Modelling Constrained Optimization Problems

How can we formally describe a constrained optimization problem in order to solve it
Overview

• Different approaches to modelling constrained optimization problems
• Basic modelling with MiniZinc
 – Structure of a model
 – Variables
 – Expressions
 – Constraints
• Advanced modelling with MiniZinc
Modelling Problems

• As constraint programmers we need to create a
 – conceptual model: abstract the real-world problem to create a constraint problem which adequately models the problem and yet can be solved
 – design model: create a program which solves this constraint problem

• Typically this is an iterative process, requiring experimentation with
 – different techniques
 – different models
 – development of problem-specific heuristics

• This is a lot to do from scratch, what software can we use to help with this?
Main Approaches to Computer Modelling of Constraint Problems

• There are five *generic* approaches
 – *Traditional* language with constraint-solving library
 – *Object-oriented* language with high-level constraint solving library
 – *Constraint programming* language
 – *Mathematical modelling language*
 – *Embedded domain specific language*

• These vary in
 – how *high-level* they are, i.e. closeness to the application vs closeness to the computer architecture
 – how *expressive* they are

• In principle, they can all be used with different constraint-solving techniques but specific tools typically support only one or two techniques
Comparative Example

• The problem:
• A toy manufacturer must determine how many bicycles, B, and tricycles, T, to make in a 40 hr week given that
 – the factory can produce 200 bicycles per hour or 140 tricycles
 – the profit for a bicycle is $25 and for a tricycle it is $30
 – no more than 6,000 bicycles and 4,000 tricycles can be sold in a week

• The model:

Maximise $25B + 30T$
Subject to

$(1/200)B + (1/140)T \leq 40 \land$

$0 \leq B \leq 6000 \land 0 \leq T \leq 4000$
Approach 1: Traditional language with constraint-solving library

Using C and the CPLEX Callable Library we have

```c
#include "cplex.h"
char probname[]="toy_problem";
int numcols=2; /*number of variables*/
int numrows=1; /*number of constraints*/
int objsense= -1; /*maximisation problem*/
double obj[] = [25,30]; /*objective function*/
double rhs[] = [40]; /*RHS constant of constraints*/
char sense[] = ['L']; /*type of constraint operator*/
int matbeg[] = [0,1]; /*constraint coefficients stored as a sparse array by*/
int matcnt[] = [1,1]; /* column. */
int matind[] = [0,0];
double matval[] = [1.0/200.0,1.0/140.0];
double lb[] = [0,0]; /* variable lower bounds*/
double ub[] = [6000,4000]; /* variable upper bounds*/
double rngval[] = []; /* range constraints */
```

Maximise 25B + 30T
Subject to
(1/200)B + (1/140)T ≤ 40 ∧
0 ≤ B ≤ 6000 ∧ 0 ≤ T ≤ 4000
Approach 1: Traditional language with constraint-solving library

```c
int solstat; /* solution status */
double v[2]; /*variable values*/
double slack[1]; /*slack variable*/

/* CPLEX library stuff */
CPXENVptr env = NULL;
CPXLPptr lp = NULL;
int status;

/* initialise environment*/
env = CPXopenCPLEXdevelop(&status);
if (env==NULL) then return(1);

/* create problem */
lp = CPXcreateprob(env, &status, probname);
if (lp==NULL) then return(1);
status = CPXcopylp(env,lp, numvols, numrows, objsen, obj, rhs, sense,
        matbeg, matcnt, matind, matval, lb, ub, rngval);
if (status) then return(1);
```

Approach 1: Traditional language with constraint-solving library

/* solve problem & get solution*/
status = CPXprimopt(env, lp);
if (status) then return(1);

status = CPXsolution(env, lp, &solstat, &objval, x, pi, slack, dj);
if (status) then return(1);

/* write answer to screen */
printf("Solution value = %f\n\n", objval);
...

/* terminate */
status = CPXfreeprob(env, &lp);
if (status) then return(1);
status = CPXcloseCPLEX(&env);
if (status) then return(1);
return 0;
Approach 2: OO language with HL constraint-solving library

• Using hypothetical nice C++ CPLEX interface

```cpp
#include <floatsolver.h>
CPLEXFloatSolver s();
Float B(s,0.0,6000.0), T(s,0.0,4000.0);
s.AddConstraint( (1.0/200.0)*B + (1.0/140.0)*T <= 40.0);
s.MaxObjective(25.0*B+30.0*T);
s.Solve();
cout << "B =" << B.val() << "T=" << T.val();
```

• Note that this makes use of C++ overloading

Maximise 25B + 30T
Subject to
(1/200)B + (1/140)T ≤ 40 ∧
0 ≤ B ≤ 6000 ∧ 0 ≤ T ≤ 4000
Approach 3: Constraint Programming Language

- Using ECLiPSe

```prolog
:- lib(eplex).
:- eplex_instance(prob).
main(B, T) :-
  prob: ([B] $:: 0.0..6000.0),
  prob: ([T] $:: 0.0..4000.0),
  prob: ((1.0/200.0)*B+(1.0/140.0)*T $=< 40.0),
  prob: eplex_solver_setup(min(25*B+30*T)),
  prob: eplex_solve(_Cost).
```

Maximise $25B + 30T$

Subject to

$(1/200)B + (1/140)T \leq 40$ \land $0 \leq B \leq 6000$ \land $0 \leq T \leq 4000$
Approach 3: Constraint Programming Language

- Using ECLiPSe

```prolog
:- lib(eplex).

main(B, T) :-
  [B] $:: 0.0..6000.0,
  [T] $:: 0.0..4000.0,
  (1.0/200.0)*B+(1.0/140.0)*T $=< 40.0,
  eplex_solver_setup(min(25*B+30*T),
  eplex_solve(_Cost).
```

Maximise $25B + 30T$

Subject to

$(1/200)B + (1/140)T \leq 40 \land$

$0 \leq B \leq 6000 \land 0 \leq T \leq 4000$
Approach 4: Mathematical Modelling Language

Maximise $25B + 30T$

Subject to

$(1/200)B + (1/140)T \leq 40 \land$

$0 \leq B \leq 6000 \land 0 \leq T \leq 4000$

- Using AMPL

```AMPL
var B; var T;
maximize profit: 25*B+30*T;
subject to: (1/200)*B+(1/140)*T <= 40;
subject to: 0 <= B <= 6000;
subject to: 0 <= T <= 4000;
solve;
```
Approach 5: Embedded DSL

- **NumberJack in Python**

```python
def smodel:
    B = Variable(0,6000)
    T = Variable(0,4000)
    model = Model(
        Minimise( 25*B + 30*T ),
        [(1/200) * B + (1/140) * T <= 40]
    )
    solver = smodel.model.load('Mistral')
    solver.solve()
```

Maximise $25B + 30T$
Subject to
$(1/200)B + (1/140)T \leq 40$ \land
$0 \leq B \leq 6000$ \land $0 \leq T \leq 4000$
(Relatively) Recent Examples

<table>
<thead>
<tr>
<th></th>
<th>CLP</th>
<th>C++ toolkit</th>
<th>Modelling language</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP/ILP</td>
<td>ECLiPSe</td>
<td>Mistral</td>
<td>OPL</td>
</tr>
<tr>
<td>BT search + propagation</td>
<td></td>
<td>ILOG Solver</td>
<td></td>
</tr>
<tr>
<td>Local search</td>
<td></td>
<td>Localizer ++</td>
<td>Comet</td>
</tr>
</tbody>
</table>
MiniZinc

- **MiniZinc** is a new modelling language being developed by NICTA with Univ of Melb/Monash.
- Depending on the kind of model it can be solved with constraint programming or with MIP techniques.
- It is a subset of the more powerful modelling language Zinc—first public release 2010.
A First MiniZinc Model

Maximise \ 25B + 30T \\
Subject to \\
(1/200)B \ + (1/140)T \le 40 \land \\
0 \le B \le 6000 \land 0 \le T \le 4000 \\

\text{var} \ 0.0..6000.0: \ B; \\
\text{var} \ 0.0..4000.0: \ T; \\

\text{constraint} \ \frac{1.0}{200.0}B + \frac{1.0}{140.0}T \le 40.0; \\
\text{solve} \ \text{maximize} \ 25.0*B + 30.0*T; \\
\text{output} \ ["B = ", \ \text{show}(B), \ "T = ", \ \text{show}(T), \ "\n"];
% Colouring Australia using int: nc = 3;

var 1..nc: wa; var 1..nc: nt;
var 1..nc: sa; var 1..nc: q;
var 1..nc: nsw; var 1..nc: v;
var 1..nc: t;

constraint wa != nt;
constraint wa != sa;
constraint nt != sa;
constraint nt != q;
constraint sa != q;
constraint sa != nsw;
constraint sa != v;
constraint q != nsw;
constraint nsw != v;

solve satisfy;

output ["wa=", show(wa), "\t nt=",
 show(nt), "\t sa=", show(sa), "\n",
 "q=", show(q), "\t nsw=", show(nsw), "\t v=", show(v), "\n",
 "t=", show(t), "\n"];
A Second MiniZinc Model

- We can run our MiniZinc model as follows:

 `$ mzn aust.mzn`

- This results in:

 - `wa=1`
 - `nt=3`
 - `sa=2`
 - `q=1`
 - `nsw=3`
 - `v=1`
 - `t=1`

- MiniZinc models must end in `.mzn`
- There is also an eclipse IDE for MiniZinc
In MiniZinc there are two kinds of variables:

Parameters—These are like variables in a standard programming language. They must be assigned a value (but only one).

They are declared with a type (or a range/set).

You can use `par` but this is optional.

The following are logically equivalent

```plaintext
int: i=3;
par int: i=3;
int: i; i=3;
```
Decision Variables

Decision variables - These are like variables in mathematics. They are declared with a type and the `var` keyword. Their value is computed by MiniZinc so that they satisfy the model.

Typically they are declared using a range or a set rather than a type name.

The range or set gives the domain for the variable.

The following are logically equivalent:

- `var int: i; constraint i >= 0; constraint i <= 4;`
- `var 0..4: i;`
- `var {0,1,2,3,4}: I;`

Question: what does this mean `constraint i = i + 1;`
Allowed types for variables are

- Integer `int` or range `1..n` or set of integers
- Floating point number `float` or range `1.0..f` or set of floats
- Boolean `bool`
- Strings `string` (but these cannot be decision variables)
- Arrays
- Sets
Variables have an \textit{instantiation} which specifies if they are parameters or decision variables. The type + instantiation is called the type-inst.

MiniZinc errors are often couched in terms of mismatched type-insts…
Strings

Strings are provided for output

• An output item has form

 output <list of strings>;

• String literals are like those in C: enclosed in “ “

• They cannot extend across more than one line

• Backslash for special characters \n \t etc

• Built in functions are
 – show(v)
 – “house”++”boat” for string concatenation
MiniZinc provides the standard arithmetic operations

- Floats: * / + -
- Integers: * div mod + -

Integer and float literals are like those in C

There is no automatic coercion from integers to floats

The builtin int2float(intexp) must be used to explicitly coerce them

The arithmetic relational operators are

== != > < >= <=
Data files

Here is a simple model about loans:

% variables
var float: R; % quarterly repayment
var float: P; % principal initially borrowed
var 0.0 .. 100.0: I; % interest rate

% intermediate variables
var float: B1; % balance after one quarter
var float: B2; % balance after two quarters
var float: B3; % balance after three quarters
var float: B4; % balance at end

constraint B1 = P * (1.0 + I) - R;
constraint B2 = B1 * (1.0 + I) - R;
constraint B3 = B2 * (1.0 + I) - R;
constraint B4 = B3 * (1.0 + I) - R;
solve satisfy;

output ...

We want this to be generic in the choice of values R, P, I, B1, ..,B4. MiniZinc allows parameters and variables to be initialized in a separate data file

- left: borrowing 1000$ at 4% repaying $260
- right: borrowing 1000$ at 4% owing nothing at end

We can run a MiniZinc model with a data file as follows

$ mzn –b mip loan.mzn loan1.dzn

MiniZinc data files must end in .dzn
Basic Structure of a Model

A MiniZinc model is a sequence of items
The order of items does not matter
The kinds of items are

– An inclusion item
 include <filename (which is a string literal)>;

– An output item
 output <list of string expressions>;

– A variable declaration

– A variable assignment

– A constraint
 constraint <Boolean expression>;
The kinds of items (cont.)

- A solve item (a model must have exactly one of these)

 solve satisfy;

 solve maximize <arith. expression>;

 solve minimize <arith. expression>;

- Predicate and test items

- Annotation items

- Identifiers in MiniZinc start with a letter followed by other letters, underscores or digits

- In addition, the underscore `_` is the name for an anonymous decision variable
We want to bake some cakes for a fete for school.

<table>
<thead>
<tr>
<th>Banana cake</th>
<th>Chocolate cake</th>
</tr>
</thead>
<tbody>
<tr>
<td>250g of self-raising flour, 2 mashed bananas, 75g sugar and 100g of butter</td>
<td>200g cups of self-raising flour, 75g of cocoa, 150g sugar and 150g of butter</td>
</tr>
</tbody>
</table>

(WARNING: please don't use these recipes at home).

We have 4kg self-raising flour, 6 bananas, 2kg of sugar, 500g of butter and 500g of cocoa.

Exercise: Write a MiniZinc model to determine how many of each sort of cake should we make to maximize the profit where a chocolate cake sells for $4.50 and a banana cake for $4.00.
A problem with this model is that the recipes and the available ingredients are hard wired into the model.

It is an example of simple kind of production planning problem in which we wish to
- determine how much of each kind of product to make to maximize the profit where
- manufacturing a product consumes varying amounts of some fixed resources.

• We can use a generic MiniZinc model to handle this kind of problem.
% Number of different products
int: nproducts;
set of int: products = 1..nproducts;

%profit per unit for each product
array[products] of int: profit;

%Number of resources
int: nresources;
set of int: resources = 1..nresources;

%amount of each resource available
array[resources] of int: capacity;

%units of each resource required to produce 1 unit of product
array[products, resources] of int: consumption;

% bound on number of products
int: mproducts = max (p in products)
 (min (r in resources where consumption[p,r] > 0)
 (capacity[r] div consumption[p,r]));

% Variables: how much should we make of each product
array[products] of var 0..mproducts: produce;

% Production cannot use more than the available resources:
constraint forall (r in resources) (
 sum (p in products) (consumption[p, r] * produce[p]) <= capacity[r]
);

% Maximize profit
solve maximize sum (p in products) (profit[p]*produce[p]);

output [show(produce)];

MiniZinc supports arrays and sets.
Sets

Sets are declared by

set of type

They are only allowed to contain integers, floats or Booleans.

Set expressions:

Set literals are of form \{e_1, \ldots, e_n\}

Integer or float ranges are also sets

Standard set operators are provided:

in, union, intersect, subset, superset, diff, symdiff

The size of the set is given by card

Some examples:

set of int: products = 1..nproducts;

\{1,2\} union \{3,4\}

Set variable names, set literals or ranges can be used as types.
Arrays

An array can be multi-dimensional. It is declared by

array[index_set 1, index_set 2, ...,] of type

The index set of an array needs to be

an integer range or

the name of a set variable that is an integer range.

The elements in an array can be anything except another array

They can be decision variables.

For example

array[products, resources] of int: consumption;
array[products] of var 0..mproducts: produce;

The built-in function length returns the number of elements in a

1-D array
Arrays (Cont.)

1-D arrays are initialized using a list

profit = [400, 450];
capacity = [4000, 6, 2000, 500, 500];

2-D array initialization uses a list with \`\`l\`\` separating rows

consumption= [\| 250, 2, 75, 100, 0, \\
| 200, 0, 150, 150, 75 |];

Arrays of *any* dimension (*well* ≤ 3) can be initialized from a list using the

`arraynd` family of functions:

consumption= `array2d(1..2,1..5, [250,2,75,100,0,200,0,150,150,75]);`

The concatenation operator `++` can be used with 1-D arrays:

profit = [400]++[450];
Array & Set Comprehensions

MiniZinc provides *comprehensions* (similar to ML)

A set comprehension has form

\[
\{ \text{expr} \mid \text{generator 1, generator 2, …} \}
\]

\[
\{ \text{expr} \mid \text{generator 1, generator 2, … where bool-expr} \}
\]

An array comprehension is similar

\[
[\text{expr} \mid \text{generator 1, generator 2, …}]
\]

\[
[\text{expr} \mid \text{generator 1, generator 2, … where bool-expr}]
\]

Some examples

\[
\{i + j \mid i, j \text{ in } 1..3 \text{ where } j < i\} = \{1 + 2, 1 + 3, 2 + 3\} = \{3, 4, 5\}
\]

Exercise: What does \(b\) =?

set of int: cols = 1..5;
set of int: rows = 1..2;
array [rows,cols] of int: c = [| 250, 2, 75, 100, 0, | 200, 0, 150, 150, 75 |];
b = array2d(cols, rows, [a[j, i] \mid i \text{ in cols, } j \text{ in rows}]);
MiniZinc provides a variety of built-in functions for iterating over a list or set:

- Lists of numbers: sum, product, min, max
- Lists of constraints: forall, exists

MiniZinc provides a special syntax for calls to these (and other generator functions)

For example,

```plaintext
forall (i, j in 1..10 where i < j) (a[i] != a[j]);
```

is equivalent to

```plaintext
forall ([a[i] != a[j] | i, j in 1..10 where i < j]);
```
The simple production model is **generic** in the choice of parameter values. MiniZinc allows parameters to be initialized in a separate **data file**

```
% Data file for simple production planning model

nproducts = 2; %banana cakes and chocolate cakes
profit = [400, 450]; %in cents

nresources = 5; %flour, banana, sugar, butter cocoa
capacity = [4000, 6, 2000, 500, 500];
consumption = [250, 2, 75, 100, 0,
               200, 0, 150, 150, 75];
```

We can run a MiniZinc model with a data file as follows

```
$ mzn prod.mzn cake.dzn
```

MiniZinc data files must end in `.dzn`
Defensive programming requires that we check that the data values are valid. The built-in Boolean function \texttt{assert(boolean, string)} is designed for this. It returns true if \texttt{boolean} holds, otherwise prints \texttt{string} and aborts. Like any other Boolean expression it can be used in a constraint item. For example,

\begin{verbatim}
int: nresources;
constraint assert(nresources > 0, "Error: nresources <= 0");

array[resources] of int: capacity;
constraint assert(forall(r in resources)(resources[r] >= 0), "Error: negative capacity");
\end{verbatim}

Exercise: Write an expression to ensure consumption is non-negative

\begin{verbatim}
array[products, resources] of int: consumption;
\end{verbatim}
Assertions for Debugging

• You can (ab)use assertions to help debug

 int: n = 5;
 array[1..n] of var 1..n: a;
 array[1..n] of 1..n: b = [3,5,2,3,1];

 constraint forall(j in 1..n, i in b[n-j]..b[n-j])(a[j] < i);

• Error message

 error:
 debug.mzn:5
 In constraint.
 In 'forall' expression.
 In comprehension.
 j = 5
 In comprehension head.
 In '..' expression
 In array access.
 In index argument 1
 Index out of range.
Assertions for Debugging

• You can (ab)use assertions to help debug

  ```
  int: n = 5; 
  array[1..n] of var 1..n: a; 
  array[1..n] of 1..n: b = [3,5,2,3,1]; 
  
  constraint forall(j in 1..n)(
      assert(n-j in 1..n, "b[" ++ show(n-j) ++ "]");
  ```

• Error message

  ```
  error: 
  debug.mzn:6
  In constraint.
  In 'forall' expression.
  In comprehension.
  j = 5
  In comprehension head.
  In 'assert' expression.
  Assertion failure: "b[0]"
  ```
Beware out of range errors in constraints

• You can (ab)use assertions to help debug

• int: n = 5;
 array[1..n] of var 1..n: a;
 array[1..n] of 1..n: b = [3,5,2,3,1];

 constraint forall(j in 1..n)(a[j] < b[n-j]);

• Error message

 error:
 debug.mzn:5
 In constraint.
 In 'forall' expression.
 Model inconsistency detected.
If-then-else

- MiniZinc provides an
 \[
 \text{if } <\text{boolexp}> \text{ then } <\text{exp}> \text{ else } <\text{exp}> \text{ endif}
 \]
 expression
- For example,
 \[
 \text{if } y \neq 0 \text{ then } x / y \text{ else } 0 \text{ endif}
 \]
- The Boolean expression is not allowed to contain decision variables, only parameters
- In output items the built-in function \text{fix} checks that the value of a decision variable is fixed and coerces the instantiation from decision variable to parameter
Constraints

- Constraints are the core of the MiniZinc model.
- We have seen simple relational expressions but constraints can be considerably more powerful than this.
- A constraint is allowed to be any Boolean expression.
- The Boolean literals are `true` and `false`.
 and the Boolean operators are
 `\land` \ `\lor` \ `\leftarrow` \ `\rightarrow` \ `\leftrightarrow` \ `\neg` not
- Global constraints: `alldifferent`
Imagine a scheduling problem in which we have a set of tasks that use the same single resource. Let $\text{start}[i]$ and $\text{duration}[i]$ give the start time and duration of task i. To ensure that the tasks do not overlap:

$$\text{constraint forall (i,j in tasks where i != j) (}$
$$\text{ start}[i] + \text{duration}[i] \leq \text{start}[j] \lor$
$$\text{ start}[j] + \text{duration}[j] \leq \text{start}[i])$$;
Array Constraints

Recall that array access is given by $a[i]$. The index i is allowed to be an expression involving decision variables in which case it is an implicit constraint on the array.

As an example consider the **stable marriage problem**.

We have n (straight) women and n (straight) men. Each man has a ranked list of women and vice versa. We want to find a husband/wife for each women/man s.t all marriages are stable, i.e.,

- Whenever m prefers another women o to his wife w, o prefers her husband to m
- Whenever w prefers another man o to her husband m, o prefers his wife to m
Stable Marriage Problem

int: n;
array[1..n,1..n] of int: rankWomen;
array[1..n,1..n] of int: rankMen;
array[1..n] of var 1..n: wife;
array[1..n] of var 1..n: husband;

constraint forall (m in 1..n) (husband[wife[m]]==m);
constraint forall (w in 1..n) (wife[husband[w]]==w);

Exercise: insert stability constraints here…

solve satisfy;

output ["wives= ", show(wife),"
", "husbands= ", show(husband)];
Higher-order constraints

• The built-in coercion function \texttt{bool2int} allows the modeller to use so called \textit{higher order} constraints:

• \textbf{Magic series problem}: find a list of numbers $S = [s_0, \ldots, s_{n-1}]$ s.t. s_i is the number of occurrences of i in S.

• A MiniZinc model is

 int: n;
 array[0..n-1] of var 0..n: s;

 constraint
 forall(i in 0..n-1) (s[i] = sum(j in 0..n-1)(bool2int(s[j]=i)));

 solve satisfy;
Set Constraints

• MiniZinc allows sets over integers to be decision variables
• Consider the O/1 knapsack problem

```
int: n;
int: capacity;

array[1..n] of int: profits;
array[1..n] of int: weights;

var set of 1..n: knapsack;

constraint sum (i in knapsack) (weights[i]) <= capacity;
solve maximize sum (i in knapsack) (profits[i]) ;
output [show(knapsack)];
```
Set Constraints (Cont.)

• But this doesn’t work—we can’t iterate over variable sets

• Exercise: Rewrite the example so that it doesn’t iterate over a var set
Enumerated Types

- Enumerated types are useful to name classes of object which we will decide about. In reality they are placeholders for integers

  ```
  enum people = { bob, ted, carol, alice };
  ```

- This can be imitated by

  ```
  set of int: people = 1..4;
  int: bob = 1;
  int: ted = 2;
  int: carol = 3;
  int: alice = 4;
  array[people] of string: name = [
    "bob", "ted", "carol", "alice"
  ];
  ```
Using MiniZinc

• Getting MiniZinc
 – http://www.g12.cs.mu.oz.au/minizinc

• On-line resources
 – http://www.g12.csse.unimelb.edu.au/wiki

• Or use installed version
 – slippers2.csse.unimelb.edu.au
 • username preferred_login password (same please change)
 – path to mzn: /Users/Shared/g12/
How does MiniZinc work

• MiniZinc interprets the model and data and spits out a simpler form of model: FlatZinc
 – The tool mzn2fzn explicitly does this step.
 – mzn2fzn file.mzn data.dzn
 • creates file.fzn
 – FlatZinc interpreters run FlatZinc files
 • very simple output (just some variable values)
 – MiniZinc reads the simple output and calculates the complex output
MiniZinc and Mzn

- **MiniZinc** is a standalone minizinc interpreter
 - older
 - more stable
 - fixed to FD solver
- **Mzn** is a script using mzn2fzn/flatzinc
 - Uses mzn2fzn to convert MiniZinc to FlatZinc
 - Runs FlatZinc interpreter
 - Takes output of FlatZinc and pipes to MiniZinc to get output
 - Less stable, links to any FlatZinc solver, supported
Summary

• Four main approaches to modelling & solving constraint problems
 – *Traditional* language with constraint-solving library
 – *Object-oriented* language with high-level constraint solving library
 – *Constraint programming* language
 – *Mathematical modelling language*
 – *Embedded domain specific language*

• We have looked at basic modelling with the mathematical modelling language MiniZinc in some detail
 – What is good about MiniZinc?
 – What is bad?

• In the workshop we will use MiniZinc to model some problems—if you have a laptop please bring it along with MiniZinc installed.
Exercise 1: Magic Square

- A magic square of side n is an arrangement of the numbers from 1 to n^2 such that each row, column, and major diagonal all sum to the same value.

- Here is a 3×3 magic square:

 \[
 \begin{array}{ccc}
 2 & 7 & 6 \\
 9 & 5 & 1 \\
 4 & 3 & 8 \\
 \end{array}
 \]

- **Exercise:** Write a MiniZinc program to generate a magic square for size n
Exercise 2: Task Allocation

• We have
 – a set of tasks, tasks
 – a set of workers, workers
 – a set of tasks for each worker that they are qualified to perform
 – a cost for each worker

• Exercise: Write a MiniZinc program to find the set of workers which can complete all tasks and which minimizes the cost