
1.7

Redesigning the String Hash Table, Burst Trie, and BST
to Exploit Cache

NIKOLAS ASKITIS, RMIT University
JUSTIN ZOBEL, NICTA, University of Melbourne

A key decision when developing in-memory computing applications is choice of a mechanism to store and
retrieve strings. The most efficient current data structures for this task are the hash table with move-to-front
chains and the burst trie, both of which use linked lists as a substructure, and variants of binary search
tree. These data structures are computationally efficient, but typical implementations use large numbers of
nodes and pointers to manage strings, which is not efficient in use of cache. In this article, we explore two
alternatives to the standard representation: the simple expedient of including the string in its node, and,
for linked lists, the more drastic step of replacing each list of nodes by a contiguous array of characters. Our
experiments show that, for large sets of strings, the improvement is dramatic. For hashing, in the best case
the total space overhead is reduced to less than 1 bit per string. For the burst trie, over 300MB of strings can
be stored in a total of under 200MB of memory with significantly improved search time. These results, on a
variety of data sets, show that cache-friendly variants of fundamental data structures can yield remarkable
gains in performance.

Categories and Subject Descriptors: E.2 [Data]: Data Storage Representations; E.1 [Data]: Data Structures

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Hash table, burst trie, binary search tree, dynamic array, cache, strings,
node clustering, pointer-less storage, Judy trie

ACM Reference Format:
Askitis, N. and Zobel, J. 2011. Redesigning the string hash table, burst trie, and BST to exploit cache. ACM
J. Exp. Algor. 15, 1, Article 1.7 (January 2011), 61 pages.
DOI = 10.1145/1921703.1921704 http://doi.acm.org/10.1145/1921703.1921704

1. INTRODUCTION

Simple in-memory data structures are basic building blocks of programming, and are
used to manage temporary data in scales ranging from a few items to gigabytes. For
the storage and retrieval of strings, the main data structures are the varieties of hash
table, trie, and binary search tree.

An efficient representation for the hash table is a standard chain, consisting of a
fixed-size array of pointers (or slots), each the start of a linked list, where each node

This project was supported by the Australian Research Council and by the personal funds and resources of
the authors.
A preliminary version of the material in this article appeared in the paper “Cache-conscious Collision-
Resolution in String Hash Tables,” N. Askitis & J. Zobel, Proceedings of the SPIRE International Conference
on String Processing & Information Retrieval, Buenos Aires, Argentina, 2005, pages 92–104; and as Chapters
1 to 4 of “Efficient Data Structures for Cache Architectures,” PhD Thesis (available online). Software available
at http://www.naskitis.com.
Author’s Addresses: N. Askitis, RMIT University, Melbourne, Australia; email: askitisn@gmail.com; J. Zobel,
NICTA, University of Melbourne, Australia; email: jz@csse.unimelb.edu.au.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1084-6654/2011/01-ART1.7 $10.00
DOI 10.1145/1921703.1921704 http://doi.acm.org/10.1145/1921703.1921704

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:2 N. Askitis and J. Zobel

ademic

a b c . . . x y z

a b c . . . x y z

tor

tist gust

stralia

apricot

plane

cat

key

bottle

dig

Car

Bird

Space

Place

Cat

(a) Standard Hash Table (b) Standard Burst Trie

(c) Standard BST

c

a

r u

Fig. 1. The hash table (a), burst trie (b), and binary search tree (c). These standard chained data structures
are currently among the fastest and most compact data structures for storage and retrieval of variable-
length strings in memory. The hash table is the fastest and most compact, but it cannot maintain strings in
sort order. The burst trie can maintain efficient sorted access to containers, while approaching the speed of
hashing. Sorted access is necessary for tasks such as range search. The BST is a fully sorted data structure
that offers good performance, on average.

in the list contains a pointer to a string and a pointer to the next node. The most
efficient form of trie is the burst trie; a standard burst trie consists of trie nodes—each
node being an array of pointers, one for each letter of the alphabet—that descend into
containers represented as linked lists, where each node has a string pointer and a
pointer to the next node. The use of a trie structure allows for rapid sorted access to
containers; the strings within containers however, remain unsorted. In the standard
binary search tree (BST), each node has a string pointer and two child pointers. These
string data structures are illustrated in Figure 1 and are currently among the fastest
and most compact tools available for managing large sets of strings in memory [Askitis
and Sinha 2007; Heinz et al. 2002; Williams et al. 2001; Zobel et al. 2001; Bell and
Gupta 1993; Knuth 1998; Crescenzi et al. 2003].

We use these data structures for common computing applications such as text com-
pression, pattern matching, dictionary management, vocabulary accumulation, and
document processing. Typical software systems such as databases and search engines
are dependent on data structures to manage their data efficiently. Most existing data
structures in computer science, such as the standard hash table, the trie, the BST and
its variants including the splay tree, red-black tree, AVL tree, and ternary search trie,
assume a nonhierarchical random access memory (RAM) model, which states

—All memory addresses supported by the underlying architecture are accessible.
—All memory accesses are of equal cost.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:3

These assumptions allow data to be placed anywhere in memory, with the expectation
of uniform cost. As a result, existing data structures can be fast to access, as they can
minimize the number of instructions executed. However, the speed of processors have
increased more rapidly than has the response time of main memory devices, leading
to a performance gap that has reached two orders of magnitude on current machines.
The implications are serious. A random access to memory can force the processor to
wait for many hundreds of clock cycles. To alleviate these high access costs, current
processors have a system of caches that sit between the processor and memory. A cache
is a small high-speed memory device that operates on the assumption that recently
accessed data is likely to be referenced again in the near future. A cache can thereby
create the illusion of fast memory, by copying recently accessed data from main memory,
in anticipation of its reuse in the near future. Main memory is consulted only when the
required data is not in cache, which is known as a cache-miss.

However, the use of cache violates the principles of the RAM model. First, not all
addresses in memory are accessible. A cache is a transparent layer of memory that can-
not be accessed by a program and is administrated solely by the underlying hardware.
Second, memory access does not have a uniform cost—a cache is at least a magnitude
faster than main memory. Nonetheless, typical implementations of existing string data
structures such as the standard hash table, burst trie, and the BST continue to assume
uniform access costs and are, therefore, not tuned to perform well on modern cache
architectures. As a consequence, these fundamental data structures are likely to incur
excessive cache misses that will dominate their performance on current cache-oriented
processors.

Although a cache is not accessible, a program can make better use of it—that is, be-
come cache-conscious—by improving its spatial and temporal access locality through
regular and predictable memory access patterns. Spatial locality is improved by access-
ing data items that are near to each other; temporal locality is improved by frequently
reusing a small set of data items. To be efficient on current cache-oriented processors,
data structures, therefore, need to be designed to combine computationally efficient
algorithms with cache-conscious optimizations [Kowarschik and Weiß 2003; Meyer
et al. 2003]. However, the best-known techniques for improving the cache efficiency
of programs have limited support or effectiveness on large and dynamic string data
structures, such as the standard hash table and burst trie.

In this article, we address the problem of cache-inefficiency in fundamental string
data structures, by reconsidering the principles of their design. We show that sim-
ple cache-oriented redesigns of the string data structures can lead to substantial im-
provements in performance without compromising their dynamic characteristics. In
particular, we redesign the current best alternatives—the hash table, burst trie, and
BST—by exploring novel cache-conscious pointer elimination techniques that challenge
the principles of the RAM model by minimizing random access to memory, at the ex-
pense of increasing the number of instructions executed. However, as the speed of
processors continues to race ahead of main memory, an increase in the computational
cost of a program will often be compensated if it reduces the number of cache misses
incurred [Meyer et al. 2003].

The use of pointers in dynamic string data structures are the fundamental cause of
cache-inefficiency, as they can lead to random memory accesses. Rao and Ross [2000]
noted the importance of pointer elimination in improving the performance of integer-
based tree data structures. However, pointer elimination has yet to be presented in
literature as a viable and effective means at improving the cache-efficiency of dynamic
string data structures. For such situations, researches have proposed techniques such
as software prefetch [Karlsson et al. 2000; Callahan et al. 1991], custom memory
allocation [Berger et al. 2002; Truong et al. 1998], and different kinds of pointer cache

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:4 N. Askitis and J. Zobel

apricot

plane

cat

key

(a) Standard chain

apricot

plane

cat

key

apricot

plane

cat

key

6

a

p

r

i

c

o

t

5

p

l

a

n

e

3

c

a

t

3

k

e

y

\0

(b) Clustered chain (d) Compact chain

(e) Dynamic array

 with length-encoded strings.

apricot

plane

cat

key

(c) Implicit chain

Fig. 2. A standard chain is the typical implementation of a linked list. A clustered chain physically groups
the nodes of a list together, to improve spatial access locality. However, no pointers are eliminated [Chilimbi
et al. 1999]. An implicit clustered chain eliminates next-node pointers, allowing homogeneous nodes to be
accessed via arithmetic offsets [Chilimbi 1999]. However, strings remain randomly allocated in memory. A
compact chain, in contrast, eliminates string pointers by storing the string directly within the node. The
dynamic array combines clustering and pointer elimination by storing the strings in a contiguous resizable
space.

and prefetchers [Yang et al. 2004; Collins et al. 2002; Roth and Sohi 1999]. Chilimbi
et al. [1999] suggested packing the homogeneous nodes of a BST into contiguous blocks
of memory. Rubin et al. [1999] proposed a similar idea for linked lists. These techniques
do not eliminate pointers, but improve spatial access locality by grouping nodes that
are likely to be accessed contemporaneously.

However, to our knowledge, there has been no practical examination of the impact
of these techniques on dynamic pointer-intensive string data structures, nor is there
support for these techniques on current platforms. Chilimbi et al. [1999] note the
applicability of their methods to chained hashing, but not with move-to-front on access.
This is likely to be a limiting factor, as move-to-front can itself be an effective cost-
adaptive reordering scheme [Zobel et al. 2001]. Nor is it clear that such methods will
be of benefit in the environments that we are concerned with, where the volume of data
being managed may be hundreds of times larger than cache.

Our first technique, which is called a compact chain, is a straightforward way of
improving the spatial locality of string data structures that use standard chains as
substructures; by storing each string directly in its node, as opposed to using a string
pointer. This approach saves up to 12 bytes of space per string (assuming a typical
current system architecture) and eliminates a potential cache-miss at each node access,
at no cost other than the difficulty of coding variable-sized nodes. Compact chains
can demonstrate the value of eliminating a pointer traversal per node, in contrast
to retaining pointers and simply clustering the nodes of a linked list contiguously in
memory [Chilimbi et al. 1999; Rubin et al. 1999].

Our second technique explores a more drastic measure: to eliminate the chain al-
together and store the sequence of strings in a contiguous array that is dynamically
resized as strings are inserted. With this arrangement, multiple strings are likely to

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:5

be fetched simultaneously and subsequent fetches have high spatial locality. We illus-
trate the structural differences between standard, clustered, compact, and array-based
linked lists in Figure 2. While our proposal, which consists of the elementary step of
dumping every string in a list into a contiguous array, might be seen as simplistic, it
nonetheless is attractive in the context of current architectures.

A potential disadvantage of using arrays is that, whenever a string is inserted,
the array must be dynamically resized. As a consequence, a dynamic array can be
computationally expensive to access. However, it is also cache-efficient, which can
make the array method dramatically faster to access in practice, while simultaneously
reducing space due to pointer elimination.

We experimentally evaluate the effectiveness of our pointer-elimination techniques,
using sets of up to 178 million strings. We apply our compact chains to the standard
hash table, burst trie, BST, splay tree, and red-black tree, forming compact variants.
We then replace the chains of the hash table, burst trie, and BST using dynamic arrays,
creating new cache-conscious array representations called the array hash, array burst
trie, and array BST, respectively.

On practical machines with reasonable choices for parameters, our experiments show
that for all array-based data structures where the array size is bounded, as in the BST
and the burst trie, the analytical costs are equivalent to their standard and compact-
chain representations. For all the data structures, the expected cache costs of their
array representations are superior to their standard and compact equivalents, even for
the array hash, where on update, the asymptotic costs are greater than its chaining
equivalents, yet in practice, greater efficiency is observed.

Clustering is arguably one of the best methods available at improving the cache-
efficiency of pointer-intensive data structures [Chilimbi et al. 1999]. However, to the
best of our knowledge, there has yet to be a practical evaluation of its effectiveness
on string data structures. We experimentally compare our compact and array data
structures against a clustered hash table, burst trie, and BST. Our experiments mea-
sure the time, space, and cache misses incurred by our compact, clustered, and array
data structures for the task of inserting and searching large sets of strings. Our base-
line consists of a set of current state-of-the-art (standard-chained) data structures: a
BST, a TST, a splay tree, a red-black tree, a hash table, a burst trie, the adaptive
trie [Acharya et al. 1999], and the Judy data structure. Judy is a trie-based hybrid data
structure, composed from a set of existing data structures [Baskins 2004; Silverstein
2002; Hewlett-Packard 2001].

Our results show that, in an architecture with cache, our array data structures
can yield startling improvements over their standard, compact, and clustered chained
variants. A search for around 28 million unique strings on a standard hash table that
contains these strings, for example, can require over 2,300 seconds—using 215 slots—to
complete while the table occupies almost 1GB of memory. The equivalent array hash
table, however, required less than 80 seconds to search while using less than a third of
the space, that is, simultaneously saving around 97% in time and around 70% in space.
Although this is an artificial case—we would typically allocate more slots in practice—
it highlights that random access to memory is highly inefficient, and that the array
hash can scale well in situations where the number of keys is not known in advance.

Similar savings were obtained for insertion. Hence, despite the high computational
costs of growing arrays, our results demonstrate that cache efficiency more than com-
pensates. The array burst trie demonstrated similar improvements, being up to 74%
faster to search and insert strings, while maintaining a consistent and simultaneous
reduction in space, of up to 80%. The array BST also displayed similar behaviors, being
up to 30% faster to build and search using 28 million unique strings, while requir-
ing less than 50% of the space used by the equivalent standard BST. The splay tree,

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:6 N. Askitis and J. Zobel

red-black tree, TST, and Judy trie were in most cases, slower to access than our array
BST. The clustered data structures were found to be considerably slower than the stan-
dard data structures, and were only effective at exploiting cache when there is no skew
in the data distribution. Our array-based data structures, however, were superior.

These results are an illustration of the importance of considering cache in algorithm
design. The standard chain hash table, burst trie, and the BST have previously been
shown to be among the most efficient structures for managing strings [Heinz et al.
2002; Williams et al. 2001; Zobel et al. 2001], but we have greatly reduced their total
space consumption while simultaneously reducing access time.

2. BACKGROUND

For many applications, it is necessary to efficiently maintain large volumes of data in
memory. In this section, we briefly discuss the principal in-memory data structures for
strings and then review cache considerations on current architectures.

Linked lists and arrays

The simplest dynamic data structure is the linked list [Newell and Tonge 1960]. It
consists of a chain of nodes, where each stores a pointer to a data item, along with a
pointer to the next node in the chain. Linked lists require on average and at worst O(n)
comparisons per search, where n is the number of strings.

Strings can also be stored sequentially in a fixed-sized array, with an access cost
of O(n) if the strings are not sorted, or an insertion cost of O(n) if the strings are
sorted. Hansen [1981] describes several schemes for improving access costs of strings
stored in fixed-sized nodes (or arrays). These schemes are designed to better utilize
the space in a node, at the cost of some search performance. With the “middle gap”
scheme, for example, strings of fixed-length are sorted and partitioned into several
groups separated by unused space. When a new string is inserted into a group, the
existing strings must be moved to maintain sort order (for binary search).

Trees

Trees combine the search characteristics of arrays with the dynamic characteristics of
lists. In a standard BST, each node has a left and right child-node pointer, to subtrees
of strings that are respectively lexicographically less than or greater than the node’s
string. The standard BST has an expected O(log n) search cost but an O(n) worst case.
To ensure good performance regardless of the distribution of strings, it is necessary to
balance or reorganize the tree. However, the cost of reorganization can outweigh the
gains in the average case, as frequently accessed strings may be moved away from the
root, and reorganization can be more expensive than search.

The splay tree [Sleator and Tarjan 1985] is an example of a self-adjusting BST, which
achieves good worst-case behavior through splaying, a technique that moves the most
recently accessed node to the root of the tree. The randomized search tree [Martinez
and Roura 1998] is also self-adjusting, where a heap order is maintained on nodes.
When a node’s weight (a random number) is greater than its parent, it is moved up
the tree until the heap order is restored. Another randomized structure is a skip list
[Pugh 1990], which uses a hierarchy of sorted lists above a primary sorted list, giving
tree-like expected behavior, but with relatively poor efficiency for strings.

The splay tree, the randomized BST, and the red-black tree were experimentally
compared against the standard BST for the common task of vocabulary accumulation
[Williams et al. 2001]. For this data, the splay tree was never faster than a standard
BST and was, on average, 25% slower. Furthermore, splaying on every access proved
ineffective for skew data, with words such as “the”—the most frequent word in plain

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:7

text—sometimes found deep in the tree. Similarly, the randomized BST was only 3%
faster than the splay tree. The red-black was slower for skew data than the splay tree,
with only a slight improvement when little or no skew was present. Thus, while the
standard BST’s worst case might prohibit its use in practice, in the average case it
provides a reasonable benchmark for efficiency.

Tries

A trie is a multiway tree structure that stores sets of strings by successively partitioning
them [de la Briandais 1959; Fredkin 1960; Jacquet and Szpankowski 1991]. Tries have
two properties that cannot be easily imposed on data structures based on binary search.
First, strings are clustered by shared prefix. Second, there is an absence of (or great
reduction in the number of) string comparisons—an important characteristic, as a
major obstacle to efficiency is excessive numbers of string comparisons [Williams et al.
2001]. Tries can be rapidly traversed and offer good worst-case performance, without
the overhead of balancing [Szpankowski 1991].

Although fast, tries are space-intensive, which becomes a serious problem in practice
[Comer 1979; Heinz et al. 2002; McCreight 1976]. There are two approaches to reducing
the space of a trie. The first is to reduce the size of trie nodes by changing their structural
representation. The second is to reduce the number of nodes. A simple implementation
of a trie node is an array of pointers, one for each letter of the alphabet [Fredkin 1960].
A string of length k is stored as a chain of k nodes. Access to these nodes can be rapid,
even for long chains. However, with tasks such as vocabulary accumulation, for trie
nodes at or near the leaves the majority of pointers are likely to be unused.

A more space-efficient representation is the de la Briandais or list trie [de la
Briandais 1959], which structures a trie node as a linked list that stores only used point-
ers. Trie nodes can also be structured as BSTs, giving a ternary search trie [Bentley
and Sedgewick 1997; Clement et al. 1998]. These forms of trie nodes were shown to
have logarithmic access costs but with different constants [Clement et al. 2001]. The
array trie is the fastest but requires the most space. The TST is more compact but is
more expensive to access, while the list trie is compact but very slow [Severance 1974].

The array trie can be modified to omit chains of nodes that descend into a single leaf,
forming a compact trie [Sussenguth 1963]. Similarly, the Patricia trie [Morrison 1968;
Gonnet and Baeza-Yates 1991] omits all single descendant nodes, not just those that
descend directly into leaves, saving even more space but remaining larger than a TST
[Sedgewick 1998; Heinz et al. 2002].

However, these techniques are insufficiently effective for large and dynamic sets of
strings. In the burst-trie [Heinz et al. 2002], dynamic containers are used to store
small sets of strings that share a common prefix. Containers—such as linked lists with
move-to-front—can reduce the number of trie nodes by up to 80%, at little cost in speed.
A similar approach [Ramesh et al. 1989] takes a fully built array trie and collapses
selective nodes into static containers. The burst-trie, in contrast, is built dynamically.
It starts as a single container that is populated with strings until full. Once full, the
container is burst, forming smaller containers, one for each letter of the alphabet, that
are parented by a new node. Strings are distributed according to their lead character,
which can then be removed.

The burst-trie was experimentally compared against several data structures [Heinz
et al. 2002]: a compact trie, a TST, a standard BST, a splay tree, and a standard-chain
hash table, for the task of vocabulary accumulation. The burst-trie was consistently
faster and more compact than the trees and tries, and could approach the efficiency
of the hash table while maintaining sorted access to strings. Similar comparisons are
made in the experiments reported later in this article.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:8 N. Askitis and J. Zobel

Hash Tables

A hash table is a data structure that scatters keys among a set of lists that are anchored
over an array of slots. In-memory hash tables are a basic building block of programming,
used to manage temporary data in scales ranging from a few items to gigabytes. To
store a string in a hash table, a hash function is used to generate a slot number. The
string is then placed in the slot; if multiple strings hash to the same location, some
form of collision resolution is needed. (It is theoretically impossible to find a hash
function that can uniquely distinguish keys that are not known in advance [Knuth
1998].) There are two decisions a programmer must make: choice of hash function and
choice of collision-resolution method. A hash function should be from a universal class
[Sarwate 1980], so that the keys are distributed as well as possible, and should be
efficient. The fastest hash function for strings that is thought to be universal is the
bitwise method of Ramakrishna and Zobel [1997]; hash functions commonly described
in textbooks are based on modulo and repeated multiplication and division, which are
slow and are not effective at distributing strings.

Since the origin of hashing—proposed by Luhn in 1953 [Knuth 1998]—many methods
have been proposed for resolving collisions. The best known are separate or standard
chaining and open addressing. In chaining, also proposed by Luhn, linked lists are used
to resolve collisions, with one list per slot. Thus, there is no limit on the load average,
that is, the ratio of items to slots.

Open addressing, proposed by Peterson [1957], is a class of methods where items are
stored directly in the table and collisions are resolved by searching for another vacant
slot. However, as the load average approaches 1, the performance of open addressing
drastically declines. These open addressing schemes are surveyed and analyzed by
Munro and Celis [1986] and were found not be suitable for applications that manage
moderate to large sets of strings. Alternative techniques include coalesced chaining
[Vitter 1983], and combined chaining and open-addressing, known as pseudochaining
[Halatsis and Philokyprou 1978]. However, it is not clear that the benefits of these
approaches are justified by the difficulties they present.

In contrast, standard chaining is fast and flexible. For sets of strings with a skew
distribution, such as occurrences of words in text, a standard-chain hash table, coupled
with an effective, efficient hash function, is faster and more compact than sorted data
structures such as tries and variants of BST [Williams et al. 2001]. Using move-to-front
in the individual chains [Knuth 1998; Zobel et al. 2001], the load average can reach
dozens of strings per slot without significant impact on access speed, as the likelihood
of having to inspect more than the first string in each slot is low. Thus, a standard-
chain hash table has clear advantages over open-addressing alternatives, whose perfor-
mance rapidly degrades as the load average approaches 1 and which cannot easily be
resized.

Moreover, in principle, there is no reason why a chained hash table could not be
managed with methods designed for disk, such as linear hashing [Larson 1982] or
extensible hashing [Rathi et al. 1991], which allow an on-disk hash table to grow and
shrink gracefully. The primary disadvantage of hashing is that strings are randomly
distributed among slots, and is thus unsuited to applications in which strings need to
be available in sorted order.

Current Techniques for Exploiting Cache

As the cost of accessing memory continues to increase relative to the speed of the
CPU [Patterson et al. 1997], arithmetic operations alone are no longer adequate for
describing the computational cost of a data structure [Kowarschik and Weiß 2003]. For
programs to remain efficient in practice, measures must be taken to exploit cache. A

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:9

cache is a small high-speed memory that resides between the CPU and main memory.
Its purpose is to store frequently accessed data, allowing it to be accessed rapidly on
future requests [Hennessy and Patterson 2003; Handy 1998]. A cache is divided into
fixed-sized blocks known as cache lines. A cache-hit occurs when the required data is
found in a cache line; otherwise, it is a cache-miss, which incurs the cost of accessing
main memory.

Cache, however, is typically not under the control of the programmer [Rahman 2002;
Hinton et al. 2001]. Nonetheless, programs can be designed to make good use of cache
by improving their locality of access. Locality of access can be improved by increas-
ing the rate at which a program reuses recently accessed data (temporal locality),
and by accessing data that is near by (spatial locality), thus utilizing cachelines and
hardware prefetch (described later in the text) to reduce cache misses and consequent
CPU stalls [Lebeck 1999]. The importance of minimizing TLB-misses has also been
noted [Agarwal 1996; Moret and Shapiro 1994; Romer et al. 1995; Rahman et al. 2001],
which is achieved through improved temporal locality and by reducing the amount of
memory used by a program.

Code transformations and optimizations at compile time are the simplest means for
improving access locality. These involve changing the order in which instructions in
a program are executed, in particular, the iterations of a program loop, to improve
cache-line utilization and to apply instruction scheduling to optimize the execution
of instructions [Kerns and Eggers 1993]. Some common techniques include loop un-
rolling, loop skewing, and loop fusion. Detailed descriptions of these techniques can be
found in compiler-based literature [Beyls and D’Hollander 2006; Allen and Kennedy
2001; Muchnick 1997; Leung and Zahorjan 1995; Manjikian and Abdelrahman 1995;
Bacon et al. 1994; Carr et al. 1994]. However, these compile-time optimizations are
only effective at reducing capacity misses and instruction costs. They cannot address
compulsory misses [Kowarschik and Weiß 2003] and are generally no better at reduc-
ing conflict misses [Rivera and Tseng 1998]. Compulsory, capacity, and conflict misses
are classifications of cache misses defined by Hill and Smith [1989].

Calder et al. [1998] introduced a compile-time data placement technique that relo-
cates stack and global variables, as well as heap objects to improve the data access
locality of programs. Although effective for stack and global variables, there was little
improvement for heap objects. In addition, a training run (a program profile) is required
to determine how to relocate variables to achieve good performance. This has obvious
limitations on dynamic data structures that rely on heap-allocated storage and have ac-
cess patterns that are typically not known in advance. Hence, compile-time techniques
can do little to improve the cache performance of dynamic pointer-intensive data struc-
tures, leaving much of the cache optimization effort to the programmer [Granston and
Wijshoff 1993; Loshin 1998; Burger et al. 1996].

Data prefetching is a common technique used to reduce compulsory misses and im-
prove spatial locality by fetching data into cache before it is needed [VanderWiel and
Lilja 2000]. Hardware prefetchers, such as stride prefetching [Smith 1982], work inde-
pendently from the processor and require no intervention from the programmer. They
typically intercept memory requests and use simple arithmetic (and often a pool of re-
cent addresses) to predict future data accesses [Kowarschik and Weiß 2003; Intel 2007].

Although hardware prefetchers are effective at reducing compulsory misses, random
memory accesses are impossible to predict. Hence, for pointer-intensive data structures
such as the standard hash table, a hardware prefetcher can pollute the cache with
unwanted data. More sophisticated prefetchers, such as the Markov predictor [Joseph
and Grunwald 1997] or dependence-based prefetching [Roth et al. 1998], can improve
prefetch precision but are often more complex and expensive [Baer and Chen 1991;
1995; Fu et al. 1992].

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:10 N. Askitis and J. Zobel

Hardware prefetchers work well with programs that exhibit regular or stride access
patterns; arrays are prime candidates. Unfortunately, most data structures for strings
use linked lists as substructures. Traversing a linked list can lead to inefficient use
of cache, because nodes and their strings can be scattered in main memory, resulting
in poor access locality. Furthermore, nodes are accessed via pointers which can hinder
the effectiveness of hardware prefetch, due to pointer chasing [VanderWiel and Lilja
2000].

For such situations, software prefetchers [Callahan et al. 1991; Karlsson et al. 2000]
have been proposed, the simplest being the use of prefetch instructions such as greedy
prefetching [Luk and Mowry 1996]. These prefetch instructions are manually inserted
into code by programmers or added by compilers [Mowry 1995; Lipasti et al. 1995]. In
contrast to hardware prefetchers, software prefetchers have some CPU cost and often
require intervention from the programmer. Roth and Sohi [1999] introduced jump-
pointers, a framework of pointers that connect nonadjacent nodes in a linked list, to
be used by a software prefetcher to overcome pointer-chasing. However, to be effective,
an appropriate jump-point interval must be found which is nontrivial; Roth and Sohi
[1999] do not describe how to adapt this interval to an application. Consequently, once
installed, jump-pointers do not adapt to changes in access patterns, which can lead to
inefficiency [Yang et al. 2004]. In addition, jump pointers cannot prefetch the sequence
of nodes between jump intervals.

Karlsson et al. [2000] extends jump pointers by introducing a prefetch array. Prefetch
arrays consists of a number of jump pointers to nodes that are located consecutively
in memory. These pointers can be used to prefetch several nodes at once—by using
hardware or software prefetchers. Prefetch arrays can also be used to prefetch nodes
in-between jump pointers and can be effective in applications where the traversal path
is not known in advance. Prefetch arrays, however, require more space than jump
pointers and remain ineffective for dynamic pointer-intensive data structures such as
trees with high branching factors.

Speculative execution uses a separate processor (or threads) to run ahead of the
main program during a cache-miss, to dereference pointers and cache data before it is
requested [Dundas and Mudge 1997; Luk 2001]. A pointer cache [Collins et al. 2002] can
be useful here, as it stores frequent pointer transitions. However, overall effectiveness
is poor when applied to dynamic pointer-intensive data structures, as, to be effective,
knowledge of access patterns is needed, and there must be sufficient delays between
cache misses and node processing.

Stoutchinin et al. [2001] observed that there tends to be a regularity in the allocation
of nodes in a linked list, and thereby proposed a compiler-based software prefetch
method, called speculative induction pointer prefetching, which modifies a compiler
to detect a linked list scanning loop. Once detected, the compiler inserts code that
computes a stride offset for induction pointers, which are then used to speculatively
prefetch nodes whose address are computed relative to the induction pointers. This
technique works well on programs that exhibit stride access patterns, but not with
those that exhibit irregular memory access patterns.

There are also proposals for combining hardware and software prefetchers that
attempt to overcome pointer chasing in pointer-intensive applications. Yang et al.
[2004], for example, proposed programmable hardware prefetch engines, with simi-
lar techniques by Hughes and Adve [2005] for multiprocessor systems. Guided region
prefetching is another example where the compiler generates prefetch hints that guide
hardware prefetchers [Wang et al. 2003].

The techniques discussed earlier are concerned with the consequences of cache
misses, as opposed to the cause, which is poor access locality. Chilimbi et al. [1999]
showed that careful layout and relocation of nodes in pointer-intensive data structures

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:11

can improve access locality without changing program semantics. Two cache-conscious
relocation techniques were introduced: clustering and coloring. Clustering attempts to
pack nodes that are likely to be accessed contemporaneously into blocks of memory that
are sized to match the cache line. Hence, clustering is a cache-conscious heap allocator
similar to malloc, expect that it requires the programmer to supply a pointer to an ex-
isting node that is expected to access the new node, such as a parent node. An incorrect
choice of pointer will not affect program correctness, but it can affect performance.

Coloring maps contemporaneously accessed nodes to nonconflicting regions of cache,
that is, it segregates nodes based on access frequency obtained from program profiles.
In some cases, such as with a binary search tree, access patterns can be derived from
structural topology (i.e., nodes near the root will be accessed more frequently than
those near the leaves). Coloring, however, is only compatible with static tree-like data
structures and incorrect usage can affect program correctness [Chilimbi 1999].

Clustering and coloring are currently only compatible with homogeneous objects,
such as the fixed-sized nodes of a binary search tree; they do not support allocation
or relocation of variable-length objects, such as strings. In addition, these techniques
assume that the size of a node in bytes, is less than half the cache-line size. In cases
where nodes are larger, their internal fields can be reorganized by separating frequently
accessed fields into smaller segments that can fit into a cache line. However, this
technique has limited application, as it can affect program correctness [Chilimbi 1999;
Chilimbi et al. 2000].

Another important characteristic of clustering is that nodes are grouped together to
improve spatial access locality without eliminating their pointers. Hence, a clustered
pointer-intensive data structure can still make poor use of hardware prefetch, due
to pointer chasing. Chilimbi [1999] suggests eliminating the next-node pointers of a
linked list and accessing nodes using arithmetic offsets, forming an implicit clustered
chain. However, this technique assumes homogeneous nodes and involves nontrivial
programmer intervention, and was thus not pursued for coloring and clustering.

Chilimbi et al. [1999] note the applicability of their methods to chained hashing, but
not with move-to-front on access. This is likely to be a limiting factor, as move-to-front is
itself an effective cost-adaptive reordering scheme. Furthermore, there is currently no
implementation support for clustering or coloring on current platforms. Nonetheless,
implementing a clustered linked list is straightforward: The nodes of a linked list are
simply allocated contiguously in memory, in order of occurrence. A clustered list is
likely to make better use of cache during search, but updating a single array of nodes
(that maintain next-node pointers) can be expensive. Hence, Chilimbi [1999] suggests
grouping nodes into fixed-sized memory blocks that are sized to match the cache line.
This forms a chain of blocks that permit efficient update, but at some cost in space and
cache efficiency (the individual blocks can be scattered in memory).

Virtual cache lines, proposed by Rubin et al. [1999], is a similar technique to cluster-
ing. In this approach, the nodes of a linked list are stored within fixed-sized blocks of
memory that match the size of the cache line. Access to a block will prefetch the next
set of nodes in the list, which improves spatial access locality. However, the virtual
cache-line technique is currently only compatible for linked lists. Its effectiveness on
tree-based data structures such as the BST is unknown. In addition, nodes are as-
sumed to be of fixed size and no pointers are eliminated; hence, variable-sized objects,
such as strings, remain randomly allocated in memory, which can make inefficient use
of cache.

Another similar technique to clustering is the use of hash buckets to improve the
cache-efficiency of the hash join algorithm in SQL [Graefe et al. 1998]. In this approach,
the two chaining hash tables that are used to perform the join are constructed with
nodes that are sized to match the cache line. Hence, initial access to a node in a linked

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:12 N. Askitis and J. Zobel

list will prefetch an entire cache line of fixed-length keys (integers), which is more
efficient than accessing a single key per node.

Frias et al. [2006] proposed a cache-conscious STL list for the C++ library, which
employs a double-linked list of buckets. Each bucket contains a small array of elements,
pointers to next buckets and other housekeeping data. The buckets employ different
algorithms to manage their elements, ranging from contiguous allocation, allocation
with gaps or the use of internal lists, along with algorithms that rearrange buckets
and to support efficient iteration. The authors report a considerable performance boost
over conventional STL lists (though the memory efficiency of their approach, taking
into account operating system overheads, is unclear for a large number of insertions).

The approach used to implement cache-conscious STL lists is akin to the general
techniques highlighted earlier, in particular node clustering, virtual cache lines, and
hash buckets. As such, cache-conscious STL lists assume that elements in a bucket are
homogeneous; either 32-bit or 64-bit integers (there is no consideration for variable-
length string keys). As a result, to support variable-length string keys, buckets will
need to maintain string pointers; and as is the case for node clustering, this action will
likely hinder performance when applied to dynamic string data structures, such as the
chained hash table. We demonstrate this in later experiments, where we employ node
clustering (i.e., a list of buckets) in several dynamic string data structures.

Truong et al. [1998] introduced a field reorganization and interleaving technique that
groups the homogeneous nodes of a linked list into fixed-sized memory blocks called
arenas, using a dynamic cache-conscious heap allocator called ialloc. This approach
clusters the fields of nodes according to their expected frequency of access, which is
determined by the programmer. Hence, a cache line will store frequently accessed
components from a number of nodes, which can improve access locality. However, ialloc
does not support variable-sized fields, such as arrays of integers or a string; such fields
must remain randomly allocated in memory. In addition, pointer chasing remains an
issue and the process of interleaving nodes can affect program correctness. Moreover,
ialloc is not particularly effective for pointer-intensive data structures such as the
standard-chain hash table. In this example, ialloc will interleave nodes from different
slots which will increase the number of cache misses incurred, as cache lines will be
polluted with unwanted data [Askitis 2007].

Alternative data relocation techniques include identifying frequently repeated se-
quences of consecutive data references in programs, and clustering them accordingly
to improve the use of cache [Chilimbi and Shaham 2006]. Similar techniques involve
the use of memory pools that cluster objects of the same data type to improve access
locality [Lattner and Adve 2005; Zhao et al. 2005].

Berger et al. [2002] tested eight high-performance custom memory allocators and
found that six were no better and often led to worse cache utilization in pointer-
intensive programs, than a high-performance general-purpose allocator, such as malloc.
The remaining two, which involved the use of memory pools, led to slight improvements
in access times, but at some cost in space. Open-address hash tables have also been
investigated in the context of cache [Heileman and Luo 2005], but as noted previously,
open-address hash tables are not efficient or practical solutions for managing strings.

A study by [Badawy et al. 2001, 2004] tested the effectiveness of combining software
prefetch on data that was cache-consciously allocated, and found software prefetching
to be of little value compared to the performance gained through careful layout. The
authors concluded that careful layout of data through clustering often outperformed
software prefetching (such as jump pointers), particularly on machines with limited
memory bandwidth. Hence, allocating or relocating data in a cache-conscious manner
has been shown to be the best current way of exploiting cache in pointer-intensive
programs [Hallberg et al. 2003].

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:13

A software cache can also be used in place of a software prefetcher [Aggarwal 2002],
which caches recently stored (homogeneous) data items in pointer-intensive data struc-
tures, in an attempt to reduce their access cost. Access locality can also be improved by
a combination of split caches, victim caches, and stream buffers, as discussed by Naz
et al. [2004]. In addition, LaMarca and Ladner [1996] studied the performance of an
implicit heap and showed how padding techniques that align fixed-sized heap elements
to cache lines, can yield high reductions in cache misses.

Acharya et al. [1999] proposed data layout schemes that addressed—in the context
of cache—the unused pointers in sparse tries [Knuth 1998]. The authors dynamically
change the representation of trie nodes for very large alphabets, into either an asso-
ciative array, a bounded-height B-tree, or a chained hash table, to form an adaptive
trie. The adaptive trie was compared against the the ternary search trie [Bentley and
Sedgewick 1997] for the task of searching a small set of strings, and was found to be
faster than the TST, due to better use of cache. Crescenzi et al. [2003] also compared the
adaptive trie against other string data structures, such as the Patricia trie, an open-
address (linear probing) hash table, a BST, an AVL tree, and the TST, to determine their
efficiency for searching small string datasets with and without skew. The adaptive trie
was shown to operate efficiently with no skew in the data distribution, but was consis-
tently slower than the TST, BST, and the open-address hash table with skew. In addi-
tion, the authors note that the adaptive trie can be more space-intensive than the TST.

Ghoting et al. [2006] studied the cache performance of the frequent-pattern mining
algorithm—FPGrowth—on current processors, which uses an annotated prefix tree (or
FP-tree) to compactly represent a transaction dataset [Han et al. 2000]. However, the
nodes of an FP-tree are likely to be scattered in memory, which is not cache-efficient.
The authors proposed replacing the FP-tree with a static cache-conscious prefix tree
that stores the nodes contiguously in memory. First, a standard FP-tree is built and
a single fixed-sized block of memory is allocated, sized to fit the entire tree. The FP-
tree is then traversed in a depth-first order, copying its nodes sequentially into the
block of memory. As a result, spatial access locality can be improved. A similar copying
technique to eliminate string pointers for string sorting was also proposed by Sinha
et al. [2006], who demonstrated that doing so can halve the cost of sorting a large sets
of strings, due to improved spatial access locality.

Rao and Ross [1999] proposed a new indexing technique called a cache-sensitive
search tree (or CSS-tree), which stores a directory structure on top of an existing sorted
array of homogeneous keys, such as integers. The directory structure is a BST where
nodes are sized to match the cache line. The key advantage offered by a CSS-tree,
compared to a binary search using a single sorted array, is that the binary search is lo-
calized within nodes that are contiguously allocated, which can exploit cache. However,
the CSS-tree is a static structure that is build upon a sorted array. It cannot handle
updates efficiently and is not designed for variable-length strings. To support updates
using fixed-length keys, the authors developed a variant called a cache-sensitive B-tree
(CSB-tree) [Rao and Ross 2000]. The CSB-tree places all the child nodes of a given
node contiguously in memory, to eliminate child node pointers. Hence, a parent node
need only retain the first pointer to its child node. The rest of its children can be found
through arithmetic offsets, which improves spatial access locality.

Torp et al. [1998] proposed a similar cache-efficient B-tree, called a pointerless in-
sertion tree (PLI-tree), which eliminates all pointers in nodes. The PLI-tree allocates
homogeneous keys in a specific order, such that child nodes can be found through
arithmetic calculations. Although compact and fast, the data structure cannot handle
random insertions or variable-length objects such as strings; all insertions must be
in incremental order which is potentially useful for append-only operations, such as
maintaining logs or time-stamped data, for example.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:14 N. Askitis and J. Zobel

Cache-oblivious data structures are designed to perform well on all levels of the
memory hierarchy (including disk) without prior knowledge of the size and character-
istics of each level [Frigo et al. 1999; Kumar 2003]. Brodal and Fagerberg [2006], for
example, theoretically investigated a static cache-oblivious string dictionary. However,
their study shows no actual performance measures against well-known data structures.
Similarly, a dynamic cache-oblivious B-tree [Bender et al. 2000] has been described, but
with no analysis of actual performance. This is not uncommon, as there are other stud-
ies demonstrating that cache-oblivious structures can almost match the performance of
optimized data structures [Bender et al. 2003], but only from a theoretical perspective.
Cache-oblivious matrix algorithms have been experimentally compared against their
cache-conscious variants, which, however, were found to be superior [Yotov et al. 2007].
Another example includes the cache-oblivious priority queue [Arge et al. 2002].

The cache-oblivious dynamic dictionary [Bender et al. 2004] has been compared
to a conventional B-tree, but on a simulated memory hierarchy. These studies as-
sume a uniform distribution in data and operations, which is typically not observed
in practice [Bender et al. 2002]. Bender et al. [2006] have also theoretically proposed
a cache-oblivious string B-tree that can handle unbounded-length strings, along with
a cache-oblivious streaming B-tree that is theoretically designed to support efficient
random insertion and range search of fixed-length keys [Bender et al. 2007].

Recent studies have evaluated the practicality of these data structures [Ladner et al.
2002; Brodal et al. 2002; Arge et al. 2005] and reported potentially superior performance
compared to conventional data structures for fixed-length keys, but not when compared
to those that have been tuned to a specific memory hierarchy [Arge et al. 2005; Rahman
et al. 2001]. The data structures that we explore in this article are not cache-oblivious,
as they have been designed specifically to exploit the cache between main memory and
the CPU, and reside solely within (volatile) main memory. For disk-based alternatives,
we present a detailed survey of existing disk-resident string data structures, including
the string B-tree [Ferragina and Grossi 1999], along with the proposal and evaluation
of the B-trie, an efficient disk-resident string data structure [Askitis and Zobel 2008].

3. REDESIGNING STRING DATA STRUCTURES TO EXPLOIT CACHE

In this section, we explore cache-conscious pointer elimination techniques—the com-
pact chain and the dynamic array—and describe how to redesign the current best
string data structures, with the aim of creating cache-conscious alternatives that can
potentially yield substantial gains in performance, without compromising dynamic
characteristics. We assume that strings are sequences of 8-bit bytes, that a charac-
ter such as null is available as a terminator, and a 32-bit CPU and memory address
architecture is used.

Clustered Chain

In a typical implementation of a standard chained data structure, every node accessed
incurs at least two pointer traversals: one to reach the node and the other to reach its
string [Esakov and Weiss 1989; Horton 2006]. As nodes and their strings are likely to
be scattered across main memory, access to a node can incur up to two cache misses.
Clustering is a well-known technique that improves the cache-efficiency of a data
structure by storing its nodes into a contiguous block or blocks of memory, to improve
spatial access locality [Chilimbi et al. 1999].

However, pointers are not eliminated, which is a key distinction from the techniques
that we present in this article. Another distinction is that clustering is only compatible
with homogeneous nodes. Variable-sized objects, such as strings, must remain ran-
domly allocated in memory, which can be inefficient. Another potential disadvantage of

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:15

clustering is the effectiveness of move-to-front on access, which is likely to be a limiting
factor as move-to-front is itself an effective cost-adaptive reordering scheme.

To maximize the effectiveness of clustering, the entire standard chain should be
stored in a single contiguous block. However, adding new nodes requires the block to
be resized, which can become computationally expensive; the physical location of the
block can change in memory, and, as a consequence, every node in the block must be
accessed and updated. Chilimbi [1999] suggests clustering nodes into fixed-sized blocks
that are sized to match the cache line. Once a block is full, a new block is allocated
and the node is inserted without resizing. This technique effectively creates a chain of
blocks, similar to virtual cache lines [Rubin et al. 1999]. However, unless the blocks
are randomly allocated—which reduces the effectiveness of clustering—adding a new
block to a set of contiguously allocated blocks can be expensive to maintain.

Details regarding these implementation issues are not generally available in the
literature [Chilimbi 1999]. As a result, we implement a clustered data structure by
first building it as standard chain, then converting it by accessing each chain and
storing its nodes contiguously in a block of memory. We describe how to convert a
standard hash table, burst trie, and BST in the discussions that follow. We also consider
implicit clustering, where nodes are clustered and accessed via arithmetic offsets, as
we described earlier.

Compact Chain

A straightforward way of improving the cache efficiency of a chained data structure
is to store each string in its node, rather than storing it in a separate location. This
halves the number of random accesses and saves 12 bytes per string: 4 bytes for the
string pointer and 8 bytes imposed by the operating system for string allocation. Each
node consists of 4 initial bytes, containing a pointer to the next node, followed by the
string itself. The total space overhead of a compact chain is, therefore, 12s, where s is
the number of strings stored. This is half the overhead of a standard chain, at no cost.
We call this variant of chaining compact. However, this procedure requires that nodes
themselves be of variable length, which, depending on the programming language, can
be difficult to implement.

The cache advantages of compact chains are obvious: Each node will involve only a
single memory access; spatial locality is improved, and the reduction in total size will
improve the likelihood that the next node required is already cached. Nonetheless, com-
pact nodes are randomly allocated and remain chained. As a consequence, they cannot
maximize the use of cache. However, chains are computationally inexpensive to main-
tain. Only pointers need to be manipulated for update operations, such as inserting a
new node or when move-to-front is initiated. In practice, there are no cases—apart from
ease of implementation—where a standard chain would be preferable. Hence, compact
chains can be readily applied to improve the cache and space efficiency of dynamic data
structures for strings that use linked lists as substructures.

The Dynamic Array

Compact chains are simple and effective at improving the cache and space efficiency of
existing chained data structures, but the random allocation of their nodes and use of
pointers can hinder the effectiveness of hardware prefetchers. Also, cache-line utiliza-
tion is not optimal, as 4 bytes of cache-line space is wasted (the next-node pointer) per
node.

We, therefore, propose an alternative—to eliminate the chain altogether and store
the strings in a contiguous dynamic array. Each array can be seen as a resizable
bucket. The strings in a bucket are stored contiguously, which guarantees that access
to the start of the bucket will automatically fetch the next 64, 128, or 256 (cache

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:16 N. Askitis and J. Zobel

line) bytes of the bucket into cache. With no pointers to traverse, pointer chasing is
eliminated and with contiguous storage of strings, hardware prefetching schemes are
highly effective. Access locality is, therefore, maximized, creating a cache-conscious
alternative to compact and standard chains.

Ghoting et al. [2006] showed that copying the nodes of an FP-tree into a fixed-
sized memory block can greatly increase the spatial access locality of data-mining
applications. Similarly, the use of copying to eliminate string pointers for string sorting
was proposed by Sinha et al. [2006], who demonstrated that doing so can halve the cost
of sorting a large set of strings. It is plausible that similar techniques can lead to
substantial gains for dynamic chained data structures for strings.

While our proposal, which consists of the elementary step of dumping every string
in a list into a contiguous resizable array, might be seen as simplistic, it is nonetheless
attractive in the context of current architectures. Furthermore, by eliminating chains,
the space overheads imposed by pointers and their subsequent memory allocation
requests are eliminated. The space saved can be substantial for large sets of strings,
prompting better usage of cache, as there is less competition for cache lines. Similarly,
the TLB hit rate will also improve, as fewer pages of memory are required.

Traversing a Dynamic Array

The simplest way to traverse a bucket (a dynamic array) is to inspect it one character
at a time, from beginning to end, until a match is found. Each string in a bucket must
be null terminated, and a null character must follow the last string in a bucket to serve
as the end-of-bucket flag. However, this approach can cause unnecessary cache misses
when long strings are encountered; note that, in the great majority of cases, the string
comparison in the matching process will fail on the first character. Instead, we have
used a skipping approach that allows the search process to jump ahead to the start
of the next string. With skipping, each string is preceded by its length; that is, they
are length-encoded [Aho et al. 1974]. The length of each string is stored in either 1 or
2 bytes, with the lead bit used to indicate whether a 7-bit or 15-bit value is present.
It is generally not sensible to store strings of more than 215 characters, as mandatory
string-processing tasks, such as hashing, will utterly dominate search costs.

Growing a Dynamic Array

We explored two methods of growing buckets: exact-fit and paging. In exact-fit, when
a string is inserted, the bucket is resized by only as many bytes as required. This
conserves memory but means that copying may be frequent. Resizing a bucket involves
creating a new bucket that can fit the old bucket and the string required. The old bucket
is then copied, character by character, into the new bucket; the new length-encoded
string is appended followed by the end-of-bucket flag. The old bucket is then destroyed.

In paging, bucket sizes are multiples of 64 bytes, thus ensuring alignment with cache
lines. As a special case, buckets are first created with 32 bytes, then grown to 64 bytes
when they overflow, to reduce space wastage when the bucket contains only a few
strings. When grown, the old bucket can be copied into the new, a word (4 bytes) at
time. Paging should reduce both the copying and computational overhead of bucket
growth, but it uses more memory. The value of 64 bytes was chosen to match the L1
cache-line size found in current Intel Pentium processors [Shanley 2004].

Limitations of Dynamic Arrays

In contexts where lists are stored and searched, dynamic arrays are an attractive
option. A potential disadvantage, however, is that these arrays must be of variable size;
whenever a new string is inserted in a bucket, it must be resized to accommodate the
additional bytes. Hence, depending on the size of the array, the frequency of growth,

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:17

and the growth scheme used, array growth may become computationally expensive.
Another potential disadvantage is that move-to-front, which in the context of chaining
requires only a few pointer assignments, involves copying large parts of the array.

A further potential disadvantage of using buckets is that such contiguous storage
appears to eliminate a key advantage of nodes—namely, that they can contain multiple
additional fields. However, sequences of fixed numbers of bytes can easily be interleaved
with the strings, and these sequences can be used to store the fields. For example, a
4-byte data field can be stored before each string. The impact of these fields is likely
to be much the same for all kinds of chaining data structures, of which we investigate
later.

3.1. Cache-Conscious Hash Tables

To develop a cache-efficient hash table, we focus on how collisions are resolved. A
collision occurs when more than one string is hashed to a particular slot. The best
method for resolving collisions for dynamic sets of strings is chaining; simply append
the new string at the end of the chain. With move-to-front on access, the chaining
hash table or standard hash table, is the fastest and most compact data structure
available when sorted access is not required [Zobel et al. 2001]. The use of standard
chains can, however, result in poor use of cache, making this computationally efficient
data structure vulnerable to severe performance penalties on current cache-oriented
processors. We can potentially improve the cache-efficiency of the standard hash table
by converting it into a clustered hash table. That is, we visit every slot and store its
nodes, in order of occurrence, contiguously in main memory.

We propose to replace the standard chains of a hash table with compact chains, to
yield a more cache-and space-efficient alternative that we call a compact hash table.
Although compact chains eliminate string pointers, nodes remain scattered in main
memory. We eliminate these chains by using dynamic arrays. This will create a hash
table with a cache-conscious collision resolution scheme that we call an array hash.
Note, however, that this method does not change the size of the hash table; we are
not proposing extendible arrays [Rosenberg and Stockmeyer 1977]. The array hash
is an attractive option for current cache-oriented architectures, as it can maximize
cache usage while simultaneously reducing space. As discussed earlier, strings within
dynamic arrays are expensive to reorder, so move-to-front on access is likely to become
a performance bottleneck. The structural differences between a standard, compact, and
array hash table are shown in Figure 3.

The Array Hash Table

The procedures taken to insert, retrieve, and delete strings in the standard or compact
hash tables are straightforward. The string is first hashed (using the bitwise hash
function [Ramakrishna and Zobel 1997], say) to acquire a slot. The slot is then accessed
and its chain is traversed, checking each node until a match is found. When a match
is found, the node is moved to the front of the chain through pointer manipulation.
Alternatively, the node can be deleted. If the slot is empty, or no match is found, then
the search fails, and the string can be inserted. In this case, the string is encapsulated
in a standard or compact node, which is then added to the end of the chain. The steps
taken to insert, search, and delete in an array hash are slightly more complex and are
described in the following text.

To Search for a String

A search begins by first hashing the string (using the bitwise hash function) to acquire
a slot. If the slot is assigned to a bucket, the search proceeds as outlined in Section 3:
The first length-encoded string is compared, character by character. On mismatch, the

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:18 N. Askitis and J. Zobel

apricot

plane

cat

key

bottle

dig

zebra point

air

joe

apricot

plane

cat

key

bottle

dig

zebra point

air

joe

7apricot5plane3cat3key\0

6bottle3dig\0 5zebra\0

5point3air3joe\0

Fig. 3. The application of compact chains and dynamic arrays to the standard chain hash table. In a compact
hash table, string pointers are eliminated, allowing the strings themselves to be represented as nodes. In the
array hash table, all pointers—apart from the slot pointers—are eliminated. Strings are stored contiguously
in main memory to make good use of both cache and hardware prefetch. Strings are appended in order of
occurrence and are length-encoded to permit word-skipping, which is cache-efficient.

next length-encoded string is accessed, and so forth, until a match is found or the
end-of-bucket flag is seen, on which, the search fails. On a match, the string can be
moved to the start of the array. However, due to the potentially high computational
costs involved, move-to-front is optional.

To Insert a String

We select a slot by hashing the string using the bitwise hash function. If the slot is
empty, then a new bucket is created and assigned. The bucket is sized according to the
growth policy used. The string is then length-encoded and copied into the bucket, fol-
lowed by the end-of-bucket flag. Otherwise, if the slot has a bucket assigned, we search
for the string as described earlier. On search failure, the bucket is grown according the
growth policy used, and the string is length-encoded and appended (more details on
array resizing can be found in the subsection before Section 3.1).

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:19

To Delete a String

We select a slot by hashing the string using the bitwise hash function. Assuming that
the slot is not empty, we search for the string as described earlier. If found, we create
a new bucket that is sized to match the space required by the old bucket, minus the
length of the string to delete. If deleting the string results in an empty bucket, then
the slot pointer is nulled and the deletion process is complete. Otherwise, we scan
the original bucket and copy across all strings except for the string to delete. The old
bucket is then destroyed and the new is assigned. This process is akin to insertion,
and is thus cache-efficient. However, the dynamic arrays used by the array hash table
are effectively unbounded in size. This is an important observation; it means that the
worst-case cost of deletion can exceed that of the equivalent linked list [Askitis and
Sinha 2010].

The worst-case deletion occurs when the first string from a slot (that is under heavy
load) is continually deleted (resembling a stack-like operation). In this case, we would
be forced to scan and resize the entire array, whereas we need only delete the head node
of the equivalent linked list (the list will not be traversed beyond the head node, which
is efficient). We can, however, address this worst-case deletion cost by employing a type
of lazy deletion; we can resize the array periodically, which will improve performance,
but at the expense of space. This worst-case deletion cost does not apply to the burst
trie, which we describe next, as dynamic arrays are bounded in size.

3.2. Cache-Conscious Burst Tries

The standard chained burst trie is currently one of the fastest and most compact
data structures available for vocabulary accumulation when sorted access to strings
is required [Heinz et al. 2002]. Although computationally efficient, the burst trie uses
standard chains as containers, which is neither cache- nor space-efficient. To improve
the efficiency of the burst trie, we replace the standard chains with compact chains,
to create a more efficient alternative called a compact burst trie. Similarly, we can
eliminate these chains by representing containers as dynamic arrays. This gives us a
cache-conscious burst trie or array burst trie.

The standard, compact, and array burst tries maintain array-based trie nodes that
map directly to the 128 characters of the ASCII table. Each trie node is therefore
512 bytes long (assuming 4-byte pointers). The first 32 pointers and the last pointer,
however, map to nonprinting characters, which can be ignored. We, therefore, reserve
the first pointer of each trie node to store a string-exhaust flag, which is explained
later. Hence, our implementations of the burst trie are compatible with an alphabet of
94 characters. We could eliminate unused pointers, but we found that the amount of
space saved in practice was too small to justify the increased cost in trie node access.

In a typical implementation, trie nodes are randomly allocated, which is not cache-
efficient. Our trie nodes are, therefore, maintained in a dynamic array, in order of
allocation. This improves access locality and eliminates memory allocation overheads.
Containers in a standard or compact burst trie occupy 5 bytes of memory. The first
4 bytes store a pointer to the start of the chain. The next byte maintains housekeeping
information: the string-exhaust flag. The string-exhaust flag indicates whether all the
characters of a string have been removed during traversal. Once a trie node or a
container removes the last character of the string used to traverse the burst trie, its
string-exhaust flag is set. The physical ordering of these two fields is important. For
efficiency, pointers should always start at a word boundary (an address divisible by
4). If a pointer is stored between two words, and assuming a 32-bit system bus, two
bus cycles are required to fetch the pointer into cache [Hennessy and Patterson 2003],
which is inefficient.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:20 N. Askitis and J. Zobel

Fig. 4. The strings “space,” “spare,” “spend,” “star,” “html,” “halt,” “test,” “zebra,” and “zero” are stored in a
standard burst trie (top), a compact burst trie (middle), and an array burst trie (bottom).

Alignment is not an issue for the containers of an array burst trie because pointers
are eliminated. In an array burst trie, each container reserves the first 2 bytes for
housekeeping: to maintain the string-exhaust flag and a flag to indicate whether a
string has been inserted into the container. To implement a clustered burst trie, we
convert a fully built standard-chain burst trie by accessing all containers and storing
their nodes, in order of occurrence, contiguously in main memory. We now describe
how to insert and search for strings in a standard, compact, and array burst trie; the
structural differences, which are shown in Figure 4.

Initialization

The burst trie begins as an empty container with no trie nodes. The container is
populated with strings until a threshold is met. Three thresholds—ratio, limit, and
trend—are evaluated by Heinz et al. [2002], with the simplest and most effective being
a limit, which bursts a container once it stores more than a fixed number of strings. In

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:21

the discussions that follow, we assume that there is at least one trie node present (a
root trie).

To Search for a String

Search proceeds as follows. The first character of the string (the lead character) is used
as an offset into the root trie node to acquire a pointer. The pointer is followed to fetch
the next node. Whenever a pointer from a trie node is traversed, the lead character
of the string is deleted or consumed. If a null pointer is encountered, then the search
fails. Otherwise, the process is repeated until a container is acquired.

It is possible to exhaust a string before acquiring a container, that is, to delete all of
its characters. When this occurs, the first pointer (which represents the string-exhaust
flag) from the last trie node accessed is inspected. The search is successful if the flag is
set; otherwise, it is a failure. Similarly, the string can be exhausted on initial access to a
container. When this occurs, the string-exhausted flag is accessed within the container,
and, if set, the search is successful; otherwise, it is a failure.

If the string is not exhausted, then a container is acquired and searched. In a stan-
dard or compact burst trie, the search involves comparing every string in the container
via a linked list traversal. On match, the node containing the required string is moved
to the front of the list, and the search is successful. Otherwise, the list is exhausted
and the search fails.

In an array burst trie, the container is a dynamic array and the search proceeds
as described in Section 3: The first length-encoded string is accessed and compared,
character by character. On mismatch, the next length-encoded string is accessed and
so forth, until the end-of-bucket flag is encountered, on which the search fails. On a
match, move-to-front is optional, due to the high computational costs involved.

To Insert a String

An insertion can only proceed on search failure, which occurs in one of four ways: The
string is exhausted during trie traversal, the string is exhausted on initial access to a
container, a null pointer is encountered, or the string is not found in a container. The
two cases that fail due to string exhaustion are resolved by setting the string-exhaust
flag in the acquired trie node or container, completing the insertion process.

When the search fails due to a null trie-node pointer, we assign the pointer to a
new empty container. This will immediately consume the lead character of the string,
which could exhaust the string. In this case, the container remains empty and its
string-exhaust flag is set, completing the insertion process.

Otherwise, the string is inserted into the container, which is also how the last of
the four cases is handled. For a standard or compact burst trie, the string is first
encapsulated in a standard or compact node, respectively, and then added to the end
of the chain. In an array burst trie, the string is appended to the container through
array resizing (more details on array resizing can be found in the subsection before
Section 3.1). After a string is inserted into a container, the container size must be
checked to determine whether a burst is required.

To Delete a String

To delete a string, we first search for it as described earlier. If the search leads to a
string-exhaust flag, the flag is cleared and deletion is complete. If a null pointer is
encountered during search, then the string does not exist in the burst trie. Otherwise,
a container is acquired and searched. Assuming that the string is found, deleting it in
a standard or compact container is straightforward. In an array burst trie, however, a
new container is allocated and sized to match the old container, minus the length of the
string to delete. The old container is then scanned and its strings, apart from the one

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:22 N. Askitis and J. Zobel

to delete, are copied into the new container. The old container is then deleted and the
new is assigned. Empty containers are deleted, unless their string-exhaust flag is set.
Deleting an empty container will clear its parent pointer, which may cause the parent
trie-node to become leafless, in which case, it too is deleted; the deletion of trie nodes
can propagate up to the root node.

Lazy deletion can also be incorporated; trie nodes can be flagged as deleted, allowing
them to be efficiently reused. We can also apply lazy deletion to the containers of the
array burst trie, whereby we simply slide the remaining strings in the container to
the start of the string to delete, effectively overwriting it. Although more efficient, this
approach comes at the expense of maintaining unused space in containers, which can
be reclaimed through periodic container resizing.

Bursting a Container

A container is burst once its size exceeds a selected threshold. The choice of threshold
and the definition of a container’s size is described in the following text. To burst a
container, it is first detached from its parent pointer. The parent pointer is then assigned
to a new trie node. The strings in the container are then accessed and distributed
into at most A new containers (A being the alphabet size, which in our case is 94),
according to their lead character, which is removed prior to storing the strings in the
containers. Bursting can, therefore, exhaust up to A strings. Once the bursting phase
is complete, the original container is deleted and the new trie node allocated has its
pointers assigned to the new containers.

Choosing a Container Size

A container is burst once it exceeds a certain size or limit, being the number of strings
maintained. Choosing a limit requires some care. Large containers—a limit of over 100
strings, for example—are not burst as often, and can, therefore, reduce the net number
of nodes created, saving space but at a cost of access time. Yet to some degree, the
impact on time depends on the distribution of strings. Consider, for example, a large
compact or standard-chain container that is accessed under heavy skew. With move-
to-front, the majority of searches are likely to terminate on the first node. Similarly,
under heavy skew, large containers in an array burst trie are likely to remain efficient,
even without move-to-front, because on initial access an entire cache line of strings is
prefetched, with the next few lines being likely candidates for hardware prefetch.

When little to no skew is present, however, move-to-front is rendered ineffective, and
as a consequence, large compact or standard-chain containers will become expensive to
access. The performance of large array-based containers, however, are likely to remain
competitive due to their high spatial access locality. Smaller compact or standard-chain
containers will be more efficient to access in this case, but will also greatly increase the
number of trie nodes and containers allocated, which will consume a lot of space. In
addition, as the number of trie nodes increase, temporal access locality can be reduced,
as previously cached containers are likely to be systematically flushed out of cache by
trie nodes.

An alternative scheme for the array burst trie is to change the limit of a container
to capture its physical size, rather than the number of strings it can store prior to
bursting. The advantage of this approach is that containers can match the size of a
cache line, and thus incur at most only a single L2 cache-miss on access. Long strings,
however, can complicate matters, especially when they cannot fit within fixed-sized
containers. In this case, a surplus of trie nodes is likely to be generated.

Choosing a good limit for the burst trie is, therefore, not a straightforward task and
is difficult to determine analytically. A small limit is likely to reduce access time but at
the expense of space. A large limit will save space, but at a likely cost in access time.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:23

Key factors to consider when deciding on a limit include the expected distribution of
strings and the type of burst trie (standard, compact, or array) used. For the task of
vocabulary accumulation, Heinz et al. [2002] suggested a limit of 35 strings for the
standard burst trie, which they derived experimentally. We also derive a set of limits
from our experiments, which should provide good performance in both time and space,
for a variety of string distributions.

3.3. Cache-Conscious Binary Search Trees

Compact chains can be applied to all types of binary search tree. In this section, we
concentrate on the standard BST, which is among the fastest and simplest of tree struc-
tures [Williams et al. 2001; Bell and Gupta 1993]. We replace the standard nodes of
a binary search tree with compact nodes, yielding a cache- and space-efficient variant
called a compact BST. Search and insert in a compact and standard BST is straightfor-
ward. The root node is compared against the string, and, on mismatch, the left pointer
is followed if the string is lexicographically less than string in the current node; the
right pointer is followed otherwise. This process continues down the tree until a match
is found or until an empty or null pointer is encountered. In this case, the search fails
and the string can be inserted by first encapsulating it as a compact or standard node,
which is assigned to the empty pointer. To convert a fully built standard BST into a
clustered BST, we contiguously allocate subtrees based on the structural topology of
the BST, as described by Chilimbi [1999]. That is, we first store the root subtree—the
root node and its left and right child (if any)—into a block of memory. The block is sized
to match the cache line. We then traverse the tree in a depth-first manner and store
the subtrees acquired into the block. Once the block overflows, a new block is allocated
and the traversal continues until all subtrees are packed into blocks of memory.

The application of a dynamic array to the standard BST, however, requires greater
care, as, for efficiency purposes, not all pointers can be eliminated. An array-based
representation of a BST is described by Knuth [1998]. This algorithm takes an existing
BST and collapses the nodes (including their keys) into a preorder traversal, in a
single contiguous array, which is also known as a linear representation [Jonge and
Tanenbaum 1987]. The single array is guaranteed to be accessed in a left-to-right
manner, which improves access locality and thus cache-efficiency. Furthermore, with
nodes stored in a preorder traversal, all left child-node pointers are now redundant and
can be removed, saving space. This algorithm, however, assumes fixed-length keys. It
can be adapted to store variable-length strings, but as a consequence, it can become
expensive to update and, in some cases, to search; although the left child is guaranteed
to be located after its parent, access to it involves a linear scan, and, to maintain
preordering of nodes, a large section of the array may need to be shifted to store a new
string in the correct position.

Our array-based approach differs in that we do not build and then collapse a standard
BST into an array. Instead, we propose the novel approach of storing the entire BST
in a single dynamic array, which is a key distinction to a clustered BST. On insertion,
a string is represented as a compact node, with both left and right child-node pointers
stored before the string. The node is then appended to the end of the array, which is
grown (when full) using paging; we add 10MB of space per call—a value found through
preliminary trials that achieves a good balance between time and space—to reduce the
computational costs of copying. On search, the first node in the array (which is always
the root node) is accessed and binary search proceeds as described. Although our array
BST is not as space-efficient as Knuth’s algorithm, retaining both child-node pointers
permits efficient update and search. Moreover, with nodes being appended in order
of occurrence, node access is guaranteed to proceed from left to right in the dynamic

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:24 N. Askitis and J. Zobel

Car

Bird

Space

Place

Cat

Car

Bird

Space

Place

Cat

Car Bird Place Cat Space

Fig. 5. The strings “Car,” “Bird,” “Place,” “Cat,” and “Space” are stored in a standard binary search tree (top),
a compact binary search tree (middle), and an array binary search tree (bottom). The strings are appended
in order of occurrence in the array BST to ensure left-to-right access on traversal, which is cache-efficient.

array. Figure 5 illustrates the structural difference between a standard, compact, and
array BST.

The main disadvantage of the array BST—including Knuth’s representation—is the
overhead of deletion. Deleting a node involves one of three steps. First, the candidate
node has no children and thus can be simply deleted. Second, the candidate node
has a single child and is simply replaced by its child. Third, the candidate node has
two children. In this case, the candidate node is replaced by its leftmost child from
its right subtree. In a standard and compact chained BST, these steps require tree
traversals and pointer manipulations. In an array BST, deleting a string involves both
pointer manipulation and array copying; the array must be resized. However, resizing is
cache-efficient, which is likely to compensate for the high computational costs involved.
Hence, updating an array BST is expected to be as efficient as updating a chained BST,
as we demonstrate later.

4. SPACE SAVED BY ELIMINATING POINTERS

We consider the space saved when applying our compact and array-based techniques to
the standard hash table, burst trie, and BST, which we show in Table I. Every pointer
eliminated saves 12 bytes of memory: 4 bytes for the pointer and 8 bytes of allocation
overhead [LaMarca and Ladner 1996].

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:25

Table I. A Comparison of the Space Overhead of the Hash Table, Burst Trie, and BST, using
Standard Chains, Clustered Chains, Compact Chains, and Dynamic Arrays

Standard Clustered Compact Array

BST 28s 20s + 8(20s/C) 16s 8 + 8s
Burst trie 24s̄ + 520t + 13b 16s̄ + 520t + 21b 12s̄ + 520t + 13b 520t + 10b
Hash (exact) 4m+ 24s 12m+ 16s 4m+ 12s 12m
Hash (page) — — — 4m+

m̄(B− l + 8)

The number (s) of strings stored, the number (s̄) of strings stored in containers, the total
number (m) of slots allocated for the hash table, the number (m̄) of slots used by the hash
table (not null/empty), the number (t) of tries, and the number (b) of buckets used by the
burst trie or the number of slots used the hash table. The block size (B) represents the
pagesize used to grow a dynamic array, and (C) represents the block size used to cluster
nodes.

Hash tables consume memory in several ways: space allocated for the strings and
for pointers, space allocated for slots, and overhead due to operating system overheads
and space fragmentation. For a standard chain, each string requires two pointers and
(in a typical implementation) two malloc system calls. A further 4 bytes are required
per slot. The space overhead is, therefore, 4m+ 24s bytes, where m is the total number
of slots and s is the number of strings inserted. In a compact chain, string pointers
are eliminated, reducing the overhead to 4m + 12s bytes. In a clustered chain, the
8-byte allocation overhead per node is eliminated, but each slot incurs an initial 8-byte
overhead for allocating of an array of nodes. Hence, the space overhead of a clustered
hash table is up to 12m + 16s bytes. In an implicit chain, the next-node pointers are
eliminated, but with the requirement of allocating a null 4-byte pointer at the end of
each chain to serve as a delimiter. Hence, the space overhead of an implicit hash table
is up to 16m + 12s bytes. The memory consumed by the array hash table is slightly
more complicated to model. First, consider exact-fit. Apart from slot pointers, all other
pointers are eliminated. The space overhead is then notionally 4m bytes plus 8 bytes
per allocated array—that is, up to 12m bytes in total—but the use of copying means
that there is an unknown amount of space fragmentation; fortunately, inspection of the
actual process size shows that this overhead is small. The array uses length-encoding,
so once a string exceeds 127 characters in length, an additional byte is required.

For paging, we assume that the block size is B bytes. When the load average is high,
on average, each slot has one block that is half empty, and the remainder are fully
used; thus, the overhead is m(12 + B/2) bytes. When the load average is low—that is,
s < m—most slots are either empty, at a cost of 4m bytes, or contain a single block,
at a cost of B − l + 8, where l is the average string length. For short arrays, we allow
creation of blocks of length B/2. Thus, the wastage is around 4m+ m̄(B − l + 8) bytes,
where m̄ represents the number of slots that are used (i.e., that point to an array).

For the standard binary search tree, each string stored has three pointers and issues
two malloc system calls. The space overhead is, therefore, 28s. In a clustered BST, the
8-byte allocation overhead is eliminated for every node. However, nodes are clustered
into fixed-sized blocks which incur an allocation overhead. Thus, the space overhead
of a clustered BST is 20s + 8(20s/C), where C is the size, in bytes, of the blocks used
to cluster nodes. In a compact BST, the space overhead is 16s bytes and with an array,
it is reduced to 8s + 8 bytes, which is smaller than the standard BST by a factor of
more than 3. We do not consider the space requirements of an implicit BST because
eliminating child-node pointers can compromise performance, as noted in Section 3.3.

For the standard burst trie, we assume that t and b are the number of trie nodes
and buckets, respectively. A trie node of 128 pointers requires 512 bytes and a call

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:26 N. Askitis and J. Zobel

to malloc. We store trie nodes contiguously in arrays to eliminate allocation over-
heads and to improve TLB efficiency. However, in the measurements shown in Table I,
we assume that trie nodes are individually allocated; hence, each trie node occupies
520 bytes of space.

A container in a standard or compact burst trie contains a 4-byte pointer to the
start of its linked list and reserves a byte for housekeeping. The total overhead for the
standard burst trie is, therefore, 24s̄+520t+13b, where s̄ is the number of strings stored
in containers. In a clustered burst trie, the 8-byte allocation overhead incurred by each
node in a container is eliminated, except for the initial 8 bytes incurred from allocating
the single block of memory used to house the nodes. Hence, the space required by the
clustered burst trie is 16s̄+520t +21b. In an implicit burst trie, the next-node pointers
are eliminated, but with the requirement of allocating a 4-byte pointer at the end of
each container, to serve as a list delimiter. Hence, the space overhead for the implicit
burst trie is 12s̄ + 520t + 25b. In a compact burst trie, string pointers are eliminated,
resulting in an overhead of 12s̄ + 520t + 13b, while, for the array burst trie, the space
overhead is reduced to only 520t + 10b, at no cost to performance.

5. EXPERIMENTAL DESIGN

To evaluate the efficiency of the hash table, burst trie, and BST using their standard,
clustered, compact, and array representations, we compare the time required for con-
struction and search, as well as the amount of memory consumed, against other string
data structures: the standard hash table, burst trie, BST, splay tree, red-black tree,
TST, the adaptive trie [Acharya et al. 1999], and the Judy data structure; we used
the Judy-SL variant, which is designed for string keys [Hewlett-Packard 2001]. The
elapsed or total time required by these data structures was averaged over a sequence
of ten runs. After each run, main memory was flooded with random data in order to
flush system caches.

In earlier work, we (and Ranjan Sinha) proposed the HAT-trie [Askitis and Sinha
2007], which extends the concepts presented in this article by changing the structural
representation of containers in a burst trie from a linked list to an array hash table.
Although some space is wasted as a result due to the requirement of storing a fixed-
number of slots per container, containers can grow sufficiently large without incurring
high cache or instruction costs. However, we did not compare the HAT-trie to other trie
structures such as the adaptive trie or the Judy trie, and in particular the array burst
trie, which we propose in this article. Moreover, a promising variant that combines
the array burst trie with adaptive containers that change to array hash tables when
full—which we call a HAT+-trie—is likely to be more efficient. For brevity, however,
we do not experimentally evaluate our data structures to the HAT-trie or HAT+-trie in
this article; we instead leave this for upcoming work [Askitis and Sinha 2010].

Measurements of space include an estimate of the overhead imposed by the operating
system, which, in our case, was 8 bytes per system call. We compared our measure
of space with the total memory usage reported by the operating system under the
/proc/stat/ table; we use this to investigate the extent of overhead caused by memory
fragmentation. Although fragmentation did occur (as one would expect from frequent
array resizing), the overhead was found to remain small and fairly consistent to our
calculations of space consumption [Askitis and Zobel 2005; Askitis 2007; 2009; Askitis
and Sinha 2010].

We used PAPI [Dongarra et al. 2001] to measure the actual number of instructions,
TLB, and L2 cache misses of search (we did not count L1 misses, as they have only a
small performance penalty). We do not report the cache performance of construction, as
the results were similar to those for search. In addition, experiments involving deletion
were omitted, as the results were found to be similar to those of construction.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:27

Table II. Characteristics of the Datasets Used in our Experiments

Distinct String Average Volume (MB) Volume (MB)
Dataset Strings Occs Length of Distinct Total
DISTINCT 28,772,169 28,772,169 9.59 304.56 304.56
TREC 612,219 177,999,203 5.06 5.68 1,079.46
URLS 1,289,459 9,999,425 30.93 45.93 318.87

The datasets used for our experiments are shown in Table II. They consist of null-
terminated variable length strings acquired from real-world data repositories. The
strings appear in order of first occurrence in the data; they are, therefore, unsorted.
When the same dataset is used for both construction and search, the process is called
a self-search.

The TREC dataset is the complete set of word occurrences, with duplicates, in the first
of the five TREC CDs [Harman 1995]. This dataset is highly skew and contains only
a small set of distinct strings. The DISTINCT dataset contains almost 29 million distinct
words (i.e., without duplicates) extracted from documents acquired in a Web crawl and
distributed as the “large web track” data in TREC. The URLS dataset, extracted from
the TREC Web data, is composed of nondistinct complete URLs.

To measure the impact of load factor on the hash tables, we varied the number of
slots used. We commenced with 215 slots, which we doubled to 227 or until a minimum
execution time was observed. For the standard and compact burst tries, we varied the
container threshold (the number of strings a container needs to trigger a burst) by
intervals of 10 from 30 to 100. For the array burst trie, we extended the sequence
to include 128, 256, and 512 strings. Both compact and standard chaining methods
are most efficient when coupled with move-to-front on access, as reported by Zobel
et al. [2001]. We enabled move-to-front for the chained hash tables and burst tries
but disabled it for the array-based data structures, a decision that we justify in later
discussions.

The primary machine used for our experiments was a 2.8GHz Pentium IV. We con-
ducted experiments on other machine architectures, namely a 3GHz Intel Xeon pro-
cessor and a 700MHz Intel Pentium III processor. The Xeon processor showed similar
performance to the Pentium IV and was thus omitted. We include results from the
Pentium III processor, however, as it had no hardware prefetch mechanism—we were
unable to disable hardware prefetch on our primary machine. We also include results
from a Sun UltraSPARC processor. Some of the characteristics of these machines are
summarized in Table III.

Our experiments (on our primary machine) were conducted using a 32-bit Linux oper-
ating system that we kept under light load (single user mode). We are confident—after
extensive profiling—that our implementations are of high quality. Our data structures
were implemented in C and were compiled using gcc version 4.1.1, with all optimiza-
tions enabled: -fomit-frame-pointer -O3. We found that the bitwise hash function
[Ramakrishna and Zobel 1997] with a mask instead of a modulo was a near-insignificant
component of the total costs of hashing. Williams et al. [2001] reported the inefficiency
of using the default string compare (strcmp) library routine provided by the Linux
operating system, and showed that their own implementation achieved speed gains of
up to 20%. We, thus, do the same for our implementations.

6. RESULTS

In the environment of a computer with a cache hierarchy, the behavior of an algorithm
in practice is not easy to predict analytically. Relationships between factors such as data
distribution, search versus insertion rates, data volume versus cache capacities, and

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:28 N. Askitis and J. Zobel

Table III. Characteristics of the Machines Used in Our Experiments

Intel Intel
Pentium IV Pentium III

CPU speed 2.8GHz 700MHz
No. CPUs 1 4
L1/L2 size (KB) 8/512 16/1,024
L1/L2 cache-line (B) 64/128 32/64
TLB entries 64 32
Main memory (MB) 2,048 2,048
Page size (KB) 4,096 4,096
Avg. mem. latency 95ns 160ns
Linux kernel 2.6.12 x86 2.6.12 x86
Hardware prefetch yes no

The Pentium IV (highlighted) was our primary machine.

0604020

Memory (MB)

20

40

60

80

B
u
ild

 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash
Standard burst trie

Standard BST
Standard red-black
Standard splay

TST
Judy trie

Compact hash
Compact burst trie
Compact BST

Compact red black
Compact splay

Array hash (exact-fit)
Array burst trie (exact-fit)
Array BST

Fig. 6. The time and space required to build the data structures, using the TREC dataset. The points on the
graph represent the container thresholds for the burst trie and the slots used by the hash tables. Smaller
containers (or more slots) require more memory. The container thresholds for the chained burst tries were
varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence is extended to include 128,
256, and 512 strings. The hash tables commenced with 215 slots, doubling up to 223.

CPU, memory speed, and bus capacity mean that modeling of expected performance is
far from straightforward.

We have, therefore, focused on use of extensive experiments, in which all these factors
are independently varied, to explore the behavior of our algorithms in practice. In this
section, we report on the outcomes of these experiments.

6.1. Skew Data

A typical use for string data structures is to accumulate the vocabulary of a collection
of documents. In this process, in the great majority of attempted insertions the string
is already present, and some strings are much more common than others. Figures 6
and 7 show the relationship between the time and memory requirements of our data
structures, for construction and self-search. The dataset used in these experiments was
TREC.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:29

0604020

Memory (MB)

20

40

60

80

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash

Standard burst trie
Standard BST

Standard red-black
Standard splay

TST
Judy trie
Compact hash

Compact burst trie
Compact BST
Compact red black
Compact splay

Array hash (exact-fit)
Array burst trie (exact-fit)
Array BST

Clustered hash (exact-fit)
Clustered burst trie

Clustered BST

Fig. 7. The time and space required to self-search the data structures, using the TREC dataset. The points
on the graph represent the container thresholds for the burst trie and the slots used by the hash tables.
Smaller buckets (or more slots) require more memory. The container thresholds for the chained burst tries
were varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence is extended to include
128, 256, and 512 strings. The hash tables commenced with 215 slots, doubling up to 223.

6.2. Standard-Chain Data Structures

The Judy data structure required the least amount of space of all standard-chained
data structures but was almost the slowest to access under skew, being only slightly
faster than the red-black tree. As reported by Williams et al. [2001], the standard
BST was the fastest tree to construct and self-search under skew. The red-black and
splay trees were inefficient due to the maintenance of a balanced and self-adjusting
tree structure, respectively. The L2, TLB, and instruction costs for self-searching Judy
and the variants of BST are shown in Figure 8. There is a strong correlation with the
number of cache misses incurred and the overall search time. For example, the red-
black tree incurred the highest L2 and TLB misses and was, therefore, the slowest to
access. Although Judy executed fewer instructions than the standard BST, it incurred
more cache misses, which caused its poor performance.

As reported by Heinz et al. [2002], the standard hash table and burst trie were the
fastest standard-chained data structures to build and search. Although the standard
burst trie required almost twice as much time to build and self-search than the standard
hash table, it was competitive with regards to space, and maintained sorted access to
containers. The TST required the most space but could match the construction and
self-search speeds of the standard burst trie, as result of its relatively low L2 and TLB
misses (Figure 8).

6.3. Clustered-Chain Data Structures

We compare the self-search performance of the three fastest standard-chain data
structures—the hash table, burst trie, and BST—with clustering [Chilimbi 1999]. Clus-
tering stores the nodes of a linked list in a contiguous block of memory, to improve
spatial access locality without eliminating pointers. The time and space required to
self-search a clustered hash table, burst trie, and BST are shown in Figure 7.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:30 N. Askitis and J. Zobel

(a) Instructions per search

0604020

Memory (MB)

100

200

300

400

In
s
tr

u
c
ti
o

n
s
/s

e
a

rc
h

Standard / Clustered hash
Standard / Clustered burst trie

Standard / Clustered BST

Standard red-black
Standard splay

TST
Judy trie

Compact hash

Compact burst trie
Compact BST
Compact red black

Compact splay

Array hash (exact-fit)

Array burst trie (exact-fit)
Array BST

(b) L2 cache-miss per search

0604020
0

1

2

3

L
2
 c

a
c
h
e
-m

is
s
/s

e
a
rc

h

Standard hash

Standard burst trie
Standard BST

Standard red-black
Standard splay

TST
Judy trie

Compact hash
Compact burst trie

Compact BST
Compact red-black

Compact splay
Array hash (exact-fit)

Array burst trie (exact-fit)

Array BST

Clustered hash

Clustered burst trie
Clustered BST

(c) TLB cache-miss per search

0604020
0

2

4

6

8

T
L
B

 c
a
c
h
e
-m

is
s
/s

e
a
rc

h

Standard hash
Standard burst trie

Standard BST

Standard red black
Standard splay
TST

Judy trie

Compact hash
Compact burst trie

Compact BST
Compact red-black

Compact splay

Array hash (exact-fit)

Array burst trie (exact-fit)
Array BST

Clustered hash

Clustered burst trie

Clustered BST

Memory (MB)

Memory (MB)

Fig. 8. The Instruction (a), L2 cache (b), and TLB (c) performance of the data structures when self-searched
using the TREC dataset. The points on the graph represent the container thresholds for the burst trie and
the slots used by the hash tables. Smaller containers (or more slots) require more memory. The container
thresholds for the chained burst tries were varied by intervals of 10 from 30 to 100. For the array burst trie,
the sequence was extended to include 128, 256, and 512 strings. The hash tables commenced with 215 slots,
doubling up to 223.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:31

Our results show that, although the clustered data structures require less space
than their standard representations—due to the elimination of the 8-byte allocation
overhead per node—the clustered hash table, burst trie, and BST were, in all cases,
slower to access than their standard representations. Consider the memory access
patterns of traversing a clustered chain from the slot of a hash table or within a
container of a burst trie. With move-to-front on access, the first node in the block may
not necessarily be the first node accessed. As a result, searching a clustered list can
lead to random memory accesses resulting in poor use of cache. When the clustered list
spans multiple cache lines, these random accesses are likely to become more expensive.
This is reflected in the self-search costs of Figure 7 and the cache costs of Figure 8.
For example, as the average load factor increases, the clustered hash table incurs more
cache misses than the equivalent standard hash table.

If we disable move-to-front on access in a clustered list, the cost of access increases
even further, as now the list must be traversed, in order of allocation, until the desired
node is found. Although the number of random accesses is reduced, the number of
pointer dereferences increases, which can further hinder the effectiveness of hardware
prefetchers. For clustering to be effective under skew access, it is necessary to reduce
both random accesses and the number of pointer dereferences, by physically moving
nodes to the start of the list. However, this approach can substantially increase the
computational cost of search—particularly for large lists—which can outweigh the
benefits (which we confirmed through preliminary trials on the clustered hash table
and burst trie).

Traversing a standard list also incurs random memory accesses. However, nodes can
be allocated anywhere in memory, which gives the operating system some flexibility
at improving access locality. That is, the operating system can dynamically group
frequently accessed pages in memory to improve cache utilization; it cannot do this as
effectively once the programmer enforces contiguous storage of nodes that are accessed
via pointers.

6.4. Compact-Chain and Array-based Data Structures

We implement the compact-chain and dynamic array representations for the hash
table, burst trie, and BST, and include a compact-chain representation of the red-black
and splay tree. The time and space required to construct and self-search these data
structures are presented in Figures 6 and 7.

Hash Tables

The compact-chain hash table was the fastest data structure to construct under skew
access. The compact hash achieved its best construction time of 18.2 seconds and a self-
search time of 17.1 seconds, using 215 slots and 13.1MB of memory; a space overhead
of about 98 bits per string (only 612,219 strings are distinct in the TREC dataset, which
require a total of 5.6MB). The equivalent array hash was marginally slower to construct
and self-search, requiring under 19.2 and 17.9 seconds, respectively. Despite its high
cache-efficiency, the array hash required more time as a result of executing more
instructions (Figure 8), caused by the absence of move-to-front during search, and
array resizing during construction.

The array hash, however, was considerably smaller in size, requiring only 6.1MB of
memory; a space overhead of about 6 bits per string. This efficiency is achieved despite
a load average of 37 strings per slot. Increasing the number of slots (reducing the load
average) had no positive impact on speed. Having a high number of strings per slot is ef-
ficient so long as the number of cache misses is low; indeed, having more slots can reduce
speed, as the cache efficiency is reduced because each slot is accessed less often. Thus,
the usual assumption—that load average is a primary determinant of speed—does

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:32 N. Askitis and J. Zobel

not always hold. The cache performance of the compact and array hash tables are
shown in Figure 8. In all cases, the compact and array hash tables showed consistent
and simultaneous reductions in L2 and TLB misses over the standard hash table.

The standard hash table was markedly inferior in both time and space, achieving
its best construction and self-search time of 20.6 and 19.6 seconds, respectively, using
216 slots and 20.6MB of memory; a space overhead of about 195 bits per string. Given
that the standard hash table was the fastest-known data structure to construct and
self-search under skew access [Zobel et al. 2001], we have strong evidence that our new
structures represent a significant improvement.

BSTs

Compared to the performance of the standard hash table and burst trie, the standard
BST was markedly inferior. However, this was not the result of poor cache utilization.
Figure 8 shows that the standard BST is more cache-efficient—in both L2 and TLB—
than the standard burst trie. Although unbalanced, frequently accessed nodes are likely
to be located near the root of the tree. Furthermore, with no structural modifications
during search, frequently accessed tree paths are likely to persist longer in cache.
However, the standard BST was computationally expensive to self-search—executing
almost 400 instructions per search, which is almost three times more than the burst
trie (Figure 8).

The compact BST further reduced L2 and TLB misses, which made it faster to
build and self-search than the standard BST but remained computationally expensive
relative to the standard burst trie. The array BST showed even further reductions in L2
and TLB misses, and approached the cache-efficiency of the array hash table and array
burst trie. However, having executed more instructions, the array BST was marginally
slower to access than the compact BST. Nonetheless, both the array and compact BSTs
displayed consistent improvement over the standard BST, which is currently the fastest
tree structure under skew access, with size falling from 23MB to 15MB for the compact
BST, to about 10MB for the array BST, at no cost.

Burst Tries

The array burst trie showed strong improvements in both time and space over its
compact and standard chained variants. These improvements are consistent for both
construction and self-search. Comparing the cache performance of the array burst trie
with its chained variants (Figure 8), we see a sharp decline in L2 and TLB misses as
the container threshold or capacity increases from 30 to 512 strings.

At its best, the array burst trie with a container threshold of 256 strings, required
21.2 seconds to self-search and 4.4MB of space. This is about 1.6MB smaller than the
array hash, which is less space than required by the strings alone. The compact burst
trie, at its best, required 34.1 seconds to self-search with a container threshold of 60
strings and 13.7MB of space; an overhead of about 104 bits per string. The standard
burst trie was markedly inferior, requiring 39.1 seconds to self-search and 20.6MB of
space; an overhead of about 195 bits per string. Considering that the standard burst
trie was reported to be the most efficient data structure for the task of vocabulary
accumulation [Heinz et al. 2002], our array burst trie, being up to 46% faster while
imposing no space overhead per string, is a substantial advance.

Use of large containers in the array burst trie—containers storing over 256 strings,
for example—are preferable, because they can be both cache- and space-efficient. Large
containers, however, are computationally expensive to access. As the size of containers
increase from 128 to 512 strings, for example, Figure 8 shows a sharp increase in
instructions per search, caused by the absence of move-to-front on access. The same
behavior was observed during construction, with large containers being cache-efficient

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:33

0604020

Memory (MB)

10

15

20

25

30

B
u
ild

 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash

Compact hash
Array hash (exact-fit)

Array hash (64-byte paging)
Array burst trie (exact-fit)

Array burst trie (64-byte paging)

Fig. 9. A magnified version of Figure 6 showing the time and space required to build the array hash and
array burst trie, using the TREC dataset with and without paging. Paging grows an array in 64-byte chunks,
in contrast to exact-fit. The points on the graph represent the container thresholds for the burst trie and the
slots used by the hash tables. Smaller containers (or more slots) require more memory.

but incurring high numbers of instructions per search, due to the absence of move-to-
front and array resizing.

The high computational cost of accessing large containers could not be entirely
masked by the reductions in cache misses, and, as a consequence, the array burst
trie became more expensive to build and search, relative to its smaller containers. For
example, when the container size increased from 256 to 512 strings in Figure 6, the
time required to build increased by about 17% (from 25 to 30 seconds). However, when
compared to a standard burst trie with a container threshold of 512 strings, the array
burst trie was up to 66% faster (or around 58 seconds) to build and self-search, due
to its high reduction in cache misses. These results show that, in order to sustain a
fast and scalable burst trie, it is necessary to reduce cache misses while sustaining low
numbers of instructions, relative to chaining [Askitis 2007].

6.5. Paging versus Exact-Fit Array Growth

We compare the difference in time and space for building the array hash and array
burst trie, using the exact-fit and 64-byte paging techniques. The results are shown in
Figure 9. The exact-fit model—where the array is resized on every insertion—is space-
efficient but can be more expensive to build (as a result of excessive copying), whereas
paging permits faster construction at the expense of maintaining some unused space.
The relationship with speed, however, is more complex, with paging faster in some
cases, but degrading relative to exact-fit, due to a more rapid increase in space con-
sumption. The choice of array growth policy had negligible impact on the performance
of search. The situations where paging would likely yield stronger improvements is
with large numbers of insertions, which we consider in later experiments.

6.6. Effectiveness of Move-to-Front on Arrays

Despite its high memory usage, the compact hash table performed well under skewed
access, partly due to the use of move-to-front. With dynamic arrays, move-to-front
on access is computationally expensive because strings must be copied. Figure 10
compares the self-search costs with and without move-to-front on access, and includes

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:34 N. Askitis and J. Zobel

0604020

Memory (MB)

15

20

25

30

35

S
e

a
rc

h
 t

im
e

 (
s
e

c
o

n
d

s
)

Standard hash

Compact hash
Array hash (exact-fit)
Array hash (exact-fit with move-to-front)

Array burst trie (exact-fit)
Array burst trie (exact-fit with move-to-front)

Fig. 10. A magnified version of Figure 7 showing the time and space required to self-search the array hash
and array burst trie, using the TREC dataset with and without move-to-front on access. The points on the
graph represent the container thresholds for the burst trie and the slots used by the hash tables. Smaller
containers (or more slots) require more memory.

comparable figures for compact and standard chaining (both with move-to-front). The
use of move-to-front reduces the speed of the array hash; even though the vast majority
of searches terminate with the first string (so there is no string movement), the cases
that do require a movement are costly.

Performing a move-to-front after every kth successful search might be more appropri-
ate. Alternatively, the matching string can be interchanged with the preceding string, a
technique proposed by McCabe [1965]. However, preliminary trials revealed that these
techniques were not particularly effective at reducing the high computational costs of
move-to-front. Hence, we believe that move-to-front is unnecessary for the array-based
data structures, as the potential gains seem likely to be low.

With move-to-front disabled, however, frequently accessed strings are likely to incur
more instructions and cache misses—in particular TLB misses—which is reflected in
the instruction and TLB costs of the array hash (Figure 8). As a consequence, the array
hash was slightly slower to build and self-search than the compact hash table. We also
enabled move-to-front in the containers of the array burst trie and observed similar
results. With move-to-front enabled, the array burst trie was consistently slower to
access. In contrast to the array hash, however, the array burst trie remained faster
than its chained variants, even without move-to-front, due to the use of bounded-size
containers and a trie structure that removes shared prefixes—which can reduce both
instruction and cache costs during search.

6.7. Skew Search on Large Data Structures

Our previous experiments involved data structures that were small in size, containing
only 612,219 distinct strings. In this section, we repeat the previous skew search ex-
periment but on much larger data structures that contained almost 29 million distinct
strings. In this case, fewer frequently accessed nodes and strings are likely to reside
in cache, which can impact performance. The data structures were built using the DIS-
TINCT dataset, and then searched using the TREC dataset. The time and space required
to search are shown in Figure 11.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:35

1,000005
Memory (MB)

0

50

100

150

S
ea

rc
h

tim
e

(s
ec

on
ds

)

Standard hash
Standard burst trie
Standard BST
Standard red-black
Standard splay
TST
Judy trie
Compact hash
Compact burst trie
Compact BST
Compact red-black
Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)
Array BST
Clustered hash
Clustered burst trie
Clustered BST

Fig. 11. A skew search using the TREC dataset, on data structures that were built using the DISTINCT dataset.
The TST is not shown, as it required over 2,497MB of memory and about 1,194 seconds to search. The points
on the graph represent the container thresholds for the burst trie and the slots used by the hash tables.
Smaller containers (or more slots) require more memory. The container thresholds for the chained burst tries
were varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence was extended to include
128, 256, and 512 strings. The hash tables commenced with 215 slots, doubling up to 226.

The red-black tree and Judy were the slowest data structures to access. The splay
tree, however, showed considerable improvement over the red-black tree, which demon-
strates that splaying is more effective under skew access than a balanced tree structure.
Both the splay tree and the red-black tree, however, were space-intensive. As observed
in previous experiments, the standard BST was the fastest tree to access, despite hav-
ing increased in size by a factor of more than 48—from 22.8MB to over 1110MB. The
TST consumed almost 2.5GB of space and thus exhausted main memory. As a conse-
quence, virtual memory was accessed, which, resulted in a total search time of almost
1,200 seconds.

At its best, the array hash required about 27.3 seconds to search using 217 slots
and only 306.2MB of space. This is a space overhead of less than a bit per string.
The equivalent compact and standard hash tables were up to 24% slower, requiring
32.6 and 36.1 seconds, respectively. Furthermore, the standard hash table consumed
995.6MB of memory, a space overhead of about 192 bits per string. The equivalent
compact hash was more efficient, requiring 650.3 MB or about 96 bits per string. With
217 slots, the average load factor was approximately 220 strings per slot. At such a
high load, the chaining hash tables were too expensive to access, as they incurred high
L2 and TLB misses that masked the benefits of move-to-front. Under heavy load, the
cache-efficient array hash was, therefore, the fastest data structure, despite having
executed more instructions due to absence of move-to-front.

Given enough space, the chained hash tables—as a result of move-to-front—could
rival the cache-efficiency of the array hash, while executing fewer instructions. As a
result, the chaining hash tables can become slightly faster to access than the array
hash. As observed in previous experiments, however, increasing the number of slots
had no positive impact on the array hash.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:36 N. Askitis and J. Zobel

005
Memory (MB)

0

50

100

150

S
ea

rc
h

tim
e

(s
ec

on
ds

)

Standard hash
Standard burst trie
Standard BST
Compact hash
Compact burst trie
Compact BST
Array hash (exact-fit)
Array burst trie (exact-fit)
Array BST

1,000

Fig. 12. A skew search using the TREC dataset on data structures that were constructed using the DISTINCT

dataset on the Pentium III processor with no hardware prefetch. The points on the graph represent the
container thresholds for the burst trie and the slots used by the hash tables. Smaller containers (or more
slots) require more memory. The container thresholds for the chained burst tries were varied by intervals of
10 from 30 to 100. For the array burst trie, the sequence was extended to include 128, 256, and 512 strings.
The hash tables commenced with 215 slots, doubling up to 226.

At their best—using 222 slots—the compact and standard hash tables were up to 24%
faster than the array hash, requiring only 20.8 and 22.9 seconds to search, respectively.
However, in order to achieve this speed (a difference of only 6.5 seconds from the array
hash), the compact and standard hash table required two to three times the space of
the array hash, respectively. For common string-processing tasks such as vocabulary
accumulation, such an increase in space consumption will often be unacceptable, as it
implies that fewer strings can be managed in-memory.

The compact and array BSTs were faster to access than the standard BST, while
saving a substantial amount of space. The clustered BST, however, required almost
twice the time of the standard BST. The standard burst trie was faster than all variants
of BST, but remained almost twice as slow as the standard hash table, as observed in
previous experiments. The clustered burst trie was the slowest burst trie to access,
while the compact burst trie showed consistent gains in both time and space over the
standard burst trie. The array burst trie displayed the strongest improvements, being
the most space-efficient data structure—imposing no space overhead per string—while
approaching the performance of the array hash table. For example, the array burst trie
was up to 38% faster than its chained variants, and required at best, only 8 seconds
more than the array hash while maintaining sorted access to containers.

6.8. Performance without Hardware Prefetch

We repeat the previous skew search experiment on the Pentium III processor, to observe
the value of eliminating pointers on a slower machine with no hardware prefetch. In this
experiment, we considered the three best data structures—the hash table, burst trie,
and BST—using their standard, compact, and array-based representations. Figure 12
shows the results.

Despite the absence of hardware prefetch, the results were consistent with previous
experiments. The compact BST and array BST remained faster than the standard BST

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:37

0 100 200 300 400

Memory (MB)

0

10

20

30

B
u
ild

 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash

Standard burst trie
Standard BST

Standard red-black
Standard splay
TST

Judy trie
Compact hash

Compact burst trie
Compact BST

Compact red-black
Compact splay

Array hash (exact-fit)
Array burst trie (exact-fit)

Array BST

Fig. 13. The time and space required to build the data structures using the URLS dataset. The points on the
graph represent the container thresholds for the burst trie and the slots used by the hash tables. Smaller
containers (or more slots) require more memory. The container thresholds for the chained burst tries were
varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence was extended to include 128,
256, and 512 strings. The hash tables commenced with 215 slots, doubling up to 224.

while saving a considerable amount of space. The standard burst trie was faster than
all three BSTs, but remained almost twice as slow as the standard hash table. The
compact burst trie showed only marginal improvements in time, whereas the array
burst trie showed the strongest gains.

Similarly, the array hash table was slightly slower than the compact and standard
hash tables, but saved a considerable amount of space. The lack of hardware prefetch,
however, meant that large arrays would incur more cache misses when traversed. As
a consequence, the array hash required more time to search when under heavy load,
compared to its previous performance in Figure 11. The increase in time can also be
attributed to the use of a slower processor and a smaller cache-line size, which can
increase the cache-miss rate [Hennessy and Patterson 2003]. Nonetheless, the array
hash remained competitive to the chained hash tables, which were only faster once
given enough space. These results demonstrate that the compact and array-based
representations of the hash table, burst trie, and BST can yield strong gains in perfor-
mance on older machines where instructions are more expensive to execute, and with
no hardware prefetch.

7. URL DATA

Our next experiments used the URLS dataset, a dataset with some skew but in which
the strings were much longer, of over 30 characters, on average. As in the skewed
search experiments discussed previously, our aim was to find the best balance between
execution time and memory consumption. Construction and self-search results are
shown in Figures 13 and 14.

7.1. Hash Tables

The hash tables were the fastest data structures to build and search, but the optimum
number of slots was much larger than those required during the TREC experiments,
with the best load average being less than 1. To achieve its best time of 4.3 and
4.0 seconds for construction and self-search, respectively, the standard hash table

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:38 N. Askitis and J. Zobel

0 100 200 300 400

Memory (MB)

0

5

10

15

20

25

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash

Standard burst trie
Standard BST

Standard red-black
Standard splay
TST

Judy trie
Compact hash

Compact burst trie
Compact BST
Compact red-black
Compact splay

Array hash (exact-fit)
Array burst trie (exact-fit)
Array BST

Clustered hash
Clustered burst trie

Clustered BST

Fig. 14. The time and space required to self-search the data structures using the URLS dataset. The points on
the graph represent the container thresholds for the burst trie and the slots used by the hash tables. Smaller
containers (or more slots) require more memory. The container thresholds for the chained burst tries were
varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence was extended to include 128,
256, and 512 strings. The hash tables commenced with 215 slots, doubling up to 224.

required 222 slots and 94.3MB of memory; this is a space overhead of about 300 bits
per string. The compact hash was slightly faster at 4.1 and 3.8 seconds for construction
and self-search, respectively, using 222 slots and only 78.8MB of memory; this is an
overhead of about 204 bits per string. The array hash with exact-fit achieved its fastest
time of 4.1 and 3.9 seconds for construction and self-search, respectively, using only
221 slots and 63.6MB of memory; this is a space overhead of about 109 bits per string,
almost three times less than the standard hash.

As observed in previous experiments, the array hash was slightly slower to build
and self-search than the compact hash, due to the lack of move-to-front during search
and the resizing of arrays during construction. However, the increase in instructions
was small and greatly compensated by the high reductions of L2 and TLB misses.
As a result, the array hash was consistently faster to build and self-search than the
standard hash table. The L2, TLB, and instructions costs incurred by the standard,
compact, and array hash tables during self-search are shown in Figure 15. Increasing
the number of slots available had little impact on the performance of the array hash,
due to high reductions in L2 and TLB misses; the chaining hash tables, in contrast,
could only compete in cache efficiency once given enough space.

The clustered hash table was slightly faster to self-search than the standard and
compact hash, but only under heavy load, and in no case was it superior to the array
hash. In the previous experiments, however, the clustered hash table was found to
be consistently slower than both the standard and compact hash tables. Hence, these
results suggest that the clustered hash table may become more effective at exploiting
cache when there is little to no skew in the data distribution. Without skew, traversing
a clustered list will effectively resemble a linear scan, which can make good use of
cache. We consider this in later experiments.

7.2. Burst Tries

As in our experiments involving the TREC dataset, the array burst trie displayed strong
improvements over its chained variants, approaching the speed of hashing while

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:39

(c) TLB cache-miss per search

0 100 200 300 400
0

5

10

15

20

25

T
LB

 c
ac

he
-m

is
s/

se
ar

ch

Standard hash
Standard burst trie
Standard BST
Standard red-black
Standard splay
TST
Judy trie
Compact hash
Compact burst trie
Compact BST
Compact red-black
Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)
Array BST
Clustered hash
Clustered burst trie
Clustered BST

(a) Instructions per search

0 100 200 300 400

1,000

1,500

In
st

ru
ct

io
ns

/s
ea

rc
h

Standard / Clustered hash
Standard / Clustered burst trie
Standard / Clustered BST
Standard red-black
Standard splay
TST
Compact hash
Compact burst trie
Compact BST
Compact red-black
Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)
Array BST

(b) L2 cache-miss per search

0 100 200 300 400
0

5

10

15

20

L2
 c

ac
he

-m
is

s/
se

ar
ch

Standard hash
Standard burst trie
Standard BST
Standard red-black
Standard splay
TST
Judy trie
Compact hash
Compact burst trie
Compact BST
Compact red-black
Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)
Array BST
Clustered hash
Clustered burst trie
Clustered BST

Memory (MB)

Memory (MB)

Memory (MB)

Fig. 15. The Instruction (a), L2 cache (b), and TLB (c) performance of the data structures when self-searched
using the URLS dataset. The points on the graph represent the container thresholds for the burst trie and
the slots used by the hash tables. Smaller containers (or more slots) require more memory. The container
thresholds for the chained burst tries were varied by intervals of 10 from 30 to 100. For the array burst trie,
the sequence was extended to include 128, 256, and 512 strings. We omit the instruction cost for containers
with a threshold of 512 strings. The hash tables commenced with 215 slots, doubling up to 224.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:40 N. Askitis and J. Zobel

requiring the least amount of space. At its best, the array burst trie took 12.9 and
9.6 seconds to construct and self-search, respectively, while consuming only 37.4MB;
this is less space than required by the strings alone, which is the result of eliminating
pointers and the pruning of shared prefixes in containers.

The compact burst trie also showed consistent improvements in both the time and
space compared to the standard burst trie, though not as strong as the array burst trie.
At its best time, the standard burst trie required 20.3 and 19.2 seconds to construct
and self-search, respectively, and about 94.2MB of space; this is a space overhead of
about 300 bits per string. Remarkably, the array burst trie was able to almost halve the
time required by the standard burst trie, while imposing no space overhead per string.

The clustered burst trie was slightly faster to self-search than the compact burst trie,
but only with large containers. Once the container size decreased, so did its performance
relative to the compact burst trie. Nonetheless, the clustered burst trie remained faster
to self-search than the standard burst trie, due to the reduction of L2 and TLB misses.
The L2, TLB, and instruction costs incurred by the burst tries during self-search are
shown in Figure 15.

As observed in the previous experiments, use of large containers in the array burst
trie was not only both cache-and space-efficient, but also incurred high numbers of
instructions. As the container threshold increased from 128 to 512 strings, for example,
the number of instructions executed per search by the array burst trie increased from
1,175 to 2,266. The URLS dataset is not as skew at the TREC dataset, and as a consequence,
the effectiveness of move-to-front is reduced. This caused the standard, clustered, and
compact chains to incur high instructions costs on search, as more nodes were likely to
be inspected. For example, as the container threshold increased from 128 to 512 strings,
the number of instructions executed per search by the standard burst trie increased
from 1,149 to 2,251—which is almost as expensive as the array burst trie. Hence, the
standard and compact burst tries were slow to access due to high cache and instruction
costs.

The array burst trie, however, substantially reduced the number of cache misses
incurred and, as a result, was up to 60% faster than its chained variants while simul-
taneously saving space. Nonetheless, as its container threshold increased from 128 to
512 strings, the computational cost of accessing arrays could not be entirely masked by
the reduction of cache misses. As a consequence, the array burst trie became more ex-
pensive to access relative to its smaller containers, despite a further reduction in cache
misses. For example, when the container size increased from 256 to 512 strings, the
array burst trie was around 25% slower (or about 5 seconds) to build but still remained
greatly superior to its chained equivalents.

7.3. Variants of BST, the TST, and Judy

The standard, clustered, compact, and array BSTs performed surprisingly well com-
pared to the tries. While not as compact, all three models—the array BST in
particular—required less time to construct and self-search than all representations
of burst tries; the array burst trie could only rival in speed during self-search.

Although strings in the burst tries are also stored in occurrence order, these strings
share long prefixes, such as http://www, which in a burst trie, implies access to a poten-
tially larger trie index. Trie nodes are computationally efficient but accessing a large
number of them before acquiring a container can result in an increase in cache misses.
With a container threshold of 50, for example, 50,627 tries nodes were created, as op-
posed to the 6,009 created with the TREC dataset. Consequently, as shown in Figure 15,
the number of cache misses incurred by the array burst trie were, at best, only slightly
less than the BSTs. Hence, although the computational cost of the BSTs was higher, the
reduction in cache misses compensated. In this example, a Patricia trie could reduce

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:41

the number of trie nodes created, since it is designed to omit single-descendant nodes.
However, the reduction of nodes (and subsequent space consumption) is often small
in comparison to alternative trie structures such as the TST [Sedgewick 1998; Heinz
et al. 2002]. In addition, the space saved is offset by the complexity of its structure. The
requirement of a full string comparison on leaf node access (to eliminate the possibility
of a false match) for instance, is expensive compared to the comparisonless traversal
of the array-based trie structure used by the burst trie [Heinz et al. 2002].

The standard and compact red-black and splay trees were also faster to build and
self-search than the chaining burst tries but required more space and were slower to
access than the BSTs. Judy also showed strong gains in performance relative to the
previous TREC experiments, rivaling the speed of the standard and compact red-black
and splay tree, while requiring the least amount of space of all standard-chained and
compact-chained data structures. Judy also required less space than the array BST—
due to the pruning of shared prefixes—and was as space-efficient as the array hash
table. Nonetheless, Judy remained slower to build and self-search than the standard,
compact, and array BST, the array hash, and array burst trie, as it incurred more cache
misses.

The TST also rivaled the build and self-search time of the burst tries and BSTs, due
to low instruction costs. However, the TST required almost 400MB of space—which is
almost 4 times the space required by the standard BST. Although the clustered BST
remained faster to access than the compact or standard burst tries, it was ineffective
at improving the cache-efficiency of the standard BST. The cache performance of these
data structures is shown in Figure 15.

Our results show that the standard burst trie is not always the fastest data structure
for vocabulary accumulation, as claimed by Heinz et al. [2002]. For long strings that
share long prefixes, the standard BST can be faster, though its high computational cost
and order O(N) worst case does not necessarily make it a practical choice. For exam-
ple, as the number of distinct URLs increase to say 10 million, or with a substantial
increase in the number of searches, the performance of the BST will likely deteriorate
due to the excessive cost of binary search—as observed in the previous TREC experi-
ments. The burst trie, however, is more scalable and can operate efficiently with large
numbers of strings, as a result of removing shared prefixes that reduce both space and
computational costs, and the use of bounded-size containers.

7.4. The Effectiveness of Move-to-Front on Arrays

Figure 16 compares the time required to self-search the array hash and array burst trie
with and without move-to-front on access. There were no cases where move-to-front
improved the performance of the array hash and array burst trie. As discussed in the
previous TREC experiments, performing a move-to-front in an array is computationally
expensive, due to string copying. Our results show that move-to-front is unnecessary
for the array-based data structures, as any potential gains seem likely to be low.

7.5. Paging versus Exact-Fit Array Growth

The cost of constructing the array burst trie and array hash with and without paging
is shown in Figure 17. The use of paging led to consistent improvements for the array
burst trie, which was up to 11% faster (or about 1.7 seconds) than exact-fit. Exact-fit
involves growing a dynamic array on every insertion by copying it into a new larger
space. Paging reduces the amount of copying to save time but at a small cost in space.
Paging was not particularly useful for the array hash, apart from the slight improve-
ment observed under heavy load. In all, the savings offered by the paging technique in
these experiments were small, making the more space-efficient exact-fit growth policy
preferable.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:42 N. Askitis and J. Zobel

0 50 100 150 200
Memory (MB)

0

5

10

15

20

S
ea

rc
h

tim
e

(s
ec

on
ds

)

Array hash (exact-fit)
Array hash (exact-fit with move-to-front)
Array burst trie (exact-fit)
Array burst trie (Exact-fit with move-to-front)

Fig. 16. The time and space required to self-search the array hash and array burst trie with and without
move-to-front on access, using the URLS dataset. The points on the graph represent the container thresholds
for the burst trie and the slots used by the hash tables. Smaller containers (or more slots) require more
memory. The container thresholds for the chained burst tries were varied by intervals of 10 from 30 to 100.
For the array burst trie, the sequence was extended to include 128, 256, and 512 strings. The hash tables
commenced with 215 slots, doubling up to 224.

0 50 100 150 200

Memory (MB)

0

5

10

15

20

B
u
ild

 t
im

e
 (

s
e
c
o
n
d
s
)

Array hash (exact-fit)

Array hash (64-byte paging)
Array burst trie (exact-fit)

Array burst trie (64-byte paging)

Fig. 17. The time and space required to build the array hash and array burst trie with and without paging,
using the URLS dataset. Paging grows an array in 64-byte chunks, in contrast to exact-fit. The points on the
graph represent the container thresholds for the burst trie and the slots used by the hash tables. Smaller
containers (or more slots) require more memory. The container thresholds for the chained burst tries were
varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence was extended to include 128,
256, and 512 strings. The hash tables commenced with 215 slots, doubling up to 224.

7.6. Performance without Hardware Prefetch

We repeat the previous skew search experiment on the Pentium III processor, to observe
the value of eliminating pointers on a slower machine with no hardware prefetch. We
consider the three best data structures—the hash table, burst trie, and BST—using

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:43

0 100 200 300

Memory (MB)

0

10

20

30

40

50

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash
Standard burst trie
Standard BST
Compact hash
Compact burst trie

Compact BST
Array hash (exact-fit)

Array burst trie (exact-fit)
Array BST

Fig. 18. The time and space required to self-search the data structures, using the URLS dataset on the
Pentium III processor with no hardware prefetch. The points on the graph represent the container thresholds
for the burst trie and the slots used by the hash tables. Smaller containers (or more slots) require more
memory. The container thresholds for the chained burst tries were varied by intervals of 10 from 30 to 100.
For the array burst trie, the sequence was extended to include 128, 256, and 512 strings. The hash tables
commenced with 215 slots, doubling up to 224.

their standard, compact, and array-based representations, and measure the time and
space required to self-search using the URLS dataset. Results are shown in Figure 18.

The relative performance between the hash table, burst trie, and BST was consistent
with previous experiments. The standard, compact, and array BSTs remained faster to
access than the standard and compact burst tries, while the array burst trie displayed
strong gains in performance—approaching the speed of the array hash while consuming
the least amount of space. The hash tables remained the fastest data structures, with
the array hash being consistently faster and smaller than the standard hash table. The
compact hash was slightly faster than the array hash due to move-to-front on access,
but required more space. These results show that the absence of hardware prefetch and
the use of a slower processor with smaller cache lines—which can increase the cache-
miss rate—has minimal impact on the relative performance between the array-based
hash table, burst trie, and BST.

These array-based data structures exhibit superior performance even with no hard-
ware prefetch as a result of good spatial access locality. On access, an array is scanned
once from left to right, which maximizes the use of the respective CPU cache line that
stores the portion of the array. This will likely lead to fewer cache misses, as reflected
in the timings shown in Figure 18. As we access a node in a linked list, however, it will
occupy only a small portion of a cache line; the remaining space is likely to contain junk
data, since the nodes of a linked list can be physically scattered in main memory. As a
consequence, cache-line utilization is reduced leading to more cache misses relative to
the array-based data structures.

8. DISTINCT DATA

We then used the DISTINCT dataset for construction and self-search. This dataset con-
tains no repeated strings, and thus every insertion requires that the data structure
be fully traversed (i.e., the respective path of the data structure is fully traversed,
such as the slot of a hash table). With no string repetitions, move-to-front on access is

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:44 N. Askitis and J. Zobel

1,000005

Memory (MB)

0

100

200

300

B
u

ild
 t

im
e

 (
s
e

c
o

n
d

s
)

Standard hash
Standard burst trie
Standard red-black

Standard splay
Judy trie

Compact hash
Compact burst trie
Compact red-black
Compact splay

Array hash (exact-fit)
Array burst trie (exact-fit)

Fig. 19. The time and space required to build the data structures, using the DISTINCT dataset. The points on
the graph represent the container thresholds for the burst trie and the slots used by the hash tables. Smaller
containers (or more slots) require more memory. The container thresholds for the chained burst tries were
varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence was extended to include 128,
256, and 512 strings. The hash tables commenced with 215 slots, doubling up to 226.

1,000005

Memory (MB)

0

100

200

300

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash
Standard burst trie
Standard red-black
Standard splay

Judy trie
Compact hash
Compact burst trie
Compact red-black
Compact splay

Array hash (exact-fit)
Array burst trie (exact-fit)
Clustered hash
Clustered burst trie

Fig. 20. The time and space required to self-search the data structures, using the DISTINCT dataset. The
points on the graph represent the container thresholds for the burst trie and the slots used by the hash
tables. Smaller containers (or more slots) require more memory. The container thresholds for the chained
burst tries were varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence was extended
to include 128, 256, and 512 strings. The hash tables commenced with 215 slots, doubling up to 226.

rendered ineffective for both chains and arrays. Results for construction and self-search
are shown in Figures 19 and 20.

8.1. Hash Tables

The difference in performance between the array and chaining methods is startling.
The time required to construct and self-search the standard, clustered, compact, and
array hash tables are shown in Table IV. This is an artificial case, but it highlights
the fact that random memory accesses are highly inefficient. With only 215 slots, for

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:45

Table IV. Elapsed Time (in Seconds) Required When the DISTINCT Dataset Is Used to
Construct and Self-Search the Variants of Hash Table

Num. of Array
Slots Page Exact Clustered Compact Standard
215 114.5 199.1 — 2,082.0 2,380.6
216 106.4 135.5 — 1,055.5 1,209.0
217 99.8 95.6 — 539.7 620.2
218 68.3 78.8 — 277.8 317.1
219 31.1 37.8 — 144.3 167.0
220 19.6 28.6 — 77.5 89.8

Construction 221 17.6 23.7 — 43.5 50.9
222 16.3 19.6 — 27.1 31.2
223 14.4 16.6 — 18.2 21.6
224 12.5 13.9 — 14.0 16.7
225 12.0 12.2 — 12.0 14.4
226 11.3 11.4 — 11.0 13.3
227 11.8 10.9 — 11.1 13.5

215 — 77.9 1,310.7 2,076.5 2,370.0
216 — 47.4 567.1 1,050.8 1,201.7
217 — 32.1 294.6 535.4 612.7
218 — 23.7 156.0 273.8 314.7
219 — 19.0 87.2 141.2 160.1
220 — 15.9 53.2 74.5 84.6

Self-search 221 — 13.9 35.4 41.1 46.3
222 — 12.7 25.4 24.4 27.3
223 — 11.9 19.5 16.0 17.8
224 — 11.3 15.4 11.8 12.8
225 — 10.3 12.5 9.7 10.4
226 — 9.5 10.6 8.9 9.3
227 — 8.9 10.7 8.6 13.2

example, the exact-fit array hash table was constructed in about 199 seconds, whereas
the compact and standard chains required about 2,082 and 2,380 seconds, respectively.
The use of paging further reduced the construction time of the array hash to only
114 seconds, a saving due to the lack of excessive copying. This speed is despite the
fact that the average load factor is 878. As we anticipated in previous experiments, use
of paging is effective with large numbers of insertions. As the load factor decreased,
however, paging became less effective as fewer strings were inserted into each slot.

The results for self-search are similar to those for construction, with the array hash
being up to 97% faster than the chained hash tables, with search time falling from over
2,370 seconds to under 80 seconds, while space simultaneously falls from 995MB to
304MB. Once again, increasing the number of slots allows the chained hash tables to
be much faster, but the array hash remains competitive at all table sizes. The chained
hash tables approach the efficiency of the array hash only when given surplus slots.
For example, with 227 slots, the compact hash table is by a small margin the fastest
method, but required over 1,186MB with the equivalently-sized standard chain at
1,531MB. The array hash, however, achieved almost the same speeds using 224 slots
and a total of 494MB, a dramatic saving.

As anticipated from previous experiments, the clustered hash table displayed good
performance with no skew in the data distribution, being up to 45% faster to self-
search than the compact and standard hash tables. However, the clustered hash could
only remain efficient under heavy load; as the average load factor decreased, so did its
performance, until finally becoming slower than both the compact and standard hash
tables. There were no cases where the clustered hash was superior to the array hash,

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:46 N. Askitis and J. Zobel

which was up to 94% faster. Furthermore, with both pointers and nodes eliminated, a
substantial amount of space is saved without any impact on performance. These results
demonstrate that combining clustering with pointer elimination via the use of dynamic
arrays, is by far more effective at exploiting cache than clustering alone.

The cache performance of the standard, clustered, compact, and array hash tables
during self-search are shown in Figure 21. These results show a strong correlation with
the self-search times reported in Figure 20. For example, the array hash sustained low
L2 and TLB costs relative to its chained representations, and was thus faster to access
under heavy load. In these experiments, move-to-front on access was rendered inef-
fective due to the absence of duplicate strings. As a consequence, searching the array
hash incurred almost the same number of instructions per search as the equivalent
chains. During construction, the array hash executed more instructions due to array
resizing, but of which was greatly compensated with a high reduction in cache misses.
As a result, the array hash could be built up to 92% faster than the chained hash
tables while under heavy load—where arrays are longer and thus more expensive to
resize. For uniform access distributions, the array hash is by far the most space-and
time-efficient data structure when sorted access to strings is not required.

8.2. The Variants of BST, the TST, and Judy

The BSTs were expensive to construct and self-search but remained competitive in
space, with the array BST in particular, requiring less space than the compact and
standard hash tables and burst tries. The time and space required to build and self-
search the standard, clustered, compact, and array BST are shown in Table V.

At best, the array BST took 497 seconds to construct and 471 seconds for self-
search, using 534MB of space. Although this is a considerable improvement over the
standard BST, which required over 1,110MB of space and more than 740 seconds
for both construction and self-search, the computational cost of binary search was
expensive. To self-search the array BST, for example, over 34,000 instructions per
search were executed. This is far more expensive than the array hash, which executed
only 511 instructions per search, while using almost the same amount of space—225

slots and 609MB. The clustered BST was not particularly effective at exploiting cache,
showing only small gains in performance over the standard BST.

In previous experiments, the standard, compact, and array BSTs were competitive
in speed, due to the presence of a skew distribution. This permitted frequently access
tree paths to reside longer in cache, reducing cache misses which compensated for the
use of an unbalanced structure. In these experiments, however, no access skew was
present, and as a result, previously cached paths were likely to be evicted from cache
prior to reuse. As a result and despite the improvements offered by the array BST, the
BSTs were among the slowest data structures to access.

The standard splay and red-black trees, for both construction and self-search, per-
formed relatively well compared to the BSTs. Splaying amortized the cost of access,
reducing the number of nodes inspected per search, which in turn reduced the num-
ber of cache misses and instructions executed. The standard and compact splay trees,
however, were slower to access than the standard and compact red-black trees, as a
balanced structure is more effective when there is no access skew in the data dis-
tribution. The TST exhausted main memory, requiring almost 2.5GB of space, and
as a consequence it required over 5,500 and 13,000 seconds to construct and self-
search, respectively, due to the involvement of virtual memory. The Judy data structure
was significantly faster than any of the trees, as a result of its efficient use of cache
(Figure 21). Judy also required less space than the standard, clustered, and compact
hash tables, but its performance remained markedly inferior in both time and space,
when compared to the array hash and array burst tries.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:47

(a) Instructions per search

1,0000050
Memory (MB)

1,000

2,000

3,000

4,000

5,000

6,000

In
st

ru
ct

io
ns

/s
ea

rc
h

Standard / Clustered hash
Standard / Clustered burst trie
Standard / Clustered BST
Standard red-black
Standard splay
TST
Judy trie
Compact hash
Compact burst trie
Compact BST
Compact red-black
Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)
Array BST

(b) L2 cache-miss per search

1,0000050
Memory (MB)

0

10

20

30

40

50

L2
 c

ac
he

-m
is

s/
se

ar
ch

Standard hash
Standard burst trie
Standard red-black
Standard splay
Judy trie
Compact hash
Compact burst trie
Compact red-black
Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)
Clustered hash
Clustered burst trie

(c) TLB cache-miss per search

1,0000050
Memory (MB)

0

10

20

30

40

T
LB

 c
ac

he
-m

is
s/

se
ar

ch

Standard hash
Standard burst trie
Standard red-black
Standard splay
Judy trie
Compact hash
Compact burst trie
Compact red-black
Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)
Clustered hash
Clustered burst trie

Fig. 21. The Instruction (a), L2 cache (b), and TLB (c) performance of the data structures when self-searched
using the DISTINCT dataset. The points on the graph represent the container thresholds for the burst trie and
the slots used by the hash tables. Smaller containers (or more slots) require more memory. The container
thresholds for the chained burst tries were varied by intervals of 10 from 30 to 100. For the array burst trie,
the sequence was extended to include 128, 256, and 512 strings. The hash tables commenced with 215 slots,
doubling up to 226.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:48 N. Askitis and J. Zobel

Table V. The Time and Space Required to Build and Self-
Search a Standard, Clustered (search only), Compact,
and Array BST, Using the DISTINCT Dataset

Build Self-search Space
BST (sec) (sec) (MB)
Array 497.1 471.1 534.7
Compact 594.8 569.3 764.9
Clustered — 721.0 880.0
Standard 758.6 740.6 1,110.1

8.3. Burst Tries

The array burst trie showed substantial improvements over its compact and standard
representations, requiring the least amount of space, at best a total space usage of
186MB—that is, 119MB less space than the original dataset—while access times were
also reduced and approached those of the array hash table. With a container threshold
of 128 strings, the array burst trie required only 221MB of space to achieve a self-search
time of 18.1 seconds. The array hash, in contrast, needed over 311MB of space (or 219

slots) to achieve a faster time. Paging was consistently faster than exact-fit, allowing
the array burst trie to be constructed up to 24% faster (or around 15 seconds) with large
containers, but at the cost of wasting up to 120MB of space with small containers.

The cache performance of the burst tries during self-search is shown in Figure 21.
There is a strong correlation between cache performance and the time required for
self-search. For example, the array burst trie was, in all cases, faster than the com-
pact, clustered, and standard burst trie, because it sustained low L2 and TLB misses.
Figure 21 shows that the cache efficiency of the array burst trie improves with an
increase in container size, and yet, as shown in Figures 19 and 20, the array burst trie
becomes slower to access relative to its smaller containers. This is caused by a high
increase in instructions, a cost which is not entirely masked by the reduction of cache
misses. The equivalent chained burst tries also incurred high instruction costs but
made inefficient use of cache, which dominated their performance. Hence, as observed
in previous experiments, in order to attain a fast and scalable burst trie, it is necessary
to use containers that are both cache-efficient and conservative with the number of
instructions they execute.

8.4. Performance without Hardware Prefetch

We repeat the previous self-search experiment to observe the impact on performance
using the Pentium III, which does not employ hardware prefetch. We considered the
three best data structures—the hash table, burst trie, and BST—using their standard,
compact, and array-based representations. The results for the hash tables and burst
tries are shown in Figure 22.

The array burst trie and array hash table were substantially faster to search than
their chained representations, even without the aid of a hardware prefetcher. The array
burst trie displayed the strongest gains—approaching the speed of the array hash while
consuming the least amount of space.

With 218 slots, the average load factor was about 110 strings per slot. In this case,
the array hash took under 126 seconds to self-search, whereas the equivalent compact
and standard hash tables required 498 and 587 seconds, respectively; that is, the
array hash was up to 79% faster. Compared to its previous performance shown in
Table IV, the array hash was only 15% slower on the Pentium III. The array BST
also showed considerable improvement over its chained variants, being up to 24%
faster; the standard BST required 1,918 seconds to self-search, which was reduced
to 1,603 seconds by the compact BST, to a further 1,449 seconds by the array BST,

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:49

005

Memory (MB)

0

200

400

600

S
e

a
rc

h
 t

im
e

 (
s
e

c
o

n
d

s
)

Standard hash

Standard burst trie
Compact hash

Compact burst trie
Array hash (exact-fit)
Array burst trie (exact-fit)

1,000

Fig. 22. The time and space required to self-search the data structures, using the DISTINCT dataset on
the Pentium III with no hardware prefetch. The points on the graph represent the container thresholds for
the burst trie and the slots used by the hash tables. Smaller containers (or more slots) require more memory.
The container thresholds for the chained burst tries were varied by intervals of 10 from 30 to 100. For the
array burst trie, the sequence was extended to include 128, 256, and 512 strings. The hash tables commenced
with 218 slots, doubling up to 226.

while achieving considerable reductions in space. These results demonstrate that our
methods offer consistent and substantial improvements.

9. THE ADAPTIVE TRIE

We downloaded a high-quality implementation of an adaptive trie [Acharya et al.
1999], to compare its performance against our set of data structures including the
cache-conscious hash table, burst trie, and binary search tree. The current implemen-
tation of the adaptive trie (for small alphabet sizes) is only compatible with lowercase
alphabetic characters. We, therefore, filtered our DISTINCT and TREC datasets to remove
all strings that contain either a uppercase or nonalphabetic character, forming the
FILTERED DISTINCT and FILTERED TREC datasets, respectively. The FILTERED DISTINCT dataset
contains 7,892,272 unique strings. We truncated the FILTERED TREC dataset to contain
only the first 50 million strings from the total of 141,693,220 strings filtered. The
time (in seconds) and space (in megabytes) required to build and self-search the data
structures using the FILTERED DISTINCT dataset is shown in Figure 23 and Figure 24.

With no skew in the data distribution, the adaptive trie was faster to build and
self-search than the trees and the standard and compact burst tries. Given enough
space, however, the hash tables were superior. Similarly with a container threshold
of less than 512 strings, the array burst trie was faster to build and self-search than
the adaptive trie. The Judy trie and the TST were also slightly faster to build and
self-search. Despite its competitive speed, however, the adaptive trie was the most
space-intensive data structure, requiring over 900MB of memory, due to the space
overhead of maintaining adaptive trie nodes. The space required by the adaptive trie
was almost twice that of the TST and around a factor of 10 more than the array burst
trie and array hash table.

Figure 25 shows the self-search performance of the adaptive trie using the FILTERED

TREC dataset. We omit the cost of construction, as it was found to be similar to that
of search. As claimed by Crescenzi et al. [2003], the adaptive trie performed poorly
under skew access, requiring over 17 seconds to self-search, which places it among

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:50 N. Askitis and J. Zobel

0 200 400 600 800 1,000

Memory (MB)

0

20

40

60

B
u
ild

 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash

Standard burst trie
Standard red-black

Standard splay
TST
Judy trie
Compact hash
Compact burst trie
Compact red-black

Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)
Adaptive trie

Fig. 23. The time and space required to build the adaptive trie, using the FILTERED DISTINCT dataset, described
in Section 9. The points on the graph represent the container thresholds for the burst trie and the slots used
by the hash tables. Smaller containers (or more slots) require more memory. The container thresholds for
the chained burst tries were varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence
was extended to include 128, 256, and 512 strings. The hash tables commenced with 216 slots, doubling up
to 224.

0 200 400 600 800 1,000

Memory (MB)

0

20

40

60

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash
Standard burst trie
Standard red-black
Standard splay
TST
Judy trie
Compact hash

Compact burst trie
Compact red-black
Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)
Adaptive trie

Fig. 24. The time and space required to self-search the adaptive trie, using the FILTERED DISTINCT dataset,
described in Section 9. The points on the graph represent the container thresholds for the burst trie and
the slots used by the hash tables. Smaller containers (or more slots) require more memory. The container
thresholds for the chained burst tries were varied by intervals of 10 from 30 to 100. For the array burst trie,
the sequence was extended to include 128, 256, and 512 strings. The hash tables commenced with 216 slots,
doubling up to 224.

the slowest data structures to access under skew, being only slightly faster than the
red-black tree. Moreover, the adaptive trie required over 22MB of memory, which is
more space than required by the TST. These results demonstrate that the adaptive trie
is not a practical choice for managing a large set of strings in memory, due to its high
space requirements and poor skew performance.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:51

0 10 20 30 40

Memory (MB)

0

5

10

15

20

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash
Standard burst trie
Standard BST
Standard red-black
Standard splay
TST

Judy trie
Compact hash
Compact burst trie
Compact BST
Compact red-black

Compact splay
Array hash (exact-fit)
Array burst trie (exact-fit)

Array BST
Adaptive trie

Fig. 25. The time and space required to self-search the adaptive trie, using the FILTERED TREC dataset,
described in Section 9. The points on the graph represent the container thresholds for the burst trie and
the slots used by the hash tables. Smaller containers (or more slots) require more memory. The container
thresholds for the chained burst tries were varied by intervals of 10 from 30 to 100. For the array burst trie,
the sequence was extended to include 128, 256, and 512 strings. The hash tables commenced with 216 slots,
doubling up to 224.

10. IMPLICIT CLUSTERED CHAINS

A clustered chain ensures that the nodes of a linked list are stored contiguously in main
memory—in order of allocation—to improve spatial access locality. However, cluster-
ing does not eliminate pointers. Chilimbi [1999] suggests eliminating the next-node
pointers of homogeneous nodes in a chain to form an implicit clustered chain where
nodes are accessed via arithmetic offsets. As half of the pointers are eliminated, we ex-
pect better cache and space utilization over pointer-based clustering. However, implicit
chains cannot support move-to-front on access, but as we show, this has little impact
on performance due to a further reduction in cache misses. Several researches have
also improved the cache-efficiency of software by applying similar implicit clustering
techniques [Ghoting et al. 2006; Badawy et al. 2004; Luk and Mowry 1996].

In this experiment, we construct a standard hash table using the DISTINCT and TREC

datasets. We then convert the standard chains that are assigned to each slot into
implicit chains, to compare the time and space required to self-search the implicit hash
table against the clustered, compact, standard, and array hash tables. The results are
shown in Figure 26 and Figure 27.

With half the pointers eliminated, the implicit hash table is more space-efficient than
the clustered hash table and is almost as space-efficient as the compact hash table. The
implicit hash table requires more space than a compact hash due to the initial 8-byte
allocation overhead per slot and the extra 4-byte null pointer per slot, which is used as
a list delimiter.

The implicit hash table was consistently faster to self-search than the clustered
hash table using the DISTINCT dataset (Figure 26). However, the relative difference
between the two was small, with the implicit hash being only up to 19% faster than the
clustered hash table. The implicit and clustered hash tables were faster to access than
the compact and standard hash tables, but only under heavy load. Once the load factor
fell below seven strings per slot (that is, using more than 222 slots), both the implicit
and clustered hash tables were slower to access than the compact and standard hash

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:52 N. Askitis and J. Zobel

1,000005

Memory (MB)

0

100

200

300

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash

Compact hash
Array hash (exact-fit)
Implicit hash
Clustered hash

Fig. 26. The time and space required to self-search the implicit hash table, using the DISTINCT dataset. The
points on the graph represent the container thresholds for the burst trie and the slots used by the hash
tables. Smaller containers (or more slots) require more memory. The container thresholds for the chained
burst tries were varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence was extended
to include 128, 256, and 512 strings. The hash tables commenced with 216 slots, doubling up to 224.

0604020

Memory (MB)

10

15

20

25

30

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash

Compact hash
Array hash (exact-fit)

Implicit hash
Clustered hash

Fig. 27. The time and space required to self-search the implicit hash table, using the TREC dataset. The
points on the graph represent the container thresholds for the burst trie and the slots used by the hash
tables. Smaller containers (or more slots) require more memory. The container thresholds for the chained
burst tries were varied by intervals of 10 from 30 to 100. For the array burst trie, the sequence was extended
to include 128, 256, and 512 strings. The hash tables commenced with 216 slots, doubling up to 224.

tables. The array hash was the fastest and most compact data structure to access,
being up to 93% faster than the implicit hash table when under heavy load, while
simultaneously requiring less space.

These results demonstrate the value of combining clustering with pointer elimination
through the use of dynamic arrays. Traversing a large implicit chain can incur up to
two cache misses per string: one to access the string pointer and another to access its
string.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:53

Table VI. Elapsed time (in seconds) Required to Self-Search the Standard, Compact,
Clustered, Implicit, and Array-Based Hash Tables, Using the DISTINCT Dataset

Num. of Slots Array Implicit Clustered Compact Standard
215 77.9 1,063.0 1,310.7 2,076.5 2,370.0
216 47.4 533.8 567.1 1,050.8 1,201.7
217 32.1 279.6 294.6 535.4 612.7
218 23.7 149.7 156.0 273.8 314.7
219 19.0 83.3 87.2 141.2 160.1
220 15.9 50.1 53.2 74.5 84.6
221 13.9 32.9 35.4 41.1 46.3
222 12.7 24.3 25.4 24.4 27.3
223 11.9 18.9 19.5 16.0 17.8
224 11.3 14.9 15.4 11.8 12.8
225 10.3 12.1 12.5 9.7 10.4
226 9.5 10.3 10.6 8.9 9.3
227 8.9 9.8 10.7 8.6 13.2

In a dynamic array, in contrast, a single cache-miss will prefetch an entire cache-line
of strings, and with no pointers to follow, hardware prefetch can greatly reduce the
number of cache misses incurred as the array is scanned. The difference in time (in
seconds) required to self-search the standard, compact, clustered, implicit, and array
hash tables, using the DISTINCT dataset, is shown in Table VI.

Figure 27 shows the skew self-search performance of the standard, compact, clus-
tered, implicit, and array hash tables, using the TREC dataset. The implicit hash table
was slightly faster to access than the clustered hash table, but not when under heavy
load due to the absence of move-to-front on access. Moreover, the implicit hash table
showed relatively poor performance when compared to the standard, compact, and
array hash tables, being up to 45% slower to access. Although the array hash did not
employ move-to-front on access, it remained substantially faster than the implicit hash,
due to the elimination of both string and node pointers, which led to a high reduction
in cache misses.

11. VOCABULARY ACCUMULATION

Our next experiment measures the time and space required by the standard, compact,
and array hash tables for the task of accumulating the vocabulary of a large text
collection in memory. We only consider the hash tables in this experiment, as they
are the fastest data structures. Similarly, we do not consider the clustered hash table
because of its poor performance under skew access. To conduct the experiment, the
hash tables were modified to maintain 4 bytes of satellite data that are stored before
each string (in the array and compact-chain hash tables). The satellite data is used
maintain a 4-byte string occurrence counter. When a string is initially stored in a hash
table, its counter is set to 1. Thereafter, every time the string matches a query (as the
hash table is being built), its counter is incremented by 1. The results of accumulating
the vocabulary of the TREC dataset are shown in Figure 28, along with comparable
measures of performance without satellite data.

With 4 bytes of satellite data associated with each string, fewer strings can reside
in cache and as a consequence, more cache misses are likely to occur during traversal.
The presence of satellite data in a standard or compact hash table had only a small
impact on performance when under heavy load. The array hash with satellite data,
in contrast, was up to 9% slower than the array hash without satellite data. The
array hash can minimize the number of cache misses incurred by eliminating the
traversal of pointers (other than slot pointers). However, this also implies that any
increase in cache misses caused by the reduction of cache-line utilization (such as the

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:54 N. Askitis and J. Zobel

0604020

Memory (MB)

10

15

20

25

B
u
ild

 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash
Standard hash with satellite data

Compact hash
Compact hash with satellite data

Array hash (exact-fit)
Array hash (exact-fit) with satellite data

Fig. 28. The time and space required to accumulate the vocabulary of the TREC dataset. Unlike the previous
TREC experiments, these hash tables associate 4 bytes of data (satellite data) per string, which are used to
count the number of string occurrences encountered as the hash tables are built. Comparable figures are
also presented with hash tables that have no satellite data, and hence, simply maintain strings. The points
on the graph represent slots used by the hash tables. An increase in slots requires more memory. The hash
tables commenced with 215 slots, doubling up to 223.

space occupied by satellite data), is likely to cause a higher impact on performance
than chaining. That is, the chaining hash tables incur cache misses due to pointer
traversals, which are costly, but as a result, can dampen the impact on performance
when satellite data is maintained, as observed. A further factor to consider is the cost of
maintaining unaligned satellite entries in the array hash table. That is, by interleaving
integers with strings, some integers may be stored outside a word-boundary, forcing
an extra bus cycle on access, which can impact performance. In addition, unaligned
access to integers may be prohibited on some computer architectures, such as a Sun
UltraSPARC. In such cases, word padding is required to ensure that satellite data in
buckets remain word-aligned.

Nonetheless, with only 4 bytes of satellite data per string, the relative difference
in time and space between the standard, compact, and array hash tables, remained
similar to previous results, with the array hash being faster and more space-efficient
than the standard hash table when under heavy load. The impact of satellite data in
string hash tables, however, is likely to increase with an increase in the size of satellite
data. In cases where the satellite data occupies a significant portion of the cache-line
size, storing it in a separate location is likely to benefit performance, particularly for
the array hash.

12. ALTERNATIVE HARDWARE: SUN ULTRASPARC SERVER

We compare the performance (with respect to both time and space) of the standard
chain hash table, standard-chain burst trie, the array hash table and array burst trie,
along with the TST, on a Sun UltraSPARC Server running a Solaris (release 5.10)
operating system. The server has 16GB of RAM with two 1.33GHz UltraSPARC III
processors. Our intention here is to provide a brief demonstration on the effective-
ness of our techniques on an alternative computing architecture (that is, other than
an Intel). The results are shown in Figure 29, which illustrates the time taken to

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:55

0604020

Memory (MB)

20

30

40

50

60

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n
d
s
)

Standard hash

Standard burst trie
TST
Compact hash
Compact burst trie
Array hash (exact-fit)

Array burst trie (exact-fit)

Fig. 29. The time and space required to self-search the data structures, using the TREC dataset on a Sun
UltraSPARC Server (running Solaris 5.10). The points on the graph represent the container thresholds for
the burst trie and the slots used by the hash tables. Smaller containers (or more slots) require more memory.
The container thresholds for the chained burst tries were varied by intervals of 10 from 30 to 100. For the
array burst trie, the sequence was extended to include 128, 256, and 512 strings. The hash tables commenced
with 216 slots, doubling up to 224.

self-search using our TREC dataset. As expected, the array burst trie and array hash
were superior with respect to both time and space to their chained variants.

13. SUMMARY

In this article, we experimentally explored the performance of well-known string data
structures, namely the hash table, burst trie, variants of BST, TST, the adaptive trie,
and the Judy data structure. We compared the time, space, and cache performance of
these data structures for the task of storing and retrieving large sets of strings in-
memory. The fastest data structures were found to be the hash table, burst trie, and
BST. However, our results show that the standard representation of these structures—
a linked list of fixed-sized nodes consisting of a string pointer and a node pointer—is
neither cache- nor space-efficient. A well-known technique for improving the use of
cache is clustering, which stores the nodes of a list contiguously in memory. However,
the clustered representations of the hash table, burst trie, and BST were, in most cases,
inferior to their standard representations and were only effective when accessed with
no skew in the data distribution.

In every case, replacing the standard chain with a compact-chain—a simple alterna-
tive where the fixed-length string pointer is replaced with the variable-length string—
proved faster and smaller. Eliminating the chains altogether by storing the sequence
of strings in a contiguous array that is dynamically resized as strings are inserted,
showed further substantial gains in performance on both current and older machine
architectures. The array hash table, for example, achieved up to a 97% improvement
in speed over the standard hash table. Similarly, the array burst trie displayed strong
and consistent improvements, being up to 89% faster than the standard burst trie. In
most cases, the array burst trie approached the speed of hashing, while maintaining
sorted access to containers. The array BST also displayed considerable improvements,
being up to 36% faster than the standard and clustered BST. The compact BST was, in
most cases, marginally faster than the array BST but required more space.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:56 N. Askitis and J. Zobel

Compared to compact chaining, dynamic arrays can yield substantial further bene-
fits. In the best case, the space overhead of the array hash can be reduced by a factor
of around 200 to less than a single bit per string, while access speed is consistently
faster than under standard, clustered, and compact chaining. The array burst trie also
displayed similar benefits, with space falling from around 200 bits per string, to no
space overhead, while access speed remained substantially faster than the standard,
clustered, and compact burst tries. The array BST also displayed similar gains, requir-
ing only a third of the space of the standard BST, while being faster to access. These
results are an illustration of the importance of considering cache in algorithm design.
The standard-chain hash table, burst trie, and (in most cases) the BST were previously
shown to be the most efficient structures for managing strings, but we have greatly
reduced their total space consumption while simultaneously reducing access time.

13.1. Recommendations for Parameters

Having observed the performance of the array hash and array burst trie on different
string distributions and sizes, we recommend the following parameters that should
offer good—but not necessarily an optimal—performance in practice. For the array
hash and assuming skew in the data distribution, it is preferable to maintain a high
average load factor (where s > m, s being the number of unique keys and mrepresenting
the number of hash slots); for example, by maintaining between 215 and 218 slots.

For uniform access distributions—where typically millions of distinct strings are
processed—the number of slots can be increased to reduce the average load factor,
though, from our experience, it is preferable to keep the average load factor above 1
(i.e., s > m); as an example, by maintaining between 223 and 224 slots when processing
tens of millions of keys, which should achieve a good balance between time and space.
A further reduction in load factor (where m approaches or exceeds s) may improve
speed, but at a cost in space. Also, since the array hash scales well under heavy load,
employing a dynamic hash table resizing scheme (i.e., to adjust the number of slots
based on load) would likely yield only small gains in performance. For the array burst
trie, our results show that a container threshold between of 128 to 256 strings should
provide good performance for both skew and uniform data distributions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of this article and software.

REFERENCES

ACHARYA, A., ZHU, H., AND SHEN, K. 1999. Adaptive algorithms for cache-efficient trie search. In Proceedings
of the Workshop on Algorithm Engineering and Experiments. SIAM, Philadelphia, PA, 296–311.

AGARWAL, R. 1996. A super scalar sort algorithm for RISC processors. In Proceedings of the International
Conference on the Management of Data. ACM, New York, 240–246.

AGGARWAL, A. 2002. Software caching vs. prefetching. In Proceedings of the International Symposium on
Memory Management. ACM, New York, 157–162.

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. 1974. The Design and Analysis of Computer Algorithms, 1st Ed.
Addison-Wesley, Boston, MA.

ALLEN, R. AND KENNEDY, K. 2001. Optimizing Compilers for Modern Architectures. Morgan Kaufmann, San
Francisco, CA.

ARGE, L., BENDER, M. A., DEMAINE, E., LEISERSON, C., AND MEHLHORN, K. 2005. Abstracts collection. In Proceed-
ings of the Cache-Oblivious and Cache-Aware Algorithms Seminar. Schloss Dagstuhl, Wadern, Germany.

ARGE, L., BENDER, M. A., DEMAINE, E. D., HOLLAND-MINKLEY, B., AND MUNRO, J. I. 2002. Cache-oblivious priority
queue and graph algorithm applications. In Proceedings of the Symposium on Theory of Computing.
ACM, New York, 268–276.

ARGE, L., BRODAL, G., AND FAGERBERG, R. 2005. Cache-oblivious data structures. In Handbook on Data Struc-
tures and Applications, D. P. Mehta and S. Sahni, Eds. CRC Press, Boca Raton, FL, 34–41.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:57

ASKITIS, N. 2007. Efficient data structures for cache architectures. Ph.D. thesis, School of Computer Science
and Information Technology, RMIT University, Australia. http://www.naskitis.com.

ASKITIS, N. 2009. Fast and compact hash tables for integer keys. In Proceedings of the 32nd Australasian
Computer Science Conference. Australian Computer Society, Sydney, Australia, 101–110.

ASKITIS, N. AND SINHA, R. 2007. HAT-trie: A cache-conscious trie-based data structure for strings. In Proceed-
ings of the of the 30th Australasian Computer Science Conference. Australian Computer Society, Sydney,
Australia, 97–105.

ASKITIS, N. AND SINHA, R. 2010. Engineering scalable, cache and space efficient tries for strings. Int. J. Very
Large Datab. 19, 5, 633–660. http://www.springerlink.com/content/86574173183j6565/.

ASKITIS, N. AND ZOBEL, J. 2005. Cache-conscious collision resolution in string hash tables. In Proceedings of
the String Processing and Information Retrieval Symposium. Springer, Berlin, 91–102.

ASKITIS, N. AND ZOBEL, J. 2008. B-tries for disk-based string management. Int. J. Very Large Datab. 18, 1,
157–179. http://www.springerlink.com/content/x7545u2g85675u17.

BACON, D. F., GRANHAM, S. L., AND SHARP, O. J. 1994. Compiler transformation for high-performance computing.
ACM Comput. Surv. 26, 4, 345–420.

BADAWY, A. A., AGGARWAL, A., YEUNG, D., AND TSENG, C. 2001. Evaluating the impact of memory system perfor-
mance on software prefetching and locality optimization. In Proceedings of the International Conference
on Super-Computing. ACM, New York, 486–500.

BADAWY, A. A., AGGARWAL, A., YEUNG, D., AND TSENG, C. 2004. The efficacy of software prefetching and locality
optimizations on future memory systems. J. Instruct. Level Parall. 6, 7.

BAER, J. AND CHEN, T. 1991. An effective on-chip preloading scheme to reduce data access penalty. In Proceed-
ings of the Conference on Super-Computing. ACM, New York, 176–186.

BAER, J. AND CHEN, T. 1995. Effective hardware-based data prefetching for high-performance processors. IEEE
Trans. Comput. 44, 5, 609–623.

BASKINS, D. 2004. A 10-minute description of how Judy arrays work and why they are so fast. judy.sourceforge.
net/doc/shop interm.pdf.

BELL, J. AND GUPTA, G. 1993. An evaluation of self-adjusting binary search tree techniques. Softw. Pract.
Experi. 23, 4, 369–382.

BENDER, M., BRODAL, G. S., FAGERBERG, R., GE, D., HE, S., HU, H., IACONO, J., AND LOPEZ-ORTIZ, A. 2003. The cost
of cache-oblivious searching. In Proceedings of the Symposium on the Foundations of Computer Science.
IEEE, Los Alamitos, CA, 271–282.

BENDER, M. A., DEMAINE, E. D., AND FARACH-COLTON, M. 2000. Cache-oblivious B-trees. In Proceedings of the
Foundations of Computer Science. IEEE, Los Alamitos, CA, 399–409.

BENDER, M. A., DEMAINE, E. D., AND FARACH-COLTON, M. 2002. Efficient tree layout in a multilevel memory
hierarchy. In Proceedings of the European Symposium on Algorithms. Springer, Berlin, 165–173.

BENDER, M. A., DUAN, Z., IACONO, J., AND WU, J. 2004. A locality-preserving cache-oblivious dynamic dictionary.
J. Algor. 53, 2, 115–136.

BENDER, M. A., FARACH-COLTON, M., FINEMAN, J. T., FOGEL, Y. R., KUSZMAUL, B. C., AND NELSON, J. 2007. Cache-
oblivious streaming B-trees. In Proceedings of the Symposium on Parallel Algorithms and Architectures.
ACM, New York, 81–92.

BENDER, M. A., FARACH-COLTON, M., AND KUSZMAUL, B. C. 2006. Cache-oblivious string Btrees. In Proceedings
of the Symposium on Principles of Database Systems. ACM, New York, 233–242.

BENTLEY, J. L. AND SEDGEWICK, R. 1997. Fast algorithms for sorting and searching strings. In Proceedings of
the Symposium on Discrete Algorithms. ACM, New York, 360–369.

BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S. 2002. Reconsidering custom memory allocation. In Proceedings
of the Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM, New
York, 1–12.

BEYLS, K. AND D’HOLLANDER, E. H. 2006. Intermediately executed code is the key to find refactorings that
improve temporal data locality. In Proceedings of the Conference on Computing Frontiers. ACM, New
York, 373–382.

BRODAL, G. AND FAGERBERG, R. 2006. Cache-oblivious string dictionaries. In Proceedings of the Symposium on
Discrete Algorithms. ACM, New York, 581–590.

BRODAL, G. S., FAGERBERG, R., AND JACOB, R. 2002. Cache oblivious search trees via binary trees of small height.
In Proceedings of the Symposium on Discrete Algorithms. ACM, New York, 39–48.

BURGER, D., GOODMAN, J. R., AND KÄGI, A. 1996. Memory bandwidth limitations of future microproces-
sors. In Proceedings of the International Symposium on Computer Architecture. ACM, New York, 78–
89.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:58 N. Askitis and J. Zobel

CALDER, B., KRINTZ, C., JOHN, S., AND AUSTIN, T. 1998. Cache-conscious data placement. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating Systems.
ACM, New York, 139–149.

CALLAHAN, D., KENNEDY, K., AND PORTERFIELD, A. 1991. Software prefetching. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems. ACM, New
York, 40–52.

CARR, S., MCKINLEY, K. S., AND TSENG, C. 1994. Compiler optimizations for improving data locality. In Pro-
ceedings of the International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, New York, 252–262.

CHILIMBI, T. M. 1999. Cache-conscious data structures–design and implementation. Ph.D. thesis, Computer
Sciences Department, University of Wisconsin-Madison.

CHILIMBI, T. M., DAVIDSON, B., AND LARUS, J. R. 1999. Cache-conscious structure definition. In Proceedings of
the Conference on Programming Language Design and Implementation. ACM, New York, 13–24.

CHILIMBI, T. M., HILL, M. D., AND LARUS, J. R. 1999. Cache-conscious structure layout. In Proceedings of the
Conference on Programming Language Design and Implementation. ACM, New York, 1–12.

CHILIMBI, T. M., HILL, M. D., AND LARUS, J. R. 2000. Making pointer-based data structures cache conscious.
Computer 33, 12, 67–74.

CHILIMBI, T. M. AND SHAHAM, R. 2006. Cache-conscious co-allocation of hot data streams. In Proceedings of the
Conference on Programming Language Design and Implementation. ACM, New York, 252–262.

CLEMENT, J., FLAJOLET, P., AND VALLEE, B. 1998. The analysis of hybrid trie structures. In Proceedings of the
Symposium on Discrete Algorithms. ACM, New York, 531–539.

CLEMENT, J., FLAJOLET, P., AND VALLEE, B. 2001. Dynamic sources in information theory: A general analysis of
trie structures. Algorithmica 29, 1/2, 307–369.

COLLINS, J., SAIR, S., CALDER, B., AND TULLSEN, D. M. 2002. Pointer cache assisted prefetching. In Proceedings
of the Annual International Symposium on Microarchitecture. ACM, New York, 62–73.

COMER, D. 1979. Heuristics for trie index minimization. ACM Trans. Datab. Syst. 4, 3, 383–395.
CRESCENZI, P., GROSSI, R., AND ITALIANO, G. F. 2003. Search data structures for skewed strings. In Proceedings

of the 2nd International Workshop Experimental and Efficient Algorithms. Springer, Berlin, 81–96.
DE LA BRIANDAIS, R. 1959. File searching using variable length keys. In Proceedings of the Western Joint

Computer Conference. 295–298.
DONGARRA, J., LONDON, K., MOORE, S., MUCCI, S., AND TERPSTRA, D. 2001. Using PAPI for hardware performance

monitoring on linux systems. In Proceedings of the Conference on Linux Clusters: The HPC Revolution.
IEEE, Los Alamitos, CA.

DUNDAS, J. AND MUDGE, T. 1997. Improving data cache performance by pre-executing instruction under a cache
miss. In Proceedings of the Conference on Supercomputing. ACM, New York, 176–186.

ESAKOV, J. AND WEISS, T. 1989. Data Structures: An Advanced Approach Using C, 1st Ed. Prentice-Hall, Upper
Saddle River, NJ.

FERRAGINA, P. AND GROSSI, R. 1999. The string B-tree: A new data structure for string search in external
memory and its applications. J. ACM 46, 2, 236–280.

FREDKIN, E. 1960. Trie memory. Comm. ACM 3, 9, 490–499.
FRIAS, L., PETIT, J., AND ROURA, S. 2006. Lists revisited: Cache-conscious stl lists. In Proceedings of the Workshop

on Experimental Algorithms. Springer, Berlin, 121–133.
FRIGO, M., LEISERSON, C., PROKOP, H., AND RAMACHANDRAN, S. 1999. Cache-oblivious algorithms. In Proceedings

of the Symposium on the Foundations of Computer Science. IEEE, Los Alamitos, CA, 285.
FU, J. W. C., PATEL, J. H., AND JANSSENS, B. L. 1992. Stride directed prefetching in scalar processors. SIGMICRO

Newsl. 23, 1-2, 102–110.
GHOTING, A., BUEHRER, G., PARTHASARATHY, S., KIM, D., NGUYEN, A., CHEN, Y., AND DUBEY, P. 2006. Cache-conscious

frequent pattern mining on modern and emerging processors. Int. J. Very Large Datab. 16, 1, 77–
96.

GONNET, G. H. AND BAEZA-YATES, R. 1991. Handbook of Algorithms and Data Structures: In Pascal and C, 2nd
Ed. Addison-Wesley, Boston, MA.

GRAEFE, G., BUNKER, R., AND COOPER, S. 1998. Hash joins and hash teams in Microsoft SQL server. In Proceed-
ings of the International Conference on Very Large Databases. Morgan Kaufmann, San Francisco, CA,
86–97.

GRANSTON, E. D. AND WIJSHOFF, H. A. G. 1993. Managing pages in shared virtual memory systems: getting the
compiler into the game. In Proceedings of the International Conference on Supercomputing. ACM, New
York, 11–20.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:59

HALATSIS, C. AND PHILOKYPROU, G. 1978. Pseudo-chaining in hash tables. Comm. ACM 21, 7, 554–557.
HALLBERG, J., PALM, T., AND BRORSSON, M. 2003. Cache-conscious allocation of pointer-based data structures

revisited with HW/SW prefetching. In Proceedings of the 2nd Annual Workshop on Duplicating, Decon-
structing, and Debunking. http://www.ece.wisc.edu/∼wddd/2003/01 hallberg.pdf.

HAN, J., PEI, J., AND YIN, Y. 2000. Mining frequent patterns without candidate generation. In Proceedings of
the International Conference on Management of Data. ACM, New York, 1–12.

HANDY, J. 1998. The Cache Memory Book, 2nd Ed. Academic Press Professional, Inc., San Diego, CA.
HANSEN, W. J. 1981. A cost model for the internal organization of B+-tree nodes. ACM Trans. Program. Lang.

Syst. 3, 4, 508–532.
HARMAN, D. 1995. Overview of the second text retrieval Conference (TREC-2). Inf. Process. Manage. 31, 3,

271–289.
HEILEMAN, G. L. AND LUO, W. 2005. How caching affects hashing. In Proceedings of the Workshop on Algorithm

Engineering and Experiments. SIAM, Philadelphia, PA, 141–154.
HEINZ, S., ZOBEL, J., AND WILLIAMS, H. E. 2002. Burst tries: A fast, efficient data structure for string keys.

ACM Trans. Inf. Syst. 20, 2, 192–223.
HENNESSY, J. L. AND PATTERSON, D. A. 2003. Computer Architecture: A Quantitative Approach, 3rd Ed. Morgan

Kaufmann, San Francisco, CA.
HEWLETT-PACKARD. 2001. Programming with Judy: C language Judy version 4.0. Tech. rep., HP Part Number:

B6841-90001.
HILL, M. D. AND SMITH, A. J. 1989. Evaluating associativity in CPU caches. IEEE Trans. Comput. 38, 12,

1612–1630.
HINTON, G., SAGER, D., UPTON, M., BOGGS, D., CARMEAN, D., KYKER, A., AND ROUSSEL, P. 2001. The microarchitec-

ture of the Pentium 4 processor. Intel Technol. J. 5, 1–13.
HORTON, I. 2006. Beginning C: From Novice to Professional, 4th Ed. Apress, Berkeley, CA.
HUGHES, C. J. AND ADVE, S. V. 2005. Memory-side prefetching for linked data structures for processor-in-

memory systems. J. Parall. Distrib. Comput. 65, 4, 448–463.
INTEL. 2007. Intel 64 and IA-32 architectures software developer’s manual. Vol. 1: Basic architecture. Tech.

rep., Intel Developer’s Manual. http://www.intel.com/products/processor/manuals/index.htm.
JACQUET, P. AND SZPANKOWSKI, W. 1991. Analysis of digital tries with markovian dependency. IEEE Trans. Inf.

Theory 37, 5, 1470–1475.
JONGE, W. D. AND TANENBAUM, A. S. 1987. Two access methods using compact binary trees. IEEE Trans. Softw.

Eng. 13, 7, 799–810.
JOSEPH, D. AND GRUNWALD, D. 1997. Prefetching using Markov predictors. In Proceedings of the International

Symposium on Computer Architecture. IEEE, Los Alamitos, CA, 252–263.
KARLSSON, M., DAHLGREN, F., AND STENSTROM, P. 2000. A prefetching technique for irregular accesses to linked

data structures. In Proceedings of the Symposium on High-Performance Computer Architecture. IEEE,
Los Alamitos, CA, 206–217.

KERNS, D. R. AND EGGERS, S. J. 1993. Balanced scheduling: Instruction scheduling when memory latency is
uncertain. In Proceedings of the Conference on Programming Language Design and Implementation.
ACM, New York, 278–289.

KNUTH, D. E. 1998. The Art of Computer Programming: Sorting and Searching, 2nd Ed. Vol. 3. Addison-Wesley
Longman, Redwood City, CA.

KOWARSCHIK, M. AND WEISS, C. 2003. An overview of cache optimization techniques and cache-aware numerical
algorithms. In Algorithms for Memory Hierarchies, U. Meyer, P. Sanders, and J. F. Sibeyn, Eds. Dagstuhl
Research Seminar, Schloss Dagstuhl, Germany, 213–232.

KUMAR, P. 2003. Cache oblivious algorithms. In Algorithms for Memory Hierarchies, U. Meyer, P. Sanders,
and J. F. Sibeyn, Eds. Dagstuhl Research Seminar, Schloss Dagstuhl, Germany, 193–212.

LADNER, R. E., FORTNA, R., AND NGUYEN, B. 2002. A comparison of cache aware and cache oblivious static
search trees using program instrumentation. In Experimental Algorithmics: From Algorithm Design to
Robust and Efficient Software, R. Fleischer, B. Moret, and E. M. Schmidt, Eds. Springer, Berlin, 78–92.

LAMARCA, A. AND LADNER, R. 1996. The influence of caches on the performance of heaps. ACM J. Exp. Algo-
rithmics 1, 4.

LARSON, P. 1982. Performance analysis of linear hashing with partial expansions. ACM Trans. Datab. Syst.
7, 4, 566–587.

LATTNER, C. AND ADVE, V. 2005. Automatic pool allocation: Improving performance by controlling data structure
layout in the heap. In Proceedings of the Conference on Programming Language Design and Implemen-
tation. ACM, New York, 129–142.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

1.7:60 N. Askitis and J. Zobel

LEBECK, A. R. 1999. Cache conscious programming in undergraduate computer science. In Proceedings of the
Technical Symposium on Computer Science Education. ACM, New York, 247–251.

LEUNG, S. AND ZAHORJAN, J. 1995. Optimizing data locality by array restructuring. Tech. rep. TR-95-09-01,
Department of Computer Science and Engineering, University of Washington.

LIPASTI, M. H., SCHMIDT, W. J., KUNKEL, S. R., AND ROEDIGER, R. R. 1995. Spiad: Software prefetching in
pointer and call-intensive environments. In Proceedings of the Annual International Symposium on
Microarchitecture. ACM, New York, 252–263.

LOSHIN, D. 1998. Efficient Memory Programming, 1st Ed. McGraw-Hill Professional, New York.
LUK, C. 2001. Tolerating memory latency through software-controlled pre-execution in simultaneous multi-

threading processors. In Proceedings of the International Symposium on Computer Architecture. IEEE,
Los Alamitos, CA, 40–51.

LUK, C. AND MOWRY, T. C. 1996. Compiler-based prefetching for recursive data structures. In Proceedings
of the International Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, New York, 222–233.

MANJIKIAN, N. AND ABDELRAHMAN, T. 1995. Array data layout for the reduction of cache conflicts. In Proceedings
of the International Conference on Parallel and Distributed Computing Systems. ISCA.

MARTINEZ, C. AND ROURA, S. 1998. Randomized binary search trees. J. ACM 45, 2, 288–323.
MCCABE, J. 1965. On serial files with relocatable records. Oper. Res. 13, 609–618.
MCCREIGHT, E. M. 1976. A space-economical suffix tree construction algorithm. J. ACM 23, 2, 262–271.
MEYER, U., SANDERS, P., AND SIBEYN, J. F., EDS. 2003. Algorithms for Memory Hierarchies, Advanced Lectures.

Dagstuhl Research Seminar, Schloss Dagstuhl, Germany.
MORET, B. AND SHAPIRO, H. 1994. An empirical assessment of algorithms for constructing a minimum spanning

tree. Monographs in Discrete Mathematic and Theoretical Computer Science 15, 99–117.
MORRISON, D. R. 1968. Patricia: A practical algorithm to retrieve information coded in alphanumeric. J. ACM

15, 4, 514–534.
MOWRY, T. C. 1995. Tolerating latency through software-controlled data prefetching. Ph.D. thesis, Computer

Systems Laboratory, Stanford University.
MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation, 1st Ed. Morgan Kaufmann, San

Francisco, CA.
MUNRO, J. I. AND CELIS, P. 1986. Techniques for collision resolution in hash tables with open addressing. In

Proceedings of the Fall Joint Computer Conference. ACM, New York, 601–610.
NAZ, A., REZAEI, M., KAVI, K., AND SWEANY, P. 2004. Improving data cache performance with integrated use of

split caches, victim cache, and stream buffers. In Proceedings of the Workshop of Memory Performance.
ACM, New York, 41–48.

Newell, A. and Tonge, F. M. 1960. An introduction to information processing language V. Comm. ACM 3, 4,
205–211.

PATTERSON, D., ANDERSON, T., CARDWELL, N., FROMM, R., KEETON, K., KAZYRAKIS, C., THOMAS, R., AND YELICK, K.
1997. A case for intelligent RAM. IEEE Micro 17, 2, 34–44.

PETERSON, W. W. 1957. Open addressing. IBM J. Res. Dev. 1, 130–146.
PUGH, W. 1990. Skip lists: A probabilistic alternative to balanced trees. Comm. ACM 33, 6, 668–676.
RAHMAN, N. 2002. Algorithms for hardware caches and TLB. In Algorithms for Memory Hierarchies, U. Meyer,

P. Sanders, and J. F. Sibeyn, Eds. Dagstuhl Research Seminar, Schloss Dagstuhl, Germany, 171–192.
RAHMAN, N., COLE, R., AND RAMAN, R. 2001. Optimized predecessor data structures for internal memory. In

Proceedings of the International Workshop on Algorithm Engineering. Springer, Berlin, 67–78.
RAMAKRISHNA, M. V. AND ZOBEL, J. 1997. Performance in practice of string hashing functions. In Proceedings

of the Symposium on Databases Systems for Advanced Applications. IEEE, Los Alamitos, CA, 215–224.
RAMESH, R., BABU, A. J. G., AND KINCAID, J. P. 1989. Variable-depth trie index optimization: Theory and

experimental results. ACM Trans. Datab. Syst. 14, 1, 41–74.
RAO, J. AND ROSS, K. A. 1999. Cache conscious indexing for decision-support in main memory. In Proceedings

of the International Conference on Very Large Databases. ACM, New York, 78–89.
RAO, J. AND ROSS, K. A. 2000. Making B+-trees cache conscious in main memory. In Proceedings of the

International Conference on the Management of Data. ACM, New York, 475–486.
RATHI, A., LU, H., AND HEDRICK, G. E. 1991. Performance comparison of extendible hashing and linear hashing

techniques. ACM SIGSMALL/PC Notes 17, 2, 19–26.
RIVERA, G. AND TSENG, C. 1998. Data transformation for eliminating conflict misses. In Proceedings of the

Conference on Programming Language Design and Implementation. ACM, New York, 38–49.

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

Redesigning String Data Structures to Exploit Cache 1.7:61

ROMER, T. H., OHLRICH, W. H., KARLIN, A. R., AND BERSHAD, B. N. 1995. Reducing TLB and memory over-
head using online superpage promotion. In Proceedings of the International Symposium on Computer
Architecture. ACM, New York, 176–187.

ROSENBERG, A. L. AND STOCKMEYER, L. J. 1977. Hashing schemes for extendible arrays. J. ACM 24, 2, 199–221.
ROTH, A., MOSHOVOS, A., AND SOHI, G. S. 1998. Dependence based prefetching for linked data structures. In

Proceedings of the International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, New York, 115–126.

ROTH, A. AND SOHI, G. S. 1999. Effective jump-pointer prefetching for linked data structures. In Proceedings
of the International Symposium on Computer Architecture. ACM, New York, 111–121.

RUBIN, S., BERNSTEIN, D., AND RODEH, M. 1999. Virtual cache line: A new technique to improve cache exploitation
for recursive data structures. In Proceedings of the International Conference on Compiler Construction.
Springer, Berlin, 259–273.

SARWATE, D. V. 1980. A note on universal classes of hash functions. Inf. Process. Lett. 10, 1, 41–45.
SEDGEWICK, R. 1998. Algorithms in C, Parts 1-4: Fundamentals, Data structures, Sorting, and Searching, 3rd

Ed. Addison-Wesley, Boston, MA.
SEVERANCE, D. G. 1974. Identifier search mechanisms: A survey and generalized model. ACM Comput. Surv.

6, 3, 175–194.
SHANLEY, T. 2004. The Unabridged Pentium 4: IA32 Processor Genealogy, 1st Ed. Addison-Wesley, Boston,

MA.
SILVERSTEIN, A. 2002. Judy IV shop manual. judy.sourceforge.net/doc/shop interm.pdf.
SINHA, R., RING, D., AND ZOBEL, J. 2006. Cache-efficient string sorting using copying. ACM J. Exp. Algorithmics

11, 1.2.
SLEATOR, D. D. AND TARJAN, R. E. 1985. Self-adjusting binary search trees. J. ACM 32, 3, 652–686.
SMITH, A. J. 1982. Cache memories. ACM Comput. Surv. 14, 3, 473–530.
STOUTCHININ, A., AMARAL, J. N., GAO, G. R., DEHNERT, J. C., JAIN, S., AND DOUILLET, A. 2001. Speculative prefetch-

ing of induction pointers. In Proceedings of the International Conference on Compiler Construction.
Springer, Berlin, 289–303.

SUSSENGUTH, E. 1963. Use of tree structures for processing files. Comm. ACM 6, 5, 272–279.
SZPANKOWSKI, W. 1991. On the height of digital trees and related problems. Algorithmica 6, 2, 256–277.
TORP, K., MARK, L., AND JENSEN, C. S. 1998. Efficient differential timeslice computation. IEEE Trans. Knowl.

Data Eng. 10, 4, 599–611.
TRUONG, D. N., BODIN, F., AND SEZNEC, A. 1998. Improving cache behavior of dynamically allocated data

structures. In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques. IEEE, Los Alamitos, CA,–329.

VANDERWIEL, S. P. AND LILJA, D. J. 2000. Data prefetch mechanisms. ACM Comput. Surv. 32, 2, 174–199.
VITTER, J. S. 1983. Analysis of the search performance of coalesced hashing. J. ACM 30, 2, 231–258.
WANG, Z., BURGER, D., MCKINLEY, K. S., REINHARDT, S. K., AND WEEMS, C. C. 2003. Guided region prefetching: A

cooperative hardware/software approach. In Proceedings of the International Symposium on Computer
Architecture. ACM, New York, 388–398.

WILLIAMS, H. E., ZOBEL, J., AND HEINZ, S. 2001. Self-adjusting trees in practice for large text collections. Softw.
Practice Exper. 31, 10, 925–939.

YANG, C., LEBECK, A. R., TSENG, H., AND LEE, C. 2004. Tolerating memory latency through push prefetching
for pointer-intensive applications. ACM Trans. Archit.Code Optim. 1, 4, 445–475.

YOTOV, K., ROEDER, T., PINGALI, K., GUNNELS, J., AND GUSTAVSON, F. 2007. An experimental comparison of cache-
oblivious and cache-conscious programs. In Proceedings of the Symposium on Parallel Algorithms and
Architectures. ACM, New York, 93–104.

ZHAO, Q., RABBAH, R., AND WONG,W. 2005. Dynamic memory optimization using pool allocation and prefetching.
ACM SIGARCH Comput. Archit. News 33, 5, 27–32.

ZOBEL, J., HEINZ, S., AND WILLIAMS, H. E. 2001. In-memory hash tables for accumulating text vocabularies. Inf.
Process. Lett. 80, 6, 271–277.

Received September 2007; revised November 2010; accepted November 2010

ACM Journal of Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, Publication date: January 2011.

