
Abstract 

We anticipate that future Defence logistics will 
involve increasingly sophisticated supply chains 
with a greater reliance on autonomous systems. At 
the same time, Defence environments are shrouded 
in uncertainty and pose a considerable challenge to 
the successful operation of these systems. We 
present and discuss a variety of techniques for 
decentralised decision making in Defence logistics 
environments. Cognitive partnerships are proposed 
as the next step towards improving decision 
making and harnessing the strengths of human-
machine collaboration for logistics applications. 

1 Introduction 

Defence supply chains are often structured in point-to-point 
arrangements, where goods are distributed along linear 
pathways from origin to destination. These supply chains 
are designed with simplicity in mind to minimise the 
cognitive and physical burden on human operators. Even so, 
it is often challenging for humans to maintain complete 
situational awareness and control of the logistics flow, and 
the occurrence of stockout events (failure to meet demand 
for inventory) is already a reality [Yoho et al., 2013]. 

With the increasing adoption and pervasiveness of 
autonomous systems [Murphy and Shields, 2012], we 
anticipate that future Defence logistics will have a strong 
reliance on autonomy. This will enable the use of 
increasingly sophisticated supply chains and distribution 
networks. A logistics network offers diversity and 
redundancy in the supply routes, as well as the ability to 
stockpile supplies at multiple locations throughout the 
network in preparation for possible future contingencies. 

Defence logistics environments are fundamentally 
dynamic and uncertain. Any autonomous system operating 
in such an environment must be able to make sound 
decisions in the face of uncertainty [Scholz and Reid, 2015]. 
More explicitly, autonomous logistics systems should be 
able to deal with the temporary or permanent loss of nodes 
and arcs in the network, the loss of transportation systems, 
and an underlying uncertainty in the future demand of 
consuming nodes. Failure to operate under these conditions 

will inhibit the deployment and use of autonomous systems 
in Defence logistics. 

If autonomous systems are to succeed in the presence of 
uncertainty, the use of decentralised decision making is 
critical. Failure of specific system entities (e.g. nodes and 
transports) should have limited impact on other system 
entities and on their ability to make robust decisions. By 
decentralising the decision making to the entities 
themselves, each part of the system operates in a relatively 
independent way and is less likely to be affected by system 
failures. Even under circumstances where communication 
between transports and nodes is severely impaired, if the 
entities can function independently, then the overall system 
is more resilient and mission requirements can continue to 
be satisfied with a diminishing pool of resources. 

In a setting where decision making is fundamentally 
decentralised, the autonomous entities themselves could be 
machines, humans, or some combination of both. Perhaps 
the most promising area of autonomy is this final case, 
where human and machine capabilities are combined to 
form cognitive partnerships for problem solving [Lange et 
al., 2013]. As we will discuss, many of our decentralised 
logistics algorithms have been developed based on our 
human experiences and intuitions. Cognitive partnerships 
would allow future decision making to arise from a 
collective of human and machine intelligence based on 
intuitions that may not be realisable by either entity 
operating alone. 

2 The Network Distribution Problem 

We investigate network-based logistics through a real-time 
network distribution problem (NDP). This is an extension of 
the more well-known inventory routing problems (IRPs) 
[Bell et al., 1983] that form a core component of supply 
chain optimisation. An IRP is defined on a graph, in which 
one or more suppliers are connected, via arcs and 
intermediate nodes, to a number of consumers, each with 
inventory holding capacities and costs. Each consumer 
consumes inventory at a rate that potentially varies over the 
course of some time horizon. The problem is to determine 
how much inventory to produce at each supplier, the 
quantity of inventory to deliver to consumers across the 
horizon, and the manner in which this inventory is 
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transported. The objective is to minimise routing and 
storage costs while meeting demand at consumers. 

The NDP is a dynamic inventory routing problem with a 
single supplier (with an infinite supply of a single resource), 
and one or more consumers (sink nodes). A basic instance 
of the NDP is shown in Figure 1. Each sink consumes 
resource at a rate (units/day) that is known a priori. At 
unknown times, however, this rate increases significantly 
for a period of time. The timing, size, and duration of these 
surges become known only a short time before they arise. A 
finite set of transports (with varying capacity and speed) are 
required to continually transport inventory from the supplier 
to each sink, throughout the horizon, in a way that prevents 
stockouts (where there is insufficient inventory to meet 
demand) from occurring at sink nodes. Inventory may be 
delivered to any node that has capacity to store it (for 
stockpiling), and collected from any (non-sink) node at 
which it has been stockpiled. Our sole objective is to 
minimise stockouts arising at sinks (costs are not modelled). 

 

Figure 1: An instance of the network distribution problem with 10 

nodes, including 1 supply and 1 sink. Each link is weighted based 

on the travel distance required to traverse that link. 

The NDP described above has the key elements of a 
logistics problem (now referred to as the base NDP), but it 
does not represent a realistic military scenario. Therefore, 
we now describe two NDP variants that involve the same 
underlying problem but contain some additional features 
which provide a stronger link to Defence logistics. 

2.1 Fuel Scenario 

One NDP variant involves a fuel distribution network 
supplying several military bases with refined petroleum 
products. The crude oil is extracted at one or more offshore 
oil platforms and transported to onshore oil terminals using 
marine oil tankers (and assumed to be refined somewhere in 

the process). Road tankers are then used to distribute the 
fuel through a network of fuel farms for delivery to one of 
several military bases that have an ongoing demand for fuel. 
All transports and routes can experience short periods of 
downtime ranging from a few hours to a few days. An 
opposing force is also present nearby, which threatens the 
distribution network and causes surges in fuel demand for 
friendly forces with limited warning time. Compared to the 
base NDP, this scenario is more challenging due to the 
presence of an active adversary, multiple supply nodes and 
multiple transport types that need to cooperate, which 
increase the complexity of the decision making. 

2.2 HADR Scenario 

Another scenario involves Defence providing humanitarian 
assistance and disaster relief (HADR) in response to an 
international humanitarian crisis. Relief supplies need to be 
pre-positioned at mounting bases using road transports, and 
then delivered to international relief centres using a 
combination of air and sea transports. There are three types 
of relief supplies (food, medical supplies and fuel) and the 
relief centres have a combination of known and unknown 
(surge) demand over the course of the operation. Akin to 
previous scenarios, all transports and routes can experience 
short periods of downtime. Decision making in the HADR 
scenario requires more intricate logistics planning due to the 
diversity of supply items (each of which can be sourced 
from a different location) and an increased number of 
transport types with vastly different capabilities (such as 
mode, speed, and capacity). 

3 Autonomous Decision Making 

The scenarios described above demonstrate the kind of 
logistics environments in which decentralised decision 
making is being considered, yet these examples are not 
exhaustive. Future scenarios may involve other 
combinations of features (e.g. multiple supply items in an 
adversarial setting) or other features altogether (e.g. limits 
on arc throughput). In general, we cannot envisage all 
possible features that future scenarios might have. Thus, our 
primary goal is to explore techniques which can provide 
high generalisation performance across a range of logistics 
scenarios. Finding optimal solutions within those scenarios 
is currently a secondary consideration. 

A key requirement of any technique we consider is its 
ability to function in a decentralised setting. If the decision 
making entities are fundamentally decentralised and 
operating independently, there is a higher chance that the 
overall system can cope with unforeseen future events and 
system failures. In addition, some logistics environments 
could be partially observable, meaning that each entity will 
maintain its own belief state (a representation of the state of 
the network and the expected deliveries of other transports), 
and information will always be decentralised. 

In the following subsections, we discuss a variety of 
techniques for decision making in these challenging 
logistics environments. Initially, we consider 
mathematically rigorous approaches, by modelling the 



problem as a Markov decision process (MDP) and a mixed-
integer program (MIP), but show that these methods are not 
practical for the NDP. This is followed by a discussion of 
general heuristic techniques and other approximate methods. 

3.1 Markov Decision Process 

An MDP describes a system in terms of: a set of states; 
actions that can be performed in those states; the 
probabilistic transitions that occur as actions are performed 
in each state; and a reward function that prescribes the 
utility or reward received when actions are performed in 
each state. The goal is to find a policy that maps each state 
to the best action to perform in that state. An optimal policy 
maximises the total expected sum of rewards received by 
following the policy. 

To model the base NDP as an MDP, the state space must 
consider: the inventory levels at each node, the state of each 
arc (active or unavailable), and the location and inventory of 
each transport. A typical instance of the NDP could contain 
15 nodes (each with 30 units capacity), 10 arcs, and 4 
transports (10 units capacity). Even in a simplified setting in 
which each transport action takes a single time period, the 
number of required states equals 3015 × 210 × 154 × 104. 
This is a prohibitively large number and therefore modelling 
the NDP as an MDP is unlikely to be practical. 

3.2 Mixed-Integer Programming 

A mathematical optimisation method such as mixed-integer 
programming could be used to model and solve a static 
instance of the NDP, where the overall network state and 
demands are known. Using the model of Savelsbergh and 
Song [2008] as a starting point, we create a planner that 
solves a MIP each time a transport reaches a decision point. 

To assess whether such a planner is feasible, we apply the 
MIP to a simple instance of the base NDP containing 15 
nodes, 1 sink and 1 transport. Unfortunately, since our sole 
objective is to minimise stockouts, the MIP produces 
solutions without stockouts but with other undesirable 
behaviour, such as transports moving to arbitrary nodes 
instead of delivering inventory. We could continually refine 
the constraints and objectives to guide the MIP towards 
more desirable solutions, but this will only increase its 
complexity. Even for this static scenario, the MIP already 
contains hundreds of thousands of constraints and takes 
several minutes to compute. For a dynamic scenario, the 
computation time could be much higher, because the MIP 
would need to be recomputed across many realisations of 
uncertainty. Larger and more realistic scenarios will require 
even more computation time, so using a MIP to solve the 
NDP quickly becomes infeasible. 
 Although the MIP was unsuccessful in solving the entire 
NDP, it has been successfully used to select stockpile 
locations. As we will discuss in the next section, one of the 
key decisions for an algorithm is selecting suitable nodes in 
the network to use as stockpiles in preparation for unknown 
future demand (surge). Using a MIP, we can solve a 
maximum set covering problem, where stockpiles are 

selected to provide maximum coverage to the sink nodes (in 
terms of storage and proximity). 

3.3 Heuristic Techniques 

Due to the drawbacks of using rigorous methods (MDPs and 
MIPs) for NDP decision making, we now consider heuristic 
techniques. Since NDP scenarios can vary greatly, different 
heuristics will be ideal for different scenarios. Our end goal 
is to combine these heuristics into a heuristic framework, 
which automatically selects the best method to use in a 
given situation, and therefore provides a way of generalising 
the heuristics to multiple classes of logistics problems. 

All heuristic methods have been implemented in a 
decentralised way, where each transport uses a specified 
heuristic to makes its own decisions over time. Each 
transport and node also maintains a belief of the state of all 
other nodes in the network and of the intentions (expected 
future deliveries) of all other transports. In partially 
observable environments, these belief states are updated 
through the interaction of nodes and transports that are 
situated at the same location. In fully observable 
environments, all transports and nodes are assumed to have 
complete knowledge. 
 Heuristics are evaluated by using them across many 
instances of the same scenario. Each instance is generated 
with different realisations of uncertainty via Monte Carlo 
simulation. Heuristics that lead to fewer stockouts across 
these instances are considered to be superior. The detailed 
experimental results are not included in this paper due to 
space constraints, but we provide a summary of the types of 
scenarios where each heuristic performed best. 

Shuttling-Based Planners 
The first heuristic is a shuttling method that instructs each 
transport to collect resource from a supply node, and deliver 
it to the most-in-need sink. The most-in-need sink is the 
sink that will have the least inventory upon arrival of the 
transport (on the basis of known demand and scheduled 
deliveries, while not considering unknown future events). 
Upon delivery of the inventory, each transport returns to a 
supply node to collect another load. If a sink does not have 
the storage capacity to accept a transport’s inventory, the 
transport is sent to the most-in-need of the alternate sinks. 
Our experiments suggest that shuttling heuristics are 
effective in small point-to-point networks with limited 
storage locations between sources and sinks. 

Surge-Based Planners 
Our next heuristic adapts the shuttling method by instructing 
transports that have arrived at a sink with no room for 
additional inventory to return to a supply node, delivering 
spare inventory to intermediate nodes on its return journey. 
In periods of surge activity, when one or more sinks is 
experiencing a surge demand, transports are allowed to 
collect inventory from these stockpiles for delivery to a 
sink. Variants of this surge-based heuristic include allowing 
transports to wait at at-capacity sink nodes until they are 
able to deliver their inventory, or travelling to an alternate 
sink to attempt a delivery (instead of immediately returning 



to a supply node). Each surge-based planner also has a smart 
stockpiling variant, which uses a MIP to pre-compute 
stockpile locations that provide maximum coverage to sinks. 
Our experiments suggest that surge-based planners are 
effective in large networks with many interconnected nodes, 
where they consistently achieve fewer stockouts than 
shuttling-based planners. 

Communications Rover 
In partially observable environments, each transport 
maintains its own belief state and these belief states are only 
updated through the interaction of nodes and transports that 
are situated at the same location. In this setting, the previous 
planners can be extended by allocating one transport as a 
‘communications rover’. This rover repeatedly travels 
between key nodes (sources and sinks) and other transports, 
spreading information about node states and transport 
intentions throughout the network. Ensuring all nodes and 
transports are regularly visited by the communications rover 
is one way of mitigating against the constraints imposed by 
partial observability. 

Push and Pull Variants 
Another strategy is to allocate different heuristics to 
different transports. One approach that could be effective is 
to allocate some subset of the transports as ‘stockpile 
pushers’ and the remainder as ‘stockpile pullers’. Stockpile 
pushers would collect resources from source nodes and 
deliver them to pre-computed stockpile locations (using the 
MIP approach described above), while stockpile pullers 
would select suitable stockpile locations to collect inventory 
from and deliver that inventory to the most-in-need sink 
based on current priorities. Further experiments are required 
to evaluate the effectiveness of this approach. 

3.4 Monte Carlo Tree Search 

Given an MDP, Monte Carlo Tree Search (MCTS) methods 
provide an online mechanism for selecting actions to 
perform in any given state. This is achieved by building a 
tree of possible future states that can be reached from the 
current state and assigning values to states based on 
expected future reward. The NDP decision tree could be 
constructed based on the actions available to transports at 
each decision point. One of the challenges is determining 
how to evaluate the value of certain states. Using the 
standard MCTS approach (Monte Carlo simulation) has 
shown to be problematic for the NDP in terms of runtime. 
We are now exploring other methods, such as using the 
degree of stockout or total inventory at sinks, as a way of 
evaluating states without simulation, which could make 
MCTS viable for NDP decision making. 

4 Towards Human-Machine Collaboration  

Our future work will focus on further refining existing 
algorithms and exploring other techniques for decision 
making. In particular, MCTS has shown promising initial 
results but further work is required to determine whether it 
is a viable technique for the NDP. 

The current results show that heuristics are an effective 
tool for decision making in current NDP scenarios, so a 
logical step would be to combine them into a heuristic 
framework with more general decision making capabilities. 
Given a new (unseen) situation, knowledge of similar 
situations could be used to inform the decision. Although 
heuristics are based on human intuitions, combining them 
into a decision making framework for new scenarios could 
lead to novel approaches that human decision makers may 
not have considered. If the framework is an extension of 
human decision making, the human operators are also more 
likely to understand and trust the autonomous system. 

A natural extension of this heuristic framework is to 
explore cognitive partnerships in support of human-machine 
decision making. Consider the example where the NDP (as 
presented in this paper) does not exist in isolation, but is 
part of a complex logistics system made up of human and 
machine entities. In a scenario with constrained 
communication, the humans may rely on machines to 
provide critical information during the logistics planning 
process, which may be difficult or time consuming for the 
humans to obtain on their own. Establishing cognitive 
partnerships between humans and machines would provide 
an effective mechanism for sharing this information and 
establish a critical role for machines in the decision making 
process. In particular, logistics plans could be developed in 
a shared capacity, where the core plan is created by human 
logisticians and parts of the plan are then augmented with 
input and recommendations from machines based on a 
shared understanding of the situation. These kinds of 
human-machine partnerships could provide a way of 
harnessing the strengths of all participants to provide 
enhanced decision making and increasingly robust logistics 
plans. 
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