Finite Domain Propagation

A very general method to tackle discrete combinatorial optimization problems
Solving Discrete Problems

Linear programming solves *continuous* problem—problems over the real numbers.

Discrete problems are problems over the integers

Discrete problems are harder than continuous problems.

We will look at the following discrete solving methods
 • Finite Domain Propagation
 • Integer Programming
 • Network Flow Problems
 • Boolean Satisfiability
 • Local Search
Overview

- Constraint satisfaction problems (CSPs)
- A backtracking solver
- Node and arc consistency
- Bounds consistency
- Propagators and Propagation Solving
- Consistency for sets
- Combining consistency methods with backtracking
- Optimization for arithmetic CSPs
A **constraint satisfaction problem (CSP)** consists of:
- A *conjunction of primitive constraints* C over variables $X_1, ..., X_n$
- A *domain* D which maps each variable X_i to a set of possible values $D(X_i)$

CSPs arose in Artificial Intelligence (AI) and where one of the reasons consistency techniques were developed.
• Many of the problems we looked at in Modelling and Advanced Modelling were constraint satisfaction problems
 – graph coloring (Australia)
 – stable marriage
 – send-more-money
 – n-queens

• Those with solve satisfy
A classic CSP is the problem of coloring a map so that no adjacent regions have the same color.

Can the map of Australia be colored with 3 colors?

\[
\begin{align*}
 WA &\ne NT \land WA \ne SA \land NT \ne SA \land \\
 NT &\ne Q \land SA \ne Q \land SA \ne NSW \land \\
 SA &\ne V \land Q \ne NSW \land NSW \ne V \\
\end{align*}
\]

\[
\begin{align*}
 D(WA) & = D(NT) = D(SA) = D(Q) = \\
 D(NSW) & = D(V) = D(T) = \\
 \{\text{red, yellow, blue}\}
\end{align*}
\]
Place 4 queens on a 4 x 4 chessboard so that none can take another.

Four variables Q1, Q2, Q3, Q4 representing the row of the queen in each column. Domain of each variable is \{1,2,3,4\}

One solution! -->
4-Queens (Cont.)

The constraints:

Not on the same row

\[Q_1 \neq Q_2 \land Q_1 \neq Q_3 \land Q_1 \neq Q_4 \land \]
\[Q_2 \neq Q_3 \land Q_2 \neq Q_4 \land Q_3 \neq Q_4 \land \]

Not diagonally up

\[Q_2 \neq Q_3 + 1 \land Q_1 \neq Q_3 + 2 \land Q_1 \neq Q_4 + 3 \land \]
\[Q_2 \neq Q_3 + 1 \land Q_2 \neq Q_4 + 2 \land Q_3 \neq Q_4 + 1 \land \]

Not diagonally down

\[Q_2 \neq Q_3 - 1 \land Q_2 \neq Q_4 - 2 \land Q_3 \neq Q_4 - 1 \]
Smuggler’s Knapsack

A smuggler with a knapsack with capacity 9, needs to choose items to smuggle to make a profit of at least 30

<table>
<thead>
<tr>
<th>object</th>
<th>profit</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>whiskey</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>perfume</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>cigarettes</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

\[4W + 3P + 2C \leq 9 \land 15W + 10P + 7C \geq 30\]

What should be the domains of the variables?
• The simplest way to solve CSPs is to enumerate all possible solutions and try each in turn
• The backtracking solver:
 – Iterates through the values for each variable in turn
 – Checks that no primitive constraint is false at each stage
• Assume \textit{satisfiable}(c) returns \textit{false} when primitive constraint \textit{c} with no variables is unsatisfiable
• We let \textit{vars}(C) return the variables in a constraint \textit{C}.
The function `partial_satisfiable(C)` checks whether constraint C is unsatisfiable due to it containing a primitive constraint with no variables which is unsatisfiable.

```plaintext
def partial_satisfiable(C):
    for each primitive constraint $c$ in $C$
        if $\text{vars}(c)$ is empty
            if $\text{satisfiable}(c) = \text{false}$ return false
    return true
```
back_solve\((C,D)\)

if \(\text{vars}(C)\) is empty return partial_satisfiable\((C)\)
choose \(x\) in \(\text{vars}(C)\)
for each value \(d\) in \(D(x)\)
 let \(C_1\) be \(C\) with \(x\) replaced by \(d\)
 if partial_satisfiable\((C_1)\) then
 if back_solve\((C_1,D)\) then return true

return false
Backtracking Solve

\[X < Y \land Y < Z \quad D(X) = D(Y) = D(Z) = \{1,2\} \]

\[X < Y \land Y < Z \quad \text{unsatisfiable} \]

Choose \(X \)
\(X = 1 \)
\(X = 2 \)

Choose \(Y \)
\(Y = 1 \)
\(Y = 2 \)

Choose \(Z \)
\(Z = 1 \)
\(Z = 2 \)

\[\text{partial satisfiable false} \]
Consistency Methods

- Unfortunately the worst-case time complexity of simple backtracking is *exponential*
- Instead we can use *fast* (polynomial time) but *incomplete* constraint solving methods:
 - Can return *true*, *false* or *unknown*
- One class are the *consistency methods*:
 - Find an equivalent CSP to the original one with smaller variable domains
 - If any domain is empty the original problem is unsatisfiable
 - *(Similar to tightening constraints in Branch&Cut later!)*
- Consistency methods are *local*—they examine each primitive constraint in isolation
- We shall look at consistency techniques:
 - Node
 - Arc
 - Bounds
 - Domain
Node Consistency

- Primitive constraint c is **node consistent** with domain D
 - if $|\text{vars}(c)| \neq 1$ or
 - if $\text{vars}(c) = \{x\}$ then
 for each d in $D(x)$, $\{x \rightarrow d\}$ is a solution of c

- A CSP is **node consistent** if each primitive constraint in it is node consistent
Node Consistency Examples

This CSP is not node consistent

$$X < Y \land Y < Z \land Z \leq 2$$
$$D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$$

This CSP is node consistent

$$X < Y \land Y < Z \land Z \leq 2$$
$$D(X) = D(Y) = \{1, 2, 3, 4\}, \; D(Z) = \{1, 2\}$$

The map coloring and 4-queens CSPs are node consistent. Why?
Achieving Node Consistency

\[\text{node_consistent}(C, D)\]

\[
\begin{align*}
\text{for each primitive constraint } c \text{ in } C \\
D &:= \text{node_consistent_primitive}(c, D) \\
\text{return } D
\end{align*}
\]

\[\text{node_consistent_primitive}(c, D)\]

\[
\begin{align*}
\text{if } |\text{vars}(c)| = 1 \text{ then} \\
\text{let } \{x\} = \text{vars}(c) \\
D(x) &:= \{ d \in D(x) \mid \{x \rightarrow d\} \text{ is a solution of } c\} \\
\text{return } D
\end{align*}
\]
Let C and D be

$$X < Y \land Y < Z \land Z \leq 2$$

$$D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$$

Then $\text{node_consistent}(C, D)$ returns domain D where

$$D(X) = D(Y) = \{1, 2, 3, 4\}, \ D(Z) = \{1, 2\}$$
Arc Consistency

- A primitive constraint c is *arc consistent* with domain D
 - if $|\text{vars}(c)| \neq 2$ or
 - $\text{vars}(c) = \{x, y\}$ and
 for each d in $D(x)$ there is an e in $D(y)$ such that
 $\{x \rightarrow d, y \rightarrow e\}$ is a solution of c
 and for each e in $D(y)$ there is a d in $D(x)$ such that
 $\{x \rightarrow d, y \rightarrow e\}$ is a solution of c

A CSP is *arc consistent* if each primitive constraint in it is arc consistent
This CSP is node consistent but not arc consistent

\[X < Y \land Y < Z \land Z \leq 2 \]
\[D(X) = D(Y) = \{1,2,3,4\}, \quad D(Z) = \{1,2\} \]

For example the value 4 for \(X \) and \(X < Y \).

The following equivalent CSP is arc consistent

\[X < Y \land Y < Z \land Z \leq 2 \]
\[D(X) = D(Y) = D(Z) = \emptyset \]

The map coloring and 4-queens CSPs are also arc consistent.
Achieving Arc Consistency

- **arc_consistent_primitive(c, D)**

 if $|\text{vars}(c)| = 2$ then

 let $\{x,y\} = \text{vars}(c)$

 $D(x) := \{ d \in D(x) \mid \exists e \in D(y) \{x \rightarrow d, y \rightarrow e\} \text{ is a solution of } c\}$

 $D(y) := \{ e \in D(y) \mid \exists d \in D(x) \{x \rightarrow d, y \rightarrow e\} \text{ is a solution of } c\}$

 return D

- Removes values which are not arc consistent with c
Achieving Arc Consistency (Cont.)

• \texttt{arc_consistent}(C,D)

 \textbf{Repeat}

 \textbf{for} each primitive constraint \(c \) in \(C \)

 \(D := \texttt{arc_consistent_primitive}(c,D) \)

 \textbf{until} no domain changes in \(D \)

 \textbf{return} \(D \)

• Note that iteration is required
• The above is a very naive algorithm
 Faster algorithms are described in "Handbook of Constraint Programming", Elsevier, 2006. (Chapter 2)
Achieving Arc Consistency (Ex.)

- Let C and D be given by
 \[X < Y \land Y < Z \land Z \leq 2 \]
 \[D(X) = D(Y) = \{1,2,3,4\}, \quad D(Z) = \{1,2\} \]

Exercise:

Trace what `arc_consistent(C,D)` will do. Assume that the constraints are processed left to right.
Achieving Arc Consistency (Ex.)

• Let C and D be given by
 \[X < Y \land Y < Z \land Z \leq 2 \]
 \[D(X) = D(Y) = \{1,2,3,4\}, \quad D(Z) = \{1,2\} \]

• Consider \texttt{arc_consistent}(C,D)
 -- calls \texttt{arc_consistent_primitive}(X<Y,D) which updates D to
 \[D(X) = \{1,2,3,\}, \quad D(Y) = \{2,3,4\}, \quad D(Z) = \{1,2\} \]
 -- calls \texttt{arc_consistent_primitive}(Y<Z,D) which updates D to
 \[D(X) = \{1,2,3,\}, \quad D(Y) = \emptyset, \quad D(Z) = \emptyset \]
 -- calls \texttt{arc_consistent_primitive}(Z\leq2,D) which doesn’t change D
 -- calls \texttt{arc_consistent_primitive}(X<Y,D) which updates D to
 \[D(X) = \emptyset, \quad D(Y) = \emptyset, \quad D(Z) = \emptyset \]
 -- calls \texttt{arc_consistent_primitive} 5 more times until it
 recognises that D remains unchanged
Using Node and Arc Consistency

- We can build constraint solvers using these consistency methods
- Two important kinds of domain
 - *False domain*: some variable has an empty domain
 - *Valuation domain*: every variable has a domain with a single value
\[D := \text{node}_\text{consistent}(C,D) \]
\[D := \text{arc}_\text{consistent}(C,D) \]
\[\text{if } D \text{ is a false domain then return } false \]
\[\text{if } D \text{ is a valuation domain then return } \text{satisfiable} \]
\[(C,D) \]
\[\text{return } unknown \]
Node and Arc Solver Example

Colouring Australia: with constraints

\[WA = \text{red} \land NT = \text{yellow} \]

Node consistency

\[WA \neq NT \quad WA \neq SA \quad NT \neq SA \]
\[NT \neq Q \quad SA \neq Q \quad SA \neq NSW \]
\[SA \neq V \quad Q \neq NSW \quad NSW \neq V \]
Colouring Australia: with constraints

\[WA = \text{red} \land NT = \text{yellow} \]

Arc consistency

\[
\begin{array}{cccccccc}
WA & NT & SA & Q & NSW & V & T \\
\text{red} & & & & & & & \\
\text{yellow} & & & & & & & \\
\text{red} & & & & & & & \\
\text{red} & & & & & & & \\
\text{red} & & & & & & & \\
\end{array}
\]

\[
\begin{align*}
WA & \neq NT \\
WA & \neq SA \\
NT & \neq SA \\
NT & \neq Q \\
SA & \neq Q \\
SA & \neq NSW \\
SA & \neq V \\
Q & \neq NSW \\
NSW & \neq V \\
\end{align*}
\]
Colouring Australia: with constraints

\[WA = \text{red} \land NT = \text{yellow} \]

Arc consistency

\[
\begin{align*}
WA &\neq NT \\
NT &\neq Q \\
SA &\neq V \\
WA &\neq SA \\
NT &\neq SA \\
SA &\neq Q \\
SA &\neq NSW \\
Q &\neq NSW \\
NSW &\neq V
\end{align*}
\]
Node and Arc Solver Example

Colouring Australia: with constraints

\[WA = \text{red} \land NT = \text{yellow} \]

\[WA \quad NT \quad SA \quad Q \quad NSW \quad V \quad T \]

Arc consistency

Answer:

\[WA \neq NT \quad WA \neq SA \quad NT \neq SA \]

\[NT \neq Q \quad SA \neq Q \quad SA \neq NSW \]

\[SA \neq V \quad Q \neq NSW \quad NSW \neq V \]
Combined Consistency with BT Search

• We can *combine* consistency methods with the backtracking solver
• Apply node and arc consistency before starting the backtracking solver and after each variable is given a value
• This *reduces* the number of values that need to be tried for each variable.
 I.e. it reduces the *search space*
This is the *finite domain programming* approach
There is no possible value for variable Q3! No value can be assigned to Q3 in this case! Therefore, we need to choose another value for Q2.
We cannot find any possible value for Q4 in this case!

Backtracking…

Find another value for Q3?
No!

Find another value of Q2?
No!

Find another value of Q1?
Yes, Q1 = 2
BT+Consistency -- Example

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>⭐️</td>
<td>⭐️</td>
<td>⭐️</td>
</tr>
<tr>
<td>2</td>
<td>🔴</td>
<td>⭐️</td>
<td>⭐️</td>
</tr>
<tr>
<td>3</td>
<td>⭐️</td>
<td>⭐️</td>
<td>🔵</td>
</tr>
<tr>
<td>4</td>
<td>⭐️</td>
<td>🔵</td>
<td>⭐️</td>
</tr>
</tbody>
</table>
Domain Consistency

• What about primitive constraints with more than 2 variables? E.g. \(X = 3Y + 5Z \).

• **Domain consistency** for \(c \)
 – extend arc consistency to arbitrary number of variables
 – also called *generalized arc* or *hyper-arc* consistency

\[
D'(x_i) = \{ d_i \in D(x_i) \mid \{ x_i \rightarrow d_i \} \text{ is a soln of } c \}
\]

• **Strongest possible propagation!** (for single cons.)

• But **NP-hard** for linear equations (so it’s probably exponential)

• So what's the answer?
Bounds Consistency

• Use *bounds consistency*
• This only works for *arithmetic CSPs*: I.e. CSPs whose constraints are over the integers.
• Two *key* ideas
 – Use consistency over the *real numbers*
 – *map to integer interval arithmetic*
 – Only consider the *endpoints* (upper and lower bounds) of the interval
 – Narrow intervals whenever possible
• Let the *range* \([l..u]\) represent the set of integers
 \(\{l, l+1, ..., u\}\)
 and the empty set if \(l > u\).
• Define \(\text{min}(D,x)\) to be the smallest element in the domain of \(x\)
• Define \(\text{max}(D,x)\) to be the largest
Bounds Consistency

• A primitive constraint c is \textit{bounds(R) consistent} with domain D if for each variable x in $\text{vars}(c)$

 – There exist real numbers d_1, \ldots, d_k for remaining vars x_1, \ldots, x_k such that for each x_i, $\min(D,x_i) \leq d_i \leq \max(D,x_i)$ and

 $\{ x \rightarrow \min(D,x), x_1 \rightarrow d_1, \ldots, x_k \rightarrow d_k \}$

 is a solution of c

 – and there exist real numbers e_1, \ldots, e_k for x_1, \ldots, x_k such that for each x_i, $\min(D,x_i) \leq e_i \leq \max(D,x_i)$ and

 $\{ x \rightarrow \max(D,x), x_1 \rightarrow e_1, \ldots, x_k \rightarrow e_k \}$

 is a solution of c

• An arithmetic CSP is \textit{bounds(R) consistent} if all its primitive constraints are.
Bounds Consistency Examples

\[X = 3Y + 5Z \]
\[D(X) = [2..7], D(Y) = [0..2], D(Z) = [-1..2] \]

Not bounds consistent, consider \(Z=2 \), then \(X-3Y=10 \)

But the domain below is bounds consistent

\[D(X) = [2..7], D(Y) = [0..2], D(Z) = [0..1] \]

Compare with the domain consistent domain

\[D(X) = \{3,5,6\}, D(Y) = \{0,1,2\}, D(Z) = \{0,1\} \]
Achieving Bounds Consistency

- Given a current domain we wish to modify the endpoints of the domains so the result is bounds consistent
- *Propagation rules* do this
- The constraint solver generates propagation rules for each primitive constraint.
- These are repeatedly applied until there is no change in the domain
- We do not need to apply a propagation rule until the domains of the variables involved are modified

We now look at how propagation rules are generated for common kinds of primitive constraint.
Propagation Rules for $X = Y + Z$

Consider the primitive constraint $X = Y + Z$ which is equivalent to the three forms

\[
X = Y + Z \quad Y = X - Z \quad Z = X - Y
\]

Propagation Rules ??
Consider the primitive constraint $X = Y + Z$ which is equivalent to the three forms:

$$X = Y + Z \quad Y = X - Z \quad Z = X - Y$$

Reasoning about minimum and maximum values:

$$X \geq \min(D,Y) + \min(D,Z) \quad X \leq \max(D,Y) + \max(D,Z)$$
$$Y \geq \min(D,X) - \max(D,Z) \quad Y \leq \max(D,X) - \min(D,Z)$$
$$Z \geq \min(D,X) - \max(D,Y) \quad Z \leq \max(D,X) - \min(D,Y)$$
Propagation Rules for $X = Y + Z$

\[X \geq \min(D,Y) + \min(D,Z) \quad X \leq \max(D,Y) + \max(D,Z) \]

\[
X_{\text{min}} := \max \{\min(D,X), \min(D,Y) + \min(D,Z)\} \\
X_{\text{max}} := \min \{\max(D,X), \max(D,Y) + \max(D,Z)\} \\
D(X) := \{ X \in D(X) \mid X_{\text{min}} \leq X \leq X_{\text{max}} \}
\]

\[Y \geq \min(D,X) - \max(D,Z) \quad Y \leq \max(D,X) - \min(D,Z) \]

\[
Y_{\text{min}} := \max \{\min(D,Y), \min(D,X) - \max(D,Z)\} \\
Y_{\text{max}} := \min \{\max(D,Y), \max(D,X) - \min(D,Z)\} \\
D(Y) := \{ Y \in D(Y) \mid Y_{\text{min}} \leq Y \leq Y_{\text{max}} \}
\]

\[Z \geq \min(D,X) - \max(D,Y) \quad X \leq \max(D,X) - \min(D,Y) \]

\[
Z_{\text{min}} := \max \{\min(D,Z), \min(D,X) - \max(D,Y)\} \\
Z_{\text{max}} := \min \{\max(D,Z), \max(D,X) - \min(D,Y)\} \\
D(Z) := \{ Z \in D(Z) \mid Z_{\text{min}} \leq Z \leq Z_{\text{max}} \}
\]
Achieving Bounds Consistency--

Example

\[X = Y + Z \]

\[D(X) = [4..8], D(Y) = [0..3], D(Z) = [2..2] \]

The propagation rules determine that:

\[(0 + 2 =) \ 2 \leq X \leq 5 \ (= 3 + 2) \]
\[(4 - 2 =) \ 2 \leq Y \leq 6 \ (= 8 - 2) \]
\[(4 - 3 =) \ 1 \leq Z \leq 8 \ (= 8 - 0) \]

Hence the domains can be reduced to

\[D(X) = [4..5], D(Y) = [2..3], D(Z) = [2..2] \]
Linear Inequality

\[4W + 3P + 2C \leq 9 \]

\[W \leq \frac{9}{4} - \frac{3}{4} \min(D, P) - \frac{2}{4} \min(D, C) \]
\[P \leq \frac{9}{3} - \frac{4}{3} \min(D, W) - \frac{2}{3} \min(D, C) \]
\[C \leq \frac{9}{2} - \frac{4}{2} \min(D, W) - \frac{3}{2} \min(D, P) \]

Given initial domain:

\[D(W) = [0..9], D(P) = [0..9], D(C) = [0..9] \]

We determine that \[W \leq \left[\frac{9}{4} \right], \quad P \leq \left[\frac{9}{3} \right], \quad C \leq \left[\frac{9}{2} \right] \]

new domain: \[D(W) = [0..2], D(P) = [0..3], D(C) = [0..4] \]
Linear Inequality

- To propagate the general linear inequality

\[\sum_{i=1..n} a_i x_i \leq b \]

- Use propagation rules (where \(a_i > 0 \))

\[
x_i \leq \frac{b - \sum_{j=1..n, j \neq i} a_j \min(D, x_j)}{a_i}
\]
Linear Equation

• To propagate the general linear inequality

\[\sum_{i=1 \ldots n} a_i x_i = b \]

• Use propagation rules (where \(a_i > 0 \))

\[
x_i \leq \frac{b - \sum_{j=1 \ldots n, j \neq i} a_j \min(D, x_j)}{a_i}
\]

\[
x_i \geq \frac{b - \sum_{j=1 \ldots n, j \neq i} a_j \max(D, x_j)}{a_i}
\]
Linear equation example

- \textit{SEND}+\textit{MORE}=\textit{MONEY}
- \textbf{9000M + 900O + 90N - 90E + Y + D - 1000S - 10R = 0}
- \textbf{9000M \leq -900*0 - 90*0 + 90*9 - 0 - 0 + 1000*9 + 10*9}
- \textbf{M \leq 1.1 \Rightarrow M = 1}
- \textbf{1000S \geq 9000*1 + 900*0 + 90*0 - 90*9 + 0 + 0 - 10*9}
- \textbf{S \geq 8.9 \Rightarrow S = 9}
- \textbf{900O \leq -9000*1 - 90*0 + 90*9 - 0 - 0 + 1000*9 + 10*9}
- \textbf{O \leq 1}

- Linear equation propagation requires us to \textit{revisit the same constraint} to take into account its changes
Dis-equations give *weak* bounds propagation rules.

Only when one side takes a fixed value that equals the minimum or maximum of the other is there propagation

\[D(Y) = [2..4], D(Z) = [2..3] \] no propagation

\[D(Y) = [2..4], D(Z) = [3..3] \] no propagation

\[D(Y) = [2..4], D(Z) = [2..2] \] prop \[D(Y) = [3..4], D(Z) = [2..2] \]

In practice disequations implemented by domain propagation

Exercise: How do you propagate \[\sum_{i=1..n} a_i x_i \neq b \]
Non-Linear Constraints $X=Y \times Z$

If all variables are positive it is simple enough

$X \geq \min(D, Y) \times \min(D, Z) \quad X \leq \max(D, Y) \times \max(D, Z)$

$Y \geq \min(D, X) / \max(D, Z) \quad Y \leq \max(D, X) / \min(D, Z)$

$Z \geq \min(D, X) / \max(D, Y) \quad Z \leq \max(D, X) / \min(D, Y)$

Example: $D(X) = [4..8], D(Y) = [1..2], D(Z) = [1..3]$

becomes: $D(X) = [4..6], D(Y) = [2..2], D(Z) = [2..3]$

Much harder if some domains are non-positive or span zero

See Marriott&Stuckey, 1998
Exercise: $X = Y \times Z$

- Suppose $D(X) = [0..5]$, $D(Y) = [-2..3]$, $D(Z) = [1..6]$
- What domain would a domain consistent propagator return?
- What about $D(X) = [3..5]$, $D(Y) = [-2..3]$, $D(Z) = [2..6]$
Other Bounds Consistencies

• A primitive constraint c is \textit{bounds(Z) consistent} with domain D if for each variable x in $\text{vars}(c)$
 - There exist integer numbers $d_1, ..., d_k$ for remaining vars $x_1, ..., x_k$ such that for each x_i, $\min(D, x_i) \leq d_i \leq \max(D, x_i)$ and
 \[\{ x \rightarrow \min(D, x), x_1 \rightarrow d_1, ..., x_k \rightarrow d_k \} \]
 is a solution of c
 - and there exist integer numbers $e_1, ..., e_k$ for $x_1, ..., x_k$ such that for each x_i, $\min(D, x_i) \leq e_i \leq \max(D, x_i)$ and
 \[\{ x \rightarrow \max(D, x), x_1 \rightarrow e_1, ..., x_k \rightarrow e_k \} \]
 is a solution of c
• An arithmetic CSP is \textit{bounds(Z) consistent} if all its primitive constraints are.
• Note still NP-hard for linear equations!
Smugglers knapsack problem (no whiskey available)

\[
\begin{array}{ccc}
\text{capacity} & & \text{profit} \\
4W + 3P + 2C \leq 9 & \land & 15W + 10P + 7C \geq 30 \\
\end{array}
\]

\[D(W) = [0..0], D(P) = [0..9], D(C) = [0..6]\]

Step 1 examines profit constraint

\[
W \geq -102 / 15 \quad P \geq -12 / 10 \quad C \geq -60 / 7
\]

no change
Bounds Consistency Example

Smugglers knapsack problem (no whiskey available)

\[
\begin{align*}
\text{capacity} & \\
4W + 3P + 2C & \leq 9 & \wedge & 15W + 10P + 7C & \geq 30 \\
\end{align*}
\]

\[D(W) = [0..0], D(P) = [0..9], D(C) = [0..6]\]

Step 2 examines capacity constraint

\[
\begin{align*}
W & \leq 9 / 4 & P & \leq 9 / 3 & C & \leq 9 / 2 \\
\end{align*}
\]

\[D(W) = [0..0], D(P) = [0..3], D(C) = [0..4]\]
Smugglers knapsack problem (no whiskey available)

\[
\begin{array}{ccc}
\text{capacity} & \text{profit} \\
4W + 3P + 2C & \leq 9 & 15W + 10P + 7C & \geq 30 \\
\end{array}
\]

\[D(W) = [0..0], \ D(P) = [0..3], \ D(C) = [0..4]\]

Step 3 re-examines profit constraint, because of \(\max(D(P,C)) \) change

\[W \geq -28/15 \quad P \geq 2/10 \quad C \geq 0/7 \]

\[D(W) = [0..0], \ D(P) = [1..3], \ D(C) = [0..4]\]

no further change after this
Bounds Consistency Solver

\[D := \text{bounds_consistent}(C,D) \]

\textbf{if} \hspace{1em} D \text{ is a false domain} \hspace{1em} \textbf{return} \hspace{1em} \textit{false} \\
\textbf{if} \hspace{1em} D \text{ is a valuation domain} \hspace{1em} \textbf{return} \hspace{1em} \textit{satisfiable}(C,D) \\
\hspace{1em} \textbf{return} \hspace{1em} \textit{unknown}
• Like arc and node consistency we can *combine* bounds consistency methods with the backtracking solver
• Apply bounds consistency before starting the backtracking solver and after each variable is given a value
• This reduces the *search space*
BT + Bounds Consistency-Example

Smugglers knapsack problem

\[
\text{capacity} \quad \text{profit}
\]
\[
4W + 3P + 2C \leq 9 \quad \land \quad 15W + 10P + 7C \geq 30
\]

Current domain:
\[
D(W) = [0..0], D(P) = [1..1], D(C) = [3..3]
\]

after bounds consistency

\[
W = 0
\]
\[
P = 1
\]
\[
(0,1,3)
\]

Solution Found: return true
Smugglers knapsack problem (whiskey available)

<table>
<thead>
<tr>
<th>capacity</th>
<th>profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4W + 3P + 2C \leq 9$</td>
<td>$15W + 10P + 7C \geq 30$</td>
</tr>
</tbody>
</table>

Current domain:

$$D(W) = \{0\}, D(P) = \{3\}, D(C) = \{0\}$$

Initial bounds consistency

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
<th>(W,P,C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(0,1,3)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>false</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(2,0,0)</td>
</tr>
</tbody>
</table>

No more solutions
Propagators

- In reality consistency is just a notion to define propagators
- Propagator \(f \) for constraint \(c \)
 - function from domains to domains \(D \rightarrow D \)
 - \(f \) removes values from the the domain that can't be solutions of \(c \)
 - correctness: solutions of \(c \) in \(D \), and same as in \(f(D) \)
 - checking: \(f(D) \) is false domain when \(D \) is an unsatisfiable valuation domain
- Propagator for \(X=Y \times Z \)
 - typically does not implement any consistency
- Tradeoff
 - strong propagators eliminate as many values as possible
 - fast propagators propagate efficiently
Propagation Solving

- Fixpoint of all propagators
 - assume D is a fixpoint for $F0$

$\text{isolv}(F0, Fn, D)$

$F := F0 \cup Fn$

$Q := Fn$

while $(Q \neq \emptyset)$

$f := \text{choose}(Q)$ \hspace{1cm} % select next propagator to run

$Q := Q - \{f\}; \ D' := f(D);$

$Q := Q \cup \text{new}(f,F,D,D')$ \hspace{1cm} % add affected props

$D := D'$

return D
Propagation Solving

• \texttt{choose}(Q)
 – typically a FIFO queue
 – usually with priority levels
 • do fast propagators first

• \texttt{new}(f,F,D,D')
 – return propagators f' in F where $f'(D') \neq D'$
 – typically propagators are attached to events
 • \texttt{fix}(x): x becomes fixed
 • \texttt{lbc}(x): lower bound of x changed, \texttt{ubc}(x) (upper bound)
 • \texttt{dmc}(x): domain of x changed
 – add propagators for the events that occurred in $f(D)$
Propagation Solving Example

- $x = 2y \land x = 3z$, $D(x) = [0..17]$, $D(y) = [0..9]$, $D(z) = [0..6]$

<table>
<thead>
<tr>
<th>Q</th>
<th>f</th>
<th>$D(x)$</th>
<th>$D(y)$</th>
<th>$D(z)$</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1,f2</td>
<td>f1</td>
<td>[0..17]</td>
<td>[0..8]</td>
<td>[0..6]</td>
<td>{f1}</td>
</tr>
<tr>
<td>f2,f1</td>
<td>f2</td>
<td>[0..17]</td>
<td>[0..8]</td>
<td>[0..5]</td>
<td>{f2}</td>
</tr>
<tr>
<td>f1,f2</td>
<td>f1</td>
<td>[0..16]</td>
<td>[0..8]</td>
<td>[0..5]</td>
<td>{f1,f2}</td>
</tr>
<tr>
<td>f2,f1</td>
<td>f2</td>
<td>[0..15]</td>
<td>[0..8]</td>
<td>[0..5]</td>
<td>{f1,f2}</td>
</tr>
<tr>
<td>f1,f2</td>
<td>f1</td>
<td>[0..15]</td>
<td>[0..7]</td>
<td>[0..5]</td>
<td>{f1}</td>
</tr>
<tr>
<td>f2,f1</td>
<td>f2</td>
<td>[0..15]</td>
<td>[0..7]</td>
<td>[0..5]</td>
<td>{}</td>
</tr>
<tr>
<td>f1</td>
<td>f1</td>
<td>[0..14]</td>
<td>[0..7]</td>
<td>[0..5]</td>
<td>{f1,f2}</td>
</tr>
<tr>
<td>f2,f1</td>
<td>f2</td>
<td>[0..14]</td>
<td>[0..7]</td>
<td>[0..4]</td>
<td>{f2}</td>
</tr>
<tr>
<td>f1,f2</td>
<td>f1</td>
<td>[0..14]</td>
<td>[0..7]</td>
<td>[0..4]</td>
<td>{}</td>
</tr>
<tr>
<td>f2</td>
<td>f2</td>
<td>[0..12]</td>
<td>[0..7]</td>
<td>[0..4]</td>
<td>{f1,f2}</td>
</tr>
<tr>
<td>f1,f2</td>
<td>f1</td>
<td>[0..12]</td>
<td>[0..6]</td>
<td>[0..4]</td>
<td>{f1}</td>
</tr>
<tr>
<td>f2,f1</td>
<td>f2</td>
<td>[0..12]</td>
<td>[0..6]</td>
<td>[0..4]</td>
<td>{}</td>
</tr>
<tr>
<td>f1</td>
<td>f1</td>
<td>[0..12]</td>
<td>[0..6]</td>
<td>[0..4]</td>
<td>{}</td>
</tr>
</tbody>
</table>
Idempotence

- Many propagators know they are at fixpoint after execution
- Such propagators are termed idempotent
- The usual propagators for \(x = 2y, x = 3z \) are not idempotent
- Execution with idempotent propagators
- \(x = 2y \land x = 3z \), \(D(x) = [0..17], D(y) = [0..9], D(z) = [0..6] \)

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(f)</th>
<th>(D(x))</th>
<th>(D(y))</th>
<th>(D(z))</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1,f2</td>
<td>f1</td>
<td>[0..16]</td>
<td>[0..8]</td>
<td>[0..6]</td>
<td>{f2}</td>
</tr>
<tr>
<td>f2</td>
<td>f2</td>
<td>[0..15]</td>
<td>[0..8]</td>
<td>[0..5]</td>
<td>{f1}</td>
</tr>
<tr>
<td>f1</td>
<td>f1</td>
<td>[0..14]</td>
<td>[0..7]</td>
<td>[0..5]</td>
<td>{f2}</td>
</tr>
<tr>
<td>f2</td>
<td>f2</td>
<td>[0..12]</td>
<td>[0..7]</td>
<td>[0..4]</td>
<td>{f1}</td>
</tr>
<tr>
<td>f1</td>
<td>f1</td>
<td>[0..12]</td>
<td>[0..6]</td>
<td>[0..4]</td>
<td>{}</td>
</tr>
</tbody>
</table>
In order to understand the behaviour of a propagation solver we need to understand how complex constraint expressions are converted to constraints in the solver.

Flattening a MiniZinc model has three important parts:
- unrolling loops
- inlining predicate definitions
- decomposing complex expressions
Complex Constraint Expressions

- Complex constraints are translated into *reified constraints*
- For every primitive constraint $c(x)$ there is a corresponding reified constraint $c_{\text{reify}}(x,B)$.
- The Boolean variable B reflects the truth of constraint $c(x)$. I.e. $B=\text{true}$ if $c(x)$ holds and $B=\text{false}$ if $\neg c(x)$ holds.
- The constraint
 \[F_1 \geq F_2 + K \lor F_2 \geq F_1 + K. \]
 is translated into

  ```
  let { var bool: B1, var bool: B2 } in
  \geq_{\text{reify}}(F1,F2+K,B1) \land
  \geq_{\text{reify}}(F2,F1+K,B2) \land
  exists([B1,B2])
  ```
Weak Propagation of Reified Constraints

• Beware that reified constraints don’t propagate much

• $x = \text{abs}(y)$ versus $(x = y \lor x = -y) \land x \geq 0$

• $D(x) = \{-2, -1, 0, 1, 2, 4, 5\}, D(y) = \{-1, 1, 3, 4\}$
 – domain consistent abs: $D(x) = \{1,4\}, D(y) = \{-1,1,4\}$
 – bounds consistent abs: $D(x) = \{0,1,2,4\}, D(y) = \{-1,1,3,4\}$
 – reified form $b_1 \Leftrightarrow x = y, b_2 \Leftrightarrow x = -y, b_1 \lor b_2$
 – $D(b_1) = D(b_2) = \{0,1\}, D(x) = \{0,1,2,4,5\}, D(y)$ same!

• $D(x) = \{-2, -1, 0,1, 2, 4, 5\}, D(y) = \{1, 3, 4\}$
 – reified form (no change)
A better decomposition

- Different decompositions can propagate differently
- \(x \geq 0 \land x \geq y \land x \geq -y \land \\
 \quad (x \leq y \lor x \leq -y) \)
- \(D(x) = \{-2, -1, 0, 1, 2, 4, 5\}, D(y) = \{-1, 1, 3, 4\} \)
 - \(D(x) = \{0, 1, 2, 4, 5\}, D(y) = \{-1, 1, 3, 4\} \quad x \geq 0 \)
- \(D(x) = \{-2, -1, 0, 1, 2, 4, 5\}, D(y) = \{1, 3, 4\} \)
 - \(D(x) = \{1, 2, 4, 5\}, D(y) = \{1, 3, 4\} \quad x \geq y \)
 - \(D(x) = \{1, 2, 4, 5\}, D(y) = \{1, 3, 4\} \quad x \leq -y \text{ is false} \)
 - \(D(x) = \{1, 2, 4\}, D(y) = \{1, 3, 4\} \quad x \leq y \text{ (true)} \)
Global Constraints

• Each global constraint is implemented by (possibly several)
 – propagators

• A good implementation of a global constraints has
 – strong propagation (ideally domain consistent)
 – fast propagation

• Often global propagators are not idempotent
All_different

- `all_different([V_1,...,V_n])` holds when each variable $V_1,..,V_n$ takes a different value
- Not needed for expressiveness. E.g. `all_different([X, Y, Z])` is equivalent to $X \neq Y \land X \neq Z \land Y \neq Z$
- But conjunctions of disequations are not handled well by arc (or bounds) consistency.
 E.g. The following domain is arc consistent with the above: $D(X) = \{1,2\}, D(Y) = \{1,2\}, D(Z) = \{1,2\}$
- BUT there is **no** solution!
- Specialized consistency techniques for `all_different` can find this
All_different Propagator

Simple propagator for \textit{all_different}([V_1,\ldots,V_n])

\[f(D) \]

\[
\text{let } W = \{V_1,\ldots,V_n\} \\
\text{while exists } V \text{ in } W \text{ where } D(V) = \{d\} \\
\quad W := W - \{V\} \\
\text{for each } V' \text{ in } W \\
\quad D(V') := D(V') - \{d\} \\
DV := \text{union of all } D(V) \text{ for } V \text{ in } W \\
\text{if } |DV| < |W| \text{ then return } false \\
\text{return } D
\]

- \text{Wakes up on } \text{fix}(V_i) \text{ events, idempotent}
- \text{More efficient but hardly propagates more than disequalities}
All_different Example

all_different ([X,Y,Z])

\[D(X) = \{1,2\}, D(Y) = \{1,2\}, D(Z) = \{1,2\} \]

\[DV = \{1,2\}, W = \{X,Y,Z\} \text{ so } |DV| < |W| \]

hence detects unsatisfiability
All_different Propagator

- Domain consistent propagator for all_different
 - First important global propagator $O(n^{2.5})$
 - Based on maximal matching, wakes on dmc() events

- all_different([X,Y,Z,T,U])

- $D(X) = \{1,2,3\}$, $D(Y) = \{2,3\}$, $D(Z) = \{2,3\}$,
 $D(T) = \{1,2,3,4,5\}$, $D(U) = \{3,4,5,6\}$

- $D'(X) = \{1\}$, $D'(Y) = \{2,3\}$, $D'(Z) = \{2,3\}$,
 $D'(T) = \{4,5\}$, $D'(U) = \{4,5,6\}$

- heavy = maximal matching
dashed = cant be in max matching
Maximal Matching

- Start with a given partial matching
- Choose an unmatched variable

Search for an alternating path
 - unmatched and matched edges
 - reaching an unmatched value
Maximal Matching

- Start with a given partial matching
- Choose an unmatched variable

Search for an alternating path
- unmatched and matched edges
- reaching an unmatched value
Maximal Matching

• Start with a given partial matching
• Choose an unmatched variable

• Search for an alternating path
 – unmatched and matched edges
 – reaching an unmatched value
Maximal Matching

• Start with a given partial matching
• Choose an unmatched variable

• Search for an alternating path
 – unmatched and matched edges
 – reaching an unmatched value
Maximal Matching

- Start with a given partial matching
- Choose an unmatched variable

- Search for an alternating path
 - unmatched and matched edges
 - reaching an unmatched value
Maximal Matching

- Start with a given partial matching
- Choose an unmatched variable

- Search for an alternating path
 - unmatched and matched edges
 - reaching an unmatched value
Maximal Matching

- Start with a given partial matching
- Choose an unmatched variable

Search for an alternating path
 - unmatched and matched edges
 - reaching an unmatched value
Failure

• If not every variable is matched in the maximal matching then the all_different constraint cannot be satisfied.

\[
\text{all _ different}([X, Y, Z, T, U])
\]

\[
D(X) = \{1, 2\}, D(Y) = \{1, 2\}, D(Z) = \{1, 2\},
\]

\[
D(T) = \{2, 3, 4, 5\}, D(U) = \{3, 4, 5, 6\}
\]
Propagation

- Keep edges which are reachable from unmatched nodes (pink + green)

\[D'(X) = \{1\}, \quad D'(Y) = \{2,3\}, \quad D'(Z) = \{2,3\}, \]
\[D'(T) = \{4,5\}, \quad D'(U) = \{4,5,6\} \]
All_different Propagator

- bounds consistent propagator for all_different
 - Most common implementation $O(n \log n)$
 - Based on maximal matching, wakes on \texttt{lbc()}, \texttt{ubc()} events

- Usually as fast as the naïve first propagator
Inverse Propagator

- Same algorithm as all_different ()
- \(x1 = 3 \Leftrightarrow y3 = 1 \)
- \(D(x4) = \{4,5\} \Leftrightarrow 4 \text{ in } D(y4), 4 \text{ in } D(y5) \)
- Wakes on \(\text{dmc}(x) \) and \(\text{dmc}(y) \) events
- Implements domain consistency
Inverse by Decomposition

predicate inverse(array[int] of var int: f,
 array[int] of var int: invf) =
 forall(j in index_set(invf))(invf[j] in index_set(f)) /
 forall(i in index_set(f))(
 f[i] in index_set(invf) /
 forall(j in index_set(invf))(j == f[i] <-> i == invf[j])
);

• Propagates more than alldifferent decomposition
 – Exercise: Why? Give an example where it does

• Large number of constraints + Boolean vars

• Not as strong as global
Element propagator

• The expression \(x = a[i] \) where \(i \) is a variable generates
 – \textit{element}(i, [a_1, a_2, ..., a_n], x)

• The \textit{element} propagator
 – ensures \(i = j \rightarrow x = a_j \)
 – ensures \(x = d \rightarrow i = j_1 \lor i = j_2 \lor ... \lor i = j_n \)
 • where \(a[j_1] = a[j_2] = ... = a[j_n] = d \)

• Wakes up on \textit{dmc}(x) and \textit{dmc}(i) events
• Implements domain consistency, idempotent
Element by Decomposition

• predicate element(var int:i, array[int] of int:a, var int:x) =
 x in a \ i in index_set(a) \forall(j in index_set(a))(i = j -> x = a[i])

• Substantially weaker than domain consistent
• Introduces many Booleans
Cumulative Constraints

• Recall the cumulative constraint

\[\text{cumulative}([S_1, \ldots, S_n], [D_1, \ldots, D_n], [R_1, \ldots, R_n], L) \]

schedule \(n \) tasks with start times \(S_i \) and durations \(D_i \) needing \(R_i \) units of a single resource where \(L \) units are available at each moment.

• Very complex propagator

• Many different implementations
 – Different complexities
 – None implement bounds or domain consistency
Cumulative Example

Bernd is moving house again. He has 4 people to do the move and must move in one hour. He has the following furniture: piano must be moved before bed

<table>
<thead>
<tr>
<th>Item</th>
<th>Time</th>
<th>No. of people</th>
</tr>
</thead>
<tbody>
<tr>
<td>piano</td>
<td>30 min</td>
<td>3</td>
</tr>
<tr>
<td>chair</td>
<td>10 min</td>
<td>1</td>
</tr>
<tr>
<td>bed</td>
<td>20 min</td>
<td>2</td>
</tr>
<tr>
<td>table</td>
<td>15 min</td>
<td>2</td>
</tr>
</tbody>
</table>

How can we model this?

\[
D(P) = D(C) = D(B) = D(T) = [0..60], \quad P + 30 \leq B, \\
P + 30 \leq 60, \quad C + 10 \leq 60, \quad B + 15 \leq 60, \quad T + 15 \leq 60, \\
cumulative([P,C,B,T], [30,10,20,15], [3,1,2,2], 4)
\]
Cumulative timetable propagator

- Determine the parts where a task must be running
- The resource profile adds up these parts
- Use profile to move other tasks

Example: after initial bounds

\[
D(P) = [0..30], \ D(C) = [0..50], \ D(B) = [0..40], \ D(T) = [0..45]
\]

Propagating \(P + 30 \leq B \)

\[
D(P) = [0..10], \ D(C) = [0..50], \ D(B) = [30..40], \ D(T) = [0..45]
\]

\[
D(P) = [0..15], \ D(C) = [0..50], \ D(B) = [30..40], \ D(T) = [30..45]
\]
Compulsory Parts

- A task y with earliest start time se_y, latest start time sl_y, and duration d_y
 - compulsory part: $sl_y .. se_y + d_y$

- Profile = sum of compulsory parts

- **Failure**: at time t profile goes over resource bound

- **Propagation**
 - If resources for task x don’t fit at time $sl_x \leq t < sl_x + d_x$
 - move sl_x to $t + 1$
 - similarly move se_x back to $t-d_x$ if $se_x \leq t < se_x + d_x$
predicate cumulative(array[int] of var int: s,
 array[int] of var int: d,
 array[int] of var int: r, var int: b) =
 assert(index_set(s) == index_set(d) /
 index_set(s) == index_set(r),
 "cumulative: the array arguments must have identical index sets",
 assert(lb_array(d) >= 0 /
 lb_array(r) >= 0,
 "cumulative: durations and resource usages must be non-negative",
 let {
 set of int: times =
 min([lb(s[i]) | i in index_set(s)]) ..
 max([ub(s[i]) + ub(d[i]) | i in index_set(s)])}
 in
 forall(t in times) (At each time t
 b >= sum(i in index_set(s)) (
 bool2int(s[i] <= t \ t < s[i] + d[i]) * r[i]
)
)
);
Cumulative by Decomposition

- Decomposition has identical propagation to profile based propagator
 - But $O(n \ t_{max})$ where n is number of tasks and t_{max} is maximum time horizon
 - Versus $O(n^2)$ for the global propagator
- Very many Boolean vars introduced $O(n \ t_{max})$
Cumulative Example with BT

\[D(P) = D(C) = D(B) = D(T) = [0..60], \quad P + 30 \leq B, \]
\[P + 30 \leq 60, \quad C + 10 \leq 60, \quad B + 15 \leq 60, \quad T + 15 \leq 60, \]
\[cumulative([P,C,B,T], [30,10,20,15], [3,1,2,2], 4) \]
\[D(P) = [0..15], \quad D(C) = [0..50], \quad D(B) = [30..45], \quad D(T) = [0..45] \]

Choose \(P \)

\[P = 0 \]
\[D(P) = \{0\}, \quad D(C) = [0..50], \quad D(B) = [30..45], \quad D(T) = [30..45] \]

Choose \(C \)

\[C = 0 \]
\[D(P) = \{0\}, \quad D(C) = \{0\}, \quad D(B) = [30..45], \quad D(T) = [30..45] \]

Choose \(B \)

\[B = 30 \]
\[D(P) = \{0\}, \quad D(C) = \{0\}, \quad D(B) = \{30\}, \quad D(T) = \{45\} \]

Choose \(T \)

\[T = 45 \]
\[D(P) = \{0\}, \quad D(C) = \{0\}, \quad D(B) = \{30\}, \quad D(T) = \{45\} \]
Programming Propagation

• Modern constraint programming systems, like ECLiPSe or the solver under MiniZinc allow the programmer to add new global constraints and program their propagation rules.
• Usually programmed as rules triggered by events on variable domain
 – Change in lower/upper bound
 – Has fixed value
• Not performed at once but placed in a priority queue
Propagation and Search

- search(F_0, F_n, D)

 $D = \text{isolv}(F_0, F_n, D)$

 if (D is a false domain) return false

 if (exists x where $|D(x)| > 1$)

 choose $\{c_1, \ldots, c_m\}$ implied by $C \land D$

 for i in $1..m$

 if (search($F_0 \cup F_n, f_{c_i}, D$))

 return true

 return false

return true
Optimization for CSPs

• So far only looked at finding a solution: this is \textit{satisfiability}.
• However often we want to find an \textit{optimal} solution: One that minimizes/maximizes the objective function f.
• Because the domains are finite we can use a solver to build a simple optimizer \textit{for minimization}.

\begin{verbatim}
retry_int_opt(C, D, f, best_so_far)
 D2 := solve_satisfaction(C,,D)
 if D2 is a false domain then return best_so_far
 let sol be the solution corresponding to D2
 return retry_int_opt(C \land f < sol(f), D, f, sol)
\end{verbatim}
Smugglers knapsack problem (optimize profit)

minimize \(-15W - 10P - 7C\) subject to

capacity
\[4W + 3P + 2C \leq 9\]
\[15W + 10P + 7C \geq 30\]

profit
\[-15W - 10P - 7C < -31\]
\[-15W - 10P - 7C < -32\]

\[D(W) = [0..9], D(P) = [0..9], D(C) = [0..9]\]

No next solution!

\[D(W) = [01.01], D(P) = [11.11], D(C) = [31.3] \]

Corresponding solution
\[sol = \{W \rightarrow 01, P \rightarrow 11, C \rightarrow 3\}\]

\[sol(f) = -34\]

Return best solution
Backtracking Optimization

- Since the solver may use backtracking search anyway combine it with the optimization
- At each step in backtracking search, if $best$ is the best solution so far add the constraint $f < best(f)$
- Very similar to branch-and-cut methods
 - Use consistency techniques instead of linear relaxation
Smugglers knapsack problem (whiskey available)

\[
\begin{align*}
4W + 3P + 2C &\leq 9 \quad \land \quad 15W + 10P + 7C \geq 30 \\
-15W - 10P - 7C &< -31
\end{align*}
\]

Current domain:
\[
D(W) = [0..0], \quad D(P) = [1..1], \quad D(C) = [3..3]
\]

after bounds consistency

\[
W = 0
\]

\[
P = 1
\]

\[
(0, 1, 3)
\]

Solution Found: add constraint
Smugglers knapsack problem (whiskey available)

\[
\begin{align*}
\text{capacity} & \quad \text{profit} \\
4W + 3P + 2C & \leq 9 \quad \land \quad 15W + 10P + 7C \geq 30 \\
-15W - 10P - 7C & < -31 \land \\
-15W - 10P - 7C & < -32
\end{align*}
\]

Initial bounds consistency

- $W = 0$:
 - $P = 1$: false
 - $P = 2$: false
 - $P = 3$: false
- $W = 1$:
 - $P = 1$: (1,1,1)
 - $P = 2$: false
 - $P = 3$: false
- $W = 2$:
 - $P = 1$: false

Return last sol (1,1,1)
Summary

- Constraint programming techniques are based on backtracking search.
- Reduce the search using consistency methods:
 - incomplete but faster
 - node, arc, bound, generalized
- Optimization can be based on a branch & bound with a backtracking search.
- Very general approach, not restricted to linear constraints.
- Programmer can add new global constraints and program their propagation behaviour.
Comparison between CP and MIP

• What are the similarities?
• What are the strengths of MIP?
• What are the strengths of CP?
• Does it make sense to combine them?
Homework

• Read Chapter 3 of Marriott & Stuckey, 1998
• Solve the Australian Map Colouring problem by hand using simple backtracking, then with arc consistency and backtracking.
• Give propagation rules for constraints of form

 \[a_1 X_1 + \ldots + a_n X_n \leq b_1 Y_1 + \ldots + b_m Y_m + c \]

 where each \(a_i, b_i > 0 \).
Homework

• Read Chapter 3 of Marriott&Stuckey, 1998
• Solve the Australian Map Colouring problem by hand using simple backtracking, then with arc consistency and backtracking.
• Give propagation rules for constraints of form
 \[b \iff x \leq y + 1 \]
• MiniZinc provides decision variables which are sets of integer and normal set operations including cardinality. How would you
 – Represent sets?
 – Program these constraints using propagation rules?