
Integer Programming!

Using linear programming to solve 
discrete problems	





Solving Discrete Problems  
Linear programming solves continuous problem!
—problems over the reaI numbers.!

For the remainder of the course we will look at how to solve !
problems in which variables must take discrete values!
—problems over the integers.!

Discrete problems are harder than continuous problems.!

We already saw: Finite Domain Propagation!
We will look at!

• Network Flow Problems!
• Integer Programming!
• Boolean Satisfiability!
• Local Search!



Mixed Integer Programming (MIP)!

This week we will look at!
• Different kinds of MIP programs!
• Modelling with MIP!
• Methods for solving MIP problems!

• Branch & Bound!
• Cutting Plane!
• Branch & Cut!



Simple Example, revisited!

B C D Capacity

Finishing 2.0 2.0 1.0 30.0

Labor 1.0 2.0 3.0 25.0

Machine Time 2.0 1.0 1.0 20.0

Profit 3.0 1.0 3.0

The optimum solution for this problem was to produce 7 bookcases!
and 6 desks. !

Reconsider our example for production plan optimization. This time we!
assume that B stands for “Book Cases”, C for “Chairs”, D for “Desks”.!



Integer Problems!

B C D Capacity

Finishing 2.0 2.0 1.0 30.0

Labor 1.5 2.0 3.0 25.0

Machine Time 2.0 1.0 1.0 20.0

Profit 3.0 1.0 3.0

Now assume some coefficients would have been slightly different.!
For example, each bookcase needs 1.5 units of labor.!



Integer Problems!
We apply Simplex and obtain the final tableau!

This makes little sense as a solution, since we can hardly manufacture!
4.444 desks (maybe we can, but who would buy 0.444 of them).!

The problem that we are facing is that we need the problem variables!
to assume integer values for a feasible solution.!
Such problems are called integer programming problems.!

z == 36.6667 - 0.6667 s[l] - 1.0 s[m] - 1.333 x[c]!

s[f] == 10 + s[m] - x[c]!
x[d] == 4.4444 - 0.4444 s[l] + 0.3333 s[m] - 0.5556 x[c]!
x[b] == 7.7778 +0.2222 s[l] - 0.6667 s[m] - 0.2222 x[c] !



Classes of Optimization Problems!

  

€ 

maxv x 
f ( v x ) subject to C(v x )

Optimization!

unconstrained! constrained!

linear! non-linear!

quadratic! ...!integer!real-valued!

...!

...!



Integer Programming Problems!

  

€ 

maxv x 
f ( v x ) subject to C(v x )

where f (v x ) = f (x1,Kxn )
is a linear function  f : Rn → R  and 
C( v x ) = c1(x1,Kxn )∧K∧ck (x1,K,xn )
is a conjunction of linear inequalities
and the xi are required to be integer. 



...the bad news!
Integer linear problems are significantly harder to solve than!
linear problems on reals. !

No general algorithm is known that allows to optimize a solution!
by directly moving from a feasible solution to an improved !
feasible solution.!

In fact, integer linear programming is known to be NP-complete.!

... It seems easy to formulate a TSP as an IP…!



TSP as an Integer Program!

Any sub-tour that does not contain city 1 will fail this constraint !

  

€ 

minimize cijxij∑∑
subject to ∀i : 1 = xij

j=1Kn
∑ ∧ ∀j : 1 = xij

i=1Kn
∑

where xij =
1 if tour leads from city i to city j
0 otherwise
⎧ 
⎨ 
⎩ 

The constraints ensure each city is 
reached and left!

€ 

ui−u j + nxij ≤ n −1 for i = 2,...,n, j = 2,...,n and i ≠ j
all ui ≥ 0

We also need to ensure that there are no sub-
tours, e.g. 1-5-2-1 3-4-3!



Mixed Integer Programming (MIP) 
Problems!

  

€ 

maxv x 
f ( v x ) subject to C(v x )

where f (v x ) = f (x1,Kxn )
is a linear function  f : Rn → R  and 
C( v x ) = c1(x1,Kxn )∧K∧ck (x1,K,xn )
is a conjunction of linear inequalities
and some xi are required to be integer - valued.



0-1 Integer Problems!

  

€ 

maxv x 
f ( v x ) subject to C(v x )

where f (v x ) = f (x1,Kxn )
is a linear function  f : Rn → R  and 
C( v x ) = c1(x1,Kxn )∧K∧ck (x1,K,xn )
is a conjunction of linear inequalities
and  ∀i : xi ∈ 0,1{ }

These are also called Binary Integer Programming (BIP)!
problems!



Modelling in MIP!

Operation researchers have developed a large number of clever!
techniques for modelling problems that look non-linear as MIP problems. !

Many of the tricks rely on the use of 0-1 variables to model a binary!
choice.!



Modelling Or Constraints!

To model two constraints of which at least one must be satisfied (f or g) !

Use a 0-1 variable y and reformulate as !

where M is a sufficiently large number !

€ 

f (x) ≤ M ⋅ y

g(x) ≤ M ⋅ (1− y)

f (x) ≤ 0
g(x) ≤ 0



Modelling K out of N Constraints 
Hold!

Exercise: How can we model that K out of the following N !
constraints hold!

  

€ 

f1(x) ≤ 0, L , fN (x) ≤ 0



To model an if-then relation between two constraints  (A =>B)!

Recall that A => B is equivalent to (not A) or B.!

Use a 0-1 variable y (y=0 if f is true) and reformulate as !

Where M is a sufficiently large number !

€ 

−g(x) ≤ M ⋅ y

f (x) ≤ M ⋅ (1− y)

If Then Constraints!

f (x) > 0
g(x) ≥ 0



Piecewise Linear Functions !

To model a piecewise linear function!
• break it into linear segments,!
• model the separate segments,!
• “chain” the segments with an additional constraint!

b1! b2! (breakpoints)!

for b1 ≤ x ≤ b2      with 0 ≤ q ≤1
f (x) = q ⋅ f (b1 ) + (1− q) ⋅ f (b2 )



Modelling  
Piecewise Linear Functions !

(1) replace f(x) throughout the problem by f and add a constraint !

  

€ 

f = z1 ⋅ f (b1) +K+ zn ⋅ f (bn )

(2) add a constraint for x !

  

€ 

z1 ≤ y1, z2 ≤ y1 + y2, z3 ≤ y2 + y3, K, zn−1 ≤ yn−2 + yn−1, zn ≤ yn−1

yi = 1∑ zi = 1∑

∀ y
i
∈ 0,1{ }

∀ z
i
≥ 0

(3) add the following constraints !
  

€ 

x = z1 ⋅ b1 +K+ zn ⋅ bn

These constraints ensure that only two neighbouring z’s can have zi >0!
and must add up to 1 => this models the piecewise interpolation !



Modelling IP as 0-1Integer Problem!

Any IP problem can be modelled as a 0-1 Integer Problem!

Exercise: How?!



MIP Modelling in MiniZinc!

•  You can run a MIP solver on MiniZinc 
models using	


– mzn –b mip model.mzn 

•  This assumes that the constraints are all 
linear.	



•  In order to effectively use a MIP solver we 
must learn how to model things with linear 
constraints.	





Boolean Modelling in MiniZinc!

•  Boolean constraints are modelled using 0..1 
integers and linear constraints:	


–  b1 = (b2 ∨ b3)	


–  b1 >= b2 /\ b1 >= b3 /\ b2 + b3 >= b1 
–  b1 = (b2 ∧ b3)	


–  b2 >= b1 /\ b3 >= b1 /\ b1+1 >= b2+b3  
–  b1 = (b2 -> b3)	


–  b1 >= 1 - b2 /\ b1 >= b3 /\  
  1-b2 + b3 >= b1 

•  Question:  how do you model b2 ∨ b3?	


–    



Reified Linears in MIP!

•  Recall that x1 <= x2 \/ x1 <= x3 becomes	


–  b1  x1 <= x2 /\ b2  x1 <= x3 /\ (b1 \/ b2) 	



•  b  sum(i in 1..n)(a[i]*x[i]) <= c	


– Let l = sum(i in 1..n)(lb(a[i]*x[i]))	


– Let u = sum(i in 1..n)(ub(a[i]*x[i]))	



•  When b is true (1) force the ineq to hold	


–  sum(i in 1..n)(a[i]*x[i]) <= u + b*(c – u) 

•  When b is false (0) force reverse to hold	


–  sum(i in 1..n)(a[i]*x[i]) >= c+1+ b*(l-c–1) 



Modelling Disequality!

•  x != y ????	


– Model x,y variables as Booleans (x = d)	


–  var 1..n:x 
 array[1..n] of var 0..1:xd; 

 constraint sum(i in 1..n)(i*xd[i]) = x; 

 constraint sum(i in 1..n)(xd[i]) = 1;	


– Now we can model disequality	


–  constraint forall(i in 1..n)( 

      xd[i] + yd[i] <= 1);	


•  With these 0..1 variables we can model 

many things	





Modelling Element!

•  element(i, [a1, …, an], x)  x = ai	


–  i = j -> x = aj	



•  array[1..n] of var 0..1:id; 
 constraint  

  x = sum(j in 1..n)(id[j] * aj); 



Exercise: Modelling alldifferent!

•  How can you model 	


– array[1..n] of var 1..m: x; 
 constraint alldifferent(x); 

	

using only linear constraints?	





Mixed Integer Programming (MIP)!

This week we will look at!
• Different kinds of MIP programs!
• Modelling with MIP!
• Methods for solving MIP problems!



Linear Relaxation!

0.25 0.50.75 1 1.251.51.75

0.5
1

1.5
2

2.5
3

0.25 0.50.75 1 1.251.51.75

0.5
1

1.5
2

2.5
3

The first idea might be to try rounding of the optimal fractional !
solution. The corresponding problem in which the variables!
are not required to take integer values is called the linear relaxation.!

As the above example proves, this cannot be guaranteed to work:!
(2/0) is infeasible !
(1/0) is feasible, but not optimal!

max 21x+11y!
s.t. 7x+4y<=13!

optimum!



Solving MIP Problems!
Problem: !Linear Relaxation does not work!

Observation: !(1) All feasible points for MIP are also feasible for the relaxation!
! !(2) If the optimum of the relaxation is integer-valued, !
! !      it also is the solution of the original MIP.!

Idea: ! !Enumerate the feasible points of the relaxed problem!

Challenge: !This must be done cleverly, since the number of feasible points !
! !may be huge. !

Methods: !based on repeatedly solving improved relaxations (with simplex)!

• Branch & Bound: splits the search space into sub-problems!
• Cutting Plane: ! removes non-integer optimums!
• Branch & Cut: split & remove non-integer optimums!



Branch & Bound!
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max z = 8x + 5y
such that x + y ≤ 6

9x + 5y ≤ 45
x,y ≥ 0, integer

Let P be a linear integer program. !
To solve P!

1. !Solve Ps linear relaxation P ’.!
2a. !If the solution of P ’ is integer-valued,!

!it is the optimum of P!
2b. !If the solution contains a fractional!

!assignment xi=v to an integer variable 
!create two sub-problems:!

3. Solve the sub-problems recursively.!
4. The solution to P is the better solution of 
P’below and P’above!
€ 

P'below : P∧ xi ≤ v⎣ ⎦
P'above : P∧ xi ≥ v⎡ ⎤

optimum : z = 1654
x = 154, y = 94
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Branch & Bound!

1 2 3 4 5 6

2

4

6

8

1 2 3 4 5 6

2

4

6

8 max z = 8x + 5y
such that x + y ≤ 6

9x + 5y ≤ 45
x,y ≥ 0

optimum : z = 1654
x = 154, y = 94

x ≤ 3 x ≥ 4 max z = 8x + 5y
such that x + y ≤ 6

9x + 5y ≤ 45
x ≥ 4 (*)
x,y ≥ 0

optimum : z = 4

x = 4, y = 95

2 4 6 8 10
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4

6
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2 4 6 8 10

2

4

6

8

10

y ≥ 2

y ≤1

max z = 8x + 5y
such that x + y ≤ 6

9x + 5y ≤ 45
x ≥ 4 
y ≤1 (*)
x,y ≥ 0

optimum : z = 3659
x = 40 9, y = 1



Branch & Bound Decision Tree!

Solutions of a sub-problem in which all integers are assigned!
an integer are called Candidate Solutions!

z=165/4!
x=15/4, y=9/4!

z=41!
x=4, y=9/5! more...!

infeasible! z=365/9!
x=40/9, y=1!

z=37!
x=4, y=1!

x ≤ 3x ≥ 4

y ≥ 2 y ≤1

€ 

x ≤ 4

more…!

€ 

x ≥ 5



Fathomed Sub-Problems!
Not every sub-problem (branch) needs to be explored.!

In three cases, a sub-problem does not need to be explored 
further.!
•   it is infeasible!
•   its optimum solution is integer-valued!
•   the optimum of its relaxation is smaller than that of some   !
   previously found candidate.!

This is because !
• the candidate solution provides a lower bound for the original 
problem !
• the optimum of the relaxation provides an upper bound for the  
  corresponding integer problem.!

Such sub-problems are called fathomed.!



Final Decision Tree!
z=165/4!

x=15/4, y=9/4!

z=41!
x=4, y=9/5! z=39!

x=3, y=4!
(integer solution)!

infeasible! z=365/9!
x=40/9, y=1!

z=40!
x=5, y=0!

(integer solution)!

z=37!
x=4, y=1!

(integer solution)!

x ≥ 4 x ≤ 3

y ≥ 2 y ≤1

€ 

x ≤ 4

€ 

x ≥ 5



Backtracking vs. Jumptracking!
The order in which sub-problems are expanded is not fixed.!

Two strategies are common!

• Backtracking (aka LIFO / last-in-first-out)!
• Expand the most recently created sub-problem first!
• This results in depth-first exploration.!

• Jumptracking!
• obtain upper bounds for all sub-problems through relaxation!
• then expand the sub-problem with the best upper bound!



Choosing the Branching Variable!
The other choice is which variable to branch upon.!

A standard rule is to branch on the variable that has the greatest 
economic importance. That is has the largest absolute coefficient 
in the objective function.!

The choice of branching variable and of sub-problem expansion 
order can make a huge difference to efficiency.!



Branch & Bound!

Branch and bound is a very general technique for 
solving discrete problems.!
• MIPs can be solved by branch & bound--we only need 
to branch on the integer variables.!
• It is obviously easier to solve 0-1 IPs, because 
branching on x only needs to consider two cases: x=0 
and x=1. !
• It can be used whenever it is easy to solve a relaxation 
of the problem.!



Homework!

• Read Chapter 9 of Winston.!
• Verify that the encoding of TSP is correct.!
• Write a MIP model for the Set Covering Problem.!
• Write a MIP model for the Warehouse Allocation Model.!



Mixed Integer Programming (MIP)!

This week we will look at!
• Different kinds of MIP programs!
• Modelling with MIP!
• Methods for solving MIP problems!

• Branch & Bound!
• Cutting Plane!
• Branch & Cut!



Cutting Planes!

1 2 3 4 5 6

2

4

6

8

1 2 3 4 5 6

2

4

6

8
3 x @1D+2 x @2D ä 15

x@1D+x@2D £6, 9 x@1D+5 x@2D£ 45

cut!

Idea: !If the solution of the LP relaxation is not integer-valued!
!we can find an additional constraint (called “cut”) that!

• removes the current optimum from the feasible region!
• does not remove any feasible point for the original IP !

€ 

Problem :
maximize 8x[1]+ 5x[2]
subject to    9x[1] +5x[2] ≤ 45
and              x[1] + x[2] ≤ 6  

€ 

9x[1] +5x[2] ≤ 45

€ 

x[1] + x[2] ≤ 6  

€ 

3x[1]+ 2x[2] ≤15



Finding the Cut (1)!
Problem: maximize!

Initial Tableau: !

Solution: !

• Find an equation for a fractional basic variable !

€ 

8x[1]+ 5x[2]
x[1]+ x[2] ≤ 6, 9x[1]+ 5x[2] ≤ 45

€ 

z == 8x[1]+ 5x[2]
s[1] == 6 − x[1]− x[2]
s[2] == 45 − 9x[1]− 5x[2]

€ 

z ==
165
4

−
5 s[1]
4

−
3 s[2]
4

x[2] ==
9
4
−
9 s[1]
4

+
s[2]
4

x[1] ==
15
4

+
5 s[1]
4

−
s[2]
4

€ 

x[1] − 5
4
s[1] +

1
4
s[2] ==

15
4



(1) rearrange fractional constraint!

(2) rewrite fractional coefficients  
      into fractional part and integer part!
      using |_ x _|!

(3) move fractional parts to right hand side!

(4) Generate cut as (RHS <= 0)!

(5) Add slack to cut!

(6) Add cut to tableau & resolve!

Note: !The cut equation!

!is obtained by substituting the definitions!
!of the slack variables in s[3]==0.!

Finding the Cut (2)!

€ 

x[1] − 5
4
s[1] +

1
4
s[2] ==

15
4

€ 

x[1]− 2s[1]+ 3
4
s[1]+ 1

4
s[2] == 3+

3
4

€ 

x[1]− 2s[1]− 3 ==
3
4
−
3
4
s[1]− 1

4
s[2]

€ 

3
4
−
3
4
s[1]− 1

4
s[2] ≤ 0

€ 

s[3] == −
3
4

+
3
4
s[1]+ 1

4
s[2]

€ 

z ==
165
4

−
5 s[1]
4

−
3 s[2]
4

x[2] ==
9
4
−
9 s[1]
4

+
s[2]
4

x[1] ==
15
4

+
5 s[1]
4

−
s[2]
4

s[3] == −
3
4

+
3
4
s[1]+ 1

4
s[2]

€ 

3x[1]+ 2x[2] ==15



The cut generated by this method has two properties!

(1) The current optimal solution to the LP relaxation does not 
satisfy the cut!

! !The current solution has  s[1]=s[2]=0!

(2) Any feasible solution for the original MIP satisfies the cut!

!Consider a feasible solution. This must satisfy!

!In any feasible solution s[1] s[2] ≥ 0, so the RHS < 1.!
!Since x[1] and s[1] must be integers the LHS is an 
!integer.!
!Thus the LHS=RHS ≤ 0.!

Finding the Cut (3)!

€ 

x[1]− 2s[1]− 3 ==
3
4
−
3
4
s[1]− 1

4
s[2]

€ 

3
4
−
3
4
s[1]− 1

4
s[2] ≤ 0



Cutting Plane Algorithm!
(1) !Solve the LP relaxation!
(2a) !If the solution to the relaxation is integer-valued!

! !optimum is found!
(2b) !Otherwise add new cut to tableau of LP relaxation 
(3) !goto step 1!

Note: !the row of the cut constraint (after adding slack) !
!in the tableau has a negative intercept.!
!Simplex as we know it is unsuitable for this problem.!

€ 

z ==
165
4

−
5 s[1]
4

−
3 s[2]
4

x[2] ==
9
4
−
9 s[1]
4

+
s[2]
4

x[1] ==
15
4

+
5 s[1]
4

−
s[2]
4

s[3] == −
3
4

+
3
4
s[1]+ 1

4
s[2]



Dual Simplex!
(1) !If all intercepts are positive terminate.!

(2) !Choose the basic variable with the !
!most negative intercept to leave the basis. !
!The corresponding row is the pivot row.!

(3) !Compute the following ratio for each variable x[j] !
!with positive coefficient in the pivot row:  

!coefficient(x[j]) in objective / coefficient(x[j]) in pivot row!

(4) !Choose the variable with the smallest absolute ratio!
!to enter the basis.!

(5) !Pivot the entering variable into the basis!

(6a) !If there is a row with a negative intercept and only!
!negative coefficients terminate with “infeasible”!

(6b) !Otherwise go to step (1).!



Dual Simplex!

(1) Dual Simplex takes an optimal infeasible solution and maintains 
optimality (non-neg. coefficients in the cost row) while moving 
towards a feasible solution (non-neg. coefficients in the RHS) . !

(2)  It is really the Simplex algorithm applied to the dual problem.!

(3)  It is used in both branch-and-cut and cutting plane algorithms 
when a constraint is added to an optimal tableau and this 
causes infeasibility.!



Implicit Enumeration for 0-1 IP!
Generate a search tree for the problem variables!
At each node some variables have fixed values, !
others are “free” (value not yet known). !
Prune the search tree with the following checks: !

(1) !Check Bounds!
!Assign values to the free variables that maximize/minimize the!
!objective function. This is an upper bound.!

(1a) !If this valuation is feasible, it must be the optimum!
!(for the sub-tree with this root) !
!Keep as a candidate solution.!

(1b) !If the objective value for this valuation is !
!less than some candidate, !
!do not consider this node further.!



Branch-and-Cut!
The cutting plane approach was one of the first techniques 
developed for solving IP problems (in 1958). However, 
branch and bound techniques developed in the 1960s and 
1970s proved to better for most problems.!

A combination of the two approaches branch-and-cut was 
developed in the 1980s for pure 0-1problems where it could 
solve much larger problems than branch and bound by itself. 
Now generalized to MIP.!

Branch-and-cut works by doing a branch-and-bound search. !
But for the initial problem and each sub-problem it uses!
•  Automatic problem preprocessing!
•  Generation of cutting planes !
to reduce the search space.!

We shall only consider 0-1 problems.!



Automatic Problem Preprocessing!
Automatic preprocessing simplifies the constraints in the original 
problem and then sub-problems in order to make the problem 
easier to solve.!

Technique 1: Detecting Infeasibility!
If some constraint is unsatisfied when all the variables take their 
best value, then the problem is infeasible.!

!x1+x2-2x3 ≥ 3 because 1(1)+1(1)-2(0) < 3.!

The best value of a positive variable in the lhs of a ≤ is 0 and of 
a negative variable is 1. The reverse for a ≥.!

As variables become fixed because of preprocessing and 
branching this can be used to detect infeasibility very early.!



Automatic Problem Preprocessing!
Technique 2: Fixing variables!
If one value of a variable cannot satisfy the constraint when the 
other variables take their best value, then the variable should be 
fixed to the other value.!

!3x1 ≤ 2 implies x1=0 !since 3(1) > 2    !
!5x1-2x2+x3 ≤ 2 implies x1=0 since 5(1)-2(1)+1(0) > 2!

These can cascade—do the following example!
3x1+x2-2x3 ≥ 2   x1+x4+x5 ≤ 1  -x5+x6 ≤ 0 !

This and other more complex tricks substantially reduce the 
number of variables, often by half. !



Automatic Problem Preprocessing!
Technique 3: Eliminating Redundant Constraints!
If some constraint is satisfied when all the variables take their 
worst value, then the constraint is redundant and can be 
removed without changing the solutions.!

!x1+x2-2x3 ≤ 3 because 1(1)+1(1)-2(0) ≤ 3.!

The worst value of a positive variable in the lhs of a ≤ is 1 and 
of a negative variable is 0. The reverse for a ≥.!

As variables become fixed because of preprocessing and 
branching significant numbers of constraints become redundant.!



Automatic Problem Preprocessing!
Technique 4: Tightening Constraints (Coefficient reduction)!
Reduce the coefficients of a constraint if this reduces the 
feasible solutions in the relaxation but without removing 0-1 
solutions.!

!2x1+3x2 ≤ 4 can be tightened to x1+x2 ≤ 1.!

Many different techniques for doing this. See Chap 11Hillier & 
Leiberman.!

This is closely related to generation of cutting planes. The 
difference is that tightening changes one of the constraints in 
the problem and does not add a new constraint.!



Cutting Plane Generation!
This adds a new constraint called the cutting plane which reduces the 
feasible solutions in the relaxation but does not remove 0-1 solutions.!

One technique for generating a cutting plane from a ≤ constraint with 
only non-negative coefficients on the lhs and constants on the rhs is 
to find a subset of variables that form a minimum cover:!

•  The constraint is violated if every variable in the group is 1 and  
all other variables are set to 0 and !
•  The constraint becomes satisfied if any one of the variables in 
the group is changed to 0. !

If there are N variables in the minimum cover then a cutting plane is !
    Sum of variables in group ≤ N-1.!

!6x1+3x2+5x3+2x4  ≤ 10 implies x1+x2+x4 ≤ 2.!

There are many techniques for generating cutting planes. !

In branch-and-cut many cutting planes are generated and added to 
the problem before branching.!



Summary!
This week we have looked at!

• Different kinds of MIP programs!
• Modelling with MIP!
• Methods for solving MIP problems!

• Branch & Bound!
• Cutting Plane!
• Branch & Cut!

• Modelling for MIP in MiniZinc!


