Modelling Constrained Optimization Problems

- Different approaches to modelling constrained optimization problems
- Basic modelling with MiniZinc
- Advanced modelling with MiniZinc
 - Predicates:
 - Global constraints
 - User defined constraints & tests
 - Reflection functions
 - Let expressions (local variables)
 - Negation and partial functions
 - Efficiency
 - Different problem models
 - Redundant constraints
Predicates

• MiniZinc allows us to capture complex constraint in a predicate. Predicate may be
 – Supported by the underlying solver, or
 – Defined by the modeller
• A predicate definition has the form
 – predicate <pred-name> (<arg-def> … <arg-def>) = <bool-exp>
• An argument definition is a MiniZinc type declaration e.g.
 – int:x, array[1..10] of var int:y, array[int] of bool:b
• **Note** arrays do not need to be fixed size
Global constraints: alldifferent

- `all_different(array[int] of var int:x)`
- Defines an assignment subproblem: all vars in the `x` array take a different value

```plaintext
include "all_different.mzn";
var 1..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 1..9: M;
var 0..9: O;
var 0..9: R;
var 0..9: Y;

constraint 1000 * S + 100 * E + 10 * N + D
           + 1000 * M + 100 * O + 10 * R + E
           = 10000 * M + 1000 * O + 100 * N + 10 * E + Y;

constraint all_different([S,E,N,D,M,O,R,Y]);

solve satisfy;
```

- To use a global we need to `include` it, or include all globals with `include "globals.mzn"`
Global Constraints: inverse

- \text{inverse}(\text{array}[\text{int}] \text{ of var int}: f, \text{array}[\text{int}] \text{ of var int}: if)
 - \(f[i] = j \Leftrightarrow if[j] = i \) (\(if \) is the inverse function \(f^{-1} \))

- Helpful for assignment problems where we want both views of the problem

- array[1..n] of var 1..n: task;
- array[1..n] of var 1..n: worker;
- constraint inverse(task, worker);
 - We can express constraints about tasks and workers
 - task for worker 1 is numbered after task for worker 2
 - worker of task 3 is numbered less than worker for task 4
Global constraints: cumulative

- A constraint for cumulative resource usage
 - `cumulative(array[int] of var int: s, array[int] of var int: d, array[int] of var int: r, var int: b)`
 - Set of tasks with start times `s`, and durations `d` and resource usages `r` never require more than `b` resources at any time
- % piano, fridge, double bed, single bed, wardrobe chair, chair, table

 `d = [60, 45, 30, 30, 20, 15, 15, 15];`
 `r = [3, 2, 2, 1, 2, 1, 1, 2]; b = 4;`
Global constraints: table

- Enforce that array of variables take value from one row in a table:
 - `table(array[int] of var int: x, array[int,int] of int:t)`
- Consider a table of car models
 - % doors, sunroof, speakers, satnav, aircon

    ```plaintext
    models = [l 5, 0, 0, 0, 0  % budget hatch
               l 4, 1, 2, 0, 0  % standard saloon
               l 3, 1, 2, 0, 1  % standard coupe
               l 2, 1, 4, 1, 1 l]; % sports coupe
    
    constraint table(options, models);
    ```
Global constraints: regular

- Enforce that sequences of variables form a regular expression, defined by a DFA
- regular(array[int] of var int:x, int:Q, int: S; array[int,int] of int:d, int q0: set of int:F)
- Sequence x (taking vals 1..S) accepted by DFA with Q states, start state q0, final states F, and transition function: d
- One day off every 4 days, no 3 nights
MiniZinc (unlike most other mathematical modelling languages) allows the modeller to define their own:
– predicates (var bool)
– tests (bool)

N-queens example:

```
int: n;
array[1..n] of var 1..n: q;

predicate
  noattack(int: i, int: j, var int: qi, var int: qj) =
    qi != qj /
    qi + i != qj + j /
    qi - i != qj - j;

constraint
  forall (i in 1..n, j in i+1..n) (noattack(i, j, q[i], q[j]));

solve satisfy;
```
Complex Output (aside)

- Sometimes the output form is not close to the natural model: Queens
 - variables are columns, output by rows
- Solution: complex output expression
- output [if fix(q[j]) == i then "Q" else "." endif ++
 if j == n then "\n" else "" endif | i,j in 1..n];
Complex Output (aside)

- Sometimes the output form is not close to the natural model: Queens
 - variables are columns, output rows numbers

- Solution: complex output expression
 - `output [if fix(q[j]) == i then show(j) else "" endif ++
 if j == n then "\n" else "" endif | i,j in 1..n];`

- Output

- Alternate Solution: add to model
 - `array[1..n] of var 1..n: r; % row vars
 constraint inverse(q,r);
 output [show(r[i]) ++ "\n" | i in 1..n];`
Reflection Functions

• To help write generic tests and predicates, various reflection functions return information about array index sets, var set domains and decision variable ranges:
 – \texttt{index_set(<1-D array>)}
 – \texttt{index_set_1of2(<2-D array>), index_set_2of2(<2-D array>)}
 – ...
 – \texttt{dom(<arith-dec-var>), lb(<arith-dec-var>), ub(<arith-dec-var>)}
 – \texttt{lb_array(<var\text{-set}>), ub_array(<var\text{-set}>)}

• The latter class give "safe approximations" to the inferred domain, lowerbound and upperbound
 – Currently in mzn2fzn this is the declared or inferred bound
Extending assertions

- For predicates we introduce an extended assertion
 - `assert(<bool-exp>, <string>, <bool-exp>)`
- If first `<bool-exp>` evaluates to false prints `<string>` and aborts otherwise evaluates second `<bool-exp>`
- Useful to check user-defined predicate is called correctly
Using Reflection

• The disjunctive constraint:
 – cumulative where resource bound is 1 and all tasks require 1 resource.

 – include "cumulative.mzn";
 predicate disjunctive(array[int] of var int:s,
 array[int] of int:d) =
 assert(index_set(s) == index_set(d),
 "disjunctive: first and second arguments " ++
 "must have the same index set",
 cumulative(s, d, [1 | i in index_set(s)], 1)
);
Write a predicate defining the all_different constraint that takes a 1-D array:

```prolog
all_different(array[int] of var int:x)
```
Local Variables

- It is often useful to introduce local variables in a test or predicate
- The let expression allows you to do so
  ```
  let { <var-dec>, ... } in <exp>
  ```
 (It can also be used in other expressions)
- The var declaration can contain decision variables and parameters
 - Parameters must be initialized
- Example:
  ```
  let {int: l = lb(x), int: u = ub(x) div 2, var l .. u: y} in
  x = 2*y
  ```
Exercise: Local Variables

var -2..2: x1;
var -2..2: x2;
var -2..2: x3;
var int: ll;
var int: uu;
constraint even(2 * x1 - x2 * x3);
predicate even(var int:x) =
 let { int: l = lb(x), int: u = ub(x) div 2, var l..u: y } in
 x = 2 * y \ l = ll \ u = uu;
output["l = ",show(ll), " u = ",show(uu), "\n"];

What prints out?
predicate lex_less_int(array[int] of var int: x, array[int] of var int: y) =
 let { int: lx = min(index_set(x)), int: ux = max(index_set(x)),
 int: ly = min(index_set(y)), int: uy = max(index_set(y)),
 int: size = min(ux - lx, uy - ly),
 array[0..size+1] of var bool: b }
 in
 b[0] /
 forall(i in 0..size) (b[i] = (x[lx + i] <= y[ly + i] /
 (x[lx + i] < y[ly + i] / b[i+1]))
)
 /
 b[size + 1] = (ux - lx < uy - ly);

X is lexicographically less than Y
Meaning of Negation

- Local variables **cannot** appear in a negated context
 - not <bool-exp>
 - <bool-exp> -> <bool-exp>
 - <bool-exp> = <bool-exp> (or <->)

- This is because they won't get the right meaning
 predicate even(var int:x) = let {var int:y } in x = 2*y;
 constraint not even(z);

- Translates to (more about translation later)
 let { var int:y } in not (z = 2 * y)

- Solution: z = 2, y = 0!

- Solvers don’t support:
 - forall y. not (z = 2 * y)
Partial functions

• Given declarations
 var 0..1: x;
 var 0..5: i;
 array[1..4] of int:a = [1,2,3,4];

• What are expected solutions for
 – constraint 1 != 1 div x;
 – constraint not(1 == 1 div x);
 – constraint x < 1 \ 1 div x != 1;
 – constraint a[i] >= 3;
 – constraint not(a[i] < 2);
 – constraint a[i] >= 2 -> a[i] <= 3;
Relational semantics

- A partial function creates answer false
 - at the nearest enclosing Boolean context
- Examples
 - $1 \neq 1 \text{ div } 0$
 - $false$
 - $\neg(1 == 1 \text{ div } 0)$
 - $\neg(false) = true$
 - $0 < 1 \lor 1 \text{ div } 0 \neq 1$
 - $true \lor false = true$
 - $a[0] \geq 3$
 - $false$
 - $\neg(a[0] < 2)$
 - $\neg(false) = true$
 - $a[0] \geq 2 \rightarrow a[0] \leq 3$
 - $false \rightarrow false = true$
Efficiency in MiniZinc

• Of course as well as correctly modelling our problem we also want our MiniZinc model to be solved efficiently

• Information about efficiency is obtained using the MiniZinc flags
 – solver-statistics [number of choice points]
 – statistics [number of choice points, memory and time usage]

• Extensive experimentation is required to determine relative efficiency
Improving Efficiency in MiniZinc

- Add **search annotations** to the solve item to control exploration of the search space.
- **Use global constraints** such as all_different since they have better propagation behaviour.
- Try **different models** for the problem.
- Add **redundant** constraints.

And for the expert user:

- Extend the constraint solver to provide a **problem specific global constraint**.
- Extend the constraint solver to provide a **problem specific search routine**.
Modelling Effectively

• Modelling is (like) programming
 – You can write efficient and inefficient models

• Take care to avoid some simple traps
 – Bound variables as tightly as possible
 • Avoid `var int` if possible
 – Avoid introducing unnecessary variables
 – Make loops as tight as possible
var int: x;
var int: y;
constraint x <= y \∧ x > y;
solve satisfy;
• Takes an awful long time to say no answer
var -1000..1000: x;
var -1000..1000: y;
• Is almost instant
include "all_different.mzn";
array[1..15] of var bool: b;
array[1..4] of var 1..10: x;
constraint all_different(x) \/
 sum(i in 1..4)(x[i]) = 9;
solve satisfy;

• Takes a long time to say no
• Remove the bool array its instant!
• Sometimes unconstrained vars arise from matrix models where not all vars are used
Efficient loops

- Think about loops, just like in other programs
 int: count = sum [1 | i, j, k in NODES where i<j
 \∧ j<k \∧ adj[i,j] \∧ adj[i,k] \∧ adj[j,k]];
- Compare this to
 int: count = sum(i, j in NODES where
 i < j \∧ adj[i,j])(
 i < j \∧ adj[i,j])(
 sum([1 | k in NODES where j < k
 \∧ adj[i,k] \∧ adj[j,k]]));;
Global Constraints

• Where possible you should use global constraints
• MiniZinc provides a standard set of global constraints in the file globals.mzn
• To use these you simply include the file in the model
 include “globals.mzn”
• Exercise: Rewrite N-queens to use all_different.
• Exercise: Look at globals.mzn
Different Problem Modellings

- Different views of the problem lead to different models
- Depending on solver capabilities one model may require less search to find answer
- Look for model with fewer variables
- Look for more direct mapping to primitive constraints.
- Empirical comparison may be needed
Different Problem Modellings

Simple assignment problem:
• n workers and
• n products
• Assign one worker to each product to maximize profit

Instance:

$n=4$ & profit matrix =

<table>
<thead>
<tr>
<th></th>
<th>$p1$</th>
<th>$p2$</th>
<th>$p3$</th>
<th>$p4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w1$</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$w2$</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>$w3$</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>$w4$</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Exercise: Model this in MiniZinc
MIP-style model

int: n;
array[1..n,1..n] of int: profit;
array[1..n,1..n] of var 0..1: assign;
constraint
 forall(w in 1..n) (sum(t in 1..n) (assign[t,w]) = 1);
constraint
 forall(t in 1..n) (sum(w in 1..n) (assign[t,w]) = 1);
solve maximize
 sum(w in 1..n, t in 1..n) (assign[t,w]*profit[t,w]);
include "globals.mzn";
int: n;
array[1..n,1..n] of int: profit;
array[1..n] of var 1..n: task;

constraint all_different(task);
solve maximize
sum(w in 1..n) (
 profit[w,task[w]]);

Assign worker to task

include "globals.mzn";
int: n;
array[1..n,1..n] of int: profit;
array[1..n] of var 1..n: worker;

constraint all_different(worker);
solve maximize
 sum(t in 1..n) (profit[worker[t],t]);
Redundant Constraints

- Sometimes solving behaviour can be improved by adding redundant constraints to the model
- The magic series model will run faster with redundant constraints:

```plaintext
int: n;
array[0..n-1] of var 0..n: s;

constraint
  forall(i in 0..n-1) (s[i] = sum(i in 0..n-1)(bool2int(s[j]=i)));

constraint
  sum(i in 0..n-1) (s[i]) = n;

constraint
  sum(i in 0..n-1) (s[i]*i) = n;

solve satisfy;
```
• An extreme kind of redundancy is to combine different models for a problem using channeling constraints.

 int: n;
 array[1..n,1..n] of int: profit;
 array[1..n] of var 1..n: task;
 array[1..n] of var 1..n: worker;
 constraint all_different(task);
 constraint all_different(worker);
 constraint
 forall(w in 1..n) (w = worker[task[w]]);
 constraint
 forall(t in 1..n) (t = task[worker[t]]);
 solve maximize
 sum(t in 1..n) (profit[worker[t],t]);
Redundant Constraints

- There are globals for channeling constraints.
 - inverse(x,y): \(x[i] = j \iff y[j] = i \)

- A better combined model
  ```
  int: n;
  Include “inverse.mzn”;
  array[1..n,1..n] of int: profit;
  array[1..n] of var 1..n: task;
  array[1..n] of var 1..n: worker;
  % constraint all_different(task); % redundant
  % constraint all_different(worker);
  constraint inverse(task,worker);
  solve maximize sum(t in 1..n) (profit[worker[t],t]);
  ```
Labelling

- Recall that in CP the construction of the search tree can have a huge effect on efficiency.
- The search strategy is often called labelling.
- There are two choices made in labelling:
 - which variable to label
 - which value in the domain to try
- Default labelling:
 - try variables in order of the given list
 - try value in order min to max (returned by dom)
- However we can use different strategies. These can lead to dramatic performance improvement.
First Fail Labelling

- One useful heuristic is the **first-fail principle**

 “To succeed, try first where you are most likely to fail”

- At each step choose the variable with the smallest domain.

- Do this dynamically based on the domain size after propagation.
MiniZinc allows the user to annotate their model with information for the underlying solver to guide how it solves it

Such annotations do not change the model’s meaning but can greatly affect efficiency

Example annotations are

- `<var-decl> :: is_output`
 means that this is an output variable.
 Note that an output item overrides is_output annotations

- `<constraint> :: bounds`

- `<constraint> :: domain`
 specifies the type of propagation to use with the constraint
Search Annotations

• MiniZinc allows control of search using annotations on the solve item
• For integer variables these have form

 \textit{int_search}(vars, var_select, choice, explore)

• \textit{vars} is a 1D array specifying the var int variables affected by the annotation;
• \textit{var_select} is the variable selection strategy
 – input_order, first_fail, anti_first_fail, smallest, largest, occurrence, most_constrained, max_regret
• \textit{choice} is the value choice strategy
 – indomain, indomain_min, indomain_max, indomain_split, …
• \textit{explore} is the search strategy
 – complete, bbs(s), fail, …

See the FlatZinc specification for more details
http://www.g12.csse.unimelb.edu.au/minizinc/downloads/doc-0.10/
flatzinc-spec.pdf
• For the N-queens model you might use

 solve ::
 int_search(
 q,
 first_fail,
 indomain_min,
 complete
)
 satisfy;
Extending the Constraint Solver

- MiniZinc can be executed using ECLiPSe, Mercury G12 solving platform, or Gecode.
- These allow new global constraints to be added to the solver.
- They also allow new search strategies to be added
 - we'll talk about search strategies later
Summary

• Advanced models in MiniZinc use predicates to define complex subproblem constraints
 – Global constraints (give better solving)
 – User defined constraints & tests (Give better readability)
• We need to be careful with negation and local variables
• Efficiency depends on the model formulation
• Developing an efficient decision model requires considerable experimentation
• However MiniZinc is not a very powerful modelling language.
• MiniZinc is a subset of Zinc.
• Zinc extends MiniZinc providing
 – Tuples, enumerated constants, records, discriminated union
 – Var sets over arbitrary finite types
 – Arrays can have arbitrary index sets.
 – Overloaded functions and predicates.
 – Constrained types
 – User defined functions.
 – More powerful search parameterized by functions.
• Coming soon…
Exercise 1: Predicates

• Write a predicate definition for
 – `near_or_far(var int:x, var int:y, int:d1, int:d2)`
 which holds if difference in the value of x and y is either at most d1 or at least d2.
 – Can you optimize its definition for simple cases?

• Write a predicate definition for
 – `sum_near_or_far(array[int] of var int:x, int: d1, int:d2)`
 which holds if the sum of the x array is at most d1 or at least d2
Exercise 2: Comparing Models

• Try out the different versions of the assignment problem on the problems from examples.pdf (add an extra worker G to the unbalanced example with costs all 30)
 – Compare the number of choices required to solve using mzn -statistics
 – Try all five models, which is best?
 – Try different solvers?