
NICTA Copyright 2012 From imagination to impact

Discrete
Optimization

for Agents

Peter J. Stuckey and countless others!

NICTA Copyright 2012 From imagination to impact

Conspirators
•  Ignasi Abio, Ralph Becket, Sebastian Brand,

Geoffrey Chu, Michael Codish, Toby Davies,
Greg Duck, Nick Downing, Thibaut Feydy,
Kathryn Francis, Graeme Gange, Vitaly Lagoon,
Nir Lipovetzky, Nick Nethercote, Olga
Ohrimenko, Adrian Pearce, Andreas Schutt,
Guido Tack, Pascal Van Hentenryck, Mark
Wallace

•  All errors and outrageous lies are mine

2

NICTA Copyright 2012 From imagination to impact

Outline
•  Optimization = intelligence

–  Discrete optimization has advanced rapidly

•  Solver independent modelling
–  MiniZinc: a high level modelling language

•  Nogood learning for discrete optimization
–  The laziness principle in action

•  Resolving similar problems
–  “lifelong learning” and nested constraint programs

•  Concluding remarks

3

NICTA Copyright 2012 From imagination to impact

Outline
•  Optimization = intelligence

–  Discrete optimization has advanced rapidly

•  Solver independent modelling
–  MiniZinc: a high level modelling language

•  Nogood learning for discrete optimization
–  The laziness principle in action

•  Resolving similar problems
–  “lifelong learning” and nested constraint programs

•  Concluding remarks

4

NICTA Copyright 2012 From imagination to impact

Intelligent Agents
•  An intelligent agent can be a [Russell+Norvig]

–  simple reflex agent
–  model-based reflex agent
–  goal-based agent
–  utility-based agent
–  learning agent

•  Utility-based agent
–  optimizing utility
–  goal-based agent wants to optimize time to goal

•  Learning agent
–  trying to optimize learning performance

5

NICTA Copyright 2012 From imagination to impact

Intelligent Agents + Discrete Optimization
•  Models the environment
•  Makes a decision to act
•  In order to move to achieve some goal
•  Has limited resources and limited actions

•  Discrete Optimization
–  choose from a limited set of possibilities
–  a solution which optimizes a utility
–  usually subject to (complex) constraints

•  like limited resources

6

NICTA Copyright 2012 From imagination to impact

Automated Planning
•  Planning is a technology targeted for agents
•  Mature technology for finding a solution to multi-

agent propositional problems
•  But

–  planning with utility (cost-optimal planning) technology
is still quite immature

–  planning is not very good at modelling limited
resources

•  some evidence random search better than planning when
resources are scarce

–  temporal planning ≅ scheduling with optional tasks

7

NICTA Copyright 2012 From imagination to impact

Discrete Optimization for Agents
•  Not as rich as planning
•  But very effective at

–  making a decision
–  to optimize an objective
–  subject to limitations (constraints)

•  A useful tool for building intelligent agents

8

NICTA Copyright 2012 From imagination to impact

Why should you listen to this talk
•  Discrete Optimization

–  is easier to use now
•  solver independent modelling

–  is more effective than before
•  nogood learning solvers

–  is better at “resolving” a similar problem
•  assumptions and nogood learning

–  has well defined approaches to stochasticity
•  stochastic optimization

–  can express very complicated problems succintly
•  nested constraint programs

•  Useful for other parts of your CS life

9

NICTA Copyright 2012 From imagination to impact

Outline
•  Optimization = intelligence

–  Discrete optimization has advanced rapidly

•  Solver independent modelling
–  MiniZinc: a high level modelling language

•  Nogood learning for discrete optimization
–  The laziness principle in action

•  Resolving similar problems
–  “lifelong learning” and nested constraint programs

•  Concluding remarks

10

NICTA Copyright 2012 From imagination to impact

Solver independent modelling
•  There are many approaches to solving discrete

optimization problems
–  mixed integer programming (MIP)
–  local search (LS)

•  simulated annealing, tabu search, CBLS

–  population-based search (PS)
•  genetic algorithms, evolutionary algorithms, beam search

–  constraint programming (CP)
–  Boolean satisfiability (SAT)
–  SAT modulo theories (SMT)
–  Answer set programming (ASP)

•  Different technologies have different strengths
and weaknesses 11

NICTA Copyright 2012 From imagination to impact

Solver independent modelling
•  Building a discrete optimization solution can be a

large undertaking
•  Early commitment to solving technology

–  may not choose correctly
–  wastes a lot of work
–  may indeed prevent other approaches being tried

•  The answer
–  capture the problem independent of solving

technology

12

NICTA Copyright 2012 From imagination to impact

MiniZinc
•  A solver independent modelling language
•  Supports

–  CP solvers: almost all except commercial ones
–  MIP solvers: CBC, Cplex, Gurobi
–  SAT solvers (by translation): fzntini, picat-SAT
–  SMT solvers: fzn2smt
–  ASP solvers: minisatID
–  local search (CBLS) solvers: oscar, yacs

•  De facto standard for CP modelling
•  Translates a high level model to

–  a form suitable for the underlying solver

13

NICTA Copyright 2012 From imagination to impact

Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time
array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);
constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

17

NICTA Copyright 2012 From imagination to impact

Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time
array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);
constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

15

Parameters

NICTA Copyright 2012 From imagination to impact

Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time
array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);
constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

16

Parameters

Dependent

NICTA Copyright 2012 From imagination to impact

Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time
array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);
constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

17

Parameters

Dependent

Variables

NICTA Copyright 2012 From imagination to impact

Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time
array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);
constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

18

Parameters

Dependent

Variables

Comprehensions

NICTA Copyright 2012 From imagination to impact

Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time
array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);
constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

19

Parameters

Dependent

Variables

Comprehensions

Constraints

NICTA Copyright 2012 From imagination to impact

Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time
array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);
constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

20

Parameters

Dependent

Variables

Comprehensions

Constraints

Global

NICTA Copyright 2012 From imagination to impact

Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time
array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);
constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

21

Parameters

Dependent

Variables

Comprehensions

Constraints

Global

Objective

NICTA Copyright 2012 From imagination to impact

An Agent Example
•  Bulk rail scheduling

–  A number of services are demanded
–  Service: move cargo from start to end
–  Time windows for start and end
–  Payment for completion

int: nservice;
set of int: SERVICE = 1..nservice;
array[SERVICE] of NODE: start;
array[SERVICE] of TIME: earliest_start;
array[SERVICE] of TIME: latest_start;
array[SERVICE] of NODE: end;
array[SERVICE] of TIME: earliest_end;
array[SERVICE] of TIME: latest_end;
array[SERVICE] of int: payment;

22

NICTA Copyright 2012 From imagination to impact

An Agent Example
•  Rail track network

–  Nodes, and (directed) edges
–  Cost to use edge dependent on time of use
–  Travel time for edge

enum NODE;
int: nedge;
set of int: EDGE = 1..nedge;
array[EDGE,1..2] of NODE: edge;
int: horizon; % time horizon in minutes
set of int: TIME = 0..horizon;
set of int: HOUR = 0..horizon div 60;
array[EDGE,HOUR] of int: cost;
set of int: DUR = 0..horizon;
array[EDGE] of DUR: travel; % travel time for edge

23

NICTA Copyright 2012 From imagination to impact

An Agent Example
•  Consist decisions

–  which service to undertake
–  path and travel times
–  waiting (dwelling) at nodes

var SERVICE: which;
var TIME: start_time;
array[NODE] of var TIME: arrive;
int: maxdwell;
set of int: DWELL = 0..maxdwell;
array[NODE] of var DWELL: dwell;
array[NODE] of var NODE: next;% next node to visit or self
set of int: EDGE0 = 0..nedge;
array[NODE] of var EDGE0: route; % edge taken or 0

24

NICTA Copyright 2012 From imagination to impact

An Agent Example
•  Constraints: meets time criteria
start_time = arrive[start[which]] /\

dwell[start[which]] = 0 /\
arrive[start[which]] >= earliest_start[which] /\
arrive[start[which]] <= latest_start[which] /\
arrive[end[which]] >= earliest_end[which] /\
arrive[end[which]] <= latest_end[which];

•  Constraints: correct path
path(start[which], end[which], next);

•  Global constraints
–  are translated differently for each solver
–  encapsulate common combinatorial subproblems
–  ~150 supported by MiniZinc
–  ~420 in global constraint catalog

 25

NICTA Copyright 2012 From imagination to impact

An Agent Example
•  Constraints: determining route and times
forall(n in NODE)(
 if next[n] = n then
 route[n] = 0 /\ arrive[n] = horizon /\ dwell[n] = 0

 elseif n = end[which] then
 route[n] = 0 /\ dwell[n] = 0

 else edge[route[n],1]=n /\ edge[route[n],2]=next[n] /\
 arrive[next[n]] = arrive[n]+dwell[n]+travel[route[n]]

 endif);
•  Objective: maximize profit
solve maximize payment[which] –
 sum(n in NODE)
 (if route[n] = 0 then 0 else
 cost[route[n], (arrive[n] + dwell[n]) div 60]
 endif);

26

NICTA Copyright 2012 From imagination to impact

Bulk Rail Scheduling in reality
•  Multiple consists

–  no overlap in track usage (unary resources)

•  Multiple services
–  plan route from service to next service

•  Crewing + Maintenance constraints
–  visit yard, enforced dwell times

•  Dependent travel times
–  loaded or unloaded

•  Load and unload times

27

NICTA Copyright 2012 From imagination to impact

MiniZinc
•  Information at www.minizinc.org
•  Download system and interactive development

environment
–  comes with a number of solvers

•  Tutorial
–  how to use MiniZinc

•  Documentation
–  ref manual, global constraints library

•  Coursera: Modeling discrete optimization
–  8 week course using MiniZinc for modelling

28

NICTA Copyright 2012 From imagination to impact

Embedding a MiniZinc model
•  Piping text files (?)

–  well it works …

•  Link directly to libminizinc (C++)
–  construct data using API
–  receive solutions using API
–  release imminent (available at github.com/MiniZinc)

•  Use Python interface to libminizinc
–  release imminent (available at github.com/MiniZinc)

•  Use JSON interface (for web applications)
–  pass data as JSON
–  receive solutions as JSON
–  release date not fixed yet

29

NICTA Copyright 2012 From imagination to impact

Advantages of Using MiniZinc
•  Rapid creation of high level models
•  No commitment to solver technology
•  Many solvers to try

–  different CP solvers with different default search
•  Open source

•  OPL: IBM modelling language product
–  similar to MiniZinc

•  Only usable with IBMs CP and MIP solver
–  CP Optimizer
–  CPLEX

30

NICTA Copyright 2012 From imagination to impact

Outline
•  Optimization = intelligence

–  Discrete optimization has advanced rapidly

•  Solver independent modelling
–  MiniZinc: a high level modelling language

•  Nogood learning for discrete optimization
–  The laziness principle in action

•  Resolving similar problems
–  “lifelong learning” and nested constraint programs

•  Concluding remarks

31

NICTA Copyright 2012 From imagination to impact

Nogood learning for Optimization
•  Nogood = set of decisions leading to no solution
•  Boolean satisfiability (SAT) technology for

nogood learning
–  drastically increased the size of SAT models solvable

•  Steal this technology for propagation based
solving (CP)
–  discrete optimization problems are not like SAT

problems!

32

NICTA Copyright 2012 From imagination to impact

Nogood learning for Optimizaton
•  Outline

–  Brief example of CP solving
–  Lazy clause generation

•  a CP and SAT hybrid

–  Boasting about effectiveness

33

NICTA Copyright 2012 From imagination to impact

Propagation Solving (CP)
•  Complete solver for atomic constraints

–  x = d, x ≠ d, x ≥ d, x ≤ d
–  Domain D(x) records the result of solving (!)

•  Constraints implemented by propagators
Propagators infer new atomic constraints from
old ones
–  x2 ≤ x5 infers from x2 ≥ 2 that x5 ≥ 2
–  x1+x2+x3+x4 ≤ 9 from x1 ≥ 1∧x2 ≥ 2∧x3 ≥ 3 that x4 ≤ 3

•  Inference is interleaved with search
–  Try adding c if that fails add not c

•  Optimization is repeated solving
–  Find solution obj = k resolve with obj < k

34

NICTA Copyright 2012 From imagination to impact

Finite Domain Propagation Ex.

array[1..5] of var 1..4: x;
constraint alldifferent([x[1],x[2],x[3],x[4]);
constraint x[2] <= x[5];
constraint x[1] + x[2] + x[3] + x[4] <= 9;

x1
x2
x3
x4
x5

x1=1
1
1..4
1..4
1..4
1..4

alldiff
1
2..4
2..4
2..4
1..4

x2 ≤ x5
1
2..4
2..4
2..4
2..4

x5≤2
1
2..4
2..4
2..4
2

x2 ≤ x5
1
2
2..4
2..4
2

alldiff
1
2
3..4
3..4
2

sum≤9
1
2
3
3
2

alldiff
1
2
✖
✖
2

x5>2
1
2..4
2..4
2..4
3..4

NICTA Copyright 2012 From imagination to impact

FD propagation
•  Strengths

–  High level modelling
–  Specialized global propagators capture substructure

•  and all work together

–  Programmable search

•  Weaknesses
–  Weak autonomous search (improved recently)
–  Optimization by repeated satisfaction
–  Small models can be intractable

36

NICTA Copyright 2012 From imagination to impact

Lazy Clause Generation (LCG)
•  A hybrid SAT and CP solving approach
•  Add explanation and nogood learning to a
 propagation based solver
•  Key change

–  Modify propagators to explain their inferences as
clauses

–  Propagate these clauses to build up an implication
graph

–  Use SAT conflict resolution on the implication graph

37

NICTA Copyright 2012 From imagination to impact

LCG in a Nutshell
•  Integer variable x in l..u encoded as Booleans

–  [x ≤ d], d in l..u-1
–  [x = d], d in l..u

•  Dual representation of domain D(x)
•  Restrict to atomic changes in domain (literals)

–  x ≤ d (itself)
–  x ≥ d ! [x ≤ d-1] use [x ≥ d] as shorthand
–  x = d (itself)
–  x ≠ d ! [x = d] use [x ≠ d] as shorthand

•  Clauses DOM to model relationship of Booleans
–  [x ≤ d] ![x ≤ d+1], d in l..u-2
–  [x = d] " [x ≤ d] ∧ ! [x ≤ d-1], d in l+1..u-1

NICTA Copyright 2012 From imagination to impact

LCG in a Nutshell
•  Propagation is clause generation

–  e.g. [x ≤ 2] and x ≥ y means that [y ≤ 2]
–  clause [x ≤ 2] ![y ≤ 2]

•  Consider
–  alldifferent([x[1],x[2],x[3],x[4]);

•  Setting x1 = 1 we generate new inferences
–  x2 ≠ 1, x3 ≠ 1, x4 ≠ 1

•  Add clauses
–  [x1 = 1]![x2 ≠ 1], [x1 = 1]![x3 ≠ 1], [x1 = 1]![x4 ≠ 1]
–  i.e. ![x1 = 1]∨![x2 = 1], …

•  Propagate these new clauses
39

NICTA Copyright 2012 From imagination to impact

Lazy Clause Generation Ex.

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2 x5≤2 x5=2

x2 ≤2 x2=2

x3≠2

x4≠2

x3≥3

x4≥3

x3≤3

x4≤3

x3=3

x4=3
fail

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff

NICTA Copyright 2012 From imagination to impact

1UIP Nogood Creation

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2 x5≤2 x5=2

x2 ≤2 x2=2

x3≠2

x4≠2

x3≥3

x4≥3

x3≤3

x4≤3

x3=3

x4=3

fail

x3=3∧x4=3! false

x4=3

x3=3

x4≥3∧ x4≤3∧ x3=3! false

x4≤3

{x3≥3,x4≥3,x3≤3,x4≤3}! false

x3≤3

{x2 ≥2,x3≥3,x4≥3,x3≤3} ! false

x3≥3

x2 ≥2

x4≥3

{x2 ≥2, x3≥3, x4≥3} ! false {x2 ≥2,x4 ≥2,x4≠2,x3≥3} ! false

x4≠2 x4 ≥2

{x2 ≥2,x3 ≥2,x4 ≥2,x3≠2,x4≠2} ! false

x3≠2 x3 ≥2

{x2 ≥2,x3 ≥2,x4 ≥2,x2=2,x3≠2} ! false

x2=2

{x2 ≥2, x3 ≥2, x4 ≥2, x2= 2} ! false
{[x2 ≤1],[x3 ≤1], [x4 ≤1],¬[x2 =2]}

1 UIP Nogood

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff

NICTA Copyright 2012 From imagination to impact

Backjumping

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2} ! false

alldiff x2 ≤ x5

x2 ≠2 x2 ≥3

x2 ≤ x5

x5 ≥3

•  Backtrack to second
last level in nogood

 •  Nogood will
propagate

 •  Note stronger domain
than usual
backtracking
•  D(x2) = {3..4}

NICTA Copyright 2012 From imagination to impact

What’s Really Happening
•  CP model = high level “Boolean” model
•  Clausal representation of the Boolean model is

generated “as we go”
•  All generated clauses are redundant and can be

removed at any time
•  We can control the size of the active “Boolean”

model

43

NICTA Copyright 2012 From imagination to impact

Comparing to SAT
•  For some models we can generate all possible

explanation clauses before commencement
–  usually this is too big

•  Open Shop Scheduling (tai benchmark suite)
–  averages

44

Time Solve only Fails Max Clauses
SAT 318 89 3597 13.17
LCG 62 6651 1.0

NICTA Copyright 2012 From imagination to impact

Lazy Explanation
•  Explanations only needed for nogood learning

–  Forward: record propagator causing atomic constraint
–  Backward: ask propagator to explain the constraint

•  Only create needed explanations
•  Scope for:

–  Explaining a more general failure than occurred
–  Making use of the current nogood in choosing an

explanation

45

NICTA Copyright 2012 From imagination to impact

(Original) LCG propagation example
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c
•  Constraints:

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,
–  4x + 10y + 5z ≤ 71 (lin)

•  Execution

46

[x ≥ 5]

[y ≤ 5]

b

[y ≠ 3]

c

[y ≥ 3] [y ≥ 4]

[x ≥ 6]

[z ≥ 4] false

lin b → y ≠ 3 c → y ≥ 3

c → x ≥ 6

lin z ≥ y D(y)

1UIP nogood: c ∧ [y ≠ 3] ! false or [y ≠ 3] ! !c

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Execution

47

[x ≥ 5]

[y ≤ 5]

b

[y ≠ 3]

c

[y ≥ 3]

[x ≥ 6]

[z ≥ 4] false

lin b → y ≠ 3 c → y ≥ 3

c → x ≥ 6

lin z ≥ y

Explanation: x ≥ 6 ∧y ≥ 4 ∧z ≥ 4 ∧4x + 10y + 5z ≤ 71 ! false

Lifted Explanation: x ≥ 5 ∧y ≥ 4 ∧z ≥ 3 ∧4x + 10y + 5z ≤ 71 ! false

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[z ≥ 3] ! false

Explanation: y ≥ 4∧z ≥ y !z ≥ 4

Lifted Explanation: y ≥ 3∧z ≥ y !z ≥ 3

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[y ≥ 3] ! false

Absorbtion

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Execution

48

[x ≥ 5]

[y ≤ 5]

b

[y ≠ 3]

c

[y ≥ 3]

[x ≥ 6]

[z ≥ 4] false

lin b → y ≠ 3 c → y ≥ 3

c → x ≥ 6

lin z ≥ y

Nogood: [x ≥ 5] ∧[y ≥ 4] ! false

1UIP Nogood: [x ≥ 5] ∧[y ≥ 4] ! false

1UIP Nogood: [x ≥ 5] ![y ≤ 3]

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Backjump

49

[x ≥ 5]

[y ≤ 5]

lin

Nogood: [x ≥ 5] ∧[y ≥ 4] ! false

[y ≤ 3]

x ≥ 5 !y ≤ 3

NICTA Copyright 2012 From imagination to impact

Lazy Clause Generation
•  Strengths

–  High level modelling
–  Learning avoids repeating the same subsearch
–  Strong autonomous search
–  Programmable search
–  Specialized global propagators (but requires work)

•  Weaknesses
–  Optimization by repeated satisfaction search
–  Overhead compared to FD when nogoods are

useless

50

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  Scheduling

–  Resource Constrained Project Scheduling Problems
(RCPSP)

•  (probably) the most studied scheduling problems
•  LCG closed 71 open problems
•  Solves more problems in 18s then previous SOTA in 1800s

–  RCPSP/Max (more complex precedence constraints)
•  LCG closed 578 open instances of 631
•  LCG recreates or betters all best known solutions by any

method on 2340 instances except 3

–  RCPSP/DC (discounted cashflow)
•  Always finds solution on 19440 instances, optimal in all but

152 (versus 832 in previous SOTA)
•  LCG is the SOTA complete method for this problem

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  Real World Application

–  Carpet Cutting
•  Complex packing problem
•  Cut carpet pieces from a roll to minimize length
•  Data from deployed solution

–  Lazy Clause Generation Solution
•  First approach to find and prove optimal solutions
•  Faster than the current deployed solution
•  Reduces waste by 35%

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  Real World Application

–  Bulk Mineral Port Scheduling
•  Combined scheduling problem and packing problem
•  Pack placement of cargos on a pad over time (2d)
•  Schedule reclaiming of cargo onto ship
•  LCG solver produces much better solutions

53 0

 500

 1000

 1500

 2000

 0 50 100
 150

 200
 250

 300
 350

 400
 450

H
ei

gh
t

Time (hours)

Machine Schedule On Pad B

1000389-340(3)

463112-10(8)
466058-70(10)

466058-71(10)
466058-72(10)

467002-20(12)

1000332-130(17)

464506-20(22)

466110-10(23)
466110-11(23)

467002-10(26)

1000181-180(28)
1000181-181(28)
1000181-182(28)

462836-20(38)

466830-50(45)

1000389-100(47)

1000108-710(49)

1000108-711(49)

1000339-670(52)

1000339-671(52)

1000108-260(54)

1000108-261(54)

464666-10(61)

1000389-540(66)

464166-10(70)

1000389-170(74)

1000108-600(76)

1000108-601(76)

465598-10(89)

1000389-230(91)

1000062-80(94)

1000062-81(94)

1000389-330(99)

R459 R460

NICTA Copyright 2012 From imagination to impact

Why you should use LCG
•  State of the art constraint programming solvers
•  Runs high level models directly
•  Default search is very strong
•  Programmed search/default search hybrid

•  Basically the best of SAT and CP together

54

NICTA Copyright 2012 From imagination to impact

Outline
•  Optimization = intelligence

–  Discrete optimization has advanced rapidly

•  Solver independent modelling
–  MiniZinc: a high level modelling language

•  Nogood learning for discrete optimization
–  The laziness principle in action

•  Resolving similar problems
–  “lifelong learning” and nested constraint programs

•  Concluding remarks

55

NICTA Copyright 2012 From imagination to impact

A Changing Environment
•  Agents exist in a changing environment
•  More information gathered

–  changes the problem

•  An agent maximizing utility
–  reacts to the changing environment
–  by resolving the optimization problem
–  but most things are likely unchanged

•  How can we take advantage of this?

56

NICTA Copyright 2012 From imagination to impact

A Changing Environment Example
•  Multi-agent bulk rail scheduling changes

–  SERVICEs become unavailable
–  Track agent (environment) increases cost of edges

•  to price out overusage of edge
•  to avoid collisions

•  Consist agent
–  needs to resolve if its SERVICE is taken
–  needs to replan route depending on cost changes

57

NICTA Copyright 2012 From imagination to impact

Assumptions and Nogoods
•  Assumptions:

–  Data that is “assumed true” but may later change

•  Learning
–  Assumptions are set true in a special 0th decision

level
–  Nogoods relying on assumptions incorporate the

assumptions
•  “Lifelong Learning”

–  Rerunning with changed assumptions
–  All previous nogoods are valid

•  and hence can be reused in search

58

NICTA Copyright 2012 From imagination to impact

Re-Optimization
•  For different changes in parameters

•  re-running from scratch, or with parametric
assumptions, reuse of nogoods, speedup

59

Table 1. Comparison of solving (a) Radiation Therapy instances, (b) MOSP instances,
(c) Graph Coloring instances, and (d) Knapsack instances: from scratch (scratch) and
solving them making use of parameterized nogoods (para) from a similar instance

(a) Radiation Therapy (b) MOSP
di↵ scratch para reuse speedup
1% 7.10 23000 0.08 32 97% 88.8
2% 7.25 23219 0.31 433 93% 23.8
5% 7.03 22556 1.17 2496 81% 6.02
10% 7.57 23628 2.52 6198 74% 3.00
20% 7.68 23326 4.35 11507 55% 1.77

di↵ scratch para reuse speedup
1% 38.67 111644 1.03 921 93% 37.5
2% 41.65 114358 4.57 6700 88% 9.11
5% 42.80 111745 31.02 75600 71% 1.38
10% 47.80 95521 40.77 88909 57% 1.17
20% 27.37 86231 33.26 88186 45% 0.82

(c) Graph Coloring (d) Knapsack
di↵ scratch para reuse speedup
1% 15.12 54854 7.72 17026 74% 1.96
2% 18.78 61630 16.17 35994 61% 1.16
5% 23.65 70710 24.96 52026 35% 0.94
10% 45.14 96668 45.54 79763 20% 0.99
20% 48.12 101668 45.96 87431 9% 1.04

di↵ scratch para reuse speedup
1% 18.21 48714 6.74 11339 100% 2.70
2% 18.47 48640 7.32 13042 100% 2.52
5% 18.80 49154 16.91 37786 100% 1.11
10% 19.38 49298 21.12 44952 100% 0.92
20% 20.83 50007 24.15 49387 100% 0.86

Generation solver Chuffed running on 2.8 GHz Xeon Quad Core E5462 proces-
sors. As a baseline, we solve every instance from scratch (scratch). To compare
with our method, we first solve each base instance and learn parameterized no-
goods from it. We then solve the corresponding modified versions while making
use of these parameterized nogoods (para). The geometric mean of the run times
in seconds and the nodes required to solve each set of 100 instances is shown in
Table 1. We also show the geometric mean of the percentage of parameterized
nogoods which are active in the second instance of each pair of instances (reuse),
and the speedup (speedup).

As can be seen from the results, parameterized nogoods can provide signif-
icant reductions in node count and run times on a variety of problems. The
speedups vary between problem classes and are dependent on how similar the
instance is to one that has been solved before. Dramatic speedups are possible
for Radiation and MOSP when the instances are similar enough, whereas the
speedups are smaller for Knapsack and Graph Coloring. The more similar an
instance is to one that has been solved before, the greater the number of param-
eterized nogoods which are active in this instance and the greater the speedup
tends to be. When the instance is too dissimilar, parameterized nogoods provide
little to no benefit.

The percentage of parameterized nogoods which are active in the second in-
stance is highly dependent on the problem class. This is because depending on
the structure of the problem, each parameterized nogood can involve a small or
large number of the instance parameters. The fewer the parameters involved, the
fewer the conditions on the parameters and the more likely it is that the nogood
will be reusable in another instance. The “hiding parameter literals” optimiza-
tion described in Section 4.2 is clearly beneficial for the Knapsack Problem,
raising the reusability to 100%. Without it, few of the parameterized nogoods
are active in the second instance and there is no speedup (not shown in table).

NICTA Copyright 2012 From imagination to impact

An Unknown Environment
•  Often an agent needs to make decisions without

knowing enough about the environment
–  Stochastic (discrete) optimization

•  Stochastic discrete optimization
–  usually optimizes expected utility over a finite set of

future/environment scenarios
–  given a distribution: finite scenarios by sampling

60

NICTA Copyright 2012 From imagination to impact

Stochastic Discrete Optimization
•  Scenario determinization

–  solve a n × larger problem combining n scenarios

•  Policy based search
–  solve by n × larger search of “original” problem

•  Progressive hedging
–  solve n separate problems
–  change objective to make answers align

•  resolve n separate problems

61

NICTA Copyright 2012 From imagination to impact

Stochastic MiniZinc (Beta)
•  stage annotations

–  mark decisions and data in stages
–  stage k decisions made before seeing stage k+1 data

•  scenario lists
–  multiple data files, one per scenario, and scenario

weights
–  generates a combined scenario data file

•  automatic transformation
–  determinization
–  policy based search (requires MiniSearch)
–  progessive hedging (requires MiniSearch) (2 stage)

•  www.minizinc.org/stochastic/
62

NICTA Copyright 2012 From imagination to impact

Stochastic BRFS
•  Add that, e.g.

–  travel times, edge costs are stochastic
array[EDGE] of DUR: travel :: stage(2);
array[EDGE,HOUR] of int: cost :: stage(2);

•  Route decisions are stage 1
var SERVICE: which :: stage(1);
var TIME: start_time :: stage(1);
array[NODE] of var NODE: next :: stage(1);
array[NODE] of var EDGE0: route :: stage(1);
•  Dwell can be adjusted
array[NODE] of var TIME: arrive :: stage(2);
array[NODE] of var DWELL: dwell :: stage(2);
•  Need to rewrite time bounds as penalties

63

NICTA Copyright 2012 From imagination to impact

Stochastic BFRS
•  Constraints: remove end time bound constraints
start_time = arrive[start[which]] /\

dwell[start[which]] = 0 /\

arrive[start[which]] >= earliest_start[which] /\

arrive[start[which]] > latest_start[which]);

•  Modify objective
solve maximize payment[which] –
 sum(n in NODE)
 (if route[n] = 0 then 0 else
 cost[route[n], (arrive[n] + dwell[n]) div 60]

 endif)
- (arrive[end[which]] < earliest_end[which])*eepenalty

- (arrive[end[which]] > latest_end[which])*lepenalty;

64

NICTA Copyright 2012 From imagination to impact

Nested Constraint Programs
•  A powerful language for nested optimization

problems
•  Based on aggregator constraints

–  y = agg([f(x1,…,xn,z1,…,zm)
 | z1,…,zm where C(x1,…,xn,z1,…,zm)])
where agg is a function on multisets
–  e.g. sum, min, max, average, median, exists, forall

•  Lazy evaluation
–  wait until x1,…,xn are fixed
–  evaluate the multiset by search over z1,…,zm
–  set y to the appropriate value

65

NICTA Copyright 2012 From imagination to impact

Nested Constraint Programs
•  Highly expressive:

–  #SAT, QBF, QCSP, Stochastic CP, …

•  Find the minimal number of clues xik,jk = dk
required to make a proper sudoku problem
(exactly one solution)

y = min([sum([bk | k in 1..n]) | b1, …, bn where
 1 = sum([1 | x11 in 1..9, … x99 in 1..9 where
 forall([bk ! xik,jk = dk | k in 1..n]) /\

 sudoku(x11, …, x99)])])

•  where sudoku are sudoku constraints

66

NICTA Copyright 2012 From imagination to impact

Nested Constraint Programs
•  Naïve approach

–  completely solved by grounding
–  BUT completely impractical

•  Actual approach
–  one copy of constraints
–  search on outer aggregator

•  wake a new copy of inner aggregator

•  Improvements
–  learning (across invocations of inner aggregators)
–  short circuiting (e.g. when we find two solns we stop)
–  use grounding when known size and small

67

NICTA Copyright 2012 From imagination to impact

Nested Constraint Programs
•  Book production (stochastic) planning problem

–  uncertain demand 100..105 in each period
–  plan a production run so that we can cover demand

80% of the time
•  Compare with stochastic CP using policy search

and scenario generation (determinization)

68

stages NCP policy scenario
fails time fails time fails time

1 8 0.01 10 0.01 4 0.00
2 16 0.01 148 0.03 8 0.02
3 24 0.01 3604 0.76 24 0.16
4 32 0.01 95570 19.07 42 1.53
5 40 0.01 2616858 509.95 218 18.52

6 48 0.01 --- TO 1260 474.47

NICTA Copyright 2012 From imagination to impact

Outline
•  Optimization = intelligence

–  Discrete optimization has advanced rapidly

•  Solver independent modelling
–  MiniZinc: a high level modelling language

•  Nogood learning for discrete optimization
–  The laziness principle in action

•  Resolving similar problems
–  “lifelong learning” and nested constraint programs

•  Concluding remarks

69

NICTA Copyright 2012 From imagination to impact

Concluding Remarks
•  My highly biased opinion!
•  Many agents could benefit from having decisions

driven by discrete optimization problems
•  Discrete optimization technology is now

–  easier to use than ever before
–  more powerful than ever before (MIP too)
–  more expressive than ever before

•  Encourage you to dip your toe …

70

NICTA Copyright 2012 From imagination to impact

Pervasive Discrete Optimization
•  Many problems in CS are examples of discrete

optimization
–  once they get complicated enough
–  bespoke algorithms + greedy methods fail

•  Discrete optimization is now an essential
component for
–  semi-supervised/constrained machine learning
–  program analysis/congolic testing
–  combinatorics – when the maths runs out
–  termination testing, …

71

NICTA Copyright 2012 From imagination to impact

What Can You Play With
•  MiniZinc 2.0 www.minizinc.org

–  component based model and translation system
–  Stochastic MiniZinc beta
–  MiniSearch about to be released

•  Opturion CPX www.opturion.com
–  state of the art commercial LCG solver
–  free academic license

•  Chuffed github.com/geoffchu/chuffed
–  state of the art experimental LCG solver
–  support for Nested CP is coming

•  Coursera course
–  Modeling Discrete Optimization

72

