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Abstract

The high demand for wireless Internet connectivity has driven the de-
velopment of highly efficient radio link technologies. However, their per-
formance can be compromised by inadvertent interactions with the higher
layer TCP flow control protocol. If we are to maximize the performance
of wireless links, then we must ensure that mechanisms operating at every
layer of the protocol stack interact efficiently. In this article we provide a
brief tutorial of some of these radio link enhancements. We then outline
how higher layer flow control protocols should behave, and outline tech-
niques for taming the behavior of TCP, to ensure that the performance of
lower layer enhancements are not compromised.

1 Introduction

Randomness is an inherent characteristic of wireless communications. It is
a feature that stems from a combination of physical phenomena, including
specular reflections, and multiple radio propagation paths to the receiver.
Due to the mobility of users and/or other objects in their vicinity, these phe-
nomena will induce time variations in the quality of the channel between
transceivers, which is often referred to as fading. A great deal of wireless
research is focussed on mitigating these effects. Indeed, enormous progress
has been achieved over the past 50 years in this area, exploiting techniques
from coding, signal processing and information theory. Modern wireless
cellular telephony is built upon these advances.

The demand for wireless Internet access is growing, and new perfor-
mance requirements are emerging. Distinct from the fixed bandwidth and
latency requirements of traditional voice traffic, the majority of Internet traf-
fic is elastic. Elastic traffic is a broad class that encompasses many of the
most popular applications used on the Internet today, including the World
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Figure 1: Overview of the Internet Stack Architecture.

Wide Web (WWW), File Transfer Protocol (FTP), Peer-to-Peer clients and
Electronic Mail. In contrast to voice traffic, there is a paramount objective
for elastic traffic: minimization of the total file transmission time. For many
applications, including the WWW, latency is still an important issue, but
there is no longer a hard constraint on latency, as there was for voice.

The hardware, software and protocols that facilitate data transmission
over the Internet can be categorized into distinct layers, as depicted in Fig-
ure 1. Data traffic generated by applications is passed to the transport layer.
In the case of the Internet, this is most often the Transmission Control Pro-
tocol (TCP). TCP is an end-to-end protocol that controls the rate at which
packets from a given source are injected into the network (i.e. flow con-
trol), with the objective of maximizing the performance of the network. The
link layer multiplexes multiple sources over a single link, to deliver data bits
efficiently and reliably over the physical channel.

The elastic nature of the majority of Internet traffic has motivated the
development of adaptive wireless transmission techniques, which are usu-
ally implemented at the link layer. These techniques obtain a diversity gain
by exploiting variations of the wireless channel quality both over time and
over the user population. Total overall throughput is increased, at the cost
of variable packet transmission latency. The user perceived performance of
these mechanisms is highly dependent on a combination of the application
requirements and the behavior of other mechanisms operating in different
layers of the Internet protocol stack. In essence, designing an efficient wire-
less network is a multi-layer discipline.

This article provides a brief tutorial of some of the most recent and pop-
ular of these link layer enhancements. It is then seen in Section 3 that the
performance of these optimizations can be jeopardized by the behavior of
flow control mechanisms operating at the transport layer, such as the TCP.
One popular solution to this problem is receiver side flow control, which is

2



Figure 2: Link Layer Scheduler with per user queueing.

discussed in Section 4. It is demonstrated how an algorithm suitable for this
type of deployment can be used to tame the behavior of TCP. This ensures
that it does not interfere with the performance of these lower layer optimiza-
tions, and enhances the performance perceived by the user.

2 Link Layer Optimizations

2.1 Packet Transmission Scheduling

Packet scheduling can considerably increase throughput by exploiting the
temporal fluctuations in users’ channel qualities. Consider the down link
mode of operation, where a mobile user is receiving data from a central base
station. Typically a base station will simultaneously service a number of
users. At any one time instant some users will enjoy better channel condi-
tions than others. In fact, it has been shown that the performance of wireless
systems can be enhanced by using multiple antennas to artificially induce
temporal fluctuations in channel quality [1]. If a base station is limited to
transmitting data packets in a particular order, for example in the order that
they reside in a queue, it will be unable to capitalize on the temporal diver-
sity of the users’ channel qualities. This has led to proposals that segregate
users’ packets into separate buffers, providing the opportunity for a sched-
uler to select the optimal user to transmit to at an instant of time [2, 3, 4].

Figure 2 is a schematic depiction of a packet scheduler fork users. Each
user,i, has a queue of packets awaiting transmission, of lengthqi(t). Typi-
cally, a scheduler will decide the next queue to be serviced based on a com-
bination of measurements of the users’ current signal to noise ratios, a mea-
sure of the users’ mean channel rates (calculated over some time interval),
the users’ priorities, and the current size of the users’ queues. For exam-
ple, if a user temporarily suffers reduced channel quality, then the scheduler
might serve that user less frequently, giving preference to users with a higher
channel quality. When the user enjoys better channel conditions, the channel
rate to that user will then be increased, making up for the reduced capacity
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earlier. These schemes count on temporal fluctuations in channel quality.
The simplest channel-aware scheduling policy selects the user with the

best channel quality. Although this scheduler has been shown to achieve the
maximum possible aggregate rate [2], it can lead to throughput starvation
for some users, and long term unfairness. To remedy this problem, practical
schedulers often take into account the average throughput a user receives
[3]. Users that suffer from a lower long term average throughput are pref-
erentially scheduled. This leads to better long term fairness amongst the
users, at a cost of reduced overall capacity gain. Another approach is to
deem the base station’s transmission time (as opposed to throughput) to be
the resource that must be apportioned. Under this scheme, in the long term,
users are given an equal share of the base station’s transmission time. The
base station makes its scheduling decision based on the users’ instantaneous
channel qualities and the long term proportions of time that they receive
data [4].

Scheduling decisions can only be made optimally if each of the queues
has packets queued, which are awaiting transmission. Emptying of a user’s
packet buffer at the base station, due to failures of the transport layer flow
control to maintain a supply of packets, can lead to suboptimal scheduling.
Thus, it is important that the transport layer flow control mechanism does
not inadvertently cause a user’s buffer to drain, by unnecessarily holding
packets up at the source.

2.2 Link Layer Rate Adaptation

Current wireless standards ensure reliable delivery by using link layer mech-
anisms to adapt their transmit rate to the channel quality. Nandaet al. [5]
provide an overview of current link layer techniques, and how they are ap-
plied in different cellular standards today. Incremental Redundancy (IR)
techniques effectively vary the code rate on a transmission slot by slot basis,
tracking fluctuations in the channel quality. Link Adaptation (LA) tech-
niques measure the average channel quality (over several transmission slot
intervals) and choose an appropriate modulation scheme and/or coding scheme.
Hence, IR provides a mechanism for faster rate adaptation than LA.

The net effect of these interacting rate adaptation mechanisms is that
the time series of successful packet transmission times, as perceived by a
transport layer flow control scheme, will be random and non-stationary. Its
behavior will vary on two distinct time scales. Statistics, such as the mean
transmission rate, will vary on a timescale much slower than a packet trans-
mission time, according to the choice of LA and packet scheduling policy.
On a much faster time scale, packet transmission times will themselves be
random, as a result of link layer retransmissions and IR rate adaptation.
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3 Transport Layer Objectives

3.1 TCP: An Overview

TCP is the Internet’s most popular transport layer delivery service. It pro-
vides reliable data delivery to the application layer. TCP automatically or-
ganizes bytes into packets of an appropriate size and then ensures that they
are reliably delivered to their destination. TCP boasts several features, in-
cluding automatic packet retransmission and reordering, transmission error
detection, appropriate packet size discovery, and flow control. The last fea-
ture, flow control, is particularly relevant to this article. TCP’s flow control
algorithm ultimately determines how much data is buffered in the network,
in-flight between the source and destination. As highlighted in Section 2,
this is important in determining whether lower layer optimizations can oper-
ate effectively. Before further elaborating on what would be desirable from
a transport layer flow control system, let us briefly examine some pertinent
features of TCP’s flow control algorithm.

TCP is a window based flow control algorithm. That means that the
number of unacknowledged bytes that are sent into the network is limited
to at most a particularwindow size. The TCP window size is set to be the
minimum of the currently computed congestion window (CWND), which is
set by the sender, and the receiver’s advertised window (AWND), as adver-
tised by the receiver. The purpose behind AWND will be explained later.
At the sender, the TCP flow control algorithm attempts to mitigate conges-
tion within the network by controlling the value of CWND. The control
algorithm is in fact a combination of several distinct algorithms, which are
activated at various stages of a TCP connection’s lifetime. The two dom-
inant algorithms are:slow startandcongestion avoidance. The slow start
algorithm increases the value of CWND at an exponential rate, doubling the
window size every round trip time. Starting at one packet, it usually termi-
nates when it fills the network pipe and a packet loss occurs. The termination
of the slow start algorithm is followed by congestion avoidance. Congestion
avoidance increases the value of CWND linearly, at a rate of approximately
one packet per round trip time, probing for any spare capacity. Eventually, a
buffer overflow will result, and a packet loss will occur. This prompts TCP
to halve its window size. In the simplest sense, congestion avoidance is a
form of the Additive Increase Multiplicative Decrease algorithm (AIMD)
[6], with the decrease factor set to 0.5. Under normal operation, conges-
tion avoidance should dominate the evolution of the value of CWND. This
causes asawtoothevolution of the window size, which is all too familiar to
people who have worked with the protocol. See Figure 3 for an illustration
of this behavior.

Let us consider the case when there is a single bottleneck link for a
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TCP connection, as is usually the case for a variety of wireless and wireline
access network technologies. A wireline link’s transmission rate is usually
constant. In this case, high utilization can be achieved by dimensioning the
bottleneck buffer to be larger than the product of the bottleneck bandwidth
and total delay in the rest of the network. This will cause TCP’s window
size to oscillate between one and two times the bandwidth delay product,
which prevents the link from being starved. This works quite well for wire
line networks, although it should be noted that queueing requirements at the
bottleneck link is of the order of the bandwidth delay product, which can be
very large for high capacity links that span oceans. Nevertheless, throughput
need not be compromised.

In a wireless network the situation is even worse. As discussed in Sec-
tion 2.2, the link rate is now a random quantity, which varies on several
distinct time scales. In order to keep the link busy, we could compensate
for these fluctuations and the sawtooth evolution of the window size by set-
ting the link buffer to be very large. However, TCP’s congestion avoidance
algorithm will attempt to fill this buffer. If the link rate drops suddenly,
then excessively large transmission latencies will result. In contrast, a small
buffer would cause the link to be frequently starved of packets, interfering
with lower layer optimizations.

3.2 Supporting a Wireless Link Layer

Having exposed the weaknesses of TCP’s congestion avoidance algorithm,
we now address the question: “How should the transport layer flow control
behave to ensure lower layer mechanisms can function optimally?”

A transport layer control algorithm is incapable of responding to random
fluctuations in rate, which occur on a time scale smaller than the Round Trip
Time (RTT). This is because it takes at least one RTT before the sender
can be informed of a change in order to respond. However, transport layer
control schemes can respond to mean changes in rate that occur over a longer
time period (of the order of a RTT). The objective of a transport layer control
system should be to ensure that it does not interfere with the performance
of the underlying link layer scheduling mechanisms, whilst automatically
adapting to long term changes (several RTTs) in packet transmission times.

To achieve this, each user should maintain a queue at the base station
that empties only infrequently, to ensure a steady supply of packets, so that
fast link layer rate adaptation mechanisms can take advantage of the fast
fluctuations in channel rate. In contrast, slow changes in the mean link rate
and other link rate statistics, as a result of the slow link layer rate adaptation
mechanisms discussed above, will require the transport layer control to adapt
its transmission window size to maintain a mean target queue size. The result
is quite distinct from the cyclic fluctuations in queue size that results from
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Figure 3: Bottleneck link queue size, with and without CLAMP receiver side
control.

TCP’s congestion avoidance algorithm. TCP may periodically starve the
scheduler of packets, limiting its ability to capitalize on temporal variations
in channel quality. See Figure 3 for an illustration of these two distinct
behaviors.

Furthermore, a single mobile terminal can have multiple simultaneous
TCP connections. In spite of all the advances in radio technology, wireless
bandwidth will always be a precious resource, and for this reason, users will
often want to differentiate between flows, prioritizing some flows to obtain
more of the available capacity than others. For instance, this enables the
automatic suspension of a running FTP session when the user reactivates a
WWW session by clicking on a link.

Maintaining a constant average queue size and flow differentiation are
the two key objectives of flow control over wireless networks.

4 Explicit Window Adaptation

Most TCP performance enhancements for wireless [7] attempt to improve
performance by obscuring events that TCP would otherwise inadvertently
perceive as indications of congestion. These include packet loss and extrane-
ous packet delays due to repeated link layer retransmissions. However, none
of these techniques fundamentally change the behavior of TCP to satisfy
the objectives outlined in Section 3. This immediately poses the question:
How can we fundamentally change the behavior of TCP without making
any modification to the senders or widespread changes to the Internet? For-
tunately, we can meet this demand by exploiting a legacy component that
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was incorporated into the TCP protocol at its inception, the AWND.
The original function of the AWND was to enable the receiver to limit

the sender’s window size to avoid running out of computer memory. This
was a significant problem in the early days of computer communications
as computer memory was expensive, and processor speeds were relatively
slow. In present times the AWND value serves little purpose. High pro-
cessor speeds, and large computer memories, rarely allow it to deviate far
from its maximum value. By actively controlling AWND at the receiver, this
legacy TCP feature provides the receiver with control over the TCP sender’s
behavior. This technique is often referred to as receiver side explicit win-
dow adaptation [8]. It is compatible with all TCP senders. It only requires
that modifications be made to either the receiver, or an intermediate node,
which intercepts acknowledgements sent by the receiver, and overwrites the
advertised AWND value with a newly computed AWND value. Recall that
TCP’s window is the minimum of CWND and AWND. If AWND is care-
fully controlled to ensure that packet loss does not result, then the congestion
avoidance algorithm will monotonically increase CWND. In this situation,
full control of the window size is available via the AWND mechanism. How-
ever, if a packet loss were to occur, then CWND would be decreased. Under
these circumstances, there may be periods when the value of CWND domi-
nates the value of the window size. Ideally, for receiver side explicit window
adaptation to be successful, it is important to control AWND such that packet
loss due to buffer overflows are kept to a minimum.

By definition, receiver side control operates at the receiver. Thus the
information available to any algorithm that is based on receiver side control
is limited. For instance, measuring the round trip time would require sending
explicit probe packets to the sender. Additionally, the sending application
may pause transmission at any time during the lifetime of an active TCP
session. For these reasons, a receiver side control mechanism should not
rely on any direct knowledge of round trip times or the number of active
flows over the wireless link.

4.1 An Algorithm

CLAMP [9] is a recently proposed solution for receiver side explicit window
adaptation that satisfies the objectives outlined in Section 3. The operation
of CLAMP is illustrated schematically in Figure 4. A software agent located
in the wireless base station monitors the transmit queue,q, and computes the
value of aprice function,p(q), which is shown in Figure 5. The price value
is then inserted into the option field of the TCP header of each outgoing
packet.

For each packet received by the client, the price value is read from the
TCP header. It is combined with a priority factor,τ , and an estimate of the
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Figure 4: A typical deployment of the CLAMP system.

Figure 5: CLAMP pricing function.
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current receive rate,µ, to produce a new AWND value that is sent to the
sender in outgoing acknowledgements. The update rule is given by

AWNDnew ← AWNDold +
(τ − p(q)µ)∆

d
,

where∆ is the time elapsed since the last acknowledgment was sent, andd
is AWND/µ averaged over a long time interval. By setting the value ofτ
for each flow, the user is able to assign a priority to different flows. A larger
value ofτ will ensure that a flow obtains a greater proportion of the total
obtained rate. The proportion of the total rate obtained by a flow, will be its
value ofτ divided by the sum of all of theτ ’s for all flows currently sending
data [9]. Note that in practice, the decrease in AWND should not be greater
than the received packet size, in order to meet the TCP specifications.

The queue size can be controlled by adjusting thep(q) function. Refer-
ring to Figure 5, moving the pointqmin determines a lower bound on the
mean queue size. The slope of the line determines the sensitivity of the
mean queue size to the number of active flows. The parameters of this func-
tion can either be set statically to suit certain operating conditions, or they
can be dynamically optimized to maximize the performance of lower layer
mechanisms.

4.2 Performance Improvement

CLAMP mitigates the effect of TCP’s cyclic probing for available capacity
and eliminates the periodic halving of the window size that results. This
reduces the time that the link is left idle because TCP is holding packets
back at the source.

The advantage of mitigating TCP’s sawtooth capacity probing can be
seen in Figure 6. This shows the tradeoff between delay and throughput for
a single TCP flow operating over a network that included a bottleneck link,
with exponentially distributed random packet transmission times of mean
rate 1.5Mbit/s, and a total end-to-end propagation delay of 0.2s in each di-
rection. For a given buffer size, TCP provides no means of controlling the
delay, and so the results for pure TCP show the impact of increasing the
buffer size of the bottleneck link. Here, the averagegoodputis the amount
of data successfully received, and does not include duplicate packets that
were inadvertently retransmitted by TCP. Receiver side control decouples
the mean queue size from the buffer size. This allows low delay to be
achieved with a low probability of buffer overflow, enhancing the perfor-
mance of services which do not employ retransmission, which includes most
real-time services. Under TCP, low delays can only be achieved by reducing
the buffer capacity. This increases the probability of packet loss, and leads
to a reduction in the performance of real time services. The results clearly
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Figure 6: Base station idle time vs. queue size.

demonstrate the increase in throughput and reduction in queueing achieved
when receiver side flow control is employed. By mitigating the sawtooth
evolution of TCP’s window size, a much higher goodput can be obtained for
a smaller queueing delay.

Figure 7 shows an example of rate differentiation. This particular exam-
ple uses CLAMP withτwww = 10 andτftp = 1. It shows preference being
given to the WWW transfer allocating approximately10/11 of the capacity
to the WWW flow and the remaining1/11 to the FTP flow.

5 Conclusion

The elastic nature of the majority of Internet traffic facilitates adaptive wire-
less transmission techniques that exploit temporal fluctuations in channel
quality. However, in order to support these enhancements, it is important to
ensure that higher layer flow control mechanisms do not inadvertently in-
terfere with these lower layer mechanisms. In particular, a mean queue of
packets at the base station should be maintained, which is just large enough
to account for the random fluctuations in packet transmission times, but not
so large as to cause an excessive increase in latency.

Receiver side flow control exploits a legacy feature in TCP. It can be
used to control existing TCP sources to reach the desired objectives and in-
crease the performance of wireless access to the Internet. Algorithms for
receiver side flow control, such as CLAMP, supplement TCP’s flow control
mechanism. They can be used to ensure that lower layer wireless schedul-
ing mechanisms can perform as intended. Furthermore, they provide users
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Figure 7: Rates allocated to two application streams. Background file transfer is
interrupted by a WWW session that starts at time 10 seconds, when it obtains the
majority of the bandwidth, until it terminates at time 13 seconds.

with greater control over how applications’ network connections share the
available wireless capacity.

To design an efficient wireless network it is insufficient to focus on lower
layer optimizations. The interaction of mechanisms operating at each layer
must be taken into consideration. Heterogeneous network design is inher-
ently a multi-layer discipline, as this article has demonstrated.
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