  Label the variables [S,E,N,D,M,O,R,Y] in order (input_order) 
trying the lowest value first (indomain_min), ignoring fixed 
variables	


include "all_different.mzn";!
var 1..9: S; !
var 0..9: E; !
var 0..9: N; !
var 0..9: D; !
var 1..9: M; !
var 0..9: O;!
var 0..9: R; !
var 0..9: Y;!

constraint           1000 * S + 100 * E + 10 * N + D !
                    +    1000 * M + 100 * O + 10 * R + E!
  = 10000 * M + 1000 * O + 100 * N + 10 * E + Y;!

constraint all_different([S,E,N,D,M,O,R,Y]);!

solve satisfy;!



Labelling example!

S = 9, E in 4..7, N in 5..8, D in 2..8, 
M = 1, O = 0, R in 2..8, Y in 2..8 

after initial 
propagation 

E = 4 E ≠ 4 

False 
domain 

S = 9, E in 5..7, N in 6..8, D in 2..8, 
M = 1, O = 0, R in 2..8, Y in 2..8 

E = 5 E ≠ 5 
S = 9, E = 5, N = 6, D = 7, 
M = 1, O = 0, R = 8, Y = 2 

S = 9, E in 6..7, N in 7..8, D in 2..8, 
M = 1, O = 0, R in 2..8, Y in 2..8 

False 
domain 

False 
domain 

E = 6 E ≠ 6 



Variable selection!

•  int_search(vars, var_select, choice, explore)	

•  Variable selection strategies	


–  input_order: in the given order	

–  first_fail: choose the variable v with smallest domain	

–  smallest: choose the variable v with smallest value in 

domain	

–  largest: choose the variable v with largest value in 

domain	

–  max_regret: choose the variable v with largest 

difference between the two smallest values in its 
domain	




First Fail Labelling!

•  One useful heuristic is the first-fail 
principle	

	
“To succeed, try first where you are most 
likely to fail”	


•  At each step choose the variable with the 
smallest domain.	


•  Do this dynamically based on the domain 
size after propagation.	




First fail labelling: Ex. N queens!

q[6] != 4q[6]=4

q[3] != 5q[3] = 5

q[2] != 3q[2] = 3

q[1]=1 q[1] != 1

a

b c

q[1] q[2] q[3] q[4] q[5] q[6] q[7] q[8] q[9]

1

2

3

4

5

6

7

8

9

q[1] q[2] q[3] q[4] q[5] q[6] q[7] q[8] q[9]

1

2

3

4

5

6

7

8

9

solve :: int_search(q, first_fail, indomain_min, complete)  satisfy;!

minimum domain 
size = 2 

variable fixed 

false 
domain 



Regret Based Search!
•  max_regret: choose the variable v with largest difference 

between the two smallest values in its domain	

•  Usually tied with indomain_min!
•  Used when selecting to minimize costs	

•  pw[i] = profit from worker I	

•  max regret search	


  

€ 

p1 p2 p3 p4
w1 7 2 5 5

w2 8 2 5 1

w3 4 3 7 2

w4 3 1 3 3

•  pw1 (regret 3) 

•  pw3 (regret 3) 
•  pw2 (regret 4) 

•  Total cost = 10 



Smallest Search!
•  smallest: choose the variable v with smallest value in its 

domain	

•  Again usually tied with indomain_min!
•  Used when selecting to minimize costs	

•  pw[i] = profit from worker I	

•  smallest search	


  

€ 

p1 p2 p3 p4
w1 7 2 5 5

w2 8 2 5 1

w3 4 3 7 2

w4 3 1 3 3

•  pw2 (smallest 1) 

•  pw3 (smallest 4) 
•  pw4 (smallest 1) 

•  Total cost = 11 



Value selection!

•  int_search(vars, var_select, choice, explore)	

•  Value selection strategies:	


–  indomain_min: d = smallest value in domain	

–  indomain_man: d = largest value in domain	

–  indomain_median: d = median domain value	

–  indomain_random: d is a random value from the domain	

–  indomain: try all values in order lowest to highest	


•  value set search, not a labelling search	




indomain labelling example!

S = 9, E in 4..7, N in 5..8, D in 2..8, 
M = 1, O = 0, R in 2..8, Y in 2..8 

after initial 
propagation 

E = 4 

False 
domain 

E = 5 
S = 9, E = 5, N = 6, D = 7, 
M = 1, O = 0, R = 8, Y = 2 

False 
domain 

False 
domain 

E = 6 

E = 7 

solve :: int_search([S,E,N,D,M,O,R,Y], input_order, , complete)!
         satisfy;!



Value selection question!

•  What is the difference between	

–  indomain, and	

–  indomain_min ?	




Splitting!

•  Particularly with strongly arithmetic variables it 
can be better to split the domain	


•  Splitting choice strategies:	

–  indomain_split: v ≤ d ∨ v > d 	


•  where d = (min(D,v) + max(D,v)) div 2	


–  indomain_reverse_split: v > d ∨v ≤ d 	

•  Splitting doesn’t make sense unless there are 

constraints that can propagate bounds	




Splitting example!
S = 9, E in 4..7, N in 5..8, D in 2..8, 

M = 1, O = 0, R in 2..8, Y in 2..8 
after initial 
propagation 

E ≤ 5 E > 5 

False 
domain 

S = 9, E in 6..7, N in 7..8, D in 2..8, 
M = 1, O = 0, R in 2..8, Y in 2..8 

E ≤ 4 

S = 9, E = 5, N = 6, D = 7, 
M = 1, O = 0, R = 8, Y = 2 

False 
domain 

False 
domain 

S = 9, E in 4..5, N in 5..6, D in 2..8, 
M = 1, O = 0, R in 2..8, Y in 2..8 

E > 4 
E ≤ 6 E > 6 



Search variables!

•  int_search(vars, var_select, choice, explore)	

•  The variables to be searched on are an important 

part of any search strategy	

–  usually enough so that fixing them fixes all variables	


•  The search does not need to fix the C1,C2,C3 vars	

–  they are fixed when [S,E,N,D,M,O,R,Y] are fixed	


include "all_different.mzn";!
var 1..9: S; !
var 0..9: E; !
var 0..9: N; !
var 0..9: D; !
var 1..9: M; !
var 0..9: O;!
var 0..9: R; !
var 0..9: Y;!

var 0..1: C1;!
var 0..1: C2;!
var 0..1: C3;!

constraint D + E = 10*C1 + Y;!
constraint N + R = 10*C2 + E;!
constraint E + O = 10*C3 + N;!
constraint S + M = 10*M + O;!

constraint all_different
([S,E,N,D,M,O,R,Y]);!

solve :: int_search(!
!            [S,E,N,D,M,O,R,Y],!

                  input_order,!
                  indomain_min,!
                  complete)!
         satisfy;!



Search Variables Example!

include "all_different.mzn";!
int: n;!
array[1..n] of var 1..n: x;      % sequence of numbers!
array[1..n-1] of var 1..n-1: u;  % sequence of differences!

constraint all_different(x);!
constraint all_different(u)!
constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i])));!

solve :: int_search(x, first_fail, indomain_min, complete)!
      satisfy;!
output ["x = ",show(x),"\n"];!

allinterval problem: Find a sequence of numbers 1..n such that all 
the differences between adjacent numbers are also different	


Search on x variables is enough to fix u variables	




Search Variables Example!

include "inverse.mzn";!
int: n;!
array[1..n] of var 1..n: x;  % sequence of numbers!
array[1..n-1] of var 1..n-1: u;  % sequence of differences!
constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i])); !
array[1..n] of var 1..n: y;  % position of each number!
array[1..n-1] of var 1..n-1: v; % position of difference I!
constraint inverse(x,y);    !
constraint inverse(u,v);!
constraint abs(y[1] - y[n]) = 1 /\ v[n-1] = min(y[1], y[n]); % redundant!

solve :: int_search(y, first_fail, indomain_min, complete)  satisfy;!

output ["x = ",show(x),"\n"];!

A better search: search on which position each number is in	

But how? Dual model with channeling!	


For n = 10  this model requires 1714 choices for all sols vs 84598	




Programming Search!

•  Variable selection can make a big difference	

–  in size of search tree	

–  The right variable order is thus very important	


•  Value selection just "reorders" the tree	

–  moves solutions more to the left	

–  "irrelevant" if finding all solutions	

–  not irrelevant for optimization	


•  finding good solutions early reduces search!	




Comparing Searches: N Queens!
•  int_search(q, input_order, indomain_min, complete); !
•  int_search(q, input_order, indomain_median, complete); !
•  int_search(q, first_fail, indomain_min, complete); !
•  int_search(q, input_order, indomain_median, complete);!

Number of choices to find first solution !

nqueens-ann.mzn

annotation bitdomain(int:nwords);

include "all_different.mzn";

int: n;
array [1..n] of var 1..n: q :: bitdomain(n div 32);

constraint all_different(q) :: domain;
constraint all_different([ q[i] + i | i in 1..n]) :: domain;
constraint all_different([ q[i] - i | i in 1..n]) :: domain;

ann: search_ann;

solve :: search_ann satisfy;

output [ if fix(q[j]) == i then "Q" else "." endif ++
if j == n then "\n" else "" endif | i,j in 1..n]

Figure 38: Annotated model for n-queens (nqueens-ann.mzn).

Different search strategies can make a significant difference in how easy it is to
find solutions. A small comparison of the number of choices made to find the first
solution of the n-queens problems using the 4 different search strategies is shown
in the table below (where — means more than 100,000 choices). Clearly the right
search strategy can make a significant difference.

n input-min input-median ff-min ff-median
10 28 15 16 20
15 248 34 23 15
20 37330 97 114 43
25 7271 846 2637 80
30 — 385 1095 639
35 — 4831 — 240
40 — — — 236

50



Complex Searches!

•  Actually very many different complex search 
strategies have been used/defined for FD solvers	


•  MiniZinc only supports one complex search 
constructor: sequential search	

–  seq_search( [ search_ann, …, search_ann ])	


•  Complete the first search before starting the next 
one.	




Jobshop scheduling!

include "disjunctive.mzn";!
int: jobs;                                                            % no of jobs!
int: tasks;                                                          % no of tasks per job!
array [1..jobs,1..tasks] of int: d;                          % task durations!
int: total = sum(i in 1..jobs, j in 1..tasks) (d[i,j]);   % total duration!
array [1..jobs,1..tasks] of var 0..total: s;              % start times!
var 0..total: end;                                                 % total end time!
constraint %% ensure the tasks occur in sequence!
    forall(i in 1..jobs) (  forall(j in 1..tasks-1) !
                                        (s[i,j] + d[i,j] <= s[i,j+1]) /\!
                                  s[i,tasks] + d[i,tasks] <= end       );!
constraint %% ensure no overlap of tasks!
    forall(j in 1..tasks) ( disjunctive([s[i,j] | i in 1..jobs], [d[i,j] | i in 1..jobs]) );!
solve minimize end;!

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3



Jobshop search strategies!

•  seq_search([!
!int_search([s[i.j]| i in 1..jobs, j in 1..tasks],!
! ! !      smallest, indomain_min, complete),!
!int_search([end], input_order, indomain_min, complete)!

])!
Place earliest tasks first, when finished set end to minimum time!	


•  seq_search([!
!int_search([end], input_order, indomain_min, complete),!
!int_search([s[i.j]| i in 1..jobs, j in 1..tasks],!
! ! !      smallest, indomain_min, complete)!

])!
Optimistic search: Search for a solution with least end time, if that fails 

search for one higher. Search for solutions using earliest start time.	




Annotations!
•  Annotations are how to communicate information 

to the solver from a MiniZinc model	

–  first class object: type ann, annotation variables	

–  can be defined in data files	

–  you can create your own new annotations	


•  annotation <ann-name> ( <arg-def> .. <arg-def> )	

ann: search;!
ann: subsearch = int_search([s[i.j]| i in 1..jobs, j in 1..tasks],!

! ! !              smallest, indomain_min, complete);!
solve :: search minimize end;!
(data file 1) search = subsearch;!
(data file 2) search = seq_search([subsearch, int_search

([end], input_order, indomain_min, complete)]);!



Annotations apart from search!
•  Annotations can be used to transmit information to 

the solver by annotating variables and constraints	

–  mzn2fzn adds annotations	


•  :: is_defined_var variable is and introduced variable with 
defn	


•  :: defines_var(x) this constraint defined variable 	

–  Possible variable annotations	


•  :: bounds_only only store bounds for variable	

•  :: bitdomain(32) store domain as bit string	


–  Possible constraint annotations	

•  :: bounds use bounds propagation	

•  :: domain use domain propagation 	


•  Dependent on solver, allowed to be ignored!	




Restarts + Heavy tails!

Standard Distribution 
(finite mean & 

variance) 

Power series 
decay 

Exponential 
decay 



Heavy Tailed Behaviour!

75% ≤ 30 5% ≥ 100000 

Searching for solutions to Quasigroup completion problems 



Restarts!

•  If 75% finish in 30 backtracks	

–  after 50 backtracks why not start again	

–  you might be in one of the 5% that require > 100,000	


•  Restarting conquers heavy tailed behaviour	




X X X XX

solved 
10 10 10 10 10 

Sequential: 50 +1 = 51 seconds 

Parallel:  10 machines --- 1 second 
51 x speedup 

Interleaved (1 machine): 10 x 1 = 10 seconds 
                 5 x speedup 

Super linear speedups!



Restart Strategies!

Policy for when to restart 	

•  Constant restart – after using L resources	

•  Geometric restart	


–  restart after using L resources, with new limit α L	

•  Luby restart	


–  1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, … 	

–  "universally optimal" for randomized algorithms: 	


•  no worse than a log factor slower than optimal policy	

•  not bettered by more than a constant factor by other universal 

policies	




Limits + Restart in MiniZinc!
•  Not in MiniZinc 1.1.5 (but is on slippers2 .. )	

•  limit(<Measure>, <Limit>, <Search>)	


–  <Measure> is one of fails, solutions, nodes, time!
–  <Limit> is the limit where we fail	

–  <Search> is the search we limit	


•  Examples	

limit(time, 10, !
      int_search(x, smallest, indomain, complete)!

limit(time, 600, !
        seq_search([!
          int_search(x,input_order,indomain_random,complete),!
! !   int_search(y, smallest, indomain_min, complete)!

        ])!
      )!



Restarts in MiniZinc!
•  Geometric Restart only on fails	

•  restart_geometric(<IncrementF>, <LimitF>, <Search>)	


–  <IncrementF> is float we multiply fail limit by	

–  <LimitF> is initial (float) fail limit	

–  <Search> is the search strategy	


•  Example (for n-queens)	

	
restart_geometric(1.2, int2float(2 * n), !

! !int_search(q, first_fail, indomain_random, complete))!

•  Note restart makes no sense if nothing changes 	




Autonomous Search!
•  A highly active research area in constraint 

programming (all rely on restarting)	

•  Automatic search strategies examples	


–  dom_w_deg: choose a variable with minimum	

•  domain size / sum of failures caused by constraints it is in	


–  impact: record for each v = d constraint	

•  the average change in product of domain sizes when this 

choice is made = impact of decision	

•  choose the variable v with maximum impact	

•  choose the value d for v with minimum impact	


–  activity: record for v = d, v ≤ d, v ≥ d, v ≠ d 	

•  when it is involved in a failure (requires tracking implications)	

•  decay activities, to focus on more recent failures	

•  choose the constraint with highest activity	




Dom_w_deg!

•  Domain / weighted degree	

–  degree in the number of constraints the var is in	


•  dom_w_deg: choose a variable with minimum	

–  domain size / sum of failures by constraints it is in	


•  Each variable gets a fail count (= number of 
constraints initially)	


•  Each time a constraint detects failure 	

–  increment fail count for all variables involved	


•  Choose the variable with minimum	

–  domain size / failcount	




b1

b2

b3

b15

x x

x

x

x

Dom_w_deg!
•  Why does it work	

include "all_different.mzn”;!
array[1..15] of var 0..1: b;!
array[1..4] of var 1..10: x;!
constraint sum(b) >= 1 /\ exists([b[i] == 1 | i in 1..15]);!
constraint all_different(x) /\ sum(i in 1..4)(x[i]) = 9;!
solve :: int_search(b++x, first_fail, indomain_min, complete) 

satisfy;	

–  491504 choices to fail	


•  Change to dom_w_deg!
–  182 choices to fail 	


•  first branch choose bs then xs	

•  since all failure is on xs we never rechoose a 	

	
b on backtracking	


x x x

b



Impact!
•  Measure the impact on total domain size of each 

decision	

–  make decisions on variables with high impact	


•  small search tree	


–  take values with low impact	

•  solutions more likely	


•  Raw search space 	


•  Impact(v=d) = size(D) / size(D') where D' is 
domain after propagation	


€ 

size(D) = | D(v) |
v∈var(D )
∏



Impact!
•  For each v = d	


–  keep track of (log of) total impact	

–  total number of times selected as choice	

–  can determine average impact	


•  Impact of v	

–  average impact of (v = d) for d in Dinit(v)	


•  Simpler implementation	

–  keep track of average impact	

–  avimpact' = (avimpact + impact)/2	




Impact in MiniZinc!

•  Can use impact currently only with 
indomain_split!

•  Jobshop scheduling: schedule start times s[i,j]	

•  solve :: int_search([s[i,j] | i in 1..jobs, j in 1..tasks], impact,!

!                            indomain_split, complete)!
!      minimize end;!

•  Will concentrate on tasks that cause the most 
change in domains	

–  those which precede many tasks (since we set there 

start time)	




Activity-based Search!

•  We will examine after we have studied	

–  Boolean Satisfiability Search	

	
where it was devised.	




Comparing Search Strategies!

•  Simple jobshop scheduling problem 5x5	

1.  first_fail + indomain_min	

2.  smallest + indomain_min	

3.  dom_w_deg + indomain_min	

4.  impact + indomain_split	

5.  default (first_fail on all variables + indomain_min) 	


Search	
 Choices	
 Time (s)	
 Solns to Opt.	

1	
 1116263	
 1m30	
 9	

2	
 6493819	
 5m7	
 7	

3	
 191	
 0.10	
 6	

4	
 425	
 0.14	
 8	

5	
 306	
 0.11	
 6	




Limited Discrepancy Search!

•  Programmed search difficulties	

–  most important decisions at top of tree	

–  where least information is available	


•  Restarting fixes this to some degree	

–  restart with better information	


•  Restarting usually changes the order of variables 
selected	


•  What about changing the order of values selected?	




Limited Discrepancy Search!
•  Assume binary choice	


–  assume left choice is good, right is discrepancy	

•  Search first 	


–  no discrepancies, 1 discrepancy, 2 discrepancy, …	


x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

10 1 2 1 2 2 3 1 2 2 3 2 3 3 4



Limited Discrepancy Search!
•  Assume binary choice	


–  assume left choice is good, right is discrepancy	

•  Search first 	


–  no discrepancies, 1 discrepancy, 2 discrepancy, …	


x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

10 1 2 1 2 2 3 1 2 2 3 2 3 3 4



Limited Discrepancy Search!
•  Assume binary choice	


–  assume left choice is good, right is discrepancy	

•  Search first 	


–  no discrepancies, 1 discrepancy, 2 discrepancy, …	


x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

10 1 2 1 2 2 3 1 2 2 3 2 3 3 4



Limited Discrepancy Search!
•  Assume binary choice	


–  assume left choice is good, right is discrepancy	

•  Search first 	


–  no discrepancies, 1 discrepancy, 2 discrepancy, …	


x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

10 1 2 1 2 2 3 1 2 2 3 2 3 3 4



Limited Discrepancy Search!
•  Effectively reorders the way we visit leaves	

•  Implemented by restarting	

•  Note unless we know the depth of the tree 	


–  we have to visit all < k discrepancies to find all k 
discrepancies	


•  Simple jobshop scheduling 5x5: 	

	
smallest + indomain_min                first_fail + indomain_min	


LDS 
Limit	


Best 
sol	


Time 
(s)	


Solns to 
Best	


not lds	
 30	
 5m7	
 7	

1	
 31	
 0.06	
 4	

2	
 30	
 0.08	
 5	

4	
 30	
 0.29	
 5	

8	
 30	
 5.1	
 5	


LDS 
Limit	


Best 
sol	


Time 
(s)	


Solns to 
Best	


not lds	
 30	
 1m30	
 9	

1	
 41	
 0.06	
 1	

2	
 33	
 0.22	
 5	

4	
 30	
 0.36	
 6	

8	
 30	
 1.7	
 6	




Summary!

•  Constraint programming techniques are based on backtracking 
search	


•  Reduce the search using consistency methods	

–     incomplete but faster	

–  	
 node, arc, bound, generalized	


•  Optimization can be based on a branch & bound with a 
backtracking search	


•  Very general approach, not restricted to linear constraints.	

•  Programmer can add new global constraints and program their 

propagation behaviour.	




Exercise 1: Send-most-money!

•  The send-most-money problem is to find different 
digits that make the cryptarithmetic problem:	

	
 	
SEND + MOST = MONEY	

	
hold while maximizing MONEY (ie. 10000*M+ 
1000*O+100*N_10*E+Y)	


•  Write a MiniZinc model and try out different 
search strategies to solve it. Which requires the 
least choices?	




Comparison between CP and MIP!

•  What are the similarities?	

•  What are the strengths of MIP?	

•  What are the strengths of CP?	

•  Does it make sense to combine them?	




Homework!

•  Read Chapter 3 of Marriott&Stuckey, 1998	

•  Solve the Australian Map Colouring problem by hand 

using simple backtracking, then with arc consistency and 
backtracking.	


•  Give propagation rules for constraints of form	

	
 	
a1 X1 + … + an Xn ≤ b1 Y1 + … + bm Ym + c	

	
where each ai, , bi > 0.	




Homework!

•  Read Chapter 3 of Marriott&Stuckey, 1998	

•  Solve the Australian Map Colouring problem by hand 

using simple backtracking, then with arc consistency and 
backtracking.	


•  Give propagation rules for constraints of form	

	
 	
a1 X1 + … + an Xn ≤ b1 Y1 + … + bm Ym + c	

	
where each ai, , bi > 0.	


•  MiniZinc provides decision variables which are sets of 
integer and normal set operations including cardinality. 
How would you 	

–  Represent sets?	

–  Program these constraints using propagation rules?	



