

Programming Search!

How can we control the search in a finite domain programming solver

Overview

- Finite Domain Search
- Variable Selection
- Value Selection
- Splitting
- Complex Search Strategies
- Autonomous Search

Search with finite domain prop.

• search(F_0 , F_n , D) $D := \mathsf{isolv}(F_0, F_n, D)$ **if** (*D* is a false domain) **return** *false* **if** (*D* is not a valuation domain) choose $\{c_1, \ldots, c_m\}$ where $C \wedge D$ \sum_{m} *implies* c_1 \vee \ldots \vee c_m **for** (*i* in 1..*m*) **if** (search(F_0 union F_n , prop(c_i), D)) !!!**return** *true* **return** *false*

return *true*

Choice

- choose $\{c_1,..,c_m\}$ where
	- $-CAD$ implies c_1 \vee ... $\vee c_m$
- Usually (Labelling):
	- select a variable *v*
	- select a value *d*

 $-c_1 \approx v = d, c_2 \approx v \neq d$

• Although sometimes (Splitting): $-c_1 \approx v \leq d$, $c_2 \approx v > d$

- Rarely, something more complex
	- $-$ value set: $c_1 ≈ v_1 = d$, $c_2 ≈ v_2 = d$, ..., $c_n ≈ v_n = d$
	- constraint split: c_1 ≈ v_1 = v_2 , c_2 ≈ v_1 ≠ v_2

Labelling in MiniZinc!

• We can add solver specific information to MiniZinc models using annotations

- solve :: int_search([S,E,N,D,M,O,R,Y], input_order, indomain_min, complete) satisfy;
- Label the variables $[S, E, N, D, M, O, R, Y]$ in order (input_order) trying the lowest value first (indomain_min), ignoring fixed variables

Labelling example!

Variable selection!

- int_search(*vars*, *var_select*, *choice*, *explore*)
- Variable selection strategies
	- input_order: in the given order
	- first_fail: choose the variable *v* with smallest domain
	- smallest: choose the variable *v* with smallest value in domain
	- largest: choose the variable *v* with largest value in domain
	- max_regret: choose the variable *v* with largest difference between the two smallest values in its domain

First Fail Labelling!

• One useful heuristic is the **first-fail principle**

"To succeed, try first where you are most likely to fail"

- At each step choose the variable with the smallest domain.
- Do this dynamically based on the domain size after propagation.

First fail labelling: Ex. N queens

solve :: int_search(q, first_fail, indomain_min, complete) satisfy;

Regret Based Search!

- $max_regret: choose the variable v with largest difference$ between the two smallest values in its domain
- Usually tied with indomain_min
- Used when selecting to minimize costs
- pw[i] = profit from worker *I*
- max regret search
	- pw1 (regret 3)
	- pw2 (regret 4)
	- pw3 (regret 3)
- Total cost $= 10$

Smallest Search!

- smallest: choose the variable *v* with smallest value in its domain
- Again usually tied with indomain_min
- Used when selecting to minimize costs
- pw[i] = profit from worker *I*
- smallest search
	- pw2 (smallest 1)
	- pw4 (smallest 1)
	- pw3 (smallest 4)
- Total cost $= 11$

Value selection!

- int_search(*vars*, *var_select*, *choice*, *explore*)
- Value selection strategies:
	- $-$ indomain_min: $d =$ smallest value in domain
	- $-$ indomain_man: $d =$ largest value in domain
	- $-$ indomain_median: d = median domain value
	- indomain_random: d is a random value from the domain
	- indomain: try all values in order lowest to highest
		- value set search, not a labelling search

indomain labelling example

solve :: int_search([S,E,N,D,M,O,R,Y], input_order, indomain, complete) satisfy;

Value selection question!

- What is the difference between
	- indomain, and
	- indomain_min ?

Splitting

- Particularly with strongly arithmetic variables it can be better to split the domain
- Splitting choice strategies:
	- indomain_split: *v ≤ d* ∨ *v* > *d*
		- where $d = (\min(D, v) + \max(D, v))$ div 2
	- indomain_reverse_split: *v* > *d* ∨*v ≤ d*
- Splitting doesn't make sense unless there are constraints that can propagate bounds

Splitting example!

Search variables

- int_search(*vars*, *var_select*, *choice*, *explore*)
- The variables to be searched on are an important part of any search strategy
	- usually enough so that fixing them fixes all variables

• The search does not need to fix the C1,C2,C3 vars

– they are fixed when [S,E,N,D,M,O,R,Y] are fixed

Search Variables Example!

allinterval problem: Find a sequence of numbers 1..n such that all the differences between adjacent numbers are also different

```
include "all_different.mzn";
int: n;
array[1..n] of var 1..n: x; % sequence of numbers
array[1..n-1] of var 1..n-1: u; % sequence of differences
```

```
constraint all_different(x);
constraint all_different(u)
constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i])));
```

```
solve :: int_search(x, first_fail, indomain_min, complete)
     satisfy;
output ['x = ",show(x), "\n"];
```
Search on *x* variables is enough to fix *u* variables

Search Variables Example!

A better search: search on which position each number is in But how? Dual model with channeling!

```
include "inverse.mzn";
int: n;
array[1..n] of var 1..n: x; % sequence of numbers
array[1..n-1] of var 1..n-1: u; % sequence of differences
constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i]));
array[1..n] of var 1..n: y; % position of each number
array[1..n-1] of var 1..n-1: v; % position of difference I
constraint inverse(x,y); 
constraint inverse(u,v);
constraint abs(y[1] - y[n]) = 1 \land v[n-1] = min(y[1], y[n]); % redundant
```

```
solve :: int_search(y, first_fail, indomain_min, complete) satisfy;
```

```
output ['x = ",show(x), "\n"];
```
For $n = 10$ this model requires 1714 choices for all sols vs 84598

Programming Search!

- Variable selection can make a big difference
	- in size of search tree
	- The right variable order is thus very important
- Value selection just "reorders" the tree
	- moves solutions more to the left
	- "irrelevant" if finding all solutions
	- not irrelevant for optimization
		- finding good solutions early reduces search!

Comparing Searches: N Queens

- int_search(q, input_order, indomain_min, complete);
- int_search(q, input_order, indomain_median, complete);
- int_search(q, first_fail, indomain_min, complete);
- \bullet int_search(q, input_order, indomain_median, complete);

Number of choices to find first solution i strategy of choices to mid mot some

Complex Searches!

- Actually very many different complex search strategies have been used/defined for FD solvers
- MiniZinc only supports one complex search constructor: sequential search

– seq_search([*search_ann*, …, *search_ann*])

• Complete the first search before starting the next one.

Jobshop scheduling!


```
include "disjunctive.mzn";
int: jobs; \% no of jobs
int: tasks; \% no of tasks per job
array [1..jobs,1..tasks] of int: d; % task durations
int: total = sum(i in 1..jobs, j in 1..tasks) (d[i,j]); % total duration
array [1..jobs, 1..tasks] of var 0..total: s; 			 % start times
var 0..total: end; end; end; end time was a set of the se
constraint %% ensure the tasks occur in sequence
```

```
 forall(i in 1..jobs) ( forall(j in 1..tasks-1)
```

```
(s[i,j] + d[i,j] \le s[i,j+1]) / \lambdas[i, tasks] + d[i, tasks] \le end );
```
constraint %% ensure no overlap of tasks

forall(j in 1..tasks) (disjunctive($[s[i,j]$ | i in 1..jobs], $[d[i,j]$ | i in 1..jobs])); solve minimize end;

Jobshop search strategies!

• seq_search([

```
int_search([s[i.j]| i in 1..jobs, j in 1..tasks],
              smallest, indomain_min, complete),
int_search([end], input_order, indomain_min, complete)
```
])

Place earliest tasks first, when finished set end to minimum time!

```
• seq_search([
```

```
int_search([end], input_order, indomain_min, complete),
int_search([s[i.j]| i in 1..jobs, j in 1..tasks],
              smallest, indomain_min, complete)
```
])

Optimistic search: Search for a solution with least end time, if that fails search for one higher. Search for solutions using earliest start time.

Annotations

- Annotations are how to communicate information to the solver from a MiniZinc model
	- first class object: type ann, annotation variables
	- can be defined in data files
	- you can create your own new annotations
		- annotation <ann-name> (<arg-def> .. <arg-def>)

ann: search;

```
ann: subsearch = int_search([s[i,j]| i in 1..jobs, j in 1..tasks],
```
smallest, indomain_min, complete);

solve :: search minimize end;

 $(data file 1) search = subsearch;$

 $(data file 2) search = seq_search([subsearch, int_search])$ ([end], input_order, indomain_min, complete)]);

Annotations apart from search!

- Annotations can be used to transmit information to the solver by annotating variables and constraints
	- mzn2fzn adds annotations
		- :: is_defined_var variable is and introduced variable with defn
		- :: defines_var(x) this constraint defined variable
	- Possible variable annotations
		- :: bounds_only only store bounds for variable
		- :: bitdomain(32) store domain as bit string
	- Possible constraint annotations
		- \therefore bounds use bounds propagation
		- :: domain use domain propagation
- Dependent on solver, allowed to be ignored!

Standard Distribution (finite mean & variance)

Heavy Tailed Behaviour

Searching for solutions to Quasigroup completion problems

Heavy-Tailed Behavior

Restarts

- If 75\% finish in 30 backtracks
	- after 50 backtracks why not start again
	- you might be in one of the 5% that require $> 100,000$
- Restarting conquers heavy tailed behaviour

Super linear speedups

Restart Strategies

Policy for when to restart

- Constant restart after using *L* resources
- Geometric restart
	- $-$ restart after using *L* resources, with new limit αL
- Luby restart
	- $-1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, \ldots$
	- "universally optimal" for randomized algorithms:
		- no worse than a log factor slower than optimal policy
		- not bettered by more than a constant factor by other universal policies

Limits + Restart in MiniZinc!

- Not in MiniZinc 1.1.5 (but is on slippers2...)
- limit(<Measure>, <Limit>, <Search>)
	- <Measure> is one of fails, solutions, nodes, time
	- $-$ <Limit is the limit where we fail
	- $-$ <Search is the search we limit
- Examples

```
limit(time, 10, 
      int search(x, smallest, indomain, complete)
limit(time, 600, 
        seq_search([
          int search(x,input order,indomain random, complete),
          int search(y, smallest, indomain min, complete)
         ])
 )
```


Restarts in MiniZinc!

- Geometric Restart only on fails
- restart_geometric(<IncrementF>, <LimitF>, <Search>)
	- <IncrementF> is float we multiply fail limit by
	- <LimitF> is initial (float) fail limit
	- <Search> is the search strategy
- Example (for n-queens)

restart_geometric(1.2, int2float(2 * n), int_search(q, first_fail, indomain_random, complete))

• Note restart makes no sense if nothing changes

Autonomous Search!

- A highly active research area in constraint programming (all rely on restarting)
- Automatic search strategies examples
	- dom_w_deg: choose a variable with minimum
		- domain size / sum of failures caused by constraints it is in
	- impact: record for each $v = d$ constraint
		- the average change in product of domain sizes when this choice is made = impact of decision
		- choose the variable *v* with maximum impact
		- choose the value *d* for *v* with minimum impact
	- $-$ activity: record for $v = d$, $v \le d$, $v \ge d$, $v \ne d$
		- when it is involved in a failure (requires tracking implications)
		- decay activities, to focus on more recent failures
		- choose the constraint with highest activity

Dom_w_deg

- Domain / weighted degree
	- degree in the number of constraints the var is in
- dom_w_deg: choose a variable with minimum
	- domain size / sum of failures by constraints it is in
- Each variable gets a fail count (= number of constraints initially)
- Each time a constraint detects failure
	- increment fail count for all variables involved
- Choose the variable with minimum
	- domain size / failcount

Dom_w_deg

b1 b2 • Why does it work include "all_different.mzn"; array[1..15] of var 0..1: b; array[1..4] of var 1..10: x; constraint sum(b) >= $1 / \sqrt{\text{exists}([b[i] == 1 | i in 1..15])}$; constraint all_different(x) \land sum(i in 1..4)(x[i]) = 9; solve :: int_search(b++x, first_fail, indomain_min, complete) satisfy;

b3

x

x

x

b15

 $x \setminus /x \setminus \cdots \cdots \setminus x$

b

 $x \left\backslash \right.$ / x

- 491504 choices to fail
- Change to dom_w_deg
	- 182 choices to fail
		- first branch choose *b*s then *x*s
		- since all failure is on *x*s we never rechoose a *b* on backtracking

Impact

- Measure the impact on total domain size of each decision
	- make decisions on variables with high impact
		- small search tree
	- take values with low impact
		- solutions more likely
- Raw search space $size(D) = \prod |D(v)|$
- Impact($v=d$) = $size(D)$ / $size(D')$ where *D'* is domain after propagation $v \in \text{var}(D)$

Impact

- For each $v = d$
	- keep track of (log of) total impact
	- total number of times selected as choice
	- can determine average impact
- Impact of *v*

– average impact of $(v = d)$ for *d* in $D_{init}(v)$

- Simpler implementation
	- keep track of average impact
	- avimpact' = $($ avimpact + impact $)/2$

Impact in MiniZinc!

- Can use impact currently only with indomain_split
- Jobshop scheduling: schedule start times s[i,j]
- solve :: int_search([s[i,j] | i in 1..jobs, j in 1..tasks], impact, indomain_split, complete)

minimize end;

- Will concentrate on tasks that cause the most change in domains
	- those which precede many tasks (since we set there start time)

Activity-based Search!

• We will examine after we have studied – Boolean Satisfiability Search where it was devised.

Comparing Search Strategies!

- Simple jobshop scheduling problem $5x5$
	- 1. first_fail + indomain_min
	- 2. smallest + indomain_min
	- 3. dom_w_deg + indomain_min
	- 4. impact + indomain_split
	- 5. default (first_fail on all variables + indomain_min)

- Programmed search difficulties
	- most important decisions at top of tree
	- where least information is available
- Restarting fixes this to some degree
	- restart with better information
- Restarting usually changes the order of variables selected
- What about changing the order of values selected?

- Assume binary choice
	- assume left choice is good, right is discrepancy
- Search first
	- no discrepancies, 1 discrepancy, 2 discrepancy, …

- Assume binary choice
	- assume left choice is good, right is discrepancy
- Search first
	- no discrepancies, 1 discrepancy, 2 discrepancy, …

- Assume binary choice
	- assume left choice is good, right is discrepancy
- Search first
	- no discrepancies, 1 discrepancy, 2 discrepancy, …

- Assume binary choice
	- assume left choice is good, right is discrepancy
- Search first
	- no discrepancies, 1 discrepancy, 2 discrepancy, …

- Effectively reorders the way we visit leaves
- Implemented by restarting
- Note unless we know the depth of the tree
	- we have to visit all < *k* discrepancies to find all *k* discrepancies
- Simple jobshop scheduling 5x5:

smallest + indomain_min first_fail + indomain_min

LDS Best Limit	sol	Time (s)	Solns to Best
not lds	30	1 _{m30}	
1	41	0.06	
$\overline{2}$	33	0.22	5
	30	0.36	
8	30	1.7	

Summary

- Constraint programming techniques are based on backtracking search
- Reduce the search using consistency methods
	- incomplete but faster
	- node, arc, bound, generalized
- Optimization can be based on a branch & bound with a backtracking search
- Very general approach, not restricted to linear constraints.
- Programmer can add new global constraints and program their propagation behaviour.

Exercise 1: Send-most-money!

• The send-most-money problem is to find different digits that make the cryptarithmetic problem: $SEND + MOST = MONEY$

hold while maximizing MONEY (ie. 10000*M+ 1000*O+100*N_10*E+Y)

• Write a MiniZinc model and try out different search strategies to solve it. Which requires the least choices?

Comparison between CP and MIP

- What are the similarities?
- What are the strengths of MIP?
- What are the strengths of CP?
- Does it make sense to combine them?

Homework!

- Read Chapter 3 of Marriott & Stuckey, 1998
- Solve the Australian Map Colouring problem by hand using simple backtracking, then with arc consistency and backtracking.
- Give propagation rules for constraints of form $a_1 X_1 + ... + a_n X_n \le b_1 Y_1 + ... + b_m Y_m + c$ where each a_i , $b_i > 0$.

Homework!

- Read Chapter 3 of Marriott & Stuckey, 1998
- Solve the Australian Map Colouring problem by hand using simple backtracking, then with arc consistency and backtracking.
- Give propagation rules for constraints of form $a_1 X_1 + ... + a_n X_n \le b_1 Y_1 + ... + b_m Y_m + c$

where each a_i , $b_i > 0$.

- MiniZinc provides decision variables which are sets of integer and normal set operations including cardinality. How would you
	- Represent sets?
	- Program these constraints using propagation rules?