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Performance Analysis of LMMSE Receivers for
M-ary QAM in Rayleigh Faded CDMA Channels

Kegen Yu, Jamie S. Evandember, IEEEand lain B. CollingsSenior Member, IEEE

Abstract—in this paper, we develop approximations for the trally efficient M-ary quadrature amplitude modulation (QAM).

symbol error rate in a wireless code-division multiple-access For related work on CDMA systems employing spectrally effi-
channel. We assume that each user employs spectrally eﬁ'c'emcient modulation, see [6]-[8]

M-ary quadrature amplitude modulation and undergoes inde- . . . .
pendent Rayleigh fading. We study the performance of linear W& model the uplink path gains as independent Rayleigh

minimum mean-squared error receivers in situations where: i) the faded channels and assume rapid variation of these channels
channels of all users are known perfectly; ii) the receiver knows with time. The performance measure of interest is the symbol
only the average powers of the interferers but the channel of the error rate averaged over the Rayleigh distributed path gains.

user of interest is still assumed to be perfectly known; and iii) the We obtain approximate expressions for this average symbol
channels of the interferers are unknown and there is estimation

error in the channel estimate of the user of interest. In the last of ©ffOr rate for a number of cases.

these cases, the symbol error rate is a function of the variance of 1) We first assume that the channels of all users are known
the channel estimation error. We also determine an expression for perfectly at the receiver (Section IIl).

this error variance when the channel estimate is obtained from 2) We next drop the assumption that the channels of in-

optimal linear smoothing of a sequence of pilot symbols. Recent terfering users are known and assume that the receiver
results on the performance of linear receivers in large systems with g

random spreading play an important role in our developments. knows only the average powers of the interferers. The

N o . channel of the user of interest is still assumed to be per-
Index Terms—Channel estimation, code-division multiple access P

(CDMA), linear receivers, multiuser detection, pilot symbols, feptly known (Sgcnon V).
random spreading, Rayleigh fading. 3) Finally, we consider the more general case where we also

allow for an estimation error in the channel estimate of
the user of interest (Section V).
|. INTRODUCTION In the last (and most practical) of these cases, the symbol
HE linear minimum mean-squared error (LMMSEJgrror rate is a function of the variance of the channel estimation
multiuser receiver has received considerable attentieror. We move on in Section VI to determine an expression for
in the past decade especially in the context of code-divisitiis error variance when the channel estimate is obtained from
multiple-access (CDMA) networks ([1, ch. 6] and referencegptimal linear smoothing of a sequence of pilot symbols that are
therein). This popularity can be attributed to the excelleperiodically inserted into the stream of data symbols. The use
tradeoff between performance and complexity that is offered pilot symbols has been considered in single-user Rayleigh
by the LMMSE receiver along with the fact that adaptivéaded channels in the seminal work [9]. This paper extends
implementations of the receiver require very little in the way ghe approach of [9] to CDMA systems employing LMMSE
side information [2]-[5]. receivers. Other work considering performance analysis of
Most of the multiuser detection literature has focused on spilot symbol assisted receivers for CDMA channels can be
uations where each user employs simple modulation forméesind in [10]-[13].
such as binary or quadrature phase-shift keying. In this paper|n all of the above cases, our final performance measures are
we consider the performance of a number of different LMMSEmplified using large system approximations that involve mod-
receivers for a CDMA channel with each user employing speeling the signature sequences as random quantities and looking
at the limit of large spreading gain and a large number of users

14]-[16].
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whereay (m) is the channel of usdrin symbolm, b, (m) isthe and the output of the linear receivefm): A = E[|bi(m) —
data symbol for usek in symbolm, w(m) is a white Gaussian c¢*(m)r(m)|?]. The well-known solution [1, ch. 6] is to choose
noise vector, andy, is the signature sequence of ugewhich . 1o s

we assume is repeated from symbol to symbol. Each signa- c(m) = (E[e(m)r*(m)])" E [by(m)r(m)]

ture sequence is a column vector of length(the processing \yhere we note that the presence of the background noise guar-
gain), which is assumed known at the receiver. For performanggees the existence of the matrix inverse. It is worth remarking
analysis, we will assume that the entries (chipsy,oére inde- that the above expectations should be seen as conditioned on
pendent and identically distributed random variables with meg@jhatever information is assumed known by the receiver. This
zero and variance/N. Write S = [s; s, ...sk] forthe N x K jnformation might consist of the signature sequences of all users
matrix of signature sequences afigd = [sz s3...sx] for the  anq perhaps the channels of some or all of the users.

N x (K — 1) matrix with the signature sequence of user one | thjs section, we consider a situation where the channels of
removed. _ _ _ all users fade slowly enough so that it is reasonable to assume
A more compact representation for the signal modelis  that the channels of all users are perfectly known. With this as-

sumption, we have from (1)
r(m) =V PSA(m)b(m) + w(m)

E [r(m)r*(m)] = PSD(m)S* + oI
:\/ﬁ(ﬂ(m)bl(m)sl +\/FS1A1(m)b1(m)—|—w(m) [ ( ) ( )] ( ) +

where
here A(m) = diag(ai(m),az(m),...,ax(m)), b(m) = m) = diag { |ay(m)?, lag(m), . . ., ag(m)]?
s (mYha(m) b)) AN () et () are simiarly 2 = g {lax ()" Jaa(m)* . Jaxc (o))
defined but witha, (m) andb; (m) removed. and

We further assume the following.

1) The channel proces§ai} is a stationary, circularly
symmetric, complex Gaussian random process wi
Elax(m)] = 0 and Efak(m + n)aj(m)] = Rq(n) with
R,(0) = 1. c(m) = VPay(m) (PSD(m)S* + 1) 's;.

2) The vector noise procegsv(m)} is a stationary, circu- ) o )
larly symmetric, complex Gaussian random process Wifﬂaklng use of the matrix inversion lemma, we have alterna-
E[w(m)] = 0 andE[w(m + n)w*(m)] = o218(n). tively

3) The data proces§h,} is a white random process with # oy —1

) =kVP PS,D S I
eachby () selected from an M-ary QAM alphabet with c(m) = rvV/Pay (m) (PS1D1(m)S] + 0°I) " sy
E[bk(m)] = 0 andE[|bx(m)|?] = 1. . whereD (m) = diag{|az(m)|?,...,|ax(m)|?} and

4) The signature sequences, data, noise, and channel pro- )
cesses are independent. K= [1 + Plai(m)[* s} (PS1D1(m)S% + o°T)~ sl]

One assumption that we have made above is that the average o o

(received) power of each user is the same (sifie;, (m)|2] = IS a real scalar. The decision statistic produced at the output of
1 for all k). This might correspond to a situation where therde receiver is

is power control at the central receiver: assume that the power — VPa* * (PS.D q* 2p) !

control operates on a time scale that is slow compared with thez(m) wV/Paj(m)st (PS$I1D1(m)S] + 0°1) " r(m).
Rayleigh fading but fast compared to the changes in averageiting

power due to distance-based path loss and shadowing. Having . . oy —1

said that, the assumption is made only for ease of exposition, and Bs = Psi (PSlDl(m)s1 to I) S1 )

all results can be readily extended to the more general situat'gmj substituting for
of unequal average received powers. The term signal-to-noise

ratio (SNR) is reserved for the quantiiy/o>. 2(m) = & |ay (m)|* Beby () + wv(m) (3)

Throughout, we denote vectors and matrices (random and de- _ ) _

terministic) by boldface characters. The transpose of a mAIrixWhere”(m) is the sum of the interference and noise terms

E [bt(m)r(m)] = VPay(m)s;.

tlILhe LMMSE receiver for User 1 is thus given by

-1

(m) from (1), we see that

is denoted byA’ and the conjugate transpose Ay . w(m) = \/Faf(m)si (PSlDl(m)ST n 021)—1
K
lll. SLOwLY FADING CHANNELS X (Z VPay(m)by(m)sy, + w(m)) :
k=2

A. The Linear MMSE Detector

The linear multiuser receiver for a particular user (say, Us
1) takes the received vector in symbnol r(m), and produces
a scalar decision statisti¢m) = c*(m)r(m), where the linear E[p(m)] =0, E [|v(m)|2] = |ay(m)|? B, (4)
receiverc(m) is a (complex) column vector of lengtN. The
LMMSE receiver is chosen so as to minimize the mean-squaraad thatv(m) is a circularly symmetric (complex) random
error between the data symbol of the user of intebgétn) variable.

glsing the statistical properties of the data symbols and the noise,
we see that
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We assume that the output of the LMMSE receiver) is  can call on some powerful new results that look at the behavior
passed to a decision device. This decision device forms of 3s when the system is large [15], [16], [19]. We have the fol-
lowing result, which follows directly from [16, Theorem 3.1].
—— (5) Result 1: As N — oo with K = aN anda constant, and
lax(m)]” Bs under some mild assumptions on the signature sequences (in
addition to those given in Section Il), the random variable

. z(m) v(m)
by(m) = —2" by (m
" Smmra,

and chooses the constellation point closest)tom). This
simple minimum distance detector would in fact be the max-
imum likelihood detector (based on observationz¢fn)) if

the interference plus noise terim) was a complex Gaussian
random variable. Indeed there is a lot of evidence to sugg
that this Gaussian approximation is accurate for a wide ranld
of system parameters [17], [18]. Next, we will evaluate the

B, = Pst (PSDy(m)S} + 0°1) sy

sopverges in probability to the deterministi¢, which is the
ique positive solution to the fixed-point equation

-1

symbol error rate under this Gaussian approximation. ; o2 T .
Before proceeding, we note that it should be clear from (3) Pe=|p+ 04/ = a:ﬂTe dr| . (8)
and (4) that the quantity:; (m)|? 3, is the signal-to-interference 0 3

ratio (SIR) of the LMMSE receiver.
Remark 1: In the above, we have used the fact that the prob-

B. Symbol Error Rate ability density function of the squared magnitude of the channel

. . o\ i
Our starting point in this section is the simple model of (Sﬁa'ns' (i-e.Jax(m)[") is given by

e A ) = {0, <0
b1(m) = by (m) + u(m) : T le®, z>0.

where (under our approximation)(m) is a circularly sym-  Remark 2: Equation (8) is easily solved using the simple it-
metric complex Gaussian random variable with zero mean agghtion

variance ¥(|a1(m)|*Bs).

Using the (single-user) results presented in Appendix A, we ) oo -1
see immediately that the symbol error rate for square QAM, Bl = 7 4 a/ T
conditioned ond,, is given by P ) 1+ 2
Py=11 ! 20 (1 ! ; i initi ition3(®) i i
M = ) TP\ T \/—M starting Wl_th any initial conditiongs 2 0. The integral in _
[ 1 9 ( ) X ] © _thte ab(?\;e |tetrat|on can be expressed in terms of an exponential
X |—=+ — tan™ " p integral function.
VM 7w VM The limiting value of3, is a function of the average SNR
where (P/o?) and the system loadingx). We have essentially ob-
tained our averaging by looking at a large system. In the limit,
)= Bs the dependence on the realizations of the signature sequences
%(M -1 +8 and the channel gains disappears and we are left with a deter-
o ministic quantity.
An upper bound on the symbol error probability is We can substitutgs! for 3 in (21) or (22) to get our final
1 approximations for the average symbol error probability.

D. Accuracy of Approximation

It should be noted that (22) is only an upper bound when thein this section, we will give an indication of the accuracy
noise term is Gaussian. In our model, it should be consideredsishe Gaussian and the large system approximations for a fi-
an approximation only—not as an upper bound. nite sized system. Fig. 1 compares results obtained from (6)
(with 38, = p1) with results obtained from simulation. The
horizontal axis is the average SNR per Bit(o? log, M). Re-

The performance measures derived in the previous sectgirits are shown for constellations witd = 4, M = 16, and
were left as functions of the average SIR Referring backto M = 64. The simulations have spreading gdih = 31 and
(2), we see that, is a function of the signature sequences of alave XK' = 20 users; hence we have = 20/31. In each trial,
users and the channels of all users except User 1. The avenag® signature sequences and new channels are randomly gener-
symbol error rates we obtained were averaged over the charated. For each combination of parameters, trials are conducted
of User 1 but were not averaged ov&r. until 1000 symbol errors are observed. While the system simu-

We could attempt to determine the distributionsgfbased on lated has only a moderate processing gain, we observe that the
knowledge of distributions of the signature sequences and chiarge system approximation to the symbol error rate is quite ac-
nels; however, this is a very difficult problem. Alternatively, wecurate over the range of parameters tested.

C. Large System Approximation
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Fig.1. Comparison of SER approximation wth simulatén= 31, X' = 20.  Fig. 2. Performance of MMSE receivers with average and instantaneous
powers.
IV. FAST FADING CHANNELS WITH PERFECT
CHANNEL ESTIMATION We have the following result concerning the large system limit

. . . . f Bs.
In this section, we will drop the assumption that the channe?sResult 2:As N — oo with K = N ande constant, and

of the interfering users are known and assume only that the re- ; . . .
. . under some mild assumptions on the signature sequences (in
ceiver has knowledge of the average powers of the interfer

ers. ... . . . .

For the moment we will stick with the assumption that the rea—adltlon 0 Fhose given in Section i), t.h? ra”do”.‘ va.rlab}e
. : converges in probability to the determlnlsﬂ(}, which is the

ceiver has a perfect estimate for the channel of User 1—the uaﬁlr Le positive solution to the fixed-point eduation

of interest. With these assumptions, and referring to (1), we havadue P P q

-1
E[e(m)r*(m)] = P |ai(m)|* s1s* + PS1St + o1 o?

+ «
P14

B} =

where we have used the fact tHaffa,. (m)|?] = 1 for all users,
and In this case, the fixed-point equation is a quadratic equation with

B[t (m)r(m)] = \/Fal(m)sl. desired solution

2 7
In this case the expectations are not conditioned on the chanr)ﬁjs: 1 (1—a)? <£2> +2(14 ) (%) ‘1
of the interfering usergy(m), . .., ax (m). This means that the 2 o o

diagonal matrix +% <(1 ~a) <£> - 1) . (12)

D(m) = diag {Jar(m)[* oz (m)* ... laxc () }
Final approximate expressions for the average symbol error rate
from the previous section is replaced by the matriwhen each user employs M-ary QAM are obtained by replacing
diag{|ai(m)|?,1,...,1}. The LMMSE receiver for User j, with [j’} in (6) and (7).
1is thus given by The linear MMSE receiver we consider in this section re-
quired less information than the receiver considered in Sec-
c(m) = kv Pay(m) (PSS} + 021)_1 s1 (9) tion Ill. In particular, we assume in this section that the average
power of the interferers was available but not the (instantaneous)
where channel gains of the interferers. It is of interest to examine the
) o 1t loss in performance that results from going without knowledge
K= [1 + Play(m)|” s} (PS1S] + 0’1) 81} (10) of the interferers channels (similar comparisons are discussed
in [19] and [20]).
and we have again made use of the matrix inversion lemma. Fig. 2 compares the approximate symbol error rate of both
We can proceed from this point exactly as in Section Ill butceivers for 16-ary QAM. These curves are generated from (6)
with D¢ (m) replaced byl throughout. In particularj, will be  with 3, replaced bys! or ﬂ}. Plots are shown for system load-
replaced byj; where ings ofa = 0.5 anda = 1. The performance loss from using
average powers is negligible far = 0.5 and still quite small
Bf = Ps; (PS1S% +0°T) ' sy. (11) fora = 1.
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IL  IL+1 IL+2 IL+3 (+1)L
Pilot L-1 Data Pilot
Symbol Symbols Symbol
Fig. 3. Frame structure.
V. FAST FADING CHANNELS WITH CHANNEL channel estimation errors can be directly applied. In particular,
ESTIMATION ERROR we can approximate the symbol error rate by (24) where

In this section, we will consider the more general case where Bs(1— A)
we have only an imperfect estimate of the channel of User 1 at/(7) = ; .
the receivery P 2(M —1)+ B¢ [1+ (3(M - 1)z2 — 1) A]

o : . (14)

The receiver will be as in (9) but witt, (m) replaced by an In a large system we replage byﬂ} to get our final approx-

estimateiq (m) imation.
\/_A * o2\ 1
c(m) = vV Pai(m) (PS1S7 + o°I)  s1. VI. PILOT-BASED LMMSE CHANNEL ESTIMATION

. . In the previous section we derived an upper bound on the
Note that the real scalarin (9.) does not actually |mpact th_e re'.lsﬁ)(mbol error probability for our multiuser M-ary QAM system
sults and has thus been omitted. We can break this receiver i L ’
n the presence of channel estimation error. The resulting error

two parts: the first is the multiuser receiver whose job is sole : . ' LS
. ; . ound is a function of the variance of the channel estimation
to suppress interference; the second is the single-user recely

: ) . |r%r, and it is valuable to relate this variance to key physical
responsible for rotating and scaling the scalar output of the mlﬁérameters such as the channel fading rate and the quantity of
tiuser receiver.

The first part b de totallv ind deni.din d resources dedicated to channel estimation. This section provides
e first part can be made totally independent gin) (an a summary of the relevant results from [13], which we need in

of m) this paper to proceed with our proposed coupled estimator/de-
- . ey —1 tector structure and subsequent analysis.
c=VP (Pslsl to I) 51 (13) In this section, we consider a particular channel estimation
structure where pilot symbols are periodically inserted into the
and produces as output sequence of data symbols of user one. In particular, suppose that
a pilot symbol is inserted after every blockbf-1 data symbols
r(m) = ¢*r(m) = Brai(m)bi(m) + v(m) atlocations .., —2L, —L,0, L, 2L, ..., as illustrated in Fig. 3.
We will assume for simplicity thak, (IL) = 1. Define the
where sampled output sequence
K y(l) =r(IL)
v(m) =¢* Z VPay,(m)bg(m)sg + W(m)] K
s =VPz(l)s1 + > VPay(IL)by(IL)sy, + w(IL) (15)
k=2

is a circularly symmetric complex random variable with zero i
mean and variancé that is independent af, (1) andb, (m). Where we have defined(l) = as(1L).
Note that we will come across the time-invari@rgain when
we look at channel estimation.

At this point we make the following approximations. We wish to make use of the entire sequence of pilot sym-
§e;|s to obtain a channel estimate for user one at any time. To

gin, observe that we must handle the general situation of esti-
mating the channel during a symbol that does not necessarily co-
g?cide with a pilot point. Define the shifted and sampled channel
process for User 1

A. Optimal Linear Smoothing

Al) Asin the previous sections we approximate the noi
plus interference term as a complex Gaussian rand
variable.

A2) We also approximate the channel estimation err
a1(m) — d1(m) as a circularly symmetric complex

Gaussian ran_do_m variable with mean zero and vari- zy()=a;(IL+p), 0<p<L-1
ance A that is independent ofi;(m), v(m), and
by (m). and note that:(I) = z¢(/). We wish to estimate,(!) by lin-

Under these approximations the (single-user) results fragarly smoothing the (pilot) observation procégs!)}. The op-
Appendix A on the symbol error rate for square QAM withimal linear smoother will not depend érbut will vary with p.
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To begin we define, for the sampled channel process, the &1- Spectral Density of Sampled Channel Process

tocorrelation function The performance of the optimal linear smoother as given in

(17) depends on the spectral densitiggw) and S, . (w). It
is of interest to relate these to the power spectral density of the
and the power spectral density original channel processzs (m)}.
Recall thatR,.(n) = R,(nL) so that the autocorrelation
L Cien | — —jwn function of {z(m)} results from decimating or downsampling
Sy (w) = _E: R, (n)e™" = _Z Ra(nL)e™=". the autocorrelation function dfa;(m)}. The resultant power
R e spectral density is

R, (n) = E [z,(l + n)z;(l)] = Ra(nL)

The above expressions do not dependppiso we will write

R, (n) = R,(n) andS,, (w) = S,(w). We will also need to 1 = w—m2T
deal with the correlation function Sa(w) = I X_:OS“ I : (18)
Ry, z(n) = Ez,(I +n)2*(1)] = Ra(nL + p) Similarly, we have
and corresponding spectral density function = w—m2n w — 2
oo s Sepa(@) =7 > exp (jp—F— ) Su | —F— ] -
. ) L~ L L
Sepe =Y Rapu(n)e™" = " Re(nL+p)e™ " "= (19)
nETee n=Tee These expressions can be substituted into (17) to make explicit
We wish to form the estimate the dependence of the MSE on the spectral density of the
o channel process, (w), the rate of insertion of pilot symbols,
i (]) = h,(n)y(l —n and the time shifp.
o1 n;oo o)y ) We can simplify things greatly by making some assumptions

. ~ aboutS,(w) andL. In particular, suppose that
whereh,,(n) is a row vector of lengtv. We have the following

theorem [13]. Se(w)=0, wnp<|w| <7
Theorem 1: The optimal (MMSE) linear smoother is
and thatLwyp < w. These conditions imply that there is no

hy(n) = hy(n)VPst [PSS7 + 0’1 aliasing so that
where 1 w
= — — ). <
) S (w) Lsa(L)/ w| < 7
1 Se (W) i
— _ TN pjwn 1 and
hy(n) o / T ﬂfo(w)e dw (16)

—T

Sepz(w) = %eXp (jp%) Sa (%) o jwl <

This allows us to write

andgy is given in (11). The corresponding MMSE is

1 [ By |See(w)]

A, =1- LI dw. 17 “r
! 2m J 1+ fySa(w) ) hy(n) = - / _Bal@) ety g,

o 2m ~ 1+ 58, ()

The optimal channel estimate is thus A
- and
p(l) = Z hyp(n)e"y(l —n) 1 wp Sa(w)
n=—o0o A= _— / ;7(1(4)
- o 2 14+ F5a(w)
wherec was defined in the context of data estimation in (13). —wND

This optimal linear smoother first projects the received vector af,o impact of varying. on the MSE is clearly isolated in this
each pilot point to a scalar and then the time sequence of SC@%ression. Also observe that the MSE does not depeng on

values is processed by a single input, single output (SISO) lingati-h means that the channel estimate in the middle of a frame
smoother to produce the final channel estimates. At this poiEtjust as good as an estimate at a pilot symbol.

it is worth highlighting that the multiuser aspect of both data
and channel estimation problems is taken care of by the same gpecial Case: Ideal Low-Pass Channel
front-endlinear multiuser receiveg.

Remark 3: In a large system with random spreadify, as
given in (11), converges 1;6} defined in (12) and all instances
of 35 above can be replaced M} The MSEA,, and the SISO
linear smootheh,,(n) are thus independent of the signature se- Su(w) = { v w<wND
quences in a large system. @ 10, otherwise.

Before proceeding, we consider the special case where the
channel is bandlimited and has a flat spectrum up to the nor-
malized Doppler frequencyyp:
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vector Average Power D
received ata 5, detected
signal MM_SE Detector symbol
Receiver
. channel
estimate of product estimate
of channel and data
Channel
Estimator
Fig. 4. Structure of receiver.
If Luyp < m, then we have quickly. The output of the multiuser receiver is a scaled estimate
o of the producty; (m)b; (m) and the remainder of the receiver is
hy(n) = (1 n s ) [Sm wnp(p + ”L)] simply a pilot symbol aided single-user receiver.
b Lwnp wnp(p+nL) An approximate expression for the symbol error rate of this
q multiuser receiver can be obtained from (24) and (14), remem-
an bering that the channel estimation error is in general dependent
A - yer -1 on the position of the symbol relative to the pilots. We have
B Lwnp '

1 L-1
Py=5—5> P A7
VII. COUPLED ESTIMATOR/DETECTORSTRUCTURE T =1

The results of Sections V and VI can now be combined to give
i i imifere
a coupled data and channel estimator along with an approxim

expression for the performance, as measured by symbol erro(r) 3
rate. The receiver is illustrated in Fig. 4. Py = i Z [1 = pp (Ib:])] + oM [1 = pp (16;])]
The first stage of LMMSE channel estimation and of i€S) JES2
LMMSE data estimation (assuming only the average power of 1 b
. . \ : += > (1= pp ([be])]
the interferers is known) involves forming P
3
r(m) = &x(m) = Bras (m)bi(m) + v(m) with
where "
- B (1—A))
&= VP (PSiS]+0%) sy po(x) = SRETY

SM =)+ B 1+ (3(M - Da2 = 1) A,
is given in (13) and repeated here for convenience.

In order to obtain channel estimates for times, —L + e i ; _ at ]
L+ the sequence of outputs at the pilot poimts= and whered, is given by (17) (with/i; = f;). As defined
p;p, BT Py q p priotp in the Appendix,{by,bs, ..., by} are the points in the M-ary

.-+, —L,0,L,...is passed through a smoother with impulse rey 1 constellation normalized such that the average energy per

sponse given by. ., hy,(—1), 1,(0), hy(1), .. ., whereh,,(n) is oy ol is one andb;, S,, and Ss are index sets for interior,
given in (16). The channel estimates are then fed to a data gﬁ'ge and corner symbols, respectively.

tector, which forms If the channel is bandlimited and pilots are inserted frequently

N o enough to avoid aliasing, then as mentioned in Section VI, the
a3 (m)r(m) vold _
bi(m) = ———"——3 channel estimation error variangg, does not depend on the
By las (m)] el - -
position within a frame), and a simpler error expression results.
and then passes this soft data estimate to a minimum distanc&he final symbol error rate approximation is a function of
detector. * the number of symbols in the QAM constellatidh;
The front-end linear multiuser receiver is time-invariant, de- < the pilot insertion period.;
pending only on the average powers of the interfering users ande the average signal-to-noise ratity o;
the signature sequences of all users, which we assume are res the system loading = K/N;
peated from symbol to symbol. This front-end is thus appro- ¢ the (common) power spectral density of the channels
priate for situations when the channels of all users are changing S, (w).
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Fig. 5. Comparison of SER approximation with simulation.

VIIl. N UMERICAL STUDIES

In this section, we present some simulation results to explc
the accuracy of our analytical performance measures and ti
study the performance of the coupled receiver as the rate of

serting pilot symbols is varied.

A. Comparison With Simulation

We begin by listing all the parameters for the system und

study.

1) We consider a synchronous CDMA system with 25 use 81 0_2:
and a spreading gain of 50 leading to a system loading & 66— OO

a=K/N =0.5.

2) For each of 50 simulation runs, the spreading sequent
are randomly chosen at the beginning and then fixed f

35

1249

10

—— 64-ary QAM
o 16-ary QAM
4-ary QAM

|
-

-
o
T

|
N

Symbol Error Rate (SER)

—_
o

N

10 5 10 15 20
Pilot Insertion Period (L)

25

30

Fig.6. Variation of SER approximation with pilot insertion period for different

constellation sizear = 0.5.
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the duration of the run. Each simulation point thus coi 10 5 10 15 20

responds to a different realization of the spreading s
gquences—there is no averaging over the sequences.

Pilot Insertion Period (L)

25

30

3) Each user employs 64-QAM and sends symbols at a rgte 7-  Variation of SER approximation with pilotinsertion period for different

of 64 ksps so that the bit rate is 384 kbps.

system loadings/ = 16.

4) The channel of each user is assumed to have a flat spec- o )
trum up to a cutoff frequency abyp = 0.047, which however, the performance is limited by the multiple access

corresponds to a normalized Doppler frequency of 0.0pterference and the system is significantly more sensitive to
In simulations, this channel was approximated using g€ choice of spreading sequences. It is important to note that,

fifth-order Chebyshev filter.

for all SNR values, this spread will decrease as the size of the

5) Pilot symbols are inserted after every nine data symbdl¥Stem increases (@ and K get larger) in line with the large
so thatL = 10. For the simulated system, channel essystem results presented earlier.

timates are obtained using a 33-tap smoother formed byOur approximate expression for the symbol error rate is seen
truncating the optimal smoother given in Section VI-C. t0 be larger than the values obtained by simulation for almost all

Fig. 5 shows the symbol error rate versus average SNR dBalizations of the signature sequences. This makes our approxi-

tained from simulation along with the analytical approximatiofnations fairly robust to the choice of signature sequences—even

Results from all 50 simulation runs are plotted for each value & moderate size systems such as the one simulated.

average SNR per bit.

The spread in SER values due to choice of signature & Variation of Performance With Pilot Insertion Period

quences clearly increases as the average SNR per bit increasésle now examine how the symbol error rate varies Wit
When the SNR is low, the performance is limited by tha number of settings. Figs. 6 and 7 plot the approximate symbol
background noise and thus the impact of randomly choserror rate versud. for 2 < L < 30. In both plots, we have
spreading sequences is not great. When the SNR is higesumed that the channel spectrum is flat withp = 0.04.
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In this casel. = 25 is the largest value of that satisfies the In this Appendix, we complement the previous work by fo-

antialiasing conditiolLwyp < . cusing on (relatively) simple upper bounds on the symbol error
Both plots have the average SNR per data bit set to 30 date of M-ary QAM with channel uncertainty. The simplifica-
Note that the average SNR per data bit is given(fy/L — tions result because we consider symbol as opposed to bit errors,

1)(1/log, M))P/a*. As L and M are varied, we are thus re-give upper bounds rather than exact results, and assume that the
quired to varyP/o? so as to maintain the average SNR per dathannel estimate is obtained as the MMSE estimate, thereby en-
bit at a constant value. forcing a key independence property.

Fig. 6 looks at the variation in performance for= 0.5 and
M = 4,16, and64. Fig. 7 looks at the variation in performanceA. System Model
for a = 0,0.5, and1.0, with M fixed at 16. Observe thatin  our starting point in this section is the complex baseband
both cases, the performance is quite insensitiiefior L. < 25  gjgnal after matched filtering, which we model by
and degrades very quickly as soon as the antialiasing condition
is broken. r(m) = VPa(m)b(m) 4+ w(m)

IX. CONCLUSION in symbol periodm.

1) The data symbol$b(n)} form a sequence of indepen-
dent M-ary QAM symbols. Each of the M symbols is
equally likely to occur and the constellation is scaled so
that E[|b(m)|?] = 1.

2) The sampled channel procegs(m)} is modeled as a
stationary sequence of circularly symmetric complex

In this paper, we have derived approximate expressions for
the symbol error rate of users in a wireless CDMA channel.
Each user sends symbols from an M-ary QAM constellation and
suffers fast Rayleigh fading. At the receiver we assume that the
received signal first passes through a linear MMSE receiver and
e 08 i Slance delelr e Sefued SPD0NTE  Gaussian random varaies The chame prcess has

" zero mean and we assume tigfa(m)|?] = 1.

1) The channels of all users are known perfectly at the re- 3) The filtered and sampled noise sequefieém)} is a

ceiver. . sequence of independent circularly symmetric complex
2) The receiver knows only the average powers of the in-  Gayssian random variables with mean zero and variance

terferers but the channel of the user of interest is still E[lw(m)|?] = o2.

assumed to be perfectly known. 4) We further assume that the data, channel, and noise se-

3) The receiver knows only the average powers of the in- guences are independent processes.
terferers and there is an estimation error in the channelrpis model is a single-user equivalent of our main signal
estimate of the user of interest. model (1).
In the last of these cases, the symbol error rate was shown to be
a function of the variance of the channel estimation error. W¢ sympol Error Rate With Known Channel
also determined an expression for this error variance when theS I .
channel estimate is obtained from optimal linear smoothing of uppose initially that the channel proce{sa$m_)} IS "'?OW_”
: perfectly at the receiver. In this case, the maximum likelihood
a sequence of pilot symbols. i . .
While simplifying assumptions were made in this paper ifeceiver forms for each symbol the decision statistic
order to improve the clarity of the presentation, the results ob- a*(m)r(m) a*(m)w(m)
tained can be extended in a number of directions. In particular, z(m) = m = b(m) m
it is trivial to modify the results for the case when the users have
unequal average powers or, more generally, different chanaer then passes it to a minimum distance detector.
statistics. Itis also possible to handle frequency-selective fading=or a square M-ary QAM constellation, the symbol error

channels within our framework. probability conditioned om(m) is exactly [24]
APPENDIX 1 3 P
P (errla(m)) =41 - — a(m —
SYMBOL ERRORRATES FORM-ARY QAM (errla(m)) ( \/M> @ <| (m) M -1 02)
In this Appendix, we derive upper bounds on the symbol error 1 3 P
probability for a single-user communication system that sends -4 (1 - \/——> Q\latm)l\/ 37— >
. M lo
guadrature amplitude modulated data over a frequency-flat (20)

Rayleigh fading channel (see also [21]). Results are given first
for the case of perfect channel knowledge and second fo

model with imperfect channel estimates. Previous work taki te the above conditional error probability By; (|a(m)|). Of

into account channel estimation error can be fouf‘d in [9] & nore interest is the symbol error probability averaged over the
[22]. In these papers, the resultant error expressions are q'f-'itfyleigh distributeda(m)|

involved, especially for high-order signal constellations. In

[23], a method was proposed for calculating error expressions oo ,

when nonperfect channel information is available, but no Py :/PM(u)Zue_“ du.
0

Which depends om(m) through only its magnitude. We de-

explicit expressions were given.
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To push further, we require expressions for definite integrals afid then passegm) to a minimum distance detector.
the form To proceed with our analysis, we need to specify the statistical
o properties of the channel estimate. We will make the following
—u assumption in this section.
h= /Q(gu)“6 du Assumption: The channel estimation errafm) — a(m) is
0 a circularly symmetric complex Gaussian random variable with
mean zero and varianck and is independent Gf{(m), w(m),
andb(m).
n ) This assumption will be true whenevéfm) is obtained as
I, = /QZ(fu)ue_" du the minimum mean-squared error estimatexoh) based on
0 any collection of random variables that is independent ©f.)

andb(m).
wheref is some constant. Fortunately, closed-from expressionsRegzlr?]mg to (23) and conditioning éfvn) anda(m), we see
are available for these definite integrals; see [25, Sec. 6.287]{ '

. ) R&tv(m) is a circularly symmetric complex Gaussian random
1, and [25, Sec. 8.258] fak,. After some manipulation, the endvariable with mean zero and variance

and

result is ,
! 1 o B lbm) A+
=1 — — — R v ~ 2
Py=1 i 2p <1 \/M) % |a(m)|
y { 1 n 2 ( 1 ) tan— L p} (21) In this case, the calculation of the symbol error probability is
vM vM complicated by the fact that the variance of the additive noise
here depends on the magnitude of the transmitted data symbol.
W Consider a data symbol that is not on the edge of the constel-
P lation and therefore has four neighbors at the minimum distance.
p= 2"—21, The exact error probability conditioned on this symbol and the
sM -1+ 5 channel estimate is
is a function of the average signal-to-noise rdtifr2. P (err|b(m), a(m)) = 4Q(z) (1 — Q(x))

An upper bound on the symbol error probability results when
the second term in (20) is neglected. The average error probdrere
bility is then bounded by

P
1 |V/A4 = IR
PM<2<1 %W)u p)<2(1-p). (22 (m)]* A+
Rather than working with the exact expression, we will use the
We reiterate that the above expressions apply to square QAuMper bound

constellations only. Equivalent expressions could also be devel-

oped for general rectangular constellations; however, we do not P (err|b(m), a(m)) < 4Q(x)

pursue this here.

wherez is given above.
C. Symbol Error Rate With Estimated Channel While this upper bound is appropriate for all symbols in the

We now wish to consider the more realistic model where tH:é)nstellatlon we can tighten it slightly for edge and corner

receiver has access to a channel estimate as opposed to th@h%@ts by changing the lco:star;}t in front of tr]:ehQ funcgoln g)
tual channel. Let the channel estimate be denoted(by) and three or two, respectively. Let the positions of the symbols be
rewrite the received signal in the form listed asby,...,by and defineSy, Ss, andS3 as index sets

for interior, edge, and corner symbols, respectively. Averaging
r(m) = VPa(m)b(m) + VP (a(m) — a(m)) b(m) + w(m). OVer the possible transmitted symbols, we arrive at the bound

The receiver ignores the fact that there is an estimation errorand Py (| ) < — Z Q (la(m)] f (1b:]))
employs the detection rule specified in Section B with the true Les1
channel replaced by the available estimate. That is, the receiver
forms Z Q (la(m)| f (b;1))
JESQ
a*(m)r(m)
2(m) = = b(m) +v(m) + = 2 Qla(m)] f (bx))
VP la(m)]’ ZT
where where
@ (m) (VP (a(m) = am)) b(m) + w(m) )

(23)

VP la(m)[* ¢M—1 PRTT
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TABLE |
COEFFICIENTS IN THESEROF 16-QAM WITH CHANNEL ESTIMATION
i T1[2] 3
752'7 2 3 1
fi 179 1_7_
TABLE 1

COEFFICIENTS IN THESEROF 64-QAM WITH CHANNEL ESTIMATION

i[1]2[3[4[5]6 718
¢ 2 445 331
fil1]o917 253349 57 73 o7

e

The final step is to average the above expression|ayer)|,
which, from our assumption,

E[|a(m)|*] = 1 — A. The result is the following bound:
2 3
Par € 55 D2 L= (] + 557 D (1= p (1))
1€S, JES2
+a7 2 = p (k)] (24)
kES3
where
La-a
plz) = o )

J0 -1+ L1+ (G- 027 1) 4]

A simpler bound results if we treat every constellation point as[

an interior point
Py <2 1——20 |bi]) (25)

Observe that when there is no channel estimation elroe

(4]

(5]
(6]
(71

(8]

9]

(10]
is Rayleigh distributed with [11]
[12]
[13]
[14]
[15]

[16]

(18]

(19]

0, the above bounds reduce to the bound obtained when tHed]

channel is perfectly known (22).

Examples: For 16-QAM, the distance between adjacent[21]

symbols is\/2/5. Equation (24) reduces to

3
3 1
P16§§—ZZ;C¢

wherec; and f; are listed in Table 1.
For 64-QAM, the minimum distance ig'2/21 and (24) re-
duces to

%(1—A)
10+ Z(1+ fiA)

1—A)

Py <
o= Z(1+ fid)

- liGZc (26)

=1

|

42-1-

wherec; and f; are listed in Table II.
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