NICTA

Discrete
Optimization
for Agents

Peter J. Stuckey and countless others!

. Australian Government

Department of Broadband, Communications
and the Digital Economy

Australian Research Council

NICTA Funding and Supporting Members and Partners

Australian

.‘0

. I

e%_ﬁ National ;l"“l) Trade &

uw %3 University THE CARERSTY O N SOUTH WLES vt | Investment MELBOURKE
THE UNIVERSITY OF Queensland u” Griffith THE UNIVERSITY
SYDNEY Government LV GniversiTY

g ‘OF QUEENSLAND
Queensiand Universiy of Technology

Conspirators

 |Ignasi Abio, Ralph Becket, Sebastian Brand,
Geoffrey Chu, Michael Codish, Toby Davies,
Greg Duck, Nick Downing, Thibaut Feydy,
Kathryn Francis, Graeme Gange, Vitaly Lagoon,
Nir Lipovetzky, Nick Nethercote, Olga
Ohrimenko, Adrian Pearce, Andreas Schutt,
Guido Tack, Pascal Van Hentenryck, Mark

Wallace
« All errors and outrageous lies are mine

Outline Yo

C : : : NICTA
« Optimization = intelligence

— Discrete optimization has advanced rapidly

Solver independent modelling
— MiniZinc: a high level modelling language

Nogood learning for discrete optimization
— The laziness principle in action
* Resolving similar problems
— “lifelong learning” and nested constraint programs
« Concluding remarks

Outline (Yo

L . . NICTA
* Optimization = intelligence

— Discrete optimization has advanced rapidly

Solver independent modelling
— MiniZinc: a high level modelling language

* Nogood learning for discrete optimization

— The laziness principle in action
* Resolving similar problems

— “lifelong learning” and nested constraint programs
« Concluding remarks

Intelligent Agents (Je

NICTA
* An intelligent agent can be a [Russell+Norvig]

— simple reflex agent

— model-based reflex agent

— goal-based agent

— utility-based agent

— learning agent
 Ulility-based agent

— optimizing utility

— goal-based agent wants to optimize time to goal
* Learning agent

— trying to optimize learning performance

Intelligent Agents + Discrete Optimization

 Models the environment

 Makes a decision to act

* |In order to move to achieve some goal
 Has limited resources and limited actions

Discrete Optimization
— choose from a limited set of possibilities
— a solution which optimizes a utility

— usually subject to (complex) constraints
* like limited resources

Automated Planning (Je
NICTA

* Planning is a technology targeted for agents

« Mature technology for finding a solution to muilti-
agent propositional problems

 But

— planning with utility (cost-optimal planning) technology
Is still quite immature

— planning is not very good at modelling limited
resources

* some evidence random search better than planning when
resources are scarce

— temporal planning = scheduling with optional tasks

Discrete Optimization for Agents (J®

: : NICTA
* Not as rich as planning

« But very effective at
— making a decision
— to optimize an objective
— subject to limitations (constraints)

A useful tool for building intelligent agents

Why should you listen to this talk (Jeo

. L NICTA
* Discrete Optimization

— IS easler to use now
* solver independent modelling
— is more effective than before
* nogood learning solvers

— IS better at “resolving” a similar problem
» assumptions and nogood learning

— has well defined approaches to stochasticity
 stochastic optimization

— can express very complicated problems succintly
* nested constraint programs

« Useful for other parts of your CS life

Outline (e

C : : : NICTA
« Optimization = intelligence

— Discrete optimization has advanced rapidly

Solver independent modelling
— MiniZinc: a high level modelling language

* Nogood learning for discrete optimization

— The laziness principle in action
* Resolving similar problems

— “lifelong learning” and nested constraint programs
« Concluding remarks

10

Solver independent modelling (Je

_ _ NICTA
* There are many approaches to solving discrete

optimization problems
— mixed integer programming (MIP)
— local search (LS)
« simulated annealing, tabu search, CBLS

— population-based search (PS)
* genetic algorithms, evolutionary algorithms, beam search

— constraint programming (CP)
— Boolean satisfiability (SAT)
— SAT modulo theories (SMT)

— Answer set programming (ASP)

 Different technologies have different strengths
and weaknesses "

Solver independent modelling (Je

“TA

* Building a discrete optimization solution can be a
large undertaking

« Early commitment to solving technology
— may not choose correctly
— wastes a lot of work
— may indeed prevent other approaches being tried

e The answer

— capture the problem independent of solving
technology

12

MiniZinc @

* A solver independent modelling language
« Supports

— CP solvers: almost all except commercial ones
— MIP solvers: CBC, Cplex, Gurobi
— SAT solvers (by translation): fzntini, picat-SAT
— SMT solvers: fzn2smt
— ASP solvers: minisatlD
— local search (CBLS) solvers: oscar, yacs

» De facto standard for CP modelling

* Translates a high level model to
— a form suitable for the underlying solver

13

Jobshop Scheduling

int: n; set of int: Job=1l..n; % no of jobs
int: m; set of int: Task=1l..m; % task per job
int: span; % max end time
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array|[Job, Task] of var 0..span: s;
constraint forall (i in Job, j in 1..m-1)

(s[i,J] + d[i,]j] <= s[i,]j+1]1);
constraint forall (k in Task)

(unary([s[i,J] | i1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[1,3] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);

solve minimize obj;

17

Jobshop Scheduling

int: n; set of int: Job=1l..n; % no of jobs

int: m; set of int: Task=1l..m; % tas

[Parameters

int: span; —rrrer= -

|

array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array|[Job, Task] of var 0..span: s;
constraint forall (i in Job, j in 1..m-1)
(s[i,J] + d[i,]j] <= s[i,]j+1]1);
constraint forall (k in Task)

(unary([s[i,J] | i1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[1,3] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);

solve minimize obj;

15

Jobshop Scheduling

7

[¢)

int: n; set of int: Job-1..n; _x=— Dependent

\\

int: m; set of int: Task=1l..m; % tas

Parameters

int: span; —rrrer= -

array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array[Job, Task] of wvar 0O..span: s;
constraint forall (i in Job, j in 1..m-1)
(s[i,J] + d[i,]j] <= s[i,]j+1]1);
constraint forall (k in Task)

(unary([s[i,J] | i1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[1,3] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);

solve minimize obj;

Jobshop Scheduling

int: n,; set of int: JObzl..DL_=é=ff:;

rDependent

int: m; set of int: Task=1l..m; % tas(

int: span; —rrrer= -

Parameters

array|[Job, Task] of int: d;

array|[Job, Task] of Task: mc;
. <’ Variables

array|[Job, Task] of wvar 0..span:

constraint forall (i in Job, j in 1.
(s[i,3] + d[i,]] <=

constraint forall (k in Task)

S[l,j+1]) ;

(unary([s[i,J] | i1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[1,3] = k]));
var int: obj = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;

17

Jobshop Scheduling

int: n; set of int: Job=1..n; S Dependent

o)

int: m; set of int: Task=1l..m; % tas(

Parameters

int: span; —rrree—

array|[Job, Task] of int: d;

array[Job, Task] of Task: mc; :’Varlables
Sy

array[Job, Task] of wvar 0..span:

constraint forall (i in Job, j in 1.
(s[i,3] + dl[1,]] <= S[l,j+1]);
constraint forall(k in Task)

(unary([s[1,7] | 1 in Job, 7 in Task
where mc[1,]] = k],
[d[1,3] | 1 in Job, J in Task
where mc[1,3] = k]));
var int: obj] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize ob7j; \[COmprehenS.OnS]
[

Jobshop Scheduling o

int: n; set of int: Job=1..n; == Dependent

int: m; set of int: Task=1l..m; % tas(A
int: span; —— T\Parameters J

array|[Job, Task] of int: d;

array[Job, Task] of Task: mc;]
. <’ Variables

array|[Job, Task] of wvar 0..span:

constraint forall (i in Job, j in 1.
(S[lrj] + d[Ij] <= S[llj-l_l])l
constraint forall (k in Task)

(unary([s[1,7] | 1 in Job, 7 in Task

where mc[i,3] = kI, | Constraints]
[d[1,3] | 1 in Job, J in Task
where mc[i,J] = k]));
var int: obj] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj; ‘§§=:::{(: h :
omprenensions]

Jobshop Scheduling o

int: n; set of int: Job=1..n; S Dependent

int: m; set of int: Task=1l..m; % tas()
int: span; —— Parameters

array|[Job, Task] of int: d;

array[Job, Task] of Task: mc; :’Varlables
Sy

array[Job, Task] of wvar 0..span:

constraint forall (i in Job, j in 1.

(s[1,J] + d[1i,]] <= S[l¢1+1]),
constraint forall(k in Task) Global

(unar - T 111 JOD, in Task
J

where mc[i,j] = kI, | Constraints

[d[i,3] | i in Job, j in Task
where mc[i,J] = k]));
var int: obj] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj; ‘§§=:::{(: h :
omprenensions]

Jobshop Scheduling o

int: n; set of int: Job=1..n; == Dependent

int: m; set of int: Task=1l..m; % tas(A
int: span; —— T\Parameters J

array|[Job, Task] of int: d;

array|[Job, Task] of Task: mc;
. <’ Variables

array|[Job, Task] of wvar 0..span:

constraint forall (i in Job, j in 1.

(S[lrj] + d[Ij] <= S[l,rj+1]),

constraint forall (k in Task) Global
(Uunary==trr=r1 1 T I Job,] in lask ==
[Objective where mc(i,3] = k1, | Constraints
,J] | 1 in Job, j in Task
where mc[i,J] = k]));
var intj/obj = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj; ‘§§=:::{(: h :
omprenensions]

An Agent Example

 Bulk rail scheduling
— A number of services are demanded
— Service: move cargo from start to end
— Time windows for start and end
— Payment for completion

int: nservice;
set of int: SERVICE = 1..nservice;
array[SERVICE] of NODE: start;

array [SERVICE] of TIME: earliest start;
array [SERVICE] of TIME: latest start;
array[SERVICE] of NODE: end;
array[SERVICE] of TIME: earliest end;
array |[SERVICE] of TIME: latest end;

[]

array [SERVICE] of int: payment;

(Jo

NICTA

22

An Agent Example o L

. NICTA
 Ralil track network

— Nodes, and (directed) edges
— Cost to use edge dependent on time of use

— Travel time for edge

enum NODE;

int: nedge;

set of int: EDGE = 1. .nedge;
array[EDGE,1..2] of NODE: edge;

int: horizon; % time horizon in minutes
set of int: TIME = 0..horizon;

set of int: HOUR = 0..horizon div 60;
array [EDGE, HOUR] of int: cost;

set of int: DUR = 0..horizon;

array [EDGE] of DUR: travel; % travel time for edge

23

An Agent Example

 Consist decisions
— which service to undertake
— path and travel times

— waiting (dwelling) at nodes
var SERVICE: which;
var TIME: start time;
array [NODE] of war TIME: arrive;
int: maxdwell;
set of int: DWELL = 0..maxdwell;
array [NODE] of wvar DWELL: dwell;

(O
NICTA

array [NODE] of wvar NODE: next;% next node to visit or self

set of int: EDGEO = 0..nedge;
array [NODE] of war EDGEO: route; %

edge taken or O

24

An Agent Example o

NICTA
» Constraints: meets time criteria
start time = arrive[start[which]] /\
dwell [start[which]] = 0 /\
arrive[start[which]] >= earliest start[which] /\
arrive[start[which]] <= latest start[which] /\
arrive[end[which]] >= earliest end[which] /\
arrive[end[which]] <= latest end[which];

« Constraints: correct path
path (start[which], end[which], next);

* Global constraints
— are translated differently for each solver
— encapsulate common combinatorial subproblems
— ~150 supported by MiniZinc
— ~420 in global constraint catalog

25

An Agent Example

« Constraints: determining route and times
forall (n in NODE) (
if next[n] = n then
route[n] = 0 /\ arrive[n] = horizon /\ dwell[n] = 0
elseif n = end[which] then
route[n] = 0 /\ dwell[n] = 0
else edge[route[n],1l]l=n /\ edgel[route[n],2]=next[n] /\
arrivel[next[n]] = arrivel[n]+dwell[n]+travel [route[n]]
endif) ;

* Objective: maximize profit
solve maximize payment[which] -
sum(n in NODE)
(1f route[n] = 0 then 0 else

cost[route[n], (arrive[n] + dwell[n]) div 60]
endif) ;

26

Bulk Rail Scheduling in reality

* Multiple consists
— no overlap in track usage (unary resources)

Multiple services
— plan route from service to next service

Crewing + Maintenance constraints
— visit yard, enforced dwell times
Dependent travel times

— loaded or unloaded

 Load and unload times

27

MiniZinc [ﬁ

e Information at www.minizinc.org

 Download system and interactive development
environment

— comes with a number of solvers
Tutorial
— how to use MiniZinc
 Documentation

— ref manual, global constraints library

Coursera: Modeling discrete optimization
— 8 week course using MiniZinc for modelling

28

Embedding a MiniZinc model e

. : NICTA
* Piping text files (?)

— well it works ...
 Link directly to libminizinc (C++)
— construct data using API

— receive solutions using API
— release imminent (available at github.com/Minizinc)

« Use Python interface to libminizinc
— release imminent (available at github.com/Minizinc)

« Use JSON interface (for web applications)

— pass data as JSON
— receive solutions as JSON
— release date not fixed yet

29

Advantages of Using MiniZinc ®

« Rapid creation of high level models
 No commitment to solver technology
* Many solvers to try
— different CP solvers with different default search
« Open source

- OPL: IBM modelling language product
— similar to MiniZinc

* Only usable with IBMs CP and MIP solver
— CP Optimizer
— CPLEX

30

Outline (e

C : : : NICTA
« Optimization = intelligence

— Discrete optimization has advanced rapidly

Solver independent modelling
— MiniZinc: a high level modelling language

Nogood learning for discrete optimization
— The laziness principle in action
* Resolving similar problems
— “lifelong learning” and nested constraint programs
« Concluding remarks

31

Nogood learning for Optimization ®

* Nogood = set of decisions leading to no solution

* Boolean satisfiability (SAT) technology for
nogood learning
— drastically increased the size of SAT models solvable

« Steal this technology for propagation based
solving (CP)

— discrete optimization problems are not like SAT
problems!

32

Nogood learning for Optimizaton (Je

. NICTA
e Qutline

— Brief example of CP solving

— Lazy clause generation
« a CP and SAT hybrid

— Boasting about effectiveness

33

Propagation Solving (CP) (Je

« Complete solver for atomic constraints
—x=d,x#d, x2d x=d
— Domain D(x) records the result of solving (!)

« Constraints implemented by propagators

Propagators infer new atomic constraints from
old ones

— X, < X infers from x, 2 2 that x; = 2

— XX+ X3+x, < 9 from x, 2 1AXx, 22 A Xx32 3 that x, < 3
* Inference is interleaved with search

— Try adding c if that fails add not ¢

» Optimization is repeated solving
— Find solution obj = k resolve with obj < k

34

Finite Domain Propagation EXx.

array|[l..5] of var 1..4: x;

constraint alldifferent ([x[1],x[2],x[3],x[4]);

constraint x[2] <= x[5];
constraint x[1] + x[2] + x[3] + x[4] <= 9;

x=1 alldiff x,< x;g Xs>2 X,<xg alldiff sum<9
1 1 1 1 1 1 1
1.4 2.4 2.4 2.4 2 2 2
1.4 2.4 2.4 2.4 2.4 3.4 3
1.4 2.4 2.4 2.4 2.4 3.4 3
1.4 1.4 2.4 3.4 2 2 2

alldiff

SEE SR

FD propagation e

NICTA
« Strengths

— High level modelling

— Specialized global propagators capture substructure
« and all work together

— Programmable search

 Weaknesses
— Weak autonomous search (improved recently)
— Optimization by repeated satisfaction
— Small models can be intractable

36

Lazy Clause Generation (LCG) (Je

: : NICTA
* A hybrid SAT and CP solving approach

* Add explanation and nogood learning to a
propagation based solver
* Key change

— Modify propagators to explain their inferences as
clauses

— Propagate these clauses to build up an implication
graph
— Use SAT conflict resolution on the implication graph

37

LCG in a Nutshell @

, _ NICTA
* Integer variable x in /..u encoded as Booleans

—[x=<d], dinl.u-1
—[x=d], dinl.u
» Dual representation of domain D(x)
* Restrict to atomic changes in domain (literals)

—x<d (itself)
—x2d ![x=<d-1] use [x 2 d] as shorthand
—x=d (itself)

—x#d [x=d] use[x#d]as shorthand

* Clauses DOM to model relationship of Booleans
—[x<d] D[x<d+1], din ..u-2
—[x=d < [x<d] Al[x<d-1], din +1..u-1

LCG in a Nutshell Yo

o _ NICTA
* Propagation is clause generation

—e.g. [x=<2] and x2 ymeans that [y=< 2]
— clause [x < 2] =[y < 2]
Consider
—alldifferent ([x[1],x[2]1,x[3]1,x[4]);
« Setting x, = 1 we generate new inferences
- X, 71, x3%1, x, # 1
* Add clauses
— Xy = 1]=2[x, # 1], [X; = 1]=22[x3 # 1], [X4 = 1]=>[x, # 1]
—i.e. I[x, =11V![x,=1], ...
Propagate these new clauses

39

Lazy Clause Generation EX.

alldiff X2=Xs | X< X5 alldiff sSums<9 alldiff

fail

1UIP Nogood Creation ®

alldiff X,=Xs | Xo= Xs alldiff sum<9 alldiff

e N

X, 22

> fail

X, 71 > X, 22

X5 22

1 UIP Nogood

X, s1LIxz =11, [x, s1],-[x, =21}
{x,22, x,22, x, 22, x,= 2} =>» false

Backjumping

alldiff ~ Xa=Xs X;=Xs » Backtrack to second
last level in nogood
* Nogood will
> X, 22 \ > X, #2 > X, 23 propagate
* Note stronger domain
Xq F1 > X322 d
than usual
x, 21 |5l x, =2 backtracking
/ ! * D(x,) ={3..4}
X522 X523

{x,22, xy22, x, 22, X, =2} > false

What's Really Happening

 CP model = high level “Boolean” model

« Clausal representation of the Boolean model is
generated “as we go”

* All generated clauses are redundant and can be
removed at any time

« \We can control the size of the active “Boolean”
model

43

Comparing to SAT

* For some models we can generate all possible
explanation clauses before commencement

too big
* Open Shop Scheduling (tai benchmark suite)

Time Solve only Fails Max Clauses
SAT 318 89 3597 13.17
LCG 62 6651 1.0

44

Lazy Explanation (Je

NICTA
« Explanations only needed for nogood learning

— Forward: record propagator causing atomic constraint
— Backward: ask propagator to explain the constraint

* Only create needed explanations
» Scope for:

— Explaining a more general failure than occurred

— Making use of the current nogood in choosing an
explanation

45

(Original) LCG propagation example ®

« Variables: {x,y,z} D(v) = [0..6] Booleans b,c
« Constraints:

-z2y,b—>y#3,c—>y=23,c—> X206,

—4x+ 10y + 5z <71 (lin)

 Execution
[x25] lin © b boy#3: C coy23 D(y) z2y lin
......... \\ N . i st ettt et e
yssl i #3123 — 24 N
. [z= 4] — false
—>
[x=26] —
c— X226

1UIP nogood: ¢ A [y#3]=> false or [y#3]=!c

46

LCG propagation example ®

 Execution
[x25] lin I b boy#3: C coyz3 23y lin
................. | DUTETUTUTY R S T TR 3
[y=9] : y#3] : [y 2 3]
. . [z = 4]
[x 2 6]
4

cC—X=26

Explanation: x 26 Noygdolz[x 2 7\ 4 false

Lifted Explanation: x = 4 M\ 4Pz=243 AZXTTTUT T false
Lifted Explanation: y =2 3 ANegoexk x2 5] Aly=4] Alz= 3] => false

47

LCG propagation example o

« Execution

[x = 9] lin by C coy z2y lin
................. [SUUETUUTUUY WUy YURUUURRURPOPPRROTOD SUPRPRRIRY S
[y = 9] [y # 3] [y = 3]
[z = 4] false
[x 2 6]
\Z

Nogood: [x = 5] A [y = 4] = false
1UIP Nogood: [x = 5] A [y = 4] = false
1UIP Nogood: [x 2 5] = [y < 3]

48

LCG propagation example

« Backjump

[x = 5] lin x=59y<3
................. B e
[y = 9] [y = 3]

Nogood: [x = 5] A [y = 4] = false

49

Lazy Clause Generation e

NICTA
« Strengths

— High level modelling

— Learning avoids repeating the same subsearch

— Strong autonomous search

— Programmable search

— Specialized global propagators (but requires work)

 \Weaknesses
— Optimization by repeated satisfaction search

— Overhead compared to FD when nogoods are
useless

50

LCG Successes e

, NICTA
* Scheduling
— Resource Constrained Project Scheduling Problems
(RCPSP)

 (probably) the most studied scheduling problems
» LCG closed 71 open problems
» Solves more problems in 18s then previous SOTA in 1800s

— RCPSP/Max (more complex precedence constraints)
* LCG closed 578 open instances of 631

« LCG recreates or betters all best known solutions by any
method on 2340 instances except 3

— RCPSP/DC (discounted cashflow)

» Always finds solution on 19440 instances, optimal in all but
152 (versus 832 in previous SOTA)

 LCG is the SOTA complete method for this problem

LCG Successes (Je

- NICTA
« Real World Application

— Carpet Cutting
« Complex packing problem
« Cut carpet pieces from a roll to minimize length
« Data from deployed solution

I

g [e

d

— Lazy Clause Generation Solution
 First approach to find and prove optimal solutions
» Faster than the current deployed solution
* Reduces waste by 35%

LCG Successes (Je

: : NICTA
« Real World Application

— Bulk Mineral Port Scheduling

« Combined scheduling problem and packing problem
« Pack placement of cargos on a pad over time (2d)

« Schedule reclaiming of cargo onto ship

« LCG solver produces much better solutions

Machine Schedule On Pad B

T T T T T
2000 B—T
100033p1670(52
| 463112% Q03370152
46605B (10 HH \
| ; 46683p-5((45) 100013?%_%{31394)
‘ 46605L-71(1OE i l m fl I % [THT Ofo
L 1000389-1p0(47
1500 | 46605B-7210 e P.%l(Slﬂ 1000108%01(76)
‘ 464505-20(% [d — 100010B1600(76)
o | 46700) \ Le41 -10(70)
ey
© 462835-20(34) | ’ 46553#—430(89
T 1000 T1 T1 n
| 100010B-710(49] | | 1020062-55(94)
100018 -182(78)
100018]1-182,.18) l 100038p-170(74)
| 100018} 14(,(28) T
46611p-17 23) ‘ 100038p-540|(66)
500 |- 46611D-11(23) 102010B-71(49
[I]
‘ 100033p-1H0(17) 46466p-10(61)
-
| 46700|2-2o,\1,z1 100033!9 (52)
T 1 I
0 ‘ 1000349-34q(3)| | 100010|7-2|00k5L) 100038Lf33|0(93)
0 S, 2 2 2 2 3 2 5 2 93
(% 00 s5‘0 00 \5‘0 00 6\0 00 6‘0

Why you should use LCG

« State of the art constraint programming solvers

Runs high level models directly
Default search is very strong

Programmed search/default search hybrid

Basically the best of SAT and CP together

54

Outline (Yo

C : : : NICTA
« Optimization = intelligence

— Discrete optimization has advanced rapidly

Solver independent modelling
— MiniZinc: a high level modelling language

* Nogood learning for discrete optimization

— The laziness principle in action
* Resolving similar problems

— “lifelong learning” and nested constraint programs
« Concluding remarks

55

A Changing Environment

* Agents exist in a changing environment
* More information gathered

— changes the problem
* An agent maximizing utility

— reacts to the changing environment

— by resolving the optimization problem

— but most things are likely unchanged

 How can we take advantage of this?

56

A Changing Environment Example (Je

, , _ NICTA
« Multi-agent bulk rail scheduling changes

— SERVICESs become unavailable

— Track agent (environment) increases cost of edges
* to price out overusage of edge
 to avoid collisions

« Consist agent
— needs to resolve if its SERVICE is taken
— needs to replan route depending on cost changes

57

Assumptions and Nogoods (Je

_ NICTA
« Assumptions:

— Data that is “assumed true” but may later change

* Learning

— Assumptions are set true in a special 0" decision
level

— Nogoods relying on assumptions incorporate the
assumptions

“Lifelong Learning”
— Rerunning with changed assumptions

— All previous nogoods are valid
 and hence can be reused in search

58

Re-Optimization

 For different changes in parameters

(a) Radiation Therapy (b) MOSP

diff | scratch para reuse|speedup diff scratch para reuse|speedup

1% (7.10 23000(0.08 321 97%| 88.8 1% |(38.67 111644 1.03 921| 93%| 37.5

2% [7.2523219|0.31 433]| 93%| 23.8 2% (41.65 114358| 4.57 6700| 88%| 9.11

5% (7.03 22556|1.17 2496| 81%| 6.02 5% 142.80 111745(31.02 75600| 71%]| 1.38

10%|7.57 23628(2.52 6198| 74%| 3.00 10%|47.80 95521|40.77 88909| 57%| 1.17

20%|7.68 23326|4.35 11507| 55%| 1.77 20%127.37 86231(33.26 88186| 45%| 0.82

(c) Graph Coloring (d) Knapsack

diff scratch para reuse|speedup diff scratch para reuse|speedup
1% [15.12 54854| 7.72 17026| 74%| 1.96 1% (18.21 48714| 6.74 11339(100%| 2.70
2% |18.78 61630(16.17 35994| 61%| 1.16 2% |18.47 48640| 7.32 13042|100%| 2.52
5% 123.65 70710(24.96 52026| 35%| 0.94 5% [18.80 49154(16.91 37786|100%| 1.11
10%|45.14 96668|45.54 79763| 20%| 0.99 10%]19.38 49298|21.12 44952(100%| 0.92
20%148.12 101668(45.96 87431 9%| 1.04 20%120.83 50007|24.15 49387|100%| 0.86

* re-running from scratch, or with parametric
assumptions, reuse of nogoods, speedup

59

An Unknown Environment @

NICTA
« Often an agent needs to make decisions without

knowing enough about the environment
— Stochastic (discrete) optimization

« Stochastic discrete optimization

— usually optimizes expected utility over a finite set of
future/environment scenarios

— given a distribution: finite scenarios by sampling

60

Stochastic Discrete Optimization (e

. .. . NICTA
 Scenario determinization

— solve a n x larger problem combining n scenarios

* Policy based search
— solve by n x larger search of “original” problem

* Progressive hedging
— solve n separate problems

— change objective to make answers align
* resolve n separate problems

61

Stochastic MiniZinc (Beta) @

¢ stage annotations
— mark decisions and data in stages
— stage k decisions made before seeing stage k+71 data

e scenario lists

— multiple data files, one per scenario, and scenario
weights

— generates a combined scenario data file

e automatic transformation

— determinization
— policy based search (requires MiniSearch)
— progessive hedging (requires MiniSearch) (2 stage)

e www.minizinc.org/stochastic/

62

Stochastic BRFS o

* Add that, e.g.

— travel times, edge costs are stochastic

array [EDGE] of DUR: travel :: stage(2);
array [EDGE, HOUR] of int: cost :: stage(2);

* Route decisions are stage 1

var SERVICE: which :: stage(1l);

var TIME: start time :: stage(l);

array [NODE] of wvar NODE: next :: stage(l);
array [NODE] of wvar EDGEO: route :: stage(l);
 Dwell can be adjusted

array [NODE] of wvar TIME: arrive :: stage(2);
array [NODE] of wvar DWELL: dwell :: stage(2);

* Need to rewrite time bounds as penalties

63

Stochastic BFRS

 Constraints: remove end time bound constraints

start time = arrive[start[which]] /\

dwell [start[which]] = 0 /\

arrive[start[which]] >= earliest start[which] /\
arrive[start[which]] > latest start[which]);

* Modify objective
solve maximize payment[which] -

sum(n in NODE)

(1f route[n] = 0 then 0 else
cost[route[n], (arrive[n] + dwell[n]) div 60]
endif)
- (arrive[end[which]] < earliest end[which]) *eepenalty

- (arrive[end[which]] > latest end[which]) *lepenalty;

64

Nested Constraint Programs (J®

NICTA
* A powerful language for nested optimization

problems
« Based on aggregator constraints

—y=aggq([(xq,....X,Z4,---,Z,))

| z,,...,z,, where C(x4,...,X,,Z4,...,Z,.)])

where agg is a function on multisets

— €.g. sum, min, max, average, median, exists, forall
* Lazy evaluation

— wait until x,,...,x, are fixed

— evaluate the multiset by search over z,...,z_,

— set y to the appropriate value

65

Nested Constraint Programs

* Highly expressive:
— #SAT, QBF, QCSP, Stochastic CP, ...
 Find the minimal number of clues x,, ., = d

required to make a proper sudoku problem
(exactly one solution)

0% b, | k in 1..nl]) | by, .., b
1 = ([1 | x,7 1in 1..9, .. X¢q 1n 1..9
forall ([b X = d | k in 1..n])
sudoku(x,,, .., Xo0) 1) 1)

« where sudoku are sudoku constraints

/\

66

Nested Constraint Programs (Jeo

. NICTA
* Naive approach

— completely solved by grounding
— BUT completely impractical

« Actual approach

— one copy of constraints

— search on outer aggregator
« wake a new copy of inner aggregator

* Improvements
— learning (across invocations of inner aggregators)
— short circuiting (e.g. when we find two solns we stop)
— use grounding when known size and small

67

Nested Constraint Programs (J©®

NICTA
* Book production (stochastic) planning problem

— uncertain demand 100..105 in each period

— plan a production run so that we can cover demand
80% of the time

« Compare with stochastic CP using policy search
and scenario generation (determinization)

---_---
1 0.01 0.01 0.00
2 16 0.01 148 0.03 8 0.02
3 24 0.01 3604 0.76 24 0.16
4 32 0.01 95570 19.07 42 1.53
5 40 0.01 2616858 509.95 218 18.52
6 48 0.01 --- TO 1260 474.47 08

Outline (Yo

C : : : NICTA
« Optimization = intelligence

— Discrete optimization has advanced rapidly

Solver independent modelling
— MiniZinc: a high level modelling language

* Nogood learning for discrete optimization

— The laziness principle in action
* Resolving similar problems

— “lifelong learning” and nested constraint programs
« Concluding remarks

69

Concluding Remarks ®

» My highly biased opinion! CT

« Many agents could benefit from having decisions
driven by discrete optimization problems

* Discrete optimization technology is now
— easier to use than ever before
— more powerful than ever before (MIP too)
— more expressive than ever before

* Encourage you to dip your toe ...

70

Pervasive Discrete Optimization @ L

NICTA
* Many problems in CS are examples of discrete

optimization
— once they get complicated enough
— bespoke algorithms + greedy methods falil

» Discrete optimization is now an essential
component for
— semi-supervised/constrained machine learning
— program analysis/congolic testing
— combinatorics — when the maths runs out
— termination testing, ...

71

What Can You Play With @

e MiniZinc 2.0 www.minizinc.org
— component based model and translation system
— Stochastic MiniZinc beta
— MiniSearch about to be released

* Opturion CPX www.opturion.com
— state of the art commercial LCG solver
— free academic license

 Chuffed github.com/geoffchu/chuffed
— state of the art experimental LCG solver
— support for Nested CP is coming

 Coursera course
— Modeling Discrete Optimization

72

