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Intelligent Agents (Je

NICTA
* An intelligent agent can be a [Russell+Norvig]

— simple reflex agent

— model-based reflex agent

— goal-based agent

— utility-based agent

— learning agent
 Ulility-based agent

— optimizing utility

— goal-based agent wants to optimize time to goal
* Learning agent

— trying to optimize learning performance



Intelligent Agents + Discrete Optimization

 Models the environment

 Makes a decision to act

* |In order to move to achieve some goal
 Has limited resources and limited actions

Discrete Optimization
— choose from a limited set of possibilities
— a solution which optimizes a utility

— usually subject to (complex) constraints
* like limited resources



Automated Planning (Je
NICTA

* Planning is a technology targeted for agents

« Mature technology for finding a solution to muilti-
agent propositional problems

 But

— planning with utility (cost-optimal planning) technology
Is still quite immature

— planning is not very good at modelling limited
resources

* some evidence random search better than planning when
resources are scarce

— temporal planning = scheduling with optional tasks



Discrete Optimization for Agents (J®

: : NICTA
* Not as rich as planning

« But very effective at
— making a decision
— to optimize an objective
— subject to limitations (constraints)

A useful tool for building intelligent agents



Why should you listen to this talk (Jeo

. L NICTA
* Discrete Optimization

— IS easler to use now
* solver independent modelling
— is more effective than before
* nogood learning solvers

— IS better at “resolving” a similar problem
» assumptions and nogood learning

— has well defined approaches to stochasticity
 stochastic optimization

— can express very complicated problems succintly
* nested constraint programs

« Useful for other parts of your CS life
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Solver independent modelling (Je
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* There are many approaches to solving discrete

optimization problems
— mixed integer programming (MIP)
— local search (LS)
« simulated annealing, tabu search, CBLS

— population-based search (PS)
* genetic algorithms, evolutionary algorithms, beam search

— constraint programming (CP)
— Boolean satisfiability (SAT)
— SAT modulo theories (SMT)

— Answer set programming (ASP)

 Different technologies have different strengths
and weaknesses "



Solver independent modelling (Je

“TA

* Building a discrete optimization solution can be a
large undertaking

« Early commitment to solving technology
— may not choose correctly
— wastes a lot of work
— may indeed prevent other approaches being tried

e The answer

— capture the problem independent of solving
technology
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MiniZinc @

* A solver independent modelling language
« Supports

— CP solvers: almost all except commercial ones
— MIP solvers: CBC, Cplex, Gurobi
— SAT solvers (by translation): fzntini, picat-SAT
— SMT solvers: fzn2smt
— ASP solvers: minisatlD
— local search (CBLS) solvers: oscar, yacs

» De facto standard for CP modelling

* Translates a high level model to
— a form suitable for the underlying solver

13



Jobshop Scheduling

int: n; set of int: Job=1l..n; % no of jobs
int: m; set of int: Task=1l..m; % task per job
int: span; % max end time
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array|[Job, Task] of var 0..span: s;
constraint forall (i in Job, j in 1..m-1)

(s[i,J] + d[i,]j] <= s[i,]j+1]1);
constraint forall (k in Task)

(unary([s[i,J] | i1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[1,3] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);

solve minimize obj;

17



Jobshop Scheduling
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An Agent Example

 Bulk rail scheduling
— A number of services are demanded
— Service: move cargo from start to end
— Time windows for start and end
— Payment for completion

int: nservice;
set of int: SERVICE = 1..nservice;
array[SERVICE] of NODE: start;

array [SERVICE] of TIME: earliest start;
array [SERVICE] of TIME: latest start;
array[SERVICE] of NODE: end;
array[SERVICE] of TIME: earliest end;
array |[SERVICE] of TIME: latest end;

[ ]

array [SERVICE] of int: payment;

(Jo

NICTA
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An Agent Example o L

. NICTA
 Ralil track network

— Nodes, and (directed) edges
— Cost to use edge dependent on time of use

— Travel time for edge

enum NODE;

int: nedge;

set of int: EDGE = 1. .nedge;
array[EDGE,1..2] of NODE: edge;

int: horizon; % time horizon in minutes
set of int: TIME = 0..horizon;

set of int: HOUR = 0..horizon div 60;
array [EDGE, HOUR] of int: cost;

set of int: DUR = 0..horizon;

array [EDGE] of DUR: travel; % travel time for edge

23



An Agent Example

 Consist decisions
— which service to undertake
— path and travel times

— waiting (dwelling) at nodes
var SERVICE: which;
var TIME: start time;
array [NODE] of war TIME: arrive;
int: maxdwell;
set of int: DWELL = 0..maxdwell;
array [NODE] of wvar DWELL: dwell;

(O
NICTA

array [NODE] of wvar NODE: next;% next node to visit or self

set of int: EDGEO = 0..nedge;
array [NODE] of war EDGEO: route; %

edge taken or O

24
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» Constraints: meets time criteria
start time = arrive[start[which]] /\
dwell [start[which]] = 0 /\
arrive[start[which]] >= earliest start[which] /\
arrive[start[which]] <= latest start[which] /\
arrive[end[which]] >= earliest end[which] /\
arrive[end[which]] <= latest end[which];

« Constraints: correct path
path (start[which], end[which], next);

* Global constraints
— are translated differently for each solver
— encapsulate common combinatorial subproblems
— ~150 supported by MiniZinc
— ~420 in global constraint catalog

25



An Agent Example

« Constraints: determining route and times
forall (n in NODE) (
if next[n] = n then
route[n] = 0 /\ arrive[n] = horizon /\ dwell[n] = 0
elseif n = end[which] then
route[n] = 0 /\ dwell[n] = 0
else edge[route[n],1l]l=n /\ edgel[route[n],2]=next[n] /\
arrivel[next[n]] = arrivel[n]+dwell[n]+travel [route[n]]
endif) ;

* Objective: maximize profit
solve maximize payment[which] -
sum(n in NODE)
(1f route[n] = 0 then 0 else

cost[route[n], (arrive[n] + dwell[n]) div 60]
endif) ;

26



Bulk Rail Scheduling in reality

* Multiple consists
— no overlap in track usage (unary resources)

Multiple services
— plan route from service to next service

Crewing + Maintenance constraints
— visit yard, enforced dwell times
Dependent travel times

— loaded or unloaded

 Load and unload times

27



MiniZinc [ﬁ

e Information at www.minizinc.org

 Download system and interactive development
environment

— comes with a number of solvers
Tutorial
— how to use MiniZinc
 Documentation

— ref manual, global constraints library

Coursera: Modeling discrete optimization
— 8 week course using MiniZinc for modelling

28



Embedding a MiniZinc model e

. : NICTA
* Piping text files (?)

— well it works ...
 Link directly to libminizinc (C++)
— construct data using API

— receive solutions using API
— release imminent (available at github.com/Minizinc)

« Use Python interface to libminizinc
— release imminent (available at github.com/Minizinc)

« Use JSON interface (for web applications)

— pass data as JSON
— receive solutions as JSON
— release date not fixed yet

29



Advantages of Using MiniZinc ®

« Rapid creation of high level models
 No commitment to solver technology
* Many solvers to try
— different CP solvers with different default search
« Open source

- OPL: IBM modelling language product
— similar to MiniZinc

* Only usable with IBMs CP and MIP solver
— CP Optimizer
— CPLEX

30
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Nogood learning for Optimization ®

* Nogood = set of decisions leading to no solution

* Boolean satisfiability (SAT) technology for
nogood learning
— drastically increased the size of SAT models solvable

« Steal this technology for propagation based
solving (CP)

— discrete optimization problems are not like SAT
problems!

32



Nogood learning for Optimizaton (Je

. NICTA
e Qutline

— Brief example of CP solving

— Lazy clause generation
« a CP and SAT hybrid

— Boasting about effectiveness

33



Propagation Solving (CP) (Je

« Complete solver for atomic constraints
—x=d,x#d, x2d x=d
— Domain D(x) records the result of solving (!)

« Constraints implemented by propagators

Propagators infer new atomic constraints from
old ones

— X, < X infers from x, 2 2 that x; = 2

— XX+ X3+x, < 9 from x, 2 1AXx, 22 A Xx32 3 that x, < 3
* Inference is interleaved with search

— Try adding c if that fails add not ¢

» Optimization is repeated solving
— Find solution obj = k resolve with obj < k

34



Finite Domain Propagation EXx.

array|[l..5] of var 1..4: x;

constraint alldifferent ([x[1],x[2],x[3],x[4]);

constraint x[2] <= x[5];
constraint x[1] + x[2] + x[3] + x[4] <= 9;

x=1 alldiff  x,< x;g Xs>2  X,<xg  alldiff  sum<9
1 1 1 1 1 1 1
1.4 2.4 2.4 2.4 2 2 2
1.4 2.4 2.4 2.4 2.4 3.4 3
1.4 2.4 2.4 2.4 2.4 3.4 3
1.4 1.4 2.4 3.4 2 2 2

alldiff

SEE SR



FD propagation e
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« Strengths

— High level modelling

— Specialized global propagators capture substructure
« and all work together

— Programmable search

 Weaknesses
— Weak autonomous search (improved recently)
— Optimization by repeated satisfaction
— Small models can be intractable

36



Lazy Clause Generation (LCG) (Je
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* A hybrid SAT and CP solving approach

* Add explanation and nogood learning to a
propagation based solver
* Key change

— Modify propagators to explain their inferences as
clauses

— Propagate these clauses to build up an implication
graph
— Use SAT conflict resolution on the implication graph

37



LCG in a Nutshell @

, _ NICTA
* Integer variable x in /..u encoded as Booleans

—[x=<d], dinl.u-1
—[x=d], dinl.u
» Dual representation of domain D(x)
* Restrict to atomic changes in domain (literals)

—x<d (itself)
—x2d ![x=<d-1] use [x 2 d] as shorthand
—x=d (itself)

—x#d [x=d] use[x#d]as shorthand

* Clauses DOM to model relationship of Booleans
—[x<d] D[x<d+1], din ..u-2
—[x=d < [x<d] Al[x<d-1], din +1..u-1



LCG in a Nutshell Yo

o _ NICTA
* Propagation is clause generation

—e.g. [x=<2] and x2 ymeans that [y=< 2]
— clause [x < 2] =[y < 2]
Consider
—alldifferent ([x[1],x[2]1,x[3]1,x[4]);
« Setting x, = 1 we generate new inferences
- X, 71, x3%1, x, # 1
* Add clauses
— Xy = 1]=2[x, # 1], [X; = 1]=22[x3 # 1], [X4 = 1]=>[x, # 1]
—i.e. I[x, =11V![x,=1], ...
Propagate these new clauses

39



Lazy Clause Generation EX.

alldiff  X2=Xs | X< X5 alldiff sSums<9 alldiff

# fail




1UIP Nogood Creation ®

alldiff X,=Xs | Xo= Xs alldiff sum<9 alldiff

e N

X, 22

> fail

X, 71 > X, 22

X5 22

1 UIP Nogood

X, s1LIxz =11, [x, s1],-[x, =21}
{x,22, x,22, x, 22, x,= 2} =>» false




Backjumping

alldiff ~ Xa=Xs X;=Xs » Backtrack to second
last level in nogood
* Nogood will
> X, 22 \ > X, #2 > X, 23 propagate
* Note stronger domain
Xq F1 > X322 d
than usual
x, 21 |5l x, =2 backtracking
/ ! * D(x,) ={3..4}
X522 X523

{x,22, xy22, x, 22, X, =2} > false



What's Really Happening

 CP model = high level “Boolean” model

« Clausal representation of the Boolean model is
generated “as we go”

* All generated clauses are redundant and can be
removed at any time

« \We can control the size of the active “Boolean”
model

43



Comparing to SAT

* For some models we can generate all possible
explanation clauses before commencement

too big
* Open Shop Scheduling (tai benchmark suite)

Time Solve only Fails Max Clauses
SAT 318 89 3597 13.17
LCG 62 6651 1.0

44



Lazy Explanation (Je

NICTA
« Explanations only needed for nogood learning

— Forward: record propagator causing atomic constraint
— Backward: ask propagator to explain the constraint

* Only create needed explanations
» Scope for:

— Explaining a more general failure than occurred

— Making use of the current nogood in choosing an
explanation

45



(Original) LCG propagation example ®

« Variables: {x,y,z} D(v) = [0..6] Booleans b,c
« Constraints:

-z2y,b—>y#3,c—>y=23,c—> X206,

—4x+ 10y + 5z <71 (lin)

 Execution
[x25] lin © b boy#3: C coy23 D(y) z2y lin
......... \\ N . i st ettt et e
yssl i #3123 — 24 N
. [z= 4] — false
—>
[x=26] —
c— X226

1UIP nogood: ¢ A [y#3]=> false or [y#3]=!c

46



LCG propagation example ®

 Execution
[x25] lin I b boy#3: C coyz3 23y lin
................. | DUTETUTUTY R S T TR 3
[y=9] : y#3] : [y 2 3]
. . [z = 4]
[x 2 6]
4

cC—X=26

Explanation: x 26 Noygdolz[x 2 7\ 4 false

Lifted Explanation: x = 4 M\ 4Pz=243 AZXTTTUT T false
Lifted Explanation: y =2 3 ANegoexk x2 5] Aly=4] Alz= 3] => false

47



LCG propagation example o

« Execution

[x = 9] lin by C coy z2y lin
................. [ SUUETUUTUUY WUy YURUUURRURPOPPRROTOD SUPRPRRIRY S
[y = 9] [y # 3] [y = 3]
[z = 4] false
[x 2 6]
\Z

Nogood: [x = 5] A [y = 4] = false
1UIP Nogood: [x = 5] A [y = 4] = false
1UIP Nogood: [x 2 5] = [y < 3]

48



LCG propagation example

« Backjump

[x = 5] lin x=59y<3
................. B e
[y = 9] [y = 3]

Nogood: [x = 5] A [y = 4] = false

49



Lazy Clause Generation e
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« Strengths

— High level modelling

— Learning avoids repeating the same subsearch

— Strong autonomous search

— Programmable search

— Specialized global propagators (but requires work)

 \Weaknesses
— Optimization by repeated satisfaction search

— Overhead compared to FD when nogoods are
useless

50



LCG Successes e
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* Scheduling
— Resource Constrained Project Scheduling Problems
(RCPSP)

 (probably) the most studied scheduling problems
» LCG closed 71 open problems
» Solves more problems in 18s then previous SOTA in 1800s

— RCPSP/Max (more complex precedence constraints)
* LCG closed 578 open instances of 631

« LCG recreates or betters all best known solutions by any
method on 2340 instances except 3

— RCPSP/DC (discounted cashflow)

» Always finds solution on 19440 instances, optimal in all but
152 (versus 832 in previous SOTA)

 LCG is the SOTA complete method for this problem



LCG Successes (Je

- NICTA
« Real World Application

— Carpet Cutting
« Complex packing problem
« Cut carpet pieces from a roll to minimize length
« Data from deployed solution

I

g [ e

d

— Lazy Clause Generation Solution
 First approach to find and prove optimal solutions
» Faster than the current deployed solution
* Reduces waste by 35%



LCG Successes (Je

: : NICTA
« Real World Application

— Bulk Mineral Port Scheduling

« Combined scheduling problem and packing problem
« Pack placement of cargos on a pad over time (2d)

« Schedule reclaiming of cargo onto ship

« LCG solver produces much better solutions

Machine Schedule On Pad B

T T T T T
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Why you should use LCG

« State of the art constraint programming solvers

Runs high level models directly
Default search is very strong

Programmed search/default search hybrid

Basically the best of SAT and CP together

54



Outline (Yo

C : : : NICTA
« Optimization = intelligence

— Discrete optimization has advanced rapidly

Solver independent modelling
— MiniZinc: a high level modelling language

* Nogood learning for discrete optimization

— The laziness principle in action
* Resolving similar problems

— “lifelong learning” and nested constraint programs
« Concluding remarks
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A Changing Environment

* Agents exist in a changing environment
* More information gathered

— changes the problem
* An agent maximizing utility

— reacts to the changing environment

— by resolving the optimization problem

— but most things are likely unchanged

 How can we take advantage of this?

56



A Changing Environment Example (Je

, , _ NICTA
« Multi-agent bulk rail scheduling changes

— SERVICESs become unavailable

— Track agent (environment) increases cost of edges
* to price out overusage of edge
 to avoid collisions

« Consist agent
— needs to resolve if its SERVICE is taken
— needs to replan route depending on cost changes
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Assumptions and Nogoods (Je

_ NICTA
« Assumptions:

— Data that is “assumed true” but may later change

* Learning

— Assumptions are set true in a special 0" decision
level

— Nogoods relying on assumptions incorporate the
assumptions

“Lifelong Learning”
— Rerunning with changed assumptions

— All previous nogoods are valid
 and hence can be reused in search
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Re-Optimization

 For different changes in parameters

(a) Radiation Therapy (b) MOSP

diff | scratch para reuse|speedup diff scratch para reuse|speedup

1% (7.10 23000(0.08 321 97%| 88.8 1% |(38.67 111644 1.03 921| 93%| 37.5

2% [7.2523219|0.31  433]| 93%| 23.8 2% (41.65 114358| 4.57 6700| 88%| 9.11

5% (7.03 22556|1.17 2496| 81%| 6.02 5% 142.80 111745(31.02 75600| 71%]| 1.38

10%|7.57 23628(2.52 6198| 74%| 3.00 10%|47.80 95521|40.77 88909| 57%| 1.17

20%|7.68 23326|4.35 11507| 55%| 1.77 20%127.37 86231(33.26 88186| 45%| 0.82

(c) Graph Coloring (d) Knapsack

diff scratch para reuse|speedup diff scratch para reuse|speedup
1% [15.12 54854| 7.72 17026| 74%| 1.96 1% (18.21 48714| 6.74 11339(100%| 2.70
2% |18.78 61630(16.17 35994| 61%| 1.16 2% |18.47 48640| 7.32 13042|100%| 2.52
5% 123.65 70710(24.96 52026| 35%| 0.94 5% [18.80 49154(16.91 37786|100%| 1.11
10%|45.14 96668|45.54 79763| 20%| 0.99 10%]19.38 49298|21.12 44952(100%| 0.92
20%148.12 101668(45.96 87431 9%| 1.04 20%120.83 50007|24.15 49387|100%| 0.86

* re-running from scratch, or with parametric
assumptions, reuse of nogoods, speedup
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An Unknown Environment @

NICTA
« Often an agent needs to make decisions without

knowing enough about the environment
— Stochastic (discrete) optimization

« Stochastic discrete optimization

— usually optimizes expected utility over a finite set of
future/environment scenarios

— given a distribution: finite scenarios by sampling
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Stochastic Discrete Optimization (e

. .. . NICTA
 Scenario determinization

— solve a n x larger problem combining n scenarios

* Policy based search
— solve by n x larger search of “original” problem

* Progressive hedging
— solve n separate problems

— change objective to make answers align
* resolve n separate problems
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Stochastic MiniZinc (Beta) @

¢ stage annotations
— mark decisions and data in stages
— stage k decisions made before seeing stage k+71 data

e scenario lists

— multiple data files, one per scenario, and scenario
weights

— generates a combined scenario data file

e automatic transformation

— determinization
— policy based search (requires MiniSearch)
— progessive hedging (requires MiniSearch) (2 stage)

e www.minizinc.org/stochastic/
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Stochastic BRFS o

* Add that, e.g.

— travel times, edge costs are stochastic

array [EDGE] of DUR: travel :: stage(2);
array [EDGE, HOUR] of int: cost :: stage(2);

* Route decisions are stage 1

var SERVICE: which :: stage(1l);

var TIME: start time :: stage(l);

array [NODE] of wvar NODE: next :: stage(l);
array [NODE] of wvar EDGEO: route :: stage(l);
 Dwell can be adjusted

array [NODE] of wvar TIME: arrive :: stage(2);
array [NODE] of wvar DWELL: dwell :: stage(2);

* Need to rewrite time bounds as penalties
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Stochastic BFRS

 Constraints: remove end time bound constraints

start time = arrive[start[which]] /\

dwell [start[which]] = 0 /\

arrive[start[which]] >= earliest start[which] /\
arrive[start[which]] > latest start[which]);

* Modify objective
solve maximize payment[which] -

sum(n in NODE)

(1f route[n] = 0 then 0 else
cost[route[n], (arrive[n] + dwell[n]) div 60]
endif)
- (arrive[end[which]] < earliest end[which]) *eepenalty

- (arrive[end[which]] > latest end[which]) *lepenalty;
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Nested Constraint Programs (J®

NICTA
* A powerful language for nested optimization

problems
« Based on aggregator constraints

—y=aggq( [ (xq,....X,Z4,---,Z,))

| z,,...,z,, where C(x4,...,X,,Z4,...,Z,.) ])

where agg is a function on multisets

— €.g. sum, min, max, average, median, exists, forall
* Lazy evaluation

— wait until x,,...,x, are fixed

— evaluate the multiset by search over z,...,z_,

— set y to the appropriate value
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Nested Constraint Programs

* Highly expressive:
— #SAT, QBF, QCSP, Stochastic CP, ...
 Find the minimal number of clues x,, ., = d

required to make a proper sudoku problem
(exactly one solution)

0% b, | k in 1..nl]) | by, .., b
1 = ([ 1 | x,7 1in 1..9, .. X¢q 1n 1..9
forall ([ b X = d | k in 1..n])
sudoku(x,,, .., Xo0) 1 ) 1 )

« where sudoku are sudoku constraints

/\
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Nested Constraint Programs (Jeo

. NICTA
* Naive approach

— completely solved by grounding
— BUT completely impractical

« Actual approach

— one copy of constraints

— search on outer aggregator
« wake a new copy of inner aggregator

* Improvements
— learning (across invocations of inner aggregators)
— short circuiting (e.g. when we find two solns we stop)
— use grounding when known size and small
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Nested Constraint Programs (J©®

NICTA
* Book production (stochastic) planning problem

— uncertain demand 100..105 in each period

— plan a production run so that we can cover demand
80% of the time

« Compare with stochastic CP using policy search
and scenario generation (determinization)

---_---
1 0.01 0.01 0.00
2 16 0.01 148 0.03 8 0.02
3 24 0.01 3604 0.76 24 0.16
4 32 0.01 95570  19.07 42 1.53
5 40 0.01 2616858 509.95 218  18.52
6 48  0.01 --- TO 1260 474.47 08



Outline (Yo

C : : : NICTA
« Optimization = intelligence

— Discrete optimization has advanced rapidly

Solver independent modelling
— MiniZinc: a high level modelling language

* Nogood learning for discrete optimization

— The laziness principle in action
* Resolving similar problems

— “lifelong learning” and nested constraint programs
« Concluding remarks
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Concluding Remarks ®

» My highly biased opinion! CT

« Many agents could benefit from having decisions
driven by discrete optimization problems

* Discrete optimization technology is now
— easier to use than ever before
— more powerful than ever before (MIP too)
— more expressive than ever before

* Encourage you to dip your toe ...
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Pervasive Discrete Optimization @ L

NICTA
* Many problems in CS are examples of discrete

optimization
— once they get complicated enough
— bespoke algorithms + greedy methods falil

» Discrete optimization is now an essential
component for
— semi-supervised/constrained machine learning
— program analysis/congolic testing
— combinatorics — when the maths runs out
— termination testing, ...

71



What Can You Play With @

e MiniZinc 2.0 www.minizinc.org
— component based model and translation system
— Stochastic MiniZinc beta
— MiniSearch about to be released

* Opturion CPX www.opturion.com
— state of the art commercial LCG solver
— free academic license

 Chuffed github.com/geoffchu/chuffed
— state of the art experimental LCG solver
— support for Nested CP is coming

 Coursera course
— Modeling Discrete Optimization
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