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Performance Analysis of LMMSE Receivers for
M-ary QAM in Rayleigh Faded CDMA Channels

Kegen Yu, Jamie S. Evans, Member, IEEE, and Iain B. Collings, Senior Member, IEEE

Abstract—In this paper, we develop approximations for the
symbol error rate in a wireless code-division multiple-access
channel. We assume that each user employs spectrally efficient
M-ary quadrature amplitude modulation and undergoes inde-
pendent Rayleigh fading. We study the performance of linear
minimum mean-squared error receivers in situations where: i) the
channels of all users are known perfectly; ii) the receiver knows
only the average powers of the interferers but the channel of the
user of interest is still assumed to be perfectly known; and iii) the
channels of the interferers are unknown and there is estimation
error in the channel estimate of the user of interest. In the last of
these cases, the symbol error rate is a function of the variance of
the channel estimation error. We also determine an expression for
this error variance when the channel estimate is obtained from
optimal linear smoothing of a sequence of pilot symbols. Recent
results on the performance of linear receivers in large systems with
random spreading play an important role in our developments.

Index Terms—Channel estimation, code-division multiple access
(CDMA), linear receivers, multiuser detection, pilot symbols,
random spreading, Rayleigh fading.

I. INTRODUCTION

T HE linear minimum mean-squared error (LMMSE)
multiuser receiver has received considerable attention

in the past decade especially in the context of code-division
multiple-access (CDMA) networks ([1, ch. 6] and references
therein). This popularity can be attributed to the excellent
tradeoff between performance and complexity that is offered
by the LMMSE receiver along with the fact that adaptive
implementations of the receiver require very little in the way of
side information [2]–[5].

Most of the multiuser detection literature has focused on sit-
uations where each user employs simple modulation formats
such as binary or quadrature phase-shift keying. In this paper,
we consider the performance of a number of different LMMSE
receivers for a CDMA channel with each user employing spec-
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trally efficient M-ary quadrature amplitude modulation (QAM).
For related work on CDMA systems employing spectrally effi-
cient modulation, see [6]–[8].

We model the uplink path gains as independent Rayleigh
faded channels and assume rapid variation of these channels
with time. The performance measure of interest is the symbol
error rate averaged over the Rayleigh distributed path gains.
We obtain approximate expressions for this average symbol
error rate for a number of cases.

1) We first assume that the channels of all users are known
perfectly at the receiver (Section III).

2) We next drop the assumption that the channels of in-
terfering users are known and assume that the receiver
knows only the average powers of the interferers. The
channel of the user of interest is still assumed to be per-
fectly known (Section IV).

3) Finally, we consider the more general case where we also
allow for an estimation error in the channel estimate of
the user of interest (Section V).

In the last (and most practical) of these cases, the symbol
error rate is a function of the variance of the channel estimation
error. We move on in Section VI to determine an expression for
this error variance when the channel estimate is obtained from
optimal linear smoothing of a sequence of pilot symbols that are
periodically inserted into the stream of data symbols. The use
of pilot symbols has been considered in single-user Rayleigh
faded channels in the seminal work [9]. This paper extends
the approach of [9] to CDMA systems employing LMMSE
receivers. Other work considering performance analysis of
pilot symbol assisted receivers for CDMA channels can be
found in [10]–[13].

In all of the above cases, our final performance measures are
simplified using large system approximations that involve mod-
eling the signature sequences as random quantities and looking
at the limit of large spreading gain and a large number of users
[14]–[16].

Throughout this paper, the symbol error rate approximations
are compared with simulated values for practical sized systems
to verify their accuracy.

II. RAYLEIGH FADING CDMA CHANNELS

The model for the received signal after down conversion and
chip-matched filtering is given by

(1)
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where is the channel of userin symbol , is the
data symbol for user in symbol , is a white Gaussian
noise vector, and is the signature sequence of user, which
we assume is repeated from symbol to symbol. Each signa-
ture sequence is a column vector of length(the processing
gain), which is assumed known at the receiver. For performance
analysis, we will assume that the entries (chips) ofare inde-
pendent and identically distributed random variables with mean
zero and variance . Write for the
matrix of signature sequences and for the

matrix with the signature sequence of user one
removed.

A more compact representation for the signal model is

where ,
and and are similarly

defined but with and removed.
We further assume the following.

1) The channel process is a stationary, circularly
symmetric, complex Gaussian random process with

and with
.

2) The vector noise process is a stationary, circu-
larly symmetric, complex Gaussian random process with

and .
3) The data process is a white random process with

each selected from an M-ary QAM alphabet with
and .

4) The signature sequences, data, noise, and channel pro-
cesses are independent.

One assumption that we have made above is that the average
(received) power of each user is the same (since

for all ). This might correspond to a situation where there
is power control at the central receiver: assume that the power
control operates on a time scale that is slow compared with the
Rayleigh fading but fast compared to the changes in average
power due to distance-based path loss and shadowing. Having
said that, the assumption is made only for ease of exposition, and
all results can be readily extended to the more general situation
of unequal average received powers. The term signal-to-noise
ratio (SNR) is reserved for the quantity .

Throughout, we denote vectors and matrices (random and de-
terministic) by boldface characters. The transpose of a matrix
is denoted by and the conjugate transpose by.

III. SLOWLY FADING CHANNELS

A. The Linear MMSE Detector

The linear multiuser receiver for a particular user (say, User
1) takes the received vector in symbol, , and produces
a scalar decision statistic , where the linear
receiver is a (complex) column vector of length . The
LMMSE receiver is chosen so as to minimize the mean-squared
error between the data symbol of the user of interest

and the output of the linear receiver :
. The well-known solution [1, ch. 6] is to choose

where we note that the presence of the background noise guar-
antees the existence of the matrix inverse. It is worth remarking
that the above expectations should be seen as conditioned on
whatever information is assumed known by the receiver. This
information might consist of the signature sequences of all users
and perhaps the channels of some or all of the users.

In this section, we consider a situation where the channels of
all users fade slowly enough so that it is reasonable to assume
that the channels of all users are perfectly known. With this as-
sumption, we have from (1)

where

and

The LMMSE receiver for User 1 is thus given by

Making use of the matrix inversion lemma, we have alterna-
tively

where and

is a real scalar. The decision statistic produced at the output of
the receiver is

Writing

(2)

and substituting for from (1), we see that

(3)

where is the sum of the interference and noise terms

Using the statistical properties of the data symbols and the noise,
we see that

(4)

and that is a circularly symmetric (complex) random
variable.
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We assume that the output of the LMMSE receiver is
passed to a decision device. This decision device forms

(5)

and chooses the constellation point closest to . This
simple minimum distance detector would in fact be the max-
imum likelihood detector (based on observation of ) if
the interference plus noise term was a complex Gaussian
random variable. Indeed there is a lot of evidence to suggest
that this Gaussian approximation is accurate for a wide range
of system parameters [17], [18]. Next, we will evaluate the
symbol error rate under this Gaussian approximation.

Before proceeding, we note that it should be clear from (3)
and (4) that the quantity is the signal-to-interference
ratio (SIR) of the LMMSE receiver.

B. Symbol Error Rate

Our starting point in this section is the simple model of (5),
i.e.,

where (under our approximation) is a circularly sym-
metric complex Gaussian random variable with zero mean and
variance 1 .

Using the (single-user) results presented in Appendix A, we
see immediately that the symbol error rate for square QAM,
conditioned on , is given by

(6)

where

An upper bound on the symbol error probability is

(7)

It should be noted that (22) is only an upper bound when the
noise term is Gaussian. In our model, it should be considered as
an approximation only—not as an upper bound.

C. Large System Approximation

The performance measures derived in the previous section
were left as functions of the average SIR. Referring back to
(2), we see that is a function of the signature sequences of all
users and the channels of all users except User 1. The average
symbol error rates we obtained were averaged over the channel
of User 1 but were not averaged over.

We could attempt to determine the distribution ofbased on
knowledge of distributions of the signature sequences and chan-
nels; however, this is a very difficult problem. Alternatively, we

can call on some powerful new results that look at the behavior
of when the system is large [15], [16], [19]. We have the fol-
lowing result, which follows directly from [16, Theorem 3.1].

Result 1: As with and constant, and
under some mild assumptions on the signature sequences (in
addition to those given in Section II), the random variable

converges in probability to the deterministic, which is the
unique positive solution to the fixed-point equation

(8)

Remark 1: In the above, we have used the fact that the prob-
ability density function of the squared magnitude of the channel
gains, (i.e., ) is given by

Remark 2: Equation (8) is easily solved using the simple it-
eration

starting with any initial condition . The integral in
the above iteration can be expressed in terms of an exponential
integral function.

The limiting value of is a function of the average SNR
and the system loading . We have essentially ob-

tained our averaging by looking at a large system. In the limit,
the dependence on the realizations of the signature sequences
and the channel gains disappears and we are left with a deter-
ministic quantity.

We can substitute for in (21) or (22) to get our final
approximations for the average symbol error probability.

D. Accuracy of Approximation

In this section, we will give an indication of the accuracy
of the Gaussian and the large system approximations for a fi-
nite sized system. Fig. 1 compares results obtained from (6)
(with ) with results obtained from simulation. The
horizontal axis is the average SNR per bit . Re-
sults are shown for constellations with , , and

. The simulations have spreading gain and
have users; hence we have . In each trial,
new signature sequences and new channels are randomly gener-
ated. For each combination of parameters, trials are conducted
until 1000 symbol errors are observed. While the system simu-
lated has only a moderate processing gain, we observe that the
large system approximation to the symbol error rate is quite ac-
curate over the range of parameters tested.
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Fig. 1. Comparison of SER approximation wth simulationN = 31; K = 20:

IV. FAST FADING CHANNELS WITH PERFECT

CHANNEL ESTIMATION

In this section, we will drop the assumption that the channels
of the interfering users are known and assume only that the re-
ceiver has knowledge of the average powers of the interferers.
For the moment we will stick with the assumption that the re-
ceiver has a perfect estimate for the channel of User 1—the user
of interest. With these assumptions, and referring to (1), we have

where we have used the fact that for all users,
and

In this case the expectations are not conditioned on the channels
of the interfering users . This means that the
diagonal matrix

from the previous section is replaced by the matrix
. The LMMSE receiver for User

1 is thus given by

(9)

where

(10)

and we have again made use of the matrix inversion lemma.
We can proceed from this point exactly as in Section III but

with replaced by throughout. In particular, will be
replaced by where

(11)

Fig. 2. Performance of MMSE receivers with average and instantaneous
powers.

We have the following result concerning the large system limit
of .

Result 2: As with and constant, and
under some mild assumptions on the signature sequences (in
addition to those given in Section II), the random variable
converges in probability to the deterministic, which is the
unique positive solution to the fixed-point equation

In this case, the fixed-point equation is a quadratic equation with
desired solution

(12)

Final approximate expressions for the average symbol error rate
when each user employs M-ary QAM are obtained by replacing

with in (6) and (7).
The linear MMSE receiver we consider in this section re-

quired less information than the receiver considered in Sec-
tion III. In particular, we assume in this section that the average
power of the interferers was available but not the (instantaneous)
channel gains of the interferers. It is of interest to examine the
loss in performance that results from going without knowledge
of the interferers channels (similar comparisons are discussed
in [19] and [20]).

Fig. 2 compares the approximate symbol error rate of both
receivers for 16-ary QAM. These curves are generated from (6)
with replaced by or . Plots are shown for system load-
ings of and . The performance loss from using
average powers is negligible for and still quite small
for .
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Fig. 3. Frame structure.

V. FAST FADING CHANNELS WITH CHANNEL

ESTIMATION ERROR

In this section, we will consider the more general case where
we have only an imperfect estimate of the channel of User 1 at
the receiver.

The receiver will be as in (9) but with replaced by an
estimate

Note that the real scalarin (9) does not actually impact the re-
sults and has thus been omitted. We can break this receiver into
two parts: the first is the multiuser receiver whose job is solely
to suppress interference; the second is the single-user receiver
responsible for rotating and scaling the scalar output of the mul-
tiuser receiver.

The first part can be made totally independent of (and
of )

(13)

and produces as output

where

is a circularly symmetric complex random variable with zero
mean and variance that is independent of and .
Note that we will come across the time-invariantagain when
we look at channel estimation.

At this point we make the following approximations.

A1) As in the previous sections we approximate the noise
plus interference term as a complex Gaussian random
variable.

A2) We also approximate the channel estimation error
as a circularly symmetric complex

Gaussian random variable with mean zero and vari-
ance that is independent of , , and

.
Under these approximations the (single-user) results from

Appendix A on the symbol error rate for square QAM with

channel estimation errors can be directly applied. In particular,
we can approximate the symbol error rate by (24) where

(14)
In a large system we replace by to get our final approx-

imation.

VI. PILOT-BASED LMMSE CHANNEL ESTIMATION

In the previous section we derived an upper bound on the
symbol error probability for our multiuser M-ary QAM system
in the presence of channel estimation error. The resulting error
bound is a function of the variance of the channel estimation
error, and it is valuable to relate this variance to key physical
parameters such as the channel fading rate and the quantity of
resources dedicated to channel estimation. This section provides
a summary of the relevant results from [13], which we need in
this paper to proceed with our proposed coupled estimator/de-
tector structure and subsequent analysis.

In this section, we consider a particular channel estimation
structure where pilot symbols are periodically inserted into the
sequence of data symbols of user one. In particular, suppose that
a pilot symbol is inserted after every block of 1 data symbols
at locations 2 0 2 , as illustrated in Fig. 3.

We will assume for simplicity that . Define the
sampled output sequence

(15)

where we have defined .

A. Optimal Linear Smoothing

We wish to make use of the entire sequence of pilot sym-
bols to obtain a channel estimate for user one at any time. To
begin, observe that we must handle the general situation of esti-
mating the channel during a symbol that does not necessarily co-
incide with a pilot point. Define the shifted and sampled channel
process for User 1

and note that . We wish to estimate by lin-
early smoothing the (pilot) observation process . The op-
timal linear smoother will not depend onbut will vary with .
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To begin we define, for the sampled channel process, the au-
tocorrelation function

and the power spectral density

The above expressions do not depend on, so we will write
and . We will also need to

deal with the correlation function

and corresponding spectral density function

We wish to form the estimate

where is a row vector of length . We have the following
theorem [13].

Theorem 1: The optimal (MMSE) linear smoother is

where

(16)

and is given in (11). The corresponding MMSE is

(17)

The optimal channel estimate is thus

where was defined in the context of data estimation in (13).
This optimal linear smoother first projects the received vector at
each pilot point to a scalar and then the time sequence of scalar
values is processed by a single input, single output (SISO) linear
smoother to produce the final channel estimates. At this point
it is worth highlighting that the multiuser aspect of both data
and channel estimation problems is taken care of by the same
front-endlinear multiuser receiver.

Remark 3: In a large system with random spreading,, as
given in (11), converges to defined in (12) and all instances

of above can be replaced by. The MSE and the SISO
linear smoother are thus independent of the signature se-
quences in a large system.

B. Spectral Density of Sampled Channel Process

The performance of the optimal linear smoother as given in
(17) depends on the spectral densities and . It
is of interest to relate these to the power spectral density of the
original channel process .

Recall that so that the autocorrelation
function of results from decimating or downsampling
the autocorrelation function of . The resultant power
spectral density is

(18)

Similarly, we have

(19)
These expressions can be substituted into (17) to make explicit
the dependence of the MSE on the spectral density of the
channel process , the rate of insertion of pilot symbols,
and the time shift .

We can simplify things greatly by making some assumptions
about and . In particular, suppose that

and that . These conditions imply that there is no
aliasing so that

and

This allows us to write

and

The impact of varying on the MSE is clearly isolated in this
expression. Also observe that the MSE does not depend on,
which means that the channel estimate in the middle of a frame
is just as good as an estimate at a pilot symbol.

C. Special Case: Ideal Low-Pass Channel

Before proceeding, we consider the special case where the
channel is bandlimited and has a flat spectrum up to the nor-
malized Doppler frequency :

otherwise.
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Fig. 4. Structure of receiver.

If , then we have

and

VII. COUPLED ESTIMATOR/DETECTORSTRUCTURE

The results of Sections V and VI can now be combined to give
a coupled data and channel estimator along with an approximate
expression for the performance, as measured by symbol error
rate. The receiver is illustrated in Fig. 4.

The first stage of LMMSE channel estimation and of
LMMSE data estimation (assuming only the average power of
the interferers is known) involves forming

where

is given in (13) and repeated here for convenience.
In order to obtain channel estimates for times

, the sequence of outputs at the pilot points
is passed through a smoother with impulse re-

sponse given by , where is
given in (16). The channel estimates are then fed to a data de-
tector, which forms

and then passes this soft data estimate to a minimum distance
detector.

The front-end linear multiuser receiver is time-invariant, de-
pending only on the average powers of the interfering users and
the signature sequences of all users, which we assume are re-
peated from symbol to symbol. This front-end is thus appro-
priate for situations when the channels of all users are changing

quickly. The output of the multiuser receiver is a scaled estimate
of the product and the remainder of the receiver is
simply a pilot symbol aided single-user receiver.

An approximate expression for the symbol error rate of this
multiuser receiver can be obtained from (24) and (14), remem-
bering that the channel estimation error is in general dependent
on the position of the symbol relative to the pilots. We have

where

with

and where is given by (17) (with ). As defined
in the Appendix, are the points in the M-ary
QAM constellation normalized such that the average energy per
symbol is one and , , and are index sets for interior,
edge, and corner symbols, respectively.

If the channel is bandlimited and pilots are inserted frequently
enough to avoid aliasing, then as mentioned in Section VI, the
channel estimation error variance does not depend on the
position within a frame , and a simpler error expression results.

The final symbol error rate approximation is a function of

• the number of symbols in the QAM constellation;
• the pilot insertion period ;
• the average signal-to-noise ratio ;
• the system loading ;
• the (common) power spectral density of the channels

.
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Fig. 5. Comparison of SER approximation with simulation.

VIII. N UMERICAL STUDIES

In this section, we present some simulation results to explore
the accuracy of our analytical performance measures and then
study the performance of the coupled receiver as the rate of in-
serting pilot symbols is varied.

A. Comparison With Simulation

We begin by listing all the parameters for the system under
study.

1) We consider a synchronous CDMA system with 25 users
and a spreading gain of 50 leading to a system loading of

.
2) For each of 50 simulation runs, the spreading sequences

are randomly chosen at the beginning and then fixed for
the duration of the run. Each simulation point thus cor-
responds to a different realization of the spreading se-
quences—there is no averaging over the sequences.

3) Each user employs 64-QAM and sends symbols at a rate
of 64 ksps so that the bit rate is 384 kbps.

4) The channel of each user is assumed to have a flat spec-
trum up to a cutoff frequency of , which
corresponds to a normalized Doppler frequency of 0.02.
In simulations, this channel was approximated using a
fifth-order Chebyshev filter.

5) Pilot symbols are inserted after every nine data symbols
so that . For the simulated system, channel es-
timates are obtained using a 33-tap smoother formed by
truncating the optimal smoother given in Section VI-C.

Fig. 5 shows the symbol error rate versus average SNR ob-
tained from simulation along with the analytical approximation.
Results from all 50 simulation runs are plotted for each value of
average SNR per bit.

The spread in SER values due to choice of signature se-
quences clearly increases as the average SNR per bit increases.
When the SNR is low, the performance is limited by the
background noise and thus the impact of randomly chosen
spreading sequences is not great. When the SNR is high,

Fig. 6. Variation of SER approximation with pilot insertion period for different
constellation sizes� = 0:5:

Fig. 7. Variation of SER approximation with pilot insertion period for different
system loadingsM = 16:

however, the performance is limited by the multiple access
interference and the system is significantly more sensitive to
the choice of spreading sequences. It is important to note that,
for all SNR values, this spread will decrease as the size of the
system increases (as and get larger) in line with the large
system results presented earlier.

Our approximate expression for the symbol error rate is seen
to be larger than the values obtained by simulation for almost all
realizations of the signature sequences. This makes our approxi-
mations fairly robust to the choice of signature sequences—even
for moderate size systems such as the one simulated.

B. Variation of Performance With Pilot Insertion Period

We now examine how the symbol error rate varies within
a number of settings. Figs. 6 and 7 plot the approximate symbol
error rate versus for . In both plots, we have
assumed that the channel spectrum is flat with .
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In this case is the largest value of that satisfies the
antialiasing condition .

Both plots have the average SNR per data bit set to 30 dB.
Note that the average SNR per data bit is given by
1 1 . As and are varied, we are thus re-
quired to vary so as to maintain the average SNR per data
bit at a constant value.

Fig. 6 looks at the variation in performance for and
and . Fig. 7 looks at the variation in performance

for and , with fixed at 16. Observe that in
both cases, the performance is quite insensitive tofor
and degrades very quickly as soon as the antialiasing condition
is broken.

IX. CONCLUSION

In this paper, we have derived approximate expressions for
the symbol error rate of users in a wireless CDMA channel.
Each user sends symbols from an M-ary QAM constellation and
suffers fast Rayleigh fading. At the receiver we assume that the
received signal first passes through a linear MMSE receiver and
then to a minimum distance detector. We derived approximate
expressions for the symbol error rate in three different scenarios.

1) The channels of all users are known perfectly at the re-
ceiver.

2) The receiver knows only the average powers of the in-
terferers but the channel of the user of interest is still
assumed to be perfectly known.

3) The receiver knows only the average powers of the in-
terferers and there is an estimation error in the channel
estimate of the user of interest.

In the last of these cases, the symbol error rate was shown to be
a function of the variance of the channel estimation error. We
also determined an expression for this error variance when the
channel estimate is obtained from optimal linear smoothing of
a sequence of pilot symbols.

While simplifying assumptions were made in this paper in
order to improve the clarity of the presentation, the results ob-
tained can be extended in a number of directions. In particular,
it is trivial to modify the results for the case when the users have
unequal average powers or, more generally, different channel
statistics. It is also possible to handle frequency-selective fading
channels within our framework.

APPENDIX

SYMBOL ERRORRATES FORM-ARY QAM

In this Appendix, we derive upper bounds on the symbol error
probability for a single-user communication system that sends
quadrature amplitude modulated data over a frequency-flat
Rayleigh fading channel (see also [21]). Results are given first
for the case of perfect channel knowledge and second for a
model with imperfect channel estimates. Previous work taking
into account channel estimation error can be found in [9] and
[22]. In these papers, the resultant error expressions are quite
involved, especially for high-order signal constellations. In
[23], a method was proposed for calculating error expressions
when nonperfect channel information is available, but no
explicit expressions were given.

In this Appendix, we complement the previous work by fo-
cusing on (relatively) simple upper bounds on the symbol error
rate of M-ary QAM with channel uncertainty. The simplifica-
tions result because we consider symbol as opposed to bit errors,
give upper bounds rather than exact results, and assume that the
channel estimate is obtained as the MMSE estimate, thereby en-
forcing a key independence property.

A. System Model

Our starting point in this section is the complex baseband
signal after matched filtering, which we model by

in symbol period .

1) The data symbols form a sequence of indepen-
dent M-ary QAM symbols. Each of the M symbols is
equally likely to occur and the constellation is scaled so
that .

2) The sampled channel process is modeled as a
stationary sequence of circularly symmetric complex
Gaussian random variables. The channel process has
zero mean and we assume that .

3) The filtered and sampled noise sequence is a
sequence of independent circularly symmetric complex
Gaussian random variables with mean zero and variance

.
4) We further assume that the data, channel, and noise se-

quences are independent processes.
This model is a single-user equivalent of our main signal

model (1).

B. Symbol Error Rate With Known Channel

Suppose initially that the channel process is known
perfectly at the receiver. In this case, the maximum likelihood
receiver forms for each symbol the decision statistic

and then passes it to a minimum distance detector.
For a square M-ary QAM constellation, the symbol error

probability conditioned on is exactly [24]

(20)

which depends on through only its magnitude. We de-
note the above conditional error probability by . Of
more interest is the symbol error probability averaged over the
Rayleigh distributed
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To push further, we require expressions for definite integrals of
the form

and

where is some constant. Fortunately, closed-from expressions
are available for these definite integrals; see [25, Sec. 6.287] for

and [25, Sec. 8.258] for . After some manipulation, the end
result is

(21)

where

is a function of the average signal-to-noise ratio .
An upper bound on the symbol error probability results when

the second term in (20) is neglected. The average error proba-
bility is then bounded by

(22)

We reiterate that the above expressions apply to square QAM
constellations only. Equivalent expressions could also be devel-
oped for general rectangular constellations; however, we do not
pursue this here.

C. Symbol Error Rate With Estimated Channel

We now wish to consider the more realistic model where the
receiver has access to a channel estimate as opposed to the ac-
tual channel. Let the channel estimate be denoted by and
rewrite the received signal in the form

The receiver ignores the fact that there is an estimation error and
employs the detection rule specified in Section B with the true
channel replaced by the available estimate. That is, the receiver
forms

where

(23)

and then passes to a minimum distance detector.
To proceed with our analysis, we need to specify the statistical

properties of the channel estimate. We will make the following
assumption in this section.

Assumption:The channel estimation error is
a circularly symmetric complex Gaussian random variable with
mean zero and variance and is independent of , ,
and .

This assumption will be true whenever is obtained as
the minimum mean-squared error estimate of based on
any collection of random variables that is independent of
and .

Returning to (23) and conditioning on and , we see
that is a circularly symmetric complex Gaussian random
variable with mean zero and variance

In this case, the calculation of the symbol error probability is
complicated by the fact that the variance of the additive noise
depends on the magnitude of the transmitted data symbol.

Consider a data symbol that is not on the edge of the constel-
lation and therefore has four neighbors at the minimum distance.
The exact error probability conditioned on this symbol and the
channel estimate is

where

Rather than working with the exact expression, we will use the
upper bound

where is given above.
While this upper bound is appropriate for all symbols in the

constellation, we can tighten it slightly for edge and corner
points by changing the constant in front of the Q-function to
three or two, respectively. Let the positions of the symbols be
listed as and define , , and as index sets
for interior, edge, and corner symbols, respectively. Averaging
over the possible transmitted symbols, we arrive at the bound

where
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TABLE I
COEFFICIENTS IN THESEROF 16-QAM WITH CHANNEL ESTIMATION

TABLE II
COEFFICIENTS IN THESEROF 64-QAM WITH CHANNEL ESTIMATION

The final step is to average the above expression over ,
which, from our assumption, is Rayleigh distributed with

. The result is the following bound:

(24)

where

A simpler bound results if we treat every constellation point as
an interior point

(25)

Observe that when there is no channel estimation error
, the above bounds reduce to the bound obtained when the

channel is perfectly known (22).
Examples: For 16-QAM, the distance between adjacent

symbols is . Equation (24) reduces to

where and are listed in Table I.
For 64-QAM, the minimum distance is and (24) re-

duces to

(26)

where and are listed in Table II.
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