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Technical Notes and Correspondence

The Optimal Observability of Partially Observable Markov
Decision Processes: Discrete State Space

Mohammad Rezaeian, Ba-Ngu Vo, and Jamie Scott Evans

Abstract—We consider autonomous partially observable Markov deci-
sion processes where the control action influences the observation process
only. Considering entropy as the cost incurred by the Markov informa-
tion state process, the optimal observability problem is posed as a Markov
decision scheduling problem that minimizes the infinite horizon cost. This
scheduling problem is shown to be equivalent to minimization of an entropy
measure, called estimation entropy which is related to the invariant mea-
sure of the information state.

Index Terms—Estimation entropy, observability, partially observable
Markov decision processes, sensor scheduling.

I. INTRODUCTION

This technical note focuses on partially observable Markov decision
models where the Markov process is autonomous, i.e. the action does
not influence its evolution. Instead the action influences observability
of the Markov process. This is a general model for monitoring systems
that have the capability to adjust their sensing devices for better ob-
servability of the scene. The aim is to determine an optimal policy for
guiding, tuning or selecting sensors that achieves maximum observ-
ability of concurrent events in the scene. For reference we call this the
optimal observability problem. Dynamically adjusting the measuring
devices of the system based on the history of measurements in accor-
dance with the optimal policy allows maximum information flow from
the state of the system to the observer. A special case of this problem
is sensor scheduling, for example waveform selection in radar systems,
[1], [2].

Previous works on sensor scheduling [3], and sensor allocation [4]
aimed at finding an optimal sequence of actions (sensor relocations or
adjustments) that minimize certain cost functions. They differ from the
optimal observability problem where an optimal policy is sought upon
which we choose actions based on real measurements. Some previous
works which have addressed the online sensor scheduling as the selec-
tion of one sensor at a time based on past measurements are [5]–[7].
In [5], the cost function comprises of estimation errors and measure-
ment costs, whereas in [7] the observability of the state process is the
key criterion for the dynamic sensor scheduling. Another result closely
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related to this technical note is the optimal control of POMDPs which
is analyzed in [8] and has been extensively used in various applica-
tions (see, e.g., [9]). The basic difference between the optimal control
and optimal observability will be highlighted in our discussion on the
optimal observability problem. Information theoretic criteria have in-
creasingly been used in the analysis of stability [10] and fundamental
limits of disturbance rejection (controllability) of systems [11], [12].
This technical note introduces an information theoretic approach to the
observability of systems.

In this technical note we use an information theoretic measure, esti-
mation entropy [13], [14] to analyze the optimal observability problem.
The minimum estimation entropy over different policies for a POMDP
is equal to the infinite horizon cost of an optimal Markov Decision
Process (MDP) with the cost function being the entropy of the belief
state. To capture the basic relation between a POMDP and its corre-
sponding MDP on the belief state in this problem, first we introduce
H-processes. For an H-process we define the estimation entropy as a
generalized concept of entropy rate. Both analytically and with an ex-
ample, we show that the more estimation entropy for a POMDP the less
observability of the state of a system. The corresponding MDP sched-
uling problem that finds the policy with minimum estimation entropy
can be solved by iterative algorithms such as policy iteration, value it-
eration or their point-based versions [16].

To facilitate the discussions we use the following notation. The do-
main of a random variable � is denoted by if it is a general space, or
by � if it is a finite set, where in the latter case without loss of gener-
ality we assume that � � ��� �� � � � � �� ��. A discrete time stochastic
process is denoted by � � ��� � � � ��. For a process �, a se-
quence��� ��� � � ��� is denoted by��

� , whereas�� refers to��

��.
A realization of random variable� is denoted by �, and the probability
���� � �� is shown by ���� (similarly for conditional probabilities),
whereas ���� represents a row vector as the distribution of � , i.e. the
	-th element of the vector ���� is ���� � 	�. For a random variable
� defined on a set � , we denote by �� the probability simplex in
���, where � �� is the set of (non-negative) real numbers. A spe-

cific element of a vector or matrix is referred to by its index in square
brackets. The entropy of a discrete random variable � is denoted by

��� �

��� ������ �	
�������, whereas � � �� 	 � rep-
resents the entropy function over �� , i.e. ������� � 
��� for all
possible random variables � on � .

II. OPTIMAL OBSERVABILITY PROBLEM FOR POMDP

Similar to a hidden Markov process (HMP) [13], a POMDP is
a Markov process ����

�
����, �� � 
 that is observed through

a discrete memoryless channel with the observation process being
����

�
����, �� � � . We assume that both processes are stationary

and time homogenous. In this case, a POMDP is defined by a transition
probability matrix  of the Markov process and the measurement
(emission) matrix � of the memoryless channel. The elements of
matrices ������� and �������� are the conditional probabilities,
��� �	� � ������ � �	��� � ��, � ��� �� � ���� � ���� � ��.
Unlike a HMP, the matrices  and � of the POMDP are functions of
a control action � � , and we choose the action based on our past
and current observations.

0018-9286/$26.00 © 2010 IEEE
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As with a HMP, for a POMDP we can define two random vectors ��
and �� on the simplexes �� ��� , respectively, which are functions of
����, [13]

����
���� � ������

���� (1)

����
���� � ������

����� (2)

The random vector �� has elements ����� � ���� � �������, and
similarly for ��. The random vector �� as a function of the random se-
quence���� is called the information-state [8] since it encapsulates all
the information about the state at time	 through all past measurements.

A. A Unified Framework for Observable, Partially Observable and
Hidden Markov Processes

Some key properties of the information state �� and �� that are
shared in HMP and POMDP are preserved and explainable under only
existence of a pair of mappings between these variables, irrespective
of the map definitions. The existence of such mappings in fact implies
that these processes can be described by an iterated function system,
[13]. We define such a general framework as an H-process and prove
its basic properties. Then we use H-process to characterize the observ-
ability of POMDPs in the sequel.

Definition 1: A pair of correlated processes ����� with finite do-
main sets��� , respectively, is called an H-process if the sequences ��
and �� defined in (1) and (2) are related by some mappings 
 � �� �
�� and � � � � �� � ��

�� � 
����� ���� � ����� ���� (3)

We refer to � as the observable component and � as the hidden com-
ponent of the H-process. H-process can also refer to a single process,
where the two components� and� in the above definition are the same,
hence �� � ��. In other words, a single process � is an H-process if
�� defined in (2) recursively satisfies ���� � ������ ��� for a given
function ��. Therefore H-process can also be seen as a generalization of
(observable) Markov process. We note that a time homogenous process
� is Markov if ���� � ������ for a given function ��.

An example of an H-process is the hidden Markov process, where
the mapping 
� � are


������ �
�

� ����������

���� �� �
������

������
(4)

and ���� is a diagonal matrix with ������� � � ��� ��, � �
�� 	� 
 
 
 � ���. In contrast, for a POMDP, the relationship of the ma-
trices � ��� and ���� on the control action implies

�� � 
� ����� ���� � �� ���� ��� (5)

where


���� � �� ���� ����� ��
�
�

����� ������

����� ���
(6)

and ���� �� is a diagonal matrix with ������� � � ������ ��, � �
�� 	� 
 
 
 � ���. Hence, ��� �� are not only functions of ���� but also
depend on the sequence of actions ��, and if this sequence is inde-
pendent of the observations (open loop), then the pair ����� is not an
H-process.

For a POMDP, a control policy is a rule, defined by a function � �
�� � � for choosing actions based on the belief ��. Having a fixed

policy � for selecting actions, i.e. �� � �����, (5) reduces to �� �

�����, ���� � ������ ���, where 
� and �� are defined by


���� � �� ������ � ����� ��
�
�

�� ��������� ������

�� ���������
� (7)

Thus, for a POMDP with a fixed policy � (called a closed loop
POMDP), the pair ����� is an H-process defined by the mappings ��
and 
� . We note that the closed loop POMDP is not a HMP (which
requires that 
 be a linear transformation as in (4)), but they share the
basic properties of H-processes that we explain next. Also, according
to relation of the H-process with complete observable stochastic
system that we show later, the closed loop POMDP corresponds to a
(complete observable) Markov decision process with a given decision
policy.

1) Markov Information State: A key property of an H-process is
that the information state �� is a Markov chain on �� . It can be seen
from (3) that for an H-process knowing ��, the only randomness in
���� is due to ��, whose distribution is only a function of ��, c.f.
������

���� � 
�����
�����. Therefore knowing ��, uniquely de-

fines the distribution of ����, independent of its prior history. More-
over, knowing ��, according to (3) ���� can at most take ��� different
values, and if these values are distinct, then they have probabilities
�
��������� � � �� 	 
 
 
 � ���, otherwise the overlapping values have
the corresponding sum of probabilities, i.e. for any 	

������� � �
���� � �	 �

��� �������


������� (8)

In general, a time homogeneous Markov chain � on a general space
is defined by a transition probability kernel � �����, � 
 , � 


�� �, (� refers to the Borel sets), where � ��� �� � ������� 

���� � �	. Extending (8) from singleton set ���	 to any set �, the
transition probability kernel � ��� �� for the Markov chain �� is

� ����� �

���

���

�	 ����� ��� 
������ (9)

where �	��� is the indicator function of �. This kernel encapsulates
both the state dynamic and the measurement characteristics. We show
in Section III that the invariant measure of this kernel characterizes
the observability of the hidden component of an H-process through its
observable component.

For a closed loop POMDP with a policy �, the corresponding tran-
sition probability for the information state is

����� �� �

���

���

�	 ������ ��� 
������� (10)

which may not necessarily have a unique invariant measure. Nonethe-
less, by extending the Kaijser’s result [22], we can show that for a
closed loop POMDP with a given policy �, if for every � the ma-
trices ������� and � ������ have non-zero elements, then the transi-
tion probability (10) has a unique invariant measure.

Note that in an H-process if �� and ���� depend also on an action
variable �� as in �� � 
� ����, ���� � �� ���� ��� through ar-
bitrary functions �� and 
�, then the Markov property of information
state is still valid, but instead of (9) we have a Markov decision process
with the transition kernel

����� �� �

���

���

�	 ������ ��� 
�������� (11)
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In this case the problem of finding a policy � for �� � ����� that
minimizes

���� � ���
���

���

���

�

�
��������� � �	

for a given � and cost function � is a (fully observable) Markov decision
scheduling problem.

2) Sufficient Statistic Property for Information State: For an
H-process we can write

��	����
 	
���� � ��	��	

���� � �� � ����� (12)

where the first equality is due to �� being a function of 	���. Since
the right hand side of (12) is (only) a function of �� (and it is a dis-
tribution on �), the left hand side must be equal to ��	�����, i.e. we
have shown ��	����
 	���� � ��	����� � �����. This shows that
for estimating the upcoming observation (or its distribution), �� is a
sufficient statistic for all the past observations. By a similar argument
we have

������
 	
���� � ����	

���� � �� � ������� (13)

which shows that for estimating the state at time �, �� is a sufficient
statistic for the past measurement before �. This generalizes the suffi-
cient statistic characterization of the information state that we had for
the HMP to any H-process.

Moreover, the sufficient statistic property is valid for �� replacing
	��� in estimating � for any � � �. This is by induction and

���	
���� � ����	���
 	

����

� ��	���
 �����

� ����	���
 ����� (14)

i.e.�����	���� is a sufficient statistic for	��� and can replace	���

as the dependent variables of ���	���
 �����. In particular, �� can
replace 	����, so we can also write (1) as

�� 	
���
� 
 �� � � ��	

���
� 
 �� 
 �� � 
� (15)

3) H-Process as a Stochastic System: A general stochastic system
[19] is defined as

���� � �����
 ��
 ���


�� ������
 ��� (16)

for given functions ����
 �
 �� and ����
 ��, where ��, �� and �� are
the state, input and output of the system, respectively, and �� and ��
are independent state and measurement noise variables, respectively.
Specializing this system to time invariant complete observable close
loop with a stationary policy �, i.e. �� � ��, and �� � �����, we
have

���� � � ���
 �����
 ���
�
� ����
 ���� (17)

In this special case, the only sources of randomness are the random
variables ��
 ��
 ��
 � � � 
 ��. The joint distribution of these vari-
ables defines the stochastic system, and if they are independent, then
the state process is Markovian [19, p 18]. We see from (17) that an
H-process is such a stochastic system with state of �� � �� and dis-
crete noise component �� � ��, but the noise components are not
independent. Their conditional distribution is a function of state, c.f.
� �	��	

���� � ���	
���� � �����	

�����. The Markovian nature

of the state is however established through �� � �����. The depen-
dent variables 	�
 	�
 � � � 
 	� have the following joint distribution

� ���
 ��
 � � � 
 ��� � �����	�����	 � � � �����	

� ��������	��������	 � � � ��������	� (18)

While for an H-process ��
�� the� component is partially observable,
the H-process representation gives a complete observable model, in
particular turning a POMDP into a MDP problem.

B. Observability of POMDP

We now discuss the observability of POMDPs via the complete ob-
servable Markov process �� characterized in the H-process represen-
tation of POMDPs. A policy� that dictates the control action �� based
on belief �� in general can be designed for two basic purposes, con-
trollability or observability of a POMDP. In the controllability problem
the aim is to control the state process to move it towards more favored
states, but in the observability problem the state process is autonomous
and the aim is to dynamically adjust the measuring apparatus to have
the best observation of the state process. Both problems can be defined
based on a specific cost function on the belief space1 �� and the aim
is to find the optimal policy � on this space that minimizes the infinite
horizon (or discounted) expected cost over time. In the controllability
problem, associated to each state � is a cost ���	 where � � ��� is
a fixed column vector. Hence, with a belief � on the probability dis-
tribution of states, the cost function on �� is ���� � �� which is
a linear function. The value function, representing the prospective ex-
pected cost on �� is then a piecewise linear and convex function. Dy-
namic programming methods such as value iteration yield the optimal
action to be taken at every point � � �� , i.e. the optimal policy. Al-
though the problem is intractable for �� of high dimension, methods
such as incremental pruning [21] or point-based value iteration [16] are
tractable approximations.

The focus of this technical note is the optimal observability of
POMDPs. Since the state process is autonomous, the matrix � does
not depend on the action �, and it is only  that is a function of �.
Moreover, the cost function cannot be a linear function on �� . The
(positive) cost function needs to be designed to penalize the belief ��
as it moves away from the vertices of �� . At the vertices, the belief
about the state is complete certainty, thus incurs zero (minimum)
cost. More specifically, we consider the following definition of the
observability problem in this technical note.

• The Optimal Observability Problem for an autonomous POMDP
is the optimization problem over policies � that minimizes the
average cost

���� � ���
���

���

���

�

�
��������� � �	

for any initial belief �, where the cost function is the entropy func-
tion, ���� � ����, and�� is the belief Markov process with kernel
�� in (10).

In the optimal observability problem, the optimal policy ensures that
as the state process evolves autonomously, the belief �� in its expecta-
tion hops only between the regions close to the vertices, so the average
ambiguity about state (cost) is minimized. This implies the maximum
observability of hidden process from the observed process in the long
run.

1In a more general setting the cost function can be defined on� � . This
is when we want to avoid, as much as possible, some specific actions (for other
reasons like costly measurement) although they are good in affecting the trajec-
tory of the intended process.
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In [20], the problem of finding an optimal policy for a POMDP for
which the control action only influences the measurement has been con-
sidered with a cost function ���� � ����� (� stands for transpose).
This also has zero cost at vertices. By piecewise linear approxima-
tion of the cost function and discounted cost criterion, the problem can
be turned into an optimization similar to the controllability problem,
where an approximate and computationally intensive solution can be
obtained using the value iteration algorithm. However this cost function
does not relate to a measure of information, hence it does not provide
an information theoretic measure of observability. Shannon entropy is
a natural choice when uncertainty or inversely, observability needs to
be measured. We relate the observability problem with the entropy cri-
teria to the minimization of a limiting entropy measure that we define
in the next section.

III. THE ESTIMATION ENTROPY

The entropy rate of a process � [18], denoted by ��� is the limit of
Cesaro mean of the �-sequence ������

���
�

� � ����
�� � ������

�
�,

i.e.

��� � ���
���

�

�

�

���

� ����
���
� � ���

���

�

�
� ���

� � � (19)

Extending the above definition of entropy rate for a single process to
a pair of processes, we define estimation entropy as a limiting entropy
measure for an H-process.

Definition 2: The estimation entropy of an H-process ��	�� is

�����
�
� ���

���

�

�

�

���

� 
���
���
� � (20)

We note that if for an H-process ��	�� the function � is one to one
and invertible, then the observable component � is also an H-process
with 	���	 ��� � �����	 �

�������. Moreover, the estimation en-
tropy of a single H-process reduces to its entropy rate, c.f. ����� �
��� . Therefore estimation entropy, in particular for H-processes can be

seen as a generalization of entropy rate from a single process to a pair
of processes.

Since convergence of a sequence �� implies the convergence of its
Cesaro mean (i.e. ��� �

��� ��) to the same limit [18, Theorem 4.2.3],
for an H-process

����� � ���
���

� 
���
���
� (21)

when the limits in (21) exist. Similarly, for the entropy rate we have
��� � ���

���
������

���
�

�, when the limit exists, [18]. However, the

non-existence of these limits does not mean that the entropy rate or es-
timation entropy do not exist. One sufficient condition for the existence
of the limit in (21) is the stationarity of the H-process. This is because in
the stationary case the n-sequences of ��
���

���
�

� is non-increasing
and positive. Therefore for a stationary H-process the estimation en-
tropy can also be written as (21).

From (21) (or (20)) we see that the estimation entropy for an
H-process is the limit of (running average of) residual uncertainty
about the hidden component under the knowledge of all past observed
process, thus it inversely measures the observability of the hidden
process. However, we also show that under ergodicity conditions
the estimation entropy is the long run average entropy of the belief
process. To this end, we need to define and use the following operator
for a given transition probability kernel � on � [17]

�����
�
�

�

����� ��	 ��� (22)

for any real-valued bounded measurable function � . The � times rep-
etition of this operator on a function � is denoted by ������, and it
is equal to ������ � 
�������� � �� when �� evolves by � as a
Markov process.

Before presenting the relation between the estimation entropy and
the invariant measure of � , first we obtain a relation between condi-
tional entropy and the above operator of � .

Lemma 1: For any H-process ��
���
���
�

	 �� � �� � ������,
where � is defined by (9) and � is the entropy function.

Proof: From definition of conditional entropy and (15)

� 
���
���
� 	 �� � � �

�

� ����
� � ���� � �

� � ��
���
���
� � �	 �� � �

�
�

� ����
� � ���� � �

� � �����	 ���

� 
�������� � ��

�������� (23)

Theorem 1: For an H-process, if � has unique invariant measure �,
then

����� � ���
���

�

�

���

���

� �� �

�

���� (24)

Proof: The second equality is the direct result of the mean ergodic
theorem [17]. Moreover according to this theorem the middle expres-
sion is a constant independent of �. Assuming the limit of ����� �
�� exists, it will be equal to that constant, and we have

���
���

��� � ���
���

� 
���
���
� 	 �� � �

� ���
���

� 
���
���
� (25)

where the first equality is from Lemma 1, and the second one is due
to the fact that if for a set of random variables �	�	 � , the quantity
��� ��	� � �� is invariant with �, then ��� ��� � ��� ��	�� �
��� ��	� � ��. The right hand side of (25) is equal to ����� when
the limit exists.

For an H-process corresponding to a closed loop POMDP with a con-
trol policy �, ����� , kernel � and its invariant measure are all func-
tions of policy �, and if the invariant measure of �� , denoted by ��

exists, then from Theorem 1

�������� �

�

�����

Since the function � is fixed over�� , the invariant measure �� defines
the estimation entropy and hence it characterizes the observability of
the system under policy �. Hence the analysis of observability of a
closed loop POMDP boils down to finding the invariant measure of the
kernel � under the control policy.

On the other hand, since ������ � 
�������� � ��, from The-
orem 1 we see that under ergodicity condition (existence of a unique
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invariant measure), the average cost criterion for the optimal observ-
ability problem is the estimation entropy

���� � ���
���

�

�

���

���

��������� � �	

� ���
���

�

�

���

���

�
�

� 
���� � (26)

Moreover, this average cost is independent of the initial belief ��. This
also shows the key property of the estimation entropy as the infinite
horizon average uncertainty about the state (or a hidden) process, so it
inversely represents the observability of the state process.

For a closed loop POMDP, under ergodicity of �� , we write (26) as


�����	� � ��	
 ��
 ��� (27)

The optimal observability problem therefore is minimization of either
sides of (27) over policies	, so it can be viewed either as the minimiza-
tion of 
���� as a function of 	 or as it was noted before the average
cost MDP scheduling problem of ��	
�� for any �. This MDP is de-
fined by the set of conditional probabilities �� in (11) where �� and ��
are defined by (6). We briefly explain this approach in the next section.

IV. OPTIMUM OBSERVATION POLICY

Here we formalize the POMDP observability problem with a finite
control set as an average cost MDP scheduling problem. Such an ob-
servability problem is uniquely defined by three integers �
�
��, an
� primitive probability matrix Q, and a set of�� probability
matrices ��, � � �
 �
 � � � 
 �. The corresponding MDP problem is de-
fined as follows:

• The Markov decision process evolves on the state space , where
is the probability simplex in � .

• The admissible action set for any � � is � � ��
 �
 � � � 
 ��.
• The set of conditional probability distributions ����
 ��, � � �,

is defined by (11).
• For any stationary policy 	  	 � the state process ��	� �
����	�  � � ��� is a Markov chain with conditional probability
����
 �� � ���	���
��.

• The average cost of a policy 	 for a given initial condition � is

��	
�� � ���

��

�

�


��

���

�� ����	�� ��� � �	

where the cost function �  	 ��
 �����	 is the entropy
function defined by

���� � ����
�
� 


�

���	 ��� ���	�

Objective: Find the optimal policy 	� where ��	�
 �� � ��	
��
for all polices 	 and any initial state �.

As an average cost MDP scheduling problem the objective can be
achieved by the policy iteration algorithm (PIA). The solution 	� will
then be the optimum observation policy. However since is not finite,
the PIA may not converge. The convergence of this algorithm can be
analyzed using methods from [15] which is beyond the scope of this
technical note. Alternative approximation methods such as point-based
value iteration [16] can be used for convergence and computational
tractability.

Fig. 1. Comparison of achieved estimation entropy and the probability of error
in state estimation for various sensor selection policies as functions of sensor
reliability.

A. Numerical Example

We consider a system with 8 states evenly spaced on a circle. Cor-
responding to each state there is a binary sensor that, when selected,
indicates if the system is in that state or not, with the probability of er-
roneous indication being � � . So for sensor �, conditioned that the state
is �, the output will be ‘1’ with the probability of �
 � � , and ‘0’ with
the probability of � � , and conditioned on state not being �, the oppo-
site will happen. At any given time only one sensor can be selected
for the observation of state. These binary sensors mimic a sensor net-
work setup for detecting targets passing by the sensors, where for each
sensor the probability of false alarm is � � and it is equal to one minus
the probability of target detection. We consider a Markov state process
with the dynamic that it stays in the same state with probability of 0.9
but can go to both neighboring states with probability of 0.05 each.

The policy iteration algorithm has been adapted for this optimal ob-
servability problem to obtain a policy that we call it the scheduled
sensor selection policy. We have compared this sub-optimal policy with
3 other heuristic policies in Fig. 1, namely, random sensor selection, al-
ternating through all sensors, and only using one sensor. The compar-
ison is in terms of the achieved estimation entropy as well as probability
of the error for MAP estimation of the state, both at various sensor error
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probabilities. The results show the efficiency of the scheduled policy in
reducing the estimation entropy and achieving less probability of error
as compared to heuristic policies. As the figures show, this efficiency
increases at more accurate sensor measurements, or less sensor prob-
ability of error. The two graphs also show the correspondence of the
estimation entropy with the achievable probability of error in state es-
timation. Since estimation entropy inversely relates to the observability
of the state process, this correspondence suggests an interpretation of
optimal observability as achieving the least probability of error in state
estimation for a given set of sensors.

V. CONCLUSION

In this technical note, we showed the fundamental role of estimation
entropy as a new information theoretic measure in defining the observ-
ability for a system. We showed that the optimal closed loop control
of the measuring devices of a system for providing the most flow of
information from the state of the system to the observer is ultimately
achieved by minimizing the estimation entropy over different control
policies. The estimation entropy was related to the integral of the en-
tropy function over the belief space, where the measure for this space is
considered to be the invariant measure of a transition probability kernel.
This probability kernel is well defined for the H-process corresponding
to a closed loop POMDP, and under mild conditions the existence of
its unique invariant measure can be verified. Here the H-process was
defined to capture the core properties that are shared between the con-
trolled and uncontrolled hidden processes in one hand, and to represent
the closed loop POMDP’s by a fully observable Markov process on the
other hand.

Future extension of this work is possible for general state space
models. For continuous alphabet the belief space is infinite dimen-
sional. Although the belief transition probability kernel can be formu-
lated, finding the invariant measure on this space is not practical. An
alternative approach for the analysis of the observability of such sys-
tems is via the possible relation between the estimation entropy and the
entropy of error in the minimum entropy filter defined in [23].
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