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Abstract—We consider cellular networks with co-operative clus-
ters of neighboring base stations detecting multiple in-cluster
users subject to interference from out-of-cluster users. We assume
that the base stations, equipped with multiple antennas, are con-
nected to a central processor in each cluster. For such a network,
we first consider centralized processing where all the in-cluster
user signals are sent to the central processor for linear mini-
mum mean squared error (LMMSE) estimation. Next, we consider
partially decentralized processing where the in-cluster user sig-
nals are locally estimated at each base station, and the local
estimates are combined at the central processor. For both process-
ing architectures, we derive new expressions for the achievable
rate of an in-cluster user when the channels between the users
and base stations are subject to independent Rayleigh fading
and distance-dependent path loss. The solutions are based on
accurate approximations we derive for the characteristic func-
tion (CF) and the probability density function (PDF) of each
user’s signal-to-interference-plus-noise ratios (SINRs). Numerical
examples highlight the accuracy of the analysis and compare the
performance of centralized and partially decentralized processing
under different cluster scenarios.

Index Terms—Base station co-operation, multiuser detection,
LMMSE, Rayleigh fading.

I. INTRODUCTION

T HE evolution of data traffic in recent years has witnessed
an unprecedented growth in demand for high capac-

ity wireless communications. In 2020, it is anticipated that
fifth generation (5G) wireless networks will serve a hundred-
fold increase in wireless devices and deliver a thousand-fold
increase in data traffic [1], [2]. To meet this demand, 5G net-
works are seeking to overcome the major barrier of inter-cell
interference through a more proactive interference-aware coor-
dination of multiple cells, often termed as base station cooper-
ation. This allows wireless networks to exploit interference by
treating antennas of multiple cells as a virtual multiple antenna
array [2]. In so doing, base station cooperation effectively treats
inter-cell interference as useful information and significantly
improves the reliability [3]–[7] and spectral efficiency [8]–[13].
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Due to limitations in the backhaul network, cooperation has
to be limited to a finite number of geographically neighbor-
ing base stations which partitions the network into cooperating
clusters. This suggests the formation of two classes of users—
in-cluster users and out-of-cluster users. The importance of
cluster-based cooperation is discussed in [14]–[16] where it
was shown that the spectral efficiency of base station cooper-
ation saturates above a certain transmit power threshold when
subject to interference from out-of-cluster users. To charac-
terize the performance of cluster-based cooperation, the fully
cooperative linear Wyner model in [8] was limited to partial
cooperation between neighbouring base stations in [17] where
the asymptotic multiplexing gain per user was shown to grow
monotonically with the number of cooperating transmitters and
receivers. In [18], compressive sensing and spectral clustering
were applied to select the set of cooperating base stations and
decode the user signals using a sparse linear receive-filter. In
[19], user power control with an energy-efficient opportunistic
transmission strategy was proposed to reduce the inter-cluster
interference for a one-dimensional cellular grid. In [20], [21],
user scheduling and clustering based on the angular spread of
the multipath channels was investigated to increase the spec-
tral efficiency of two-dimensional multi-cell massive MIMO
networks. More recently in [22], a distributed pricing-based
optimization algorithm was proposed to maximize the weighted
sum-rate with local maximal ratio-combining (MRC) in multi-
cell cooperative networks.

In this paper, we consider the performance of cluster-based
cooperation from the perspective of two practical signal pro-
cessing architectures. First, we propose a centralized processing
architecture where all the received signals at the base station
antennas are sent to the central processor along with their indi-
vidual channel state information (CSI) of fading gains and path
gains [23]. In this architecture, no processing is done at the
base stations. We employ a linear minimum mean squared error
(LMMSE) estimator at the central processor to detect the in-
cluster users while treating out-of-cluster users as interference.
This processing architecture offers attractive performance gains
when compared to a traditional non cooperative network. We
also note that the processing complexity of centralized process-
ing is less than fully cooperative networks, as the cooperation
is limited to a set of geographically neighboring base stations.
However, as the cluster size increases, we note that collect-
ing all the received signals at one central location may not be
feasible because of the wide geographical separation of base
stations. Furthermore, the signal processing at the central pro-
cessor can easily become computationally burdensome as the
size of the cluster grows large.
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Second, we propose a partially decentralized processing
architecture where the received signals at each base station are
locally estimated and the estimates of each user and an appro-
priate set of weights are sent to the central processor [24]. In
the partially distributed processing architecture, the processing
complexity at the central processor is reduced by distributing
the signal processing among the base stations. The estima-
tion of user signals is done in two steps: 1) The in-cluster
user signals are estimated at each base station using LMMSE
estimation, 2) The local estimates are optimally combined
at the central processor such that the signal-to-interference-
plus noise ratio (SINR) of a given user is maximized. This
results in a lower signal processing load at the central proces-
sor and eliminates the need to feedback all CSI to the central
processor.

In this paper, we examine the achievable rates of centralized
and partially decentralized processing and derive new analyti-
cal expressions to compare the two architectures under different
cluster-based network scenarios. Our novel contributions are
detailed as follows:

• New closed-form expressions for the approximate char-
acteristic function (CF) and probability density function
(PDF) of the received SINR of an in-cluster user are
derived for centralized and partially decentralized pro-
cessing. Based on these, accurate approximations on the
achievable rate of the in-cluster users are derived. While
centralized processing outperforms partially decentral-
ized processing, our results show that the performance
gap between them is small.

• Our analytical expressions establish that the achievable
rate saturates above a certain transmit power threshold,
similar to the spectral efficiency in [14]. As such, we con-
firm that the achievable rate with clustered cooperation
does not improve continuously with the SNR.

• We highlight that a fixed cluster arrangement results in
a lower achievable rate due to out-of-cluster interference
impacting on users at the cluster edge. We show that a
dynamic cluster arrangement can improve the achievable
rate by ensuring that all users are located in the center
of their cooperating cluster, thus reducing the severity of
out-of-cluster interference. Interestingly, we find that par-
tially decentralized processing with dynamic clustering
outperforms centralized processing with fixed clustering.

• We examine the effect of the path loss exponent on the
achievable rate of cluster-based cooperation. We find that
the achievable rate of both centralized and decentral-
ized processing with out-of-cluster interference improves
with increasing path loss exponent. This further illustrates
the novel interference limited behavior of cluster-based
cooperation.

The rest of the paper is organized as follows. In Section II
we present the system model of the cluster-based cooperative
network. The centralized processing architecture is analyzed
in Section III and the partially decentralized processing archi-
tecture is analyzed in Section IV, where the CF, PDF and the
achievable rate results are derived and discussed. Numerical
examples are illustrated in Section V, followed by concluding
remarks in Section VI.

II. SYSTEM DESCRIPTION

We consider the uplink of a cluster of R cooperating base
stations, where each base station is equipped with K receive
antennas. Due to the finite size of the cluster, the transmissions
from N users within the cluster are necessarily subject to inter-
ference from Ñ users outside the cluster. We assume that the
base stations are linked to a central processor by high capacity
delay-free links. As such, the received signal at antenna k of
base station r can be written as

yrk =
N∑

n=1

hrknsn +
N+Ñ∑

n=N+1

hrknsn + zrk

︸ ︷︷ ︸
wrk

, (1)

where hrkn ∼ CN(0, g2
rkn) is the Rayleigh distributed complex

channel gain between user n and antenna k of base station r ,
grkn is the distance dependent path gain between user n and
antenna k of base station r , sn is the transmitted symbol from
user n with E{|sn|2} = 1, and zrk ∼ CN(0, σ 2) is the complex
Gaussian noise at antenna k of base station r . Note that the
use of the Rayleigh distribution to model small scale fading
is realistic in urban environments, where the channel is sub-
ject to a lot of reflections, refractions and scattering from the
surrounding surfaces. Given that the second summation in (1)
represents the out-of-cluster interference1, we define the total
noise plus out-of-cluster interference at antenna k of base sta-
tion r as wrk which has a variance of σ 2

rk = E{wrkw
∗
rk} =∑N+Ñ

n=N+1 g2
rkn + σ 2.

A. Centralized Processing Architecture

Under the centralized processing architecture, illustrated in
Fig. 1, all the R × K received signals at the base station anten-
nas are sent to the central processor to jointly estimate the
in-cluster users. Thus, the CRK×1 received vector at the central
processor can be written as

y = Hs + w, (2)

where s = (s1, s2, . . . , sN )T is the CN×1 transmitted symbol
vector from the N in-cluster users, w = (w11, w12, . . . , wRK )T

is the CRK×1 noise plus out-of-cluster interference vector, and
H is the CRK×N in-cluster channel matrix with independent
entries, hrkn .

We consider LMMSE estimation at the central processor,
where a weighted matrix V is applied to the received vector y
such that the mean squared error E{‖s − VH y‖2} is minimized.
The notation (A)H denotes the Hermitian transpose of matrix
A. The estimated symbol for an in-cluster user n is given by

ŝn = vH
n y (3)

where vn is the weight vector for user n defined as [25]

vn =
(

HHH + �
)−1

hn . (4)

1It is important to note that we do not need the out-of-cluster interference
plus noise to be Gaussian, as the analysis presented in this paper only requires
the second order statistics of the out-of-cluster interference plus noise term.
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Fig. 1. A Centralized processing architecture with N in-cluster users and Ñ
out-of-cluster users.

In (4), hn = [h11n, h12n, . . . , h RK n]T is the n-th column vector
of H containing the channel gains from user n to all the base
station antennas, and

� = E{wwH } = diag(σ 2
11, σ

2
12, . . . , σ

2
RK ), (5)

is the covariance matrix of the noise plus out-of-cluster inter-
ference which simplifies to a diagonal matrix due to the inde-
pendence of terms in w for each base station. In the signal
estimation, we adopt the practical assumption of cluster-based
cooperation where the base stations do not have knowledge of
the individual channel gains of the out-of-cluster users and only
utilize knowledge of the noise plus out-of-cluster interference
variance, σ 2

rk , in the weight vector.
Based on ŝn , we can write the instantaneous SINR of an in-

cluster user n at the central processor as [25]

γn = vH
n hnhH

n vn

vH
n

[∑N+Ñ
k �=n hkhH

k + σ 2I
]

vn

, (6)

where the denominator contains the instantaneous channel
gains of both in-cluster and out-of-cluster users and I is the
identity matrix. We note that the instantaneous channel gains
of the in-cluster users tend to be larger than that of the out-of-
cluster users due to the distance dependence path loss. As such,
in the following analysis we consider an approximation for the
SINR of cluster-based cooperative networks given by

γn ≈ vH
n hnhH

n vn

vH
n

[
H̄nH̄H

n + �
]

vn
= hH

n R−1
n hn, (7)

where we approximate the instantaneous channel gains of the
out-of-cluster users with their expected values, and define the
covariance matrix Rn as

Rn = H̄nH̄H
n + �, (8)

with H̄nH̄H
n = ∑N

k �=n hkhH
k containing the instantaneous chan-

nel gains of the other N − 1 in-cluster users and � containing
the variances of the noise plus out-of-cluster interference. We
will illustrate the accuracy of this approximation in Section V
through numerical examples. It is important to point out that
the SINR approximation in (7) is different from that in previ-
ous works such as [7] which analyzed base station cooperation
without out-of-cluster interference.

B. Partially Decentralized Processing Architecture

Under the partially decentralized processing architecture the
in-cluster user symbols are estimated according to a two-tier
LMMSE estimation. In the first tier, we apply local LMMSE
estimation at each base station to estimate the received signals
from the N in-cluster users at the K antennas. As such, a local
estimate of each in-cluster user n ∈ N is made at each base sta-
tion. In the second tier, we consider global LMMSE estimation
at the central processor to combine the local estimates sent from
the R base stations, such that the SINR of the in-cluster user n
is maximized. These two tiers are further detailed next.

1) Local Estimation: The CK×1 received vector for local
estimation at base station r can be written as

yr = Hr s + wr , (9)

where Hr is the CK×N channel matrix of independent chan-
nel coefficients from the in-cluster users to K antennas at base
station r . The term wr = (wr1, wr2, . . . , wr K )T is the CK×1

noise plus out-of-cluster interference vector at base station r .
We consider local LMMSE estimation at base station r , where
a weighted vector vr is applied to the received vector yr such
that the mean squared error E{‖s − vH

r yr‖2} is minimized. This
is essentially equivalent to applying the centralized processing
architecture described in Section II-A at a single base station.
As such, the estimated symbol for in-cluster user n at base
station r can be written as

ŝrn = vH
rnyr , (10)

where

vrn =
(

Hr HH
r + �r

)−1
hrn, (11)

with hrn = [hr1n, . . . , hr K n]T and �r = E{wr wH
r } =

diag(σ 2
r1, σ

2
r2, . . . , σ

2
r K ). We consider the same approxi-

mation as (7) and define the SINR of user n at base station r
averaged over the out-of-cluster interference as

γrn ≈ hH
rnR−1

rn hrn, (12)

where the covariance matrix Rrn is defined as

Rrn = H̄rnH̄H
rn + �r , (13)

with H̄rnH̄H
rn = ∑N

k �=n hrkhH
rk containing the channels of the

other N − 1 in-cluster users to the r -th base station and �r

containing the variances of the noise plus out-of-cluster inter-
ference at the r -th base station.
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2) Central Combining: After performing local estimation,
the R base stations transmit their estimates, ŝrn , to the central
processor together with a combining weight, ωrn . These com-
bining weights are calculated at each base station in such a way
that the final SINR of user n is maximized. This is equivalent
to implementing global LMMSE on the local estimates at the
central processor [26]. Note that an equal weight could be used
to combine the local estimates at the central processor when
the backhaul capacity is severely limited. However, the pro-
posed combining weights will significantly outperform equal
weight combining for most users in a cooperative cellular net-
work where the SINR from a given user to each base station is
largely non-identical. To derive the weighted matrices for the
central processor, we substitute (9) into (10) and reexpress the
estimate of user n at base station r as

ŝrn = vH
rnhrnsn︸ ︷︷ ︸
signal

+ vH
rn

⎛
⎝ N∑

i �=n

hri si + wr

⎞
⎠

︸ ︷︷ ︸
noise+inter f erence

, (14)

where we have separately identified the signal part and the
noise plus interference part of ŝrn . To maximize the SINR at
the central processor, the combining weight from base station r
is defined as [27, eq. (13.23)]

ω∗
rn = (vH

rnhrn)∗

ξrn
, (15)

where (.)∗ denotes the complex conjugate and ξrn is the noise
plus interference power of user n at base station r , which can
be derived using (14) as

ξrn = E

⎧⎪⎨
⎪⎩vH

rn

⎛
⎝ N∑

i �=n

hri si + wr

⎞
⎠

⎛
⎝ N∑

i �=n

hri si + wr

⎞
⎠H

vrn

⎫⎪⎬
⎪⎭

(16)

= vH
rn

⎛
⎝ N∑

i �=n

hri hH
ri + �r

⎞
⎠ vrn (17)

where E{.} in (16) is the expectation over the data symbols and
noise, and (17) follows from the independence between them.

Combining all R estimates according to the weights in (15)
results in the final estimate of the symbol from user n

ŝn =
R∑

r=1

ω∗
rn ŝrn . (18)

Note that the only information the central processor requires
from each base station are the N estimates ŝrn of the user sym-
bols and the corresponding weights ωrn . Using (18), we derive
an approximation for the SINR of user n at the central processor
as a sum of the SINRs from the R base stations given by

γ̂n ≈
R∑

r=1

γrn, (19)

where a detailed derivation of γ̂n is provided in Appendix A.

III. CENTRALIZED PROCESSING

In this section, we derive the achievable rate of a given
in-cluster user based on the centralized processing architec-
ture. It should be noted that the rate of each user is different
since we consider non-identical path gains to each base station.
Considering a Gaussian approximation for the distribution of
the interference plus noise in γn , the achievable rate of user n
can be written as

Cn =
∫ ∞

0
log2(1 + γn) fγn (γn)dγn, (20)

where fγn (γn) is the PDF of γn . We note that an exact analy-
sis of fγn (γn) is extremely tedious even for the simple two user
scenario with no out-of-cluster interference [28]. As such, to
obtain more insightful results, we consider an accurate approx-
imation for fγn (γn) using a Laplace-type approximation for the
CF of γn .

A. Characteristic Function of γn

Based on (7), the CF of γn is defined as [29]

φγn (t) = E
{

e jtγn
}

= E
{

e jthH
n R−1

n hn
}

, (21)

where the expectation is over the channel gains in hn and
Rn . First, we consider the CF conditioned on Rn and derive
the expectation in (21) over the distribution of hn . As the
channels from user n to each antenna are independent, the
joint PDF of the channel gains in hn = [h1kn, . . . , h RK n]T

can be written as a product of R × K individual PDFs
given by

fhn (hn) =
R∏

r=1

K∏
k=1

1

πg2
rkn

e
−|hrkn |2

g2
rkn

= 1

π RK |Gn|e−hH
n G−1

n hn , (22)

where Gn = E
{
hnhH

n

} = diag
(
g2

11n, g2
12n, . . . , g2

RK n

)
, is the

covariance matrix of hn and |.| denotes the determinant of
a matrix. Substituting (22) into (21) we can write the CF
conditioned on Rn as given in (23), shown at the bottom of
the page, where dhrkn = dhrknI dhrknQ with hrknI = Re(hrkn)

and hrknQ = I m(hrkn). The multi-fold integral in (23) can be
solved using the identity in [28, Lemma 02] which results in the
CF conditioned on Rn as

φγn (t |Rn) = 1

|I − j tR−1
n Gn| . (24)

Substituting Rn = H̄nH̄H
n + �, the conditional CF can be reex-

pressed as

φγn (t |H̄n) =
∣∣H̄nH̄H

n + �
∣∣∣∣H̄nH̄H

n + � − j tGn
∣∣ , (25)

φγn (t |Rn) = 1

π RK |Gn|
∫ ∞

−∞
. . .

∫ ∞

−∞
e−hH

n (G−1
n − j tR−1)hn dh1kndh2kn . . . dh RK n, (23)
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which is now conditioned on the channel gains in H̄n . The CF
averaged over H̄n can be written as an expectation

φγn (t) = E

{ ∣∣I + �−1H̄nH̄H
n

∣∣∣∣I − j t�−1Gn + �−1H̄nH̄H
n

∣∣
}

, (26)

where we have multiplied both numerator and denominator by
�−1. Using the determinant identity |I + χχ H | = |I + χ H χ |
in the numerator and the denominator of (26) we get

φγn (t) ≈ 1

|X| E

{ ∣∣I + H̄H
n �−1H̄n

∣∣∣∣I + H̄H
n �−1X−1H̄n

∣∣
}

, (27)

where X = I − j t�−1Gn . From [28], we note that an exact
analysis of (27) is extremely cumbersome even for a simple
system model with 2 users where H̄n is a vector and no out-of-
cluster interference. As the exact analysis of (27) is intractable,
a more useful approach is to consider a Laplace-type approxi-
mation as in [30] which results in

φγn (t) ≈ E
{∣∣I + H̄H

n �−1H̄n
∣∣}

|X| E
{∣∣I + H̄H

n �−1X−1H̄n
∣∣} . (28)

This approximation, which is better known for scalar quadratic
forms [30], has some motivation in the work of [7], [25], [31]2.
In Appendix B, we illustrate that the identity in both the numer-
ator and the denominator of (27) can be expressed as a limit of
a Wishart matrix, which results in a ratio of determinants of
matrix quadratic forms. This ratio can then be decomposed to
give a product of scalar quadratic forms as in [31], motivating
the Laplace-type approximation given in (28). This approxima-
tion allows us to use a similar approach developed in [7] to
derive the expectations for the determinants in (28). However,
it is important to note that the structure of the numerator and
the denominator of (28) are different from [7] as we consider
the effect of out-of-cluster interference.

Let us first consider the numerator of (28). Let λ1, λ2, . . . , λϑ

be the set of ordered non zero eigenvalues of H̄H
n �̄−1H̄n

where ϑ = min(RK , N − 1). As such, the determinant in the
numerator can be written as a product of the eigenvalues
given by

E
{∣∣∣I + H̄H

n �−1H̄n

∣∣∣} = E

{
ϑ∏

i=1

(1 + λi )

}
. (29)

Using [32, eq. 1.2.9] and [32, eq. 1.2.12], we can reexpress the
expectation as

E
{∣∣∣I + H̄H

n �−1H̄n

∣∣∣} = E

{
ϑ∑

i=0

Ei (H̄H
n �−1H̄n)

}
, (30)

=
ϑ∑

i=0

∑
δ

E

{∣∣∣∣(H̄H
n �−1H̄n

)
δi,N−1

∣∣∣∣
}

, (31)

2Note that the extended Laplace-type approximation in [31] does not con-
sider the effect of out-of-cluster interference. Hence the structure of the
numerator and the denominator of [31, eq. 40] are different. However, we note
that their argument directly applies to the case with out-of-cluster interference
as both the numerator and the denominator in (28) contain the identity.

where Ei (A) in (30) is the i-th elementary symmetric function
of a matrix A, which is further expressed in (31) as a sum of
the determinants of all i × i principal minors of A [32], where
δi,N−1 is a length i subset of {1, 2, . . . , N − 1} and the sum in
(31) is over all such subsets3.

Clearly, the term E
{
| (H̄H

n �−1H̄n
)
δi,N−1

|
}

is now the build-

ing block of the overall expectation in (31). According to [7,
Corollary 1], when the total number of measurements at cen-
tral processor is larger than the number of interfering users, i.e.,
RK ≥ N − 1 we can write

E
{
|
(

H̄H
n �−1H̄n

)
|
}

= Perm(�−1�n), (32)

where �n = E{H̄n ◦ H̄†
n} with ◦ denoting the Hadamard prod-

uct4, [33], † denoting the element-wise conjugate, and Perm(.)

denoting the permanent of a matrix [34]. When the number
of measurements at each base station is smaller than the num-
ber of interfering users, i.e., RK < N − 1, some eigenvalues of
H̄H

n �−1H̄n will be zero, thus E
{| (H̄H

n �−1H̄n
) |} is zero when

i > RK . As such, the expression in (31) can be simplified to,

E
{∣∣∣I + H̄H

n �−1H̄n

∣∣∣} =
ϑ∑

i=0

∑
δ

Perm((�−1�n)δi,N−1). (33)

The expectation in (33) can be evaluated in closed-form due
to the fact that �n is an RK × N − 1 matrix with entries
consisting of the path gains of the N − 1 in-cluster users in H̄n .

Similarly, we expand the denominator of (28) as

|X|E
{∣∣∣I + H̄H

n �−1X−1H̄n

∣∣∣}
= |X|

ϑ∑
i=0

∑
δ

Perm((�−1X−1�n)δi,N−1) (34)

= |X|
ϑ∑

i=0

∑
δ

Perm((�−1�n)N−1
δi,RK

)

|Xδi,RK | (35)

where the permanent in (34) is reexpressed as (35) using [7,
Corollary 1]. Taking |X| inside the summation we can reexpress
(35) as

|X|E
{∣∣∣I + H̄H

n �−1X−1H̄n

∣∣∣}
=

ϑ∑
i=0

∑
δ

|Xδ̄RK−i,RK
|Perm((�−1�n)N−1

δi,RK
), (36)

where δ̄RK−i,RK is a length RK − i subset of {1, 2, . . . , RK }
that is not in δi,RK . Now, given X = I − j t�−1Gn , (36) can be
written in terms of the elementary symmetric function as

|X|E
{∣∣∣I + H̄H

n �−1X−1H̄n

∣∣∣}
=

ϑ∑
i=0

∑
δ

RK−i∑
l=0

(− j t)lEl((�
−1Gn)δ̄RK−i,RK

)

× Perm((�−1�n)N−1
δi,RK

) (37)

3We use Aμ
ν to denote the submatrix formed by taking the rows and columns

of A indexed by the sets ν and μ, respectively. If either ν or μ contain the
complete set, the corresponding subscript/superscript is omitted.

4Hadamard product is an element-wise product of two matrices of the same
dimension where each element (i, j) is the product of the (i, j)-th elements in
the original two matrices.
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=
r K∑
l=0

(− j t)l
ϑ∑

i=0

∑
δ

El((�
−1Gn)δ̄RK−i,RK

)

× Perm((�−1�n)
N−1
δi,RK

), (38)

where (38) follows from the fact that the l-th elementary
symmetric function El((�

−1Gn)δ̄RK−i,RK
) = 0 for l > RK − i .

Substituting (33) and (38) into (28), our approximation of the
CF is given by

φγn (t) ≈ �(�−1�n)∑RK
l=0(− j t)lϒl

, (39)

where

�(�−1�n) =
ϑ∑

i=0

∑
δ

Perm((�−1�n)δi,N−1), (40)

and

ϒl =
ϑ∑

i=0

∑
δ

El((�
−1Gn)δ̄RK−i,RK

)Perm((�−1�n)N−1
δi,RK

).

(41)

Finally, noting that
∑RK

l=0(− j t)lϒl is a degree RK polyno-
mial in t , we can further simplify (39) as

φγn (t) ≈ �(�−1�n)

ϒRK
∑RK

l=0(− j t)l ϒl
ϒRK

(42)

= �(�−1�n)

ϒRK
∏RK

l=1(εl − j t)
, (43)

where εl are the roots of the denominator polynomial in (42),
which can be computed using a standard root finding program.
Using the CF expression in (43) we can derive important func-
tions such as the PDF and the CDF of γn . However, we only
derive the PDF expression in the following, as the focus of this
chapter is on the derivation of the achievable rate.

B. Probability Density Function of γn

The PDF of γn can be derived from the CF as [29]

fγn (γn) = 1

2π

∫ ∞

−∞
φγn (t)e

− j tγn dt. (44)

We proceed by reexpressing the CF in (43) to allow easy
integration as

φγn (t) ≈ �(�−1�n)

ϒRK

RK∑
l=1

ρl

(εl − j t)
, (45)

where ρl = 1∏RK
j �=l (ε j −εl )

. Substituting (45) into (44), results in

an approximate expression for the PDF of γn given by

fγn (γn) ≈ �(�−1�n)

2πϒRK

∫ ∞

−∞

RK∑
l=1

ρl e− j tγn

(εl − j t)
dt. (46)

The integral in (46) can be solved using the identity in [35,
eq. 7,3.382] and the final expression for the approximate PDF
can be derived as

fγn (γn) ≈ �(�−1�n)

ϒRK

RK∑
l=1

ρl e
−εlγn . (47)

C. Achievable Rate Approximation

We derive an approximation on the achievable rate of user n
with centralized processing by substituting (47) into (20) which
results in

Cn ≈ �(�−1�n)

ϒRK

RK∑
l=1

ρl

∫ ∞

0
log2(1 + γn)e−εlγn dγn (48)

= �(�−1�n)

ϒRK ln 2

RK∑
l=1

−ρl eεl Ei (−εl)

εl
, (49)

where (49) is derived using the identity [35, eq. 2, 4.337] and
Ei denotes the exponential integral function. Our new results in
(49) provides an accurate approximation of the exact achievable
rate of an arbitrary in-cluster user with centralized processing,
which will be illustrated via numerical examples in Section V.

IV. PARTIALLY DECENTRALIZED PROCESSING

In this section, we derive an expression for the achiev-
able rate of a given in-cluster user based on the partially
decentralized processing architecture. Considering a Gaussian
approximation for the distribution of the interference plus noise
in γ̂n , the achievable rate of user n can be written as

Cn =
∫ ∞

0
log2(1 + γ̂n) fγ̂n (γ̂n)dγ̂n, (50)

where fγ̂n (γ̂n) is the PDF of γ̂n . Similar to Section III we con-
sider an accurate approximation for fγ̂n (γ̂n) using a Laplace-
type approximation for the CF of γ̂n .

A. Characteristic Function of γ̂n

As γ̂n is the sum of R independent non-identically distributed
SINRs from the base stations, the CF of γ̂n can be defined
as [29]

φγ̂n (t) = E
{

e jt γ̂n
}

≈
R∏

r=1

E
{

e jtγrn
}

, (51)

where E{.} denotes the expectation taken over the channel
gains. Thus the CF of γ̂n is the product of R individual CFs,

φγrn (t) ≈ E
{

e jthH
rnR−1

rn hrn

}
.

Given that local estimation is performed at each base sta-
tion with the use of only K received signals, an approximation
of the CF at base station r can be derived by setting R = 1 in
the centralized processing architecture. As such, using (28) we
approximate φγrn (t) as

φγrn (t) ≈ E
{∣∣I + H̄H

rn�−1
r H̄rn

∣∣}
|Xrn| E

{∣∣∣I + H̄H
rn�−1

r X−1
rn H̄rn

∣∣∣} . (52)
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where Xrn = I − j t�−1
r Grn . Following the same steps as with

the centralized processing architecture, we derive expressions
for expectations in the numerator and the denominator in (52).
Let λ1, λ2, . . . , λϕ be the set of ordered non zero eigenvalues of
H̄H

rn�−1
r H̄rn where ϕ = min(K , N − 1). Similar to the deriva-

tion in (33) the expectation in the numerator of (52) can be
expressed as

E
{∣∣∣I + H̄H

rn�−1
r H̄rn

∣∣∣} =
ϕ∑

i=0

∑
δ

Perm((�−1
r �rn)δi,N−1).

(53)

Likewise based on (38), the denominator of (52) is derived as

|Xmn|E
{∣∣∣I + H̄H

rn�−1
r X−1

rn H̄rn

∣∣∣}
=

K∑
l=0

(− j t)l
ϕ∑

i=0

∑
δ

El((�
−1
r Grn)δ̄K−i,K

)

× Perm((�−1
r �rn)N−1

δi,K
). (54)

Based on (53) and (54), the approximate CF of γrn is given by

φγrn (t) ≈ �(�−1
r �rn)∑K

l=0(− j t)lϒrl
, (55)

where

�(�−1
r �rn) =

ϕ∑
i=0

∑
δ

Perm((�−1
r �rn)δi,N−1) (56)

and

ϒrl =
ϕ∑

i=0

∑
δ

El((�
−1
r Grn)δ̄K−i,K

)Perm((�−1
r �rn)N−1

δi,K
).

(57)

Substituting (55) into (51) we derive the approximate CF of
γ̂n as

φγ̂n (t) ≈
R∏

r=1

�(�−1
r �rn)/ϒr K∑K

l=0(− j t)lϒrl/ϒr K
. (58)

To further simplify the CF expression, we note that∑K
l=0(− j t)lϒrl/ϒr K is a degree K polynomial in t which

means that the denominator of (58) consists of a multiplica-
tion of R such polynomials. As such, we can re-arrange the
denominator of (58) into a single polynomial of degree RK as

φγ̂n (t) ≈
∏R

r=1 �(�−1
r �rn)

ϒr K
∑RK

q=0 ζq(− j t)q
, (59)

where ζq corresponds to the sum of all polynomial terms that
has degree q defined as

ζq =
∑

xi ∈χq

R∏
r=1

ϒr x(r)

ϒr K
. (60)

In (60), the first summation of χq is over the set of sets of R
elements chosen from {0, 1, . . . , K } such that

∑R
r=1 xi (r) = q

where xi is the i-th set of χq . Based on (59), the CF of φγ̂n can
be further simplified as

φγ̂n (t) ≈
∏R

r=1 �(�−1
r �rn)

ϒr K
∏RK

q=1(εq − j t)
. (61)

where εq are the roots of the denominator polynomial in (59),
which can be computed using a standard root finding program.

B. Probability Density Function of γ̂n

Based on our CF in (61), we can directly derive an approxi-
mate expression for the PDF of γ̂n as

fγ̂n (γ̂n) = 1

2π

∫ ∞

−∞
φγ̂n (t)e

− j t γ̂n dt

≈
[

R∏
r=1

�(�−1
r �rn)

2πϒr K

]∫ ∞

−∞

RK∑
q=1

ρqe− j tγn

(εq − j t)
dt, (62)

where we have reexpressed the CF for easy integration with

ρq = 1∏RK
j �=q(ε j − εq)

. (63)

Similar to Section III-B, we solve the integral in (62) using the
identity in [35, eq. 7,3.382] which results in

fγ̂n (γ̂n) ≈
[

R∏
r=1

�(�−1
r �rn)

ϒr K

]
RK∑
q=1

ρqe−εq γ̂n . (64)

C. Achievable Rate Approximation

Finally, we present our new approximation for the achievable
rate of user n with partially decentralized processing as

Cn ≈
[

R∏
r=1

�(�−1
r �rn)

ϒr K

]
RK∑
q=1

ρq

∫ ∞

0
log2(1 + γ̂n)e

−εq γ̂n dγ̂n

(65)

=
[

R∏
r=1

�(�−1
r �rn)

ϒr K ln 2

]
RK∑
q=1

−ρqeεq Ei (−εq)

εq
, (66)

which is derived by substituting (64) into (50) and using the
identity [35, eq. 2, 4.337] to solve the resulting integral. Our
new results in (66) provides an accurate approximation of the
exact achievable rate of an arbitrary in-cluster user with par-
tially decentralized processing, which will be illustrated via
numerical examples in Section V.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples to highlight
the achievable rate of centralized and partially decentralized
processing with out-of-cluster interference under different net-
work scenarios. We consider a network model with a cluster
of three base stations (BS1-BS3) where the base stations
are equipped with three antennas each. We randomly place
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Fig. 2. Network model with a cluster of 3 cooperating base stations (BS1-BS3)
equipped with 3 antennas each, receiving signals from users randomly located
with 2 active users in each cell.

two active users in each cell as illustrated in Fig. 2. We
define the path gain between user n and antenna k of base
station r as

g2
rkn = 1

L(d0)

(
drkn

d0

)−α

, (67)

where drkn is the distance between user n and antenna k of
base station r , L(d0) is the path loss measured at a reference
distance d0, and α is the path loss exponent which is set to 4
unless otherwise stated. In the examples, we set the reference
path loss as L(d0) = 100 dB at d0 = 100 m, and the cell radius
is 120 m. As stated in Section II, the Rayleigh fading channel
gains are complex Gaussian with zero mean and unit variance,
and the additive noise is complex Gaussian with zero mean and
variance σ 2.

Fig. 3 plots the achievable rate of in-cluster user U1, shown
in Fig. 2, versus the received SNR for centralized processing
with N = 6 in-cluster users. The simulation points are obtained
using Monte Carlo simulation with channel fading and noise
components for each simulation trial drawn from an indepen-
dent complex Gaussian distribution. The figure shows that our
approximate achievable rate results, generated using (49), accu-
rately predicts the exact simulation points, generated using (6),
throughout the full range of SNRs. We compare the following
three scenarios: 1) Achievable rate with out-of-cluster interfer-
ence where Ñ = 18 users in the first ring of 9 interfering cells
outside the cooperating cluster, 2) Achievable rate without out-
of-cluster interference where Ñ = 0, and 3) Achievable rate
with no cooperation where Ñ = 22 and no backhaul processor
is used. The plots with cooperation clearly shows that out-
of-cluster interference gives rise to a saturation regime where
further increase in SNR after a certain threshold value, does not
noticeably improve the achievable rate. The saturation level of
the achievable rate can be accurately approximated by setting

Fig. 3. Achievable rate of U1 versus the received SNR with the centralized
processing architecture.

σ 2 = 0 in (49) which results in 8.4 bits/s/Hz for this exam-
ple scenario. The figure clearly illustrates that the achievable
rate of a cooperating cluster within a large network is drasti-
cally impacted by out-of-cluster interference in the high SNR
regime. The plot also highlights the performance gain obtained
by cooperation with centralized processing when compared to a
traditional non cooperative network. This gain can be increased
further by increasing the cluster size. However, the increase
in the performance gain comes at a cost of added backhaul
complexity in real-life implementation.

Fig. 4 plots the achievable rate of the in-cluster user U1 for
partially decentralized processing with the same interference
scenarios considered in Fig. 3. We see that our approximate
achievable rate results, generated using (66), accurately pre-
dicts the exact simulation points throughout the full range of
SNRs. In contrast to Fig. 3, we observe that the achievable rate
of partially decentralized processing saturates at high SNRs
in all three scenarios including the scenario without out-of-
cluster interference. This is due to the fact that the number
of antennas at each base station is less than the total number
of in-cluster users. As local estimation in partially decentral-
ized processing only utilizes the signals received at a certain
base station the performance at high SNRs is limited by the
in-cluster interference. Thus, the partially decentralized pro-
cessing architecture is more suitable for smaller cluster sizes.
The plot also highlights the performance gain obtained by coop-
eration with partially decentralized processing when compared
to a traditional non cooperative network.

The plots in Fig. 3 and Fig. 4 were generated for a fixed set of
user locations illustrated in Fig. 2, but in a cellular environment
users can be scattered in different locations throughout the net-
work. Therefore in Fig. 5, we compare the achievable rate of U1
for centralized and partially decentralized processing averaged
over different user locations. To do so, we randomly place the
users throughout the network in Fig. 2 and numerically aver-
age the achievable rate of U1 over the corresponding path gains
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Fig. 4. Achievable rate of U1 versus the received SNR with the partially
decentralized processing architecture.

Fig. 5. CDF of the achievable rate of U1 with N = 6 in-cluster users and Ñ =
9 out-of-cluster interfering users.

with N = 6 in-cluster users and Ñ = 18 out-of-cluster inter-
fering users. We assume a uniform distribution of two users per
cell and set the transmit power of all the users such that the aver-
age received SNR of U1 is 30 dB. We observe in the figure that
the performance of partially decentralized processing is very
close to that of centralized processing when averaged over the
user locations. We also observe that the accuracy of our analy-
sis does not depend on specific user locations. We note that for
a fixed cooperating cluster centralized processing performs bet-
ter than partially decentralized processing. This is expected, as
centralized processing uses R × K received signals at the cen-
tral processor to achieve a better estimation whereas partially
decentralized processing uses K received signals at each base
station.

Fig. 6. Achievable rate of U2 versus the received SNR with the static and
dynamic cluster arrangements.

In Fig. 6, we consider different cluster configurations for
user U2, located at the cluster edge as shown in Fig. 2. To do
so, we compare static clustering with fixed base station clus-
ters, with dynamic clustering where the base station clusters
are selected based on the nearest user locations [2]. We note
that the cooperating cluster of BS1-BS3 (which we refer to as
static clustering) results in user U2 being located at the clus-
ter edge. Applying dynamic clustering results in a cooperating
cluster for U2 comprising the three closest base stations BS2,
BS4 and BS5. As illustrated in Fig. 6, partially decentralized
processing with static clustering has the worst performance.
However, it has the simplest cluster implementation with low
feedback overheads to the central processor and fixed base sta-
tion clusters. As expected, centralized processing with dynamic
clustering has the best performance but requires the highest
amount of coordination and feedback overheads. Interestingly,
we highlight that partially decentralized processing with
dynamic clustering can outperform centralized processing with
static clustering which indicates an attractive balance between
the increased coordination complexity of dynamic clustering
and the lower feedback overheads of partially decentralized
processing.

Finally, in Figs. 7 and 8 we present the approximate achiev-
able rate for different path loss exponents to further highlight
the effect of interference in clustered cooperation.

Fig. 7 plots the achievable rate of U1 with centralized pro-
cessing versus the average received SNR for α = 2, 3 and 4.
As expected, the achievable rate without out-of-cluster inter-
ference decreases with increasing α. This is due to the fact
that the received signals of the in-cluster users are weaker as α

increases. In contrast, at high SNRs we find that the achievable
rate with out-of-cluster interference improves with increasing
path loss exponent even though the signals from both in-cluster
and out-of-clusters users are weaker as α increases. This is due
to the fact that increasing α weakens the out-of-cluster inter-
ference causing the saturation to occur at a higher SNR. This
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Fig. 7. Achievable rate of U1 versus the received SNR with the centralized
processing architecture for different path loss exponents.

Fig. 8. Achievable rate of U1 versus the received SNR with the partially
decentralized processing architecture for different path loss exponents.

further illustrates the interference limited behavior of clustered
cooperation where the out-of-cluster interference dominates the
performance at high SNRs.

Fig. 8 plots the achievable rate of U1 with partially decen-
tralized processing versus the average received SNR for α =
2, 3 and 4. We observe that at high SNRs, the achievable rate
improves with increasing path loss exponent for both cases of
with and without out-of-cluster interference. This is due to the
fact that the partially decentralized processing architecture is
still limited by the in-cluster interference, as discussed in Fig. 4,
even when there is no out-of-cluster interference. Thus, increas-
ing α results in a higher achievable rate due to lower in-cluster
interference.

VI. CONCLUDING REMARKS

We analyzed two different cooperative processing architec-
tures, namely centralized processing and partially decentralized
processing, for a cluster based cellular network. New approx-
imations on the achievable rate were derived for a general
multi-cell network with an arbitrary number of users transmit-
ting to arbitrary number of cooperating base stations subject to
independent Rayleigh fading channels and distance dependent
path loss.

Our results provide an accurate approximation of the achiev-
able rate for both centralized and partially decentralized pro-
cessing architectures. In centralized processing, all the received
signals at the R × K antennas are sent to the central pro-
cessor to jointly estimate the user signals. Given that all the
signal information is available at the central processor, central-
ized processing generally outperforms partially decentralized
processing. However, the performance advantage of central-
ized processing comes at the cost of increased computational
complexity relative to the partially decentralized processing
architecture. Specifically, performing centralized LMMSE esti-
mation involves the inversion of a large matrix of size RK ×
RK , which is an order (RK )3 operation [36]. Furthermore,
the feedback overhead of obtaining all the received signals
and channel gains at the central processor in large coopera-
tive networks is daunting. In partially decentralized processing,
the computational load is distributed amongst the R base sta-
tions where each base station processes K received signals.
As such, the local LMMSE estimation performed at the base
stations only requires the inversion of a smaller matrix of size
K × K , which is an order K 3 operation. Furthermore, the feed-
back overhead is significantly lower compared with centralized
processing as individual channel gains of all the users are not
required at the central processor. The only required data at the
central processor are the local estimates and their corresponding
weights for optimum combining.

We highlighted the dramatic impact of out-of-cluster inter-
ference on the achievable rate of both centralized and partially
decentralized processing. We showed that the out-of-cluster
interference gives rise to a saturation regime at high SNRs
such that further increase in the SNR after a certain thresh-
old does not noticeably improve the achievable rate. We noted
that the performance difference between the two architectures
is small with centralized processing performing slightly bet-
ter than partially decentralized processing. We also revealed
that dynamically selecting the cooperating cluster such that the
desired user is in the cluster center allows partially decentral-
ized processing to outperform centralized processing with static
clustering. Furthermore, we found that increasing the path loss
actually results in an improved achievable rate when the base
station cluster is interference limited.

An interesting extension to this work is to consider coop-
erative clusters with limited feedback and propagation delays
to the central processor. It would also be interesting to ana-
lyze the performance of these two processing architectures in
other fading environments such as Rician. Determining how the
achievable rate with centralized and partially decentralized pro-
cessing behaves in heterogeneous networks with different cell
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sizes is also desirable, as these are likely to predominate in 5G
wireless networks and beyond.

APPENDIX A
PROOF OF EQUATION (19)

Substituting (14) and (15) into (18) results in

ŝn =
R∑

r=1

(vH
rnhrn)∗vH

rnhrn

ξrn
sn︸ ︷︷ ︸

signal

+
R∑

r=1

(vH
rnhrn)∗

ξrn
vH

rn

⎛
⎝ N∑

i �=n

hri si + wr

⎞
⎠

︸ ︷︷ ︸
noise+inter f erence

, (68)

where we identify the signal part and the total noise plus
interference part in the estimate ŝn with

ξrn = vH
rn

⎛
⎝ N∑

i �=n

hri hH
ri + �r

⎞
⎠ vrn (69)

γ̂n =
(∑R

r=1
(vH

rnhrn)∗(vH
rnhrn)

ξrn

) (∑R
r=1

(vH
rnhrn)∗(vH

rnhrn)

ξrn

)H

∑R
r=1

(
(vH

rnhrn)∗
ξrn

vH
rn

(∑N+Ñ
i �=n hri hH

ri +σ 2I
)

vrn
(vH

rnhrn)

ξrn

) .

(70)

We proceed to derive the SINR of ŝn as the ratio of the sig-
nal power and total noise plus interference power as given in
(70). Similar to (7), we approximate the received SINR of the
partially decentralized processing architecture as

γ̂n

≈
(∑R

r=1
(vH

rnhrn)∗(vH
rnhrn)

ξrn

) (∑R
r=1

(vH
rnhrn)∗(vH

rnhrn)

ξrn

)H

∑R
r=1

(
(vH

rnhrn)∗
ξrn

vH
rn

(∑N
i �=n hri hH

ri + �r

)
vrn

(vH
rnhrn)

ξrn

)
=

R∑
r=1

(vH
rnhrn)∗(vH

rnhrn)

ξrn
, (71)

where the instantaneous channel gains of the out-of-cluster
users are replaced by their expected values. We will illus-
trate the accuracy of this approximation in Section V through
numerical examples.

Substituting (11) and (17), we can reexpress (71) as

γ̂n ≈
R∑

r=1

(hH
rn(R−1

r )H hrn)(hH
rnR−1

r hrn)

hH
rn(R−1

r )H RrnR−1
r hrn

(72)

where Rr = (
Hr HH

r + �r
)
. Finally, we apply the matrix inver-

sion lemma to further simplify (72) and derive the SINR of user
n at the central processor as

γ̂n ≈
R∑

r=1

(hH
rn(R−1

rn )H hrn)(hH
rnR−1

rn hrn)

hH
rn(R−1

rn )H hrn

=
R∑

r=1

hH
rnR−1

rn hrn ≈
R∑

r=1

γrn . (73)

The above derivation shows that, when averaged over the out-
of-cluster interference, the global LMMSE estimation at the
central processor results in a sum of all R SINRs from applying
local LMMSE at the base stations.

APPENDIX B
PROOF OF EQUATION (28)

In (27), the CF of γn is given as

φγn (t) = 1

|X| E

{∣∣I + H̄H
n �−1H̄n

∣∣∣∣I + H̄H
n �H̄n

∣∣
}

, (74)

where � = �−1X−1. Let I = E{PH P} where P is a ς × N − 1
matrix with each element drawn from a complex Gaussian dis-

tribution CN
(

0, 1
ς

)
. In the limit of ς → ∞, we can reexpress

the identity matrix as

I = limς→∞{PH P}. (75)

Substituting (75) into (74) we can write

φγn (t) = 1

|X| limς→∞E

{∣∣PH P + H̄H
n �−1H̄n

∣∣∣∣PH P + H̄H
n �H̄n

∣∣
}

= 1

|X| limς→∞E

⎧⎨
⎩

∣∣∣(PH , H̄H
n �− 1

2

) ( P

�
− 1

2 H̄n

)∣∣∣∣∣∣(PH , H̄H
n �

1
2

) ( P

�
1
2 H̄n

)∣∣∣
⎫⎬
⎭

= 1

|X| limς→∞E

{∣∣QH �̄Q
∣∣∣∣QH �̄Q
∣∣
}

, (76)

where �̄ = diag
(

I,�− 1
2

)
, �̄ = diag

(
I,�− 1

2

)
, and Q =( P

H̄n

)
. Then using the fact that

∣∣∣QH Q
∣∣∣ =

N−1∏
i=1

qH
i

(
I − Qi

(
QH

i Qi

)−1
QH

i

)
qi , (77)

where qi is the i-th column of Q, Qi is Q with columns

1, 2, . . . , i − 1, |QH
1 Q1| = 1 and Q1

(
QH

1 Q1
)−1

QH
1 = 0, we

can re-express the denominator and the numerator of (76) for a
large but finite value of ς as

φγn (t)

� 1

|X|
N−1∏
i=1

E

⎧⎨
⎩

qH
i

(
�̄ − �̄Qi

(
QH

i �̄Qi
)−1

QH
i �̄

)
qi

qH
i

(
�̄ − �̄Qi

(
QH

i �̄Qi
)−1

QH
i �̄

)
qi

⎫⎬
⎭ .

(78)

Note that the above approximation assumes the product terms
in (77) to be independent, which is true only when qi contains
independent and identical elements. In the present setting of this
paper with base station cooperation all elements in qi are not
identical. However, this approximation is motivated by the fact
that part of qi which is contributed by P is identical. Next we
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apply the standard Laplace type approximation [30] into (78) as
follows.

φγn (t)

� 1

|X|
N−1∏
i=1

E
{

qH
i

(
�̄ − �̄Qi

(
QH

i �̄Qi
)−1

QH
i �̄

)
qi

}
E

{
qH

i

(
�̄ − �̄Qi

(
QH

i �̄Qi
)−1

QH
i �̄

)
qi

} ,

� 1

|X|
E

{∏N−1
i=1 qH

i

(
�̄ − �̄Qi

(
QH

i �̄Qi
)−1

QH
i �̄

)
qi

}
E

{∏N−1
i=1 qH

i

(
�̄ − �̄Qi

(
QH

i �̄Qi
)−1

QH
i �̄

)
qi

} ,

= 1

|X|
E

{∣∣QH
i �̄Qi

∣∣}
E

{∣∣QH
i �̄Qi

∣∣} = 1

|X|
E

{∣∣I + H̄H
n �−1H̄n

∣∣}
E

{∣∣I + H̄H
n �−1X−1H̄n

∣∣} .

(79)

The accuracy of this approximation is illustrated in Section V
using numerical examples.

REFERENCES

[1] V. Jungnickel et al., “The role of small cells, coordinated multipoint, and
massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51,
May 2014.

[2] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Trans. Commun.,
vol. 52, no. 2, pp. 74–80, Feb. 2014.

[3] E. Aktas, J. Evans, and S. Hanly, “Distributed decoding in a cellular
multiple-access channel,” IEEE Commun. Mag., vol. 7, no. 1, pp. 241–
250, Jan. 2008.

[4] R. Senanayake, P. L. Yeoh, and J. S. Evans, “On the bit error probability
of optimal multiuser detectors in cooperative cellular networks,” IEEE
Trans. Veh. Technol., vol. 63, no. 5, pp. 2472–2478, Jun. 2014.

[5] R. Senanayake, P. L. Yeoh, and J. S. Evans, “Optimal multiuser detec-
tion in a cooperative two-cell network,” in Proc. Aust. Commun. Theory
Workshop (AusCTW’13), Adelaide, Australia, Feb. 2013, pp. 1–6.

[6] D. A. Basnayaka, P. J. Smith, and P. A. Martin, “The effect of macrodi-
versity on the performance of MLD in flat Rayleigh/Rician fading,” IEEE
Commun. Lett., vol. 16, no. 11, pp. 1764–1767, Nov. 2012.

[7] D. A. Basnayaka, P. J. Smith, and P. A. Martin, “The effect of macrodi-
versity on the performance of MLD in flat Rayleigh/Rician fading,” IEEE
Trans. Wireless Commun., vol. 12, no. 5, pp. 2240–2251, May 2013.

[8] S. Hanly and P. Whiting, “Information-theoretic capacity of multi-
receiver networks,” Telecommun. Syst., vol. 1, pp. 1–42, Jan. 1993.

[9] M. N. Bacha, J. S. Evans, and S. V. Hanly, “On the capacity of MIMO
cellular networks with macrodiversity,” in Proc. Aust. Commun. Theory
Workshop (AusCTW’06), Perth, Australia, Feb. 2006, pp. 105–109.

[10] S. Venkatesan and A. Lozano, “Network MIMO: Overcoming inter-
cell interference in indoor wireless systems,” in Proc. Conf. Rec. 41st
Asilomar Conf. Signals Syst. Comput. (ACSSC’07), Nov. 2007, pp. 83–
87.

[11] D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu,
“Multi-cell MIMO cooperative networks: A new look at interference,”
IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1380–1408, Dec. 2010.

[12] P. Marsch, S. Khattak, and G. Fettweis, “A framework for determining
realistic capacity bounds for distributed antenna systems,” in Proc. Inf.
Theory Workshop (ITW’06), Punta del Este, Uruguay, Oct. 2006, pp. 571–
575.

[13] H. Huang, M. Trivellato, A. Hottinen, M. Shaf, P. J. Smith, and
R. Valenzuela, “Increasing downlink cellular throughput with limited net-
work MIMO coordination,” IEEE Trans. Wireless Commun., vol. 8, no. 6,
pp. 2983–2989, Jun. 2009.

[14] A. Lozano, R. W. Heath, and J. G. Andrews, “Fundamental limits of coop-
eration,” IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 5213–5226, Sep.
2013.

[15] A. Lozano, J. G. Andrews, and R. W. Heath, “Spectral efficiency limits
in pilot-assisted cooperative communications,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT’12), Cambridge, MA, USA, Jul. 2012, pp. 1132–1136.

[16] A. Lozano, J. G. Andrews, and R. W. Heath, “On the limitations of
cooperation in wireless networks,” in Proc. Inf. Theory Appl. Workshop
(ITA’12), San Diego, CA, USA, Feb. 2012, pp. 123–230.

[17] A. Lapidoth, N. Levy, S. Shamai Shitz, and M. Wigger, “Cognitive Wyner
networks with clustered decoding,” IEEE Trans. Inf. Theory, vol. 60,
no. 10, pp. 6342–6367, Oct. 2014.

[18] S. J. Kim, S. Jain, and G. B. Giannakis, “Backhaul-constrained multi-
cell cooperation using compressive sensing and spectral clustering,” in
Proc. IEEE 13th Int. Workshop Signal Process. Adv. Wireless Commun.
(SPAWC’12), Jun. 2012, pp. 65–69.

[19] E. Katranaras, M. A. Imran, M. Dianati, and R. Tafazolli, “Green inter-
cluster interference management in uplink of multi-cell processing sys-
tems,” IEEE Trans. Wireless Commun., vol. 13, no. 12, pp. 6580–6592,
Dec. 2014.

[20] H. Yin, D. Gesbert, and L. Cottatellucci, “Dealing with interference in
distributed large-scale MIMO systems: A statistical approach,” IEEE J.
Sel. Topics Signal Process., vol. 8, no. 5, pp. 942–953, Oct. 2014.

[21] E. Bjornson, E. G. Larsson, and M. Debbah, “Optimizing multi-cell
massive MIMO for spectral efficiency: How many users should be sched-
uled?” in Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP’14),
London, U.K., Dec. 2014, pp. 612–616.

[22] S. Nagaraj, M. L. Honig, and K. Zeineddine, “Distributed optimization of
multi-cell uplink co-operation with Backhaul constraints,” in Proc. IEEE
Int. Conf. Commun. (ICC’15), London, U.K., Jun. 2015, pp. 3987–3992.

[23] R. Senanayake, P. L. Yeoh, and J. S. Evans, “On the sum capacity of
cluster-based cooperative cellular networks,” in Proc. IEEE Int. Conf.
Commun. (ICC’15), London, U.K., Jun. 2015, pp. 1613–1618.

[24] R. Senanayake, P. L. Yeoh, and J. S. Evans, “Distributed LMMSE estima-
tion in cooperative cellular networks,” in Proc. IEEE Int. Conf. Commun.
(ICC’15), London, U.K., Jun. 2015, pp. 4083–4088.

[25] H. Gao, P. J. Smith, and M. V. Clark, “Theoretical reliability of MMSE
linear diversity combining in Rayleigh-fading additive intereference
channels,” IEEE Trans. Commun., vol. 46, no. 5, pp. 666–672, May 1998.

[26] J. H. Winters, “Optimum combining in digital mobile radio with cochan-
nel interference,” IEEE J. Sel. Areas Commun., vol. AC-2, no. 4,
pp. 528–539, Jul. 1984

[27] A. F. Molisch, Wireless Communications. Hoboken, NJ, USA: Wiley,
2011.

[28] D. A. Basnayaka, P. J. Smith, and P. A. Martin, “Performance analy-
sis of dual-user macrodiversity MIMO systems with linear receivers in
flat Rayleigh fading,” IEEE Trans. Wireless Commun., vol. 11, no. 12,
pp. 4394–4404, Dec. 2012.

[29] M. K. Simon and M. S. Alouini, Digital Communication Over Fading
Channels. New York, NY, USA: Wiley-Interscience, 2005.

[30] O. Lieberman, “A Laplace approximation to the moments of a ratio of
quadratic forms,” Biometrika, vol. 81, p. 681–690, Dec. 1994.

[31] D. A. Basnayaka, P. J. Smith, and P. A. Martin, “Ergodic sum capacity of
macrodiversity MIMO systems in flat Rayleigh fading,” IEEE Trans. Inf.
Theory, vol. 59, no. 9, pp. 5257–5270, Sep. 2013.

[32] R. A. Horn and C. R Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[33] X. Gao, B. Jiang, X. Li, A. Gershman, and M. R. McKay, “Statistical
eigenmode transmission over jointly correlated MIMO channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 8, pp. 3735–3750, Aug. 2009.

[34] H. Minc, Permanants. Reading, MA, USA: Addison-Wesley, 1978.
[35] I. Grashteyn and I. Ryzhik, Table of Integrals, Series, and Products, 7th

ed. New York, NY, USA: Academic, 2007.
[36] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with

very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60,
Jan. 2013.

Rajitha Senanayake (S’12–M’15) received the B.E.
degree in electrical and electronics engineering from
the University of Peradeniya, Peradeniya, Sri Lanka,
the B.I.T. degree in information technology from the
University of Colombo, Colombo, Sri Lanka, and the
Ph.D. degree in electrical and electronics engineer-
ing from the University of Melbourne, Melbourne,
Vic., Australia, in 2009, 2010, and 2015, respectively.
From 2009 to 2011, she was with the research and
development team with Excel Technology, Colombo,
Sri Lanka. She is currently a Research Fellow with

the Department of Electrical and Computer Systems Engineering, Monash
University, Melbourne, Australia. Her research interests include communi-
cations theory and wireless communications. She was the recipient of the
Melbourne International Research Scholarship and the Melbourne International
Fee Remission Scholarship awarded by the University of Melbourne.



SENANAYAKE et al.: PERFORMANCE ANALYSIS OF CENTRALIZED AND PARTIALLY DECENTRALIZED CO-OPERATIVE NETWORKS 875

Phee Lep Yeoh (S’08–M’12) received the B.E. and
Ph.D. degrees (with University Medal) from the
University of Sydney, Sydney, N.S.W., Australia,
in 2004 and 2012, respectively. From 2008 to
2012, he was with the Telecommunications
Laboratory, University of Sydney, and the
Wireless and Networking Technologies Laboratory,
Commonwealth Scientific and Industrial Research
Organization (CSIRO), Australia. In 2012, he
joined the Department of Electrical and Electronic
Engineering, University of Melbourne, Melbourne,

Vic., Australia. His research interests include heterogeneous wireless networks,
large-scale MIMO networks, cognitive co-operative communications, and
multiscale molecular communications. He was the recipient of the Australian
Research Council Discovery Early Career Researcher Award, the University of
Sydney Postgraduate Award, and the CSIRO Postgraduate Scholarship.

Jamie S. Evans (S’93–M’98) was born in Newcastle,
Australia, in 1970. He received the B.S. degree in
physics and the B.E. degree in computer engineering
from the University of Newcastle, Callaghan, N.S.W.,
Australia, and the M.S. and Ph.D. degrees in electri-
cal engineering from the University of Melbourne,
Melbourne, Vic., Australia, in 1992, 1993, 1996,
and 1998, respectively. From March 1998 to June
1999, he was a Visiting Researcher at the Department
of Electrical Engineering and Computer Science,
University of California, Berkeley, Berkeley, CA,

USA. He returned to Australia to take up a position as a Lecturer with
the University of Sydney, Sydney, N.S.W., Australia, where he stayed until
July 2001. From July 2001 to March 2012, he was with the Department of
Electrical and Electronic Engineering, University of Melbourne. He is cur-
rently a Professor with the Department of Electrical and Computer Systems
Engineering at Monash University, Melbourne, Vic., Australia. His research
interests include communications theory, information theory, and statistical sig-
nal processing with a focus on wireless communications networks. He was
the recipient of the University Medal upon graduation from the University of
Newcastle, and the Chancellor’s Prize for excellence for his Ph.D. thesis from
University of Melbourne.


