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Optimal Power Allocation and User Loading for
Multiuser MISO Channels with
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Abstract—We consider a multiuser system where a single
transmitter equipped with multiple antennas (the base station)
communicates with multiple users each with a single antenna.
Regularized channel inversion is employed as the precoding
strategy at the base station. Within this scenario we are interested
in the problems of power allocation and user admission control
so as to maximize the system throughput, i.e., which users should
we communicate with and what power should we use for each
of the admitted users so as to get the highest sum rate. This is
in general a very difficult problem but we do two things to allow
some progress to be made. Firstly we consider the large system
regime where the number of antennas at the base station is large
along with the number of users. Secondly we cluster the downlink
path gains of users into a finite number of groups. By doing this
we are able to show that the optimal power allocation under an
average transmit power constraint follows the well-known water
filling scheme. We also investigate the user admission problem
which reduces in the large system regime to optimization of the
user loading in the system.

Index Terms—Multiuser precoding, regularized channel inver-
sion, power allocation, large system analysis.

I. INTRODUCTION

MULTI-Input Multi-Output (MIMO) technologies are
currently being adopted in many wireless communi-

cation standards such as the fourth generation (4G) cellu-
lar networks. In multiuser MIMO downlink transmissions
or broadcast channels (MIMO-BC), the capacity region was
characterized in [2] and is achieved by employing Dirty Paper
Coding (DPC) at the transmitter. However, implementing this
technique in practice is computationally expensive [3], [4].
Multiuser beamforming techniques such Zero Forcing (ZF)
and Regularized Channel Inversion (RCI) are sub-optimal in
term of the sum-rate but offer a lower complexity in the
implementation. ZF can asymptotically achieve a sum rate that

Manuscript received June 25, 2013; revised September 5 and October 30,
2013. The editor coordinating the review of this paper and approving it for
publication was H. Dai.

A part of this paper was presented at the Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, November 2011, [1].

R. Muharar is with the Department of Electrical Engineering, Syiah
Kuala University, Banda Aceh, Indonesia (e-mail: r.muharar@unsyiah.ac.id;
rusdha@gmail.com).

R. Zakhour is a part-time faculty member at the Schools of Engineering
of the Lebanese American University and of the Lebanese International
University (e-mail: randa.zakhour@gmail.com).

J. Evans is with the Department of Electrical and Computer Systems
Engineering, Monash University, Clayton, VIC 3800, Australia (e-mail:
jamie.evans@monash.edu).

Digital Object Identifier 10.1109/TCOMM.2013.111613.130478

is close to that of DPC by appropriate power allocation and
user scheduling [5].

In Multi-Input Single-Output (MISO) broadcast channels,
finding the optimal power allocation policy maximizing the
sum rate for ZF is a convex optimization problem and its
solution follows the water-filling (WF) scheme, see e.g., [5].
In contrast, the optimal power allocation for the RCI precoder
is a non-convex optimization problem with many local optima
[6]–[8], even in the case of all users having the same path
gain. In [6], [7], the authors investigated the sum rate maxi-
mization of MIMO broadcast channels with RCI under a total
power constraint. They showed that the problem is a global
difference of convex functions (d.c.) optimization problem and
proposed the local gradient method to solve the problem. Their
numerical results suggest that employing an RCI precoder with
power allocation gives a better sum rate compared to the ZF.
Reference [8] extends the previous works, but in the MISO
broadcast channels setting, by putting additional quality of
service (QoS) constraints where each user’s data rate should
be above a specified minimum rate. The authors re-cast the
optimization problem as a series of geometric programming
(GP) problems, called iterative GP (IGP).

As already mentioned, besides power allocation, selecting
the users for transmission can improve the system perfor-
mance. It has been shown in [5] that a combination of water-
filling based power allocation and a user selection scheme,
called semi-orthogonal user selection (SUS), in MISO BC
systems with ZF precoder can approach the sum rate obtained
by employing DPC when the number of users is large.
A similar conclusion is also presented in [9], [10] but by
using greedy search algorithms for the user selection. The
performance analysis of that algorithm for the case of finite
(at most two) scheduled users was carried out in [11]. The
authors in [12] also proposed a greedy user selection for the
RCI precoder: their algorithm is based on the closed form
approximation of the expected sum rate. In [13], Dai et al.
studied MISO BC systems with ZF precoder under a finite-rate
or quantized feedback. The proposed power allocation scheme
is binary or on/off. They showed that the feedback rate and
the received SNR affect the optimal number of active (’on’)
users. Moreover, their scheme can be applied in heterogeneous
environments where the users may have different path gains.
A similar problem is also considered in [14], [15] but with
different settings. Besides considering the finite-rate feedback,
the authors take into account the feedback delay by using
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a Gauss-Markov model; they also assume a homogeneous
environment and equal power allocation across the users. A
sum rate approximation expression as a function of the number
of users is derived. As a result, the number of users can be
adjusted adaptively based on the feedback delay and channel
quantization error (or feedback rate). This strategy is similar to
the multi-mode transmission scheme considered in this paper.

In this paper, we will be considering power and user
loading (also called group loading) allocations, in addition
to regularization parameter optimization, in a MISO BC with
heterogeneous users. As mentioned earlier, solving the optimal
power allocation problem alone is a challenging task [6]–
[8]. Adding the user loading allocation and the regularization
parameter of the precoder into the optimization problem
increases the complexity of the task. To tackle the problem, we
therefore apply two simplifying strategies. Firstly, we consider
the large system regime where the number of users, K , and
the number of transmit antennas of the transmitter or base
station (BS), N , tend to infinity with a fixed ratio. In this large
system, we show how many of the related problems simplify
and key insights can be obtained. Secondly, we divide all users
into a finite number of groups or clusters, where all users in
each group have approximately the same distance from the BS
and therefore share the same distance dependent path gain. A
similar grouping approach is also employed in [16].

As a result of applying the first strategy, we are able to show
that in the large system regime, each user’s SINR tends to a de-
terministic quantity, called the limiting SINR: limiting SINRs
depend only on users’ allocated power and path gain and not
on the realization of the fast fading coefficients. Following
that, under the second modeling strategy, we consider the
joint optimization of the users powers and the regularization
parameter. For a fixed regularization parameter, we show that
the optimal power allocation problem maximizing the limiting
sum rate per antenna1 under an average power constraint is
convex and the optimal power allocation follows the familiar
water-filling strategy [5], [17]. By substituting back the power
allocation scheme to the sum rate per antenna expression, we
can derive the optimal regularization parameter. Even though
it does not yield a closed form expression, this substitution
leads to a one dimensional optimization problem which can
be solved by standard line search algorithms.

It should be noted that the water-filling scheme may allocate
zero power to some of the groups. Consequently, one may
ask whether it is better to include the channel states of those
groups in the precoder or not. This leads to the second part
of the paper where we consider a multi-mode transmission
scheme (see also [14], [15]). In this scheme, for a given total
number of groups (L) and group loading of each group, we
determine the optimal number of groups for the transmission
and also which groups the BS should communicate with. We
arrange or sort the groups based on their path gains in a
descending order. We investigate two cases. In the first case,
for each group, the BS can only decide between transmitting
to all the users in the group or to none of them. We consider
a uniform group loading over the groups. In the mode m

1For the rest of the paper, we omit the word ’limiting’ in the limiting sum
rate per antenna.

transmission where the BS only communicates to m groups
(out of L), it is optimal for the BS to transmit to the first
m ≤ L groups. The optimal mode can then be determined by
comparing the maximum sum rate per antenna of each mode.
In the second case, the BS is allowed to communicate with
any subset of the users in a group. We provide a necessary
condition for the optimal group-loading allocation for each
group. Assuming that M ≤ L groups are allocated positive
power, the group loadings of the first M −1 groups should be
set at their maximum value and the group loading for the M -
th group can be in between zero and its maximum value. We
also propose an algorithm to solve this optimization problem.
Considering the group loading allocation, the algorithm offers
a lower complexity in comparison to brute force search
methods. In both cases, the optimal power allocation strategy
and regularization parameter are also considered.

We should also note that employing precoding and power
allocation in the downlink require channel state information
(CSI) at the BS. The analysis in this paper assumes perfect
CSI at the BS even though this is hard to obtain in practical
scenarios. The impact of imperfect CSI at the BS with RCI
precoder has been investigated in some work, e.g., [18],
[19] and [20]. The optimization problems considered in this
paper together with imperfect CSI can be a subject for future
investigation.

A work closely related to ours is [19] that considers the
large system analysis of MISO broadcast channels with RCI
(and ZF) under a general channel model and various transmis-
sion scenarios. However, our work differs from [19] in several
respects. We group together users that have approximately the
same distance from the BS while the results in [19] assume all
users are either identical or different (represented by the same
or different correlation matrices). Moreover, the formulation
of the precoding (RCI) matrix considered in [19] and in our
paper is not the same. We consider a joint optimization of
the power allocation, regularization parameter and user/group
loading to maximize the sum-rate per antenna whereas in [19],
the optimization of those parameters is considered separately.
Furthermore, the optimal power allocation and the optimal
cell-loading (assuming ZF precoder at the BS) in [19] only
hold for the homogeneous2 setting, i.e. the one-cluster setup
in our model.

The rest of the paper is structured as follows. Section II
presents the channel model and the SINR expressions for both
finite-size and large system regimes. Section III introduces
the grouping model and presents the joint optimization of
the power allocation and the regularization parameter. In
Section IV, multi-mode transmission is introduced and a joint
optimization of the power, regularization parameter and group
loading is tackled. Section V concludes the paper and some
of the technical proofs are placed in the Appendix.

Throughout the paper, the following notations are used. E[·]
denotes the statistical expectation and

a.s−→ refers to almost
sure convergence. ∂f

∂x denotes the partial derivative of f with
respect to (w.r.t.) x and ∂f(x�)

∂x represents ∂f(x)
∂x at x = x�. The

circularly symmetric complex Gaussian vector with mean μμμ

2Even though for the power allocation problem, each user has different
channel estimation accuracy.
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and covariance matrix Σ is denoted by CN (μμμ,Σ). |a| denotes
the magnitude of the complex variable a. ‖ · ‖ represents
the Euclidean norm. � represents element-wise inequality for
the vectors. Tr (·) denotes the trace of a matrix. IN and 0N

denote an N × N identity matrix and a 1 × N zero entries
vector, respectively. (·)T and (·)H refer to the transpose and
Hermitian transpose, respectively. LHS and RHS refer to the
left-hand and right-hand side of an equation, respectively.

II. SYSTEM MODEL

A. Finite-size system model

We consider a MISO broadcast channel with an RCI pre-
coder at the transmitter end. The base station has N antennas
and serves K users each equipped with a single antenna. The
received signal for user k is given by

yk = akhkx+ wk (1)

where a2k and hk ∈ C1×K are the slowly-varying distance-
dependent path gain3 and the fast-fading channel vector be-
tween the BS and user k, respectively. It is assumed that the
entries of the row vector hk are i.i.d. and hk ∼ CN (0, IN )4.

The transmitted data vector, x ∈ CN , satisfies a power
constraint E[‖x‖22] = Pd and it can be written as x = Ps,
where P and s are the (linear) precoding matrix and the data
symbol vector, respectively. We model the latter as s = Λ1/2s̄,
where s̄ is the normalized (power) data symbol vector, i.e.,
E[s̄s̄H ] = IK and Λ = diag(p1, p2, · · · , pK) where pk de-
notes the power allocated to user k. Let H = [h1 h2 · · · hK ]T

be the channel matrix. The RCI precoder matrix, P, takes
the form P = c

(
HHH+ αIN

)−1
HH , where α is the regu-

larization parameter that controls the amount of interference
introduced to the users and c is the normalizing constant
chosen to meet the transmit power constraint E[‖x‖22] = Pd,
that is,

c2 =
Pd

Tr (ΛH(HHH+ αIN )−2HH)
. (2)

The receiver noise of user k, denoted by wk , has distribution
CN (0, σ2) and is assumed to be independent of the noise of
other receivers.

Based on the description above, we can rewrite (1) as
follows

yk = cak
√
pkhk(H

HH+ αIN )−1hH
k s̄k

+

K∑
j �=k

cak
√
pjhk(H

HH+ αIN )−1hH
j s̄j + wk

and the SINR attained by user k can be expressed as

SINRk =
c2a2kpk|hk(H

HH+ αIN )−1hH
k |2∑K

j �=k c
2a2kpj |hk(HHH+ αIN )−1hH

j |2 + σ2
.

(3)

3Note that a2k captures the effect of geometric attenuation, which is distance
based, between the BS and user k. In some papers, e.g., [13], [16], it is called
the path-loss coefficient. We should also note that the actual channel vector
for user k is represented by akhk .

4Even though here, we assume a specific distribution for h, the large system
analysis holds for any distribution of hk if the entries of 1√

N
hk are i.i.d.

with zero mean, variance 1
N

and have finite eighth moment (see e.g. [21]).

It is clear that the SINRk is a random quantity since it depends
on the propagation channels that fluctuate randomly. In the
large system limit, as we will see in the next section, this
randomness disappears.

B. Large-system regime SINR

The following theorem provides the convergence of the
SINRk (3) when the system dimensions, that is, K and N ,
grow large with their ratio fixed.

Theorem 1. Let ρ = α
N be the normalized regulariza-

tion parameter and g(β, ρ) be the solution of g(β, ρ) =(
ρ+ β

1+g(β,ρ)

)−1

. Let P = lim
K→∞

1

K

K∑
k=1

pk. Suppose that

the limit P exists and is bounded. Then, as K,N →∞ with
K
N → β, SINRk (3) converges almost surely to a deterministic
quantity, SINR∞

k , given by

SINR∞
k = p̄kg(β, ρ)

γk + γkρ
β (1 + g(β, ρ))2

γk + (1 + g(β, ρ))2
, (4)

where γk =
Pda

2
k

σ2 is defined as the effective SNR and p̄k = pk

P
is the normalized power w.r.t. P .

Proof: Refer to Appendix A.
We call SINR∞

k the limiting SINR of user k. Note that it is
different for each user and depends on ak and pk. Let fk(β, ρ)
be the RHS of (4) excluding p̄k. Then, we can write (4) as

SINR∞
k = p̄kfk(β, ρ). (5)

Note that fk also depends on ak and Pd/σ
2 via γk but these

are assumed to be fixed throughout this paper. It is also
obvious that fk is independent of p̄k. This property will ease
the analysis in finding the power allocation that maximizes
the sum rate per antenna in the next section.

III. OPTIMAL POWER ALLOCATION AND

REGULARIZATION PARAMETER

Let us consider the following scenario. We divide all K
users into L groups, where L is finite. All users in each group
are assumed to have the same path gain. For the rest of the
paper, we assume that a1 ≥ a2 ≥ · · · ≥ aL. The number of
users in group j is denoted by Kj , with

∑L
j=1 Kj = K . We

also assume that Kj and N tend to be large with a fixed ratio
βj =

Kj

N . It represents the user or group loading of group
j. Since the path gain and other parameters β, ρ as well as
SNR are the same for all users in a group, then based on (4),
we can assume that the power allocated to each user in that
group is also the same. This assumption holds for the rest of
the paper.

Based on the above scenario, we can define the achievable
sum rate per antenna as follows

R∞
sum =

L∑
j=1

βj log
(
1 + SINR∞

j

)
. (6)

Our goal in this section is to find the optimal power alloca-
tion that maximizes R∞

sum. Moreover, it is also interesting to
explore how the regularization parameter of the RCI precoder
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adapts to different path gains and also user powers. A joint
optimization problem can be formulated as follows,

P1 : max.
p̄�0,ρ≥0

R∞
sum

s.t.
L∑

j=1

βj

β
p̄j =

1

β
βββT p̄ ≤ 1. (7)

In the above, we use lowercase bold letters to denote column
vectors with size L, e.g., p̄ = [p̄1, p̄2, . . . , p̄L]

T . This notation
will be used for the rest of this paper, unless otherwise stated.
Note that the constraint (7) can be considered as the large
system average power constraint. P1 also requires p̄ and ρ to
be non-negative.

Before addressing the solution of P1, we characterize
the objective function as a function of p̄j . Let R∞

sum,j =

βj log
(
1 + SINR∞

j

)
denote the sum rate per antenna for

group j. It can be checked that it is an increasing function in
pj . Moreover, we can show that the following lemma holds.

Lemma 1. The sum rate per antenna R∞
sum is concave in p̄.

Proof: The second derivative of the limiting SINR w.r.t.
p̄j is

∂2SINR∞
j

∂p̄2j
= − f2

j (β, ρ)

(1 + p̄jfj(β, ρ))2
< 0.

This implies that SINR∞
j is concave in p̄j . Since the log

operation does not change the concavity, therefore R∞
sum,j is

also concave in p̄j . Moreover, R∞
sum is a linear combination of

R∞
sum,j and this operation preserves the concavity.

From the lemma above, we can see that for a fixed ρ, P1
is a convex program because −R∞

sum is convex in p̄ and the
constraints are linear. For a fixed p̄, SINR∞

k is not concave
in ρ but quasi-concave [22]. Since log is a non-decreasing
function then R∞

sum,j is also quasi-concave (not concave) in
ρ. Since a linear combination operation does not necessarily
preserve the quasi-concavity, the sum rate per antenna need
not be quasi-concave.

Now, let us consider the Lagrangian for P1, as stated
below5

L =

L∑
j=1

βj log(1+ p̄jfj(β, ρ))−λ
(
1

β
βββT p̄− 1

)
+ξξξT p̄+κρ,

where λ and ξξξ are the Lagrange multipliers for the average
power and non-negative power constraints respectively, and
κ is the Lagrange multiplier for the constraint ρ ≥ 0. Let
p̄�, ρ� be the solutions for P1. At these points, the associated
Karush-Kuhn-Tucker (KKT) optimality conditions are

∂L
∂p̄j

= βj

(
fj(β, ρ

�)

1 + p̄�jfj(β, ρ
�)
− λ

)
+ ξj = 0 (8)

∂L
∂ρ

=

L∑
j=1

βj p̄
�
j

1 + p̄�jfj(β, ρ)

∂fj(β, ρ
�)

∂ρ
+ κ = 0, (9)

5For notational simplicity, we use L to denote the Lagrangian L(x, λλλ),
where x and λλλ are the optimizing variables and the Lagrange multipliers,
respectively.

and

1

β
βββT p̄� ≤ 1, λ

(
1

β
βββT p̄� − 1

)
= 0, λ ≥ 0, (10)

p̄� � 0, ξj p̄
�
j = 0, ξj ≥ 0, j = 1, . . . , L, (11)

ρ� ≥ 0, κρ� = 0, κ ≥ 0. (12)

Recall that for a given ρ, P1 reduces to a convex program.
In this case, it is easy to show that the KKT conditions (8),
(10) and (11) lead to the optimal power allocation strategy
maximizing the sum rate per antenna, as presented in the
following theorem.

Theorem 2. For a fixed ρ, the optimal power allocation for
the optimization problem P1 follows the water-filling (WF)
scheme and is given by

p̄�j =

[
1

λ
− 1

fj(β, ρ)

]
+

(13)

where [x]+ = max(0, x). The constant (Lagrange multiplier)
λ is the solution of

L∑
j=1

βj p̄
�
j = β,

for which the average power constraint is satisfied with
equality.

In the WF scheme above, 1/λ can be perceived as the water
level. It determines how power is poured to each user and
is based on the value of fj(β, ρ). Recall that the limiting
SINR is given by p̄�jfj(β, ρ). It can be checked that fj(β, ρ)
is increasing in aj . Thus, more power will be allocated for
the users with better channels which can be represented by
the path gains {aj}. Note that in this case, fairness amongst
users could be an issue since some users might have zero rate.

Remark 1. To find λ we can follow the following steps (see
also [23]). Since we assume a1 ≥ a2 ≥ · · · ≥ aL, then p̄�1 ≥
p̄�2 ≥ · · · ≥ p̄�L. Now let us assume that the first m groups
have non-zero power. To determine λ, we just need to solve∑m

j=1 βj p̄
�
j = β. Using p̄�j in (13), it is easy to show that

λ =

∑m
j=1 βj

β +
∑m

j=1
βj

fj(β,ρ)

.

The power allocated to group j is then given by

p̄�j =
β +

∑m
j=1

βj

fj(β,ρ)∑m
j=1 βj

− 1

fj(β, ρ)

To determine m, we just need to find m such that p̄�m > 0
and p̄�m+1 ≤ 0.

By using the KKT optimality conditions above, the optimal
ρ� can be found as stated in the following theorem.

Theorem 3. Let p̄� be as in (13). The maximum sum rate per
antenna, R∞

sum, is obtained by choosing ρ� that satisfies

L∑
j=1

βj p̄
�
jf

2
j (β, ρ

�)

1 + p̄�jfj(β, ρ
�)

(
ρ�

β
− 1

γj

)
= 0. (14)
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Fig. 1. Comparison of the average sum rate between using p̄ = p̄�
FS, p̄ = p̄�

and p̄ = [1 1]T for L = 2, β = 1, N = 8, βj = 1/2, ρ = ρ� and
a2j = 1/j2.

and it is bounded by

β

γ1
≤ ρ� ≤ β

γL
. (15)

Proof: See Appendix B.
Note that by using (13) in (14), it is straightforward to

see that (14) becomes a one-dimensional zero/root-finding
problem. Thus, the optimal ρ can be found by using existing
line search algorithms for the interval given in (15).

Figure 1 illustrates the validity of using the large system
results for the finite size system. We generate 500 channel
realizations and for each realization we compute the optimal
power allocation, denoted by p̄∗

FS, by a grid search. In the
plot, we compare the average sum rate, denoted by E[Rsum],
between using the power allocation p̄ in (13) and p̄∗

FS. The gap
between the curves in the figure is very small and can be said
negligible. As a comparison, we also plot the average sum-
rate obtained by using an equal power allocation, that is, p̄ =
[1 1]T and the corresponding optimal regularization parameter.
The figure shows that the optimal power allocation (p̄�) gives
higher average sum-rates for the SNR values between 0-10
dB. As the SNR increases, we observe for the current setup
that p̄� ≈ [1 1]T . Hence, for SNR > 10 dB, the optimal and
equal power allocation strategies result in almost the same
average sum rates.

IV. MULTIMODE BROADCAST CHANNELS

In the previous section, we assumed that the base station
communicates simultaneously with all users in all groups or
clusters. This meant that the channel vector for every user
was present in the precoding matrix P. In this section we
drop that assumption and seek to optimize over the number
of users (or groups) to which the base station communicates,
along with their powers. As an illustration, let us consider
the case of L = 3. We set the group loading for each group
to be uniform i.e., βj = β/L. Figure 2 shows the sum rate
per antenna obtained when the BS communicates to only the
first m ≤ L groups, denoted by R

(m),∞
sum . This means that we

0.2 0.6 1 1.4 1.8 2.2 2.6 3

0.2

0.4

0.6

0.8

1

1.2

1.4

β

R
(m

),
∞

su
m

m = 1
m = 2

m = 3

Fig. 2. Multimode Transmission for L = 3, βj = β/L and a2j = 1/j2 .

only include the channel of the users from these m groups in
the system model and in designing the precoder. We call this
scheme mode-m transmission. The figure demonstrates that
for some values of cell-loading β, the maximum sum rate per
antenna is achieved when m < L. The simulation also shows
that the optimal m changes with β: we call this scheme multi-
mode transmission.

In multimode transmission, it is clear that there are
(
L
m

)
combinations of the groups that can be chosen by the base
station to communicate with. The question is: which mode
and group combination will give the highest sum rate per
antenna? Intuition would suggest that if the base station is
communicating with m groups then we would choose the m
groups with the strongest channel gains in order to maximize
the sum rate per antenna. We would then need to test at most
L mode and group combinations. Below we show that this
intuition is indeed correct for different assumptions on βj

although the proof is non-trivial.
In what follows, βj refers to the loading of group j users

that actually get served, whereas βj,max is the total loading of
group j users, i.e., the former is a quantity to be determined
by the transmitter, whereas the latter is determined by the
geometry and user distribution of the system. Obviously, 0 ≤
βj ≤ βj,max.

A. Binary Group Loading

Before considering the more general setup, we investigate
the following optimization problem:

P2 : max.
p̄�0,βββ,ρ,β≥0

R∞
sum

s.t.
1

β
βββT p̄ ≤ 1

1

β
βββT1 = 1

βj ∈ {0, βj,max},
where 1 is a column vector with all 1 entries. It can be seen
that P2 is similar to P1, but with additional design variables:
βββ, β and additional constraints related to them. In P2, βj is
only allowed to have value either 0 or βj,max and we call



MUHARAR et al.: OPTIMAL POWER ALLOCATION AND USER LOADING FOR MULTIUSER MISO CHANNELS WITH REGULARIZED CHANNEL . . . 5035

this scheme binary user loading allocation. Therefore, βj will
determine whether the BS transmits to users in group j or not.
The latter occurs when βj = 0. In that case, the channel gain
matrix of the users in group j is not included in the precoder
design.

First, let us investigate the optimal strategies for P2 when
βj,max is the same for all groups, i.e., βj,max = β̆. Let us
consider the mode-m transmission. In that case, we have m
groups with βj = β̆ and the remaining groups have βj = 0.
Let G ⊂ {1, 2, . . . , L}, |G| = m be the set of the group indexes
that the BS communicates to (βj > 0, j ∈ G). Then, the
maximum sum rate per antenna achieved for a given G can be
obtained by solving

max.
p̄�0,ρ

R(m),∞
sum (G) =

∑
j∈G

βj log(1 + p̄jfj(β, ρ))

s.t.
1

m

∑
j∈G

p̄j ≤ 1.
(16)

We should note that in the average power constraint we use
the fact that the total group loading β is

∑
j∈G βj = mβ̆. We

can also see that (16) is equivalent to P1. Thus, its solutions
can be obtained by using the same strategies as in solving P1.
The maximum sum rate per antenna for mode-m transmission
can be attained by evaluating (16) for every possible choice
of group combinations G, i.e.,

R̆(m),∞
sum = max.

G⊂{1,...,L},|G|=m
R(m),∞

sum (G). (17)

By using the formulation (17), we can rewrite P2 as

P2 : max.
m≤L

R̆(m),∞
sum (18)

As mentioned earlier, for (17) there are
(
L
m

)
possible choices

or candidates for the optimal G. For the problem (18), the
number of candidates becomes

∑L
i=1

(
L
i

)
= 2L. In the

following lemma, we show that (17) has the intuitively obvious
solution mentioned above: the BS transmits to the m groups
that have the largest path gains. This will reduce the number
of candidate mode/group combinations for (18) to L.

Lemma 2. R̆
(m),∞
sum is achieved by choosing G = G� where

G� = {1, 2, . . . ,m}.
Proof: Let G� = {1, 2, . . . ,m}. Also, let S ⊂ {1, . . . , L}

with |S| = m such that G� 
= S. Moreover, the elements of S
are arranged in an increasing order. Let aG� and aS be the path
gain vector for group combinations G� and S, respectively. It is
clear that aG� � aS . Thus, for a fixed power and regularization
parameter, it follows that R

(m),∞
sum (G�) ≥ R

(m),∞
sum (S). Now,

suppose that p̄�
S and ρ�S are the optimal power allocation

and regularization parameter under S. Let us denote the
corresponding sum rate per antenna as R

(m),∞
sum (S, ρ�S , p̄�

S).
Under G�, let us choose p̄G� = p̄�

S and ρG� = ρ�S for
the power allocation and ρ, respectively. Even though those
choices are not optimal in maximizing R

(m),∞
sum (G�), they

satisfy the constraint in (16). Since both G� and S have
the same allocations for power and ρ, then it follows that
R

(m),∞
sum (G�, ρ�S , p̄�

S) ≥ R
(m),∞
sum (S, ρ�S , p̄�

S). This concludes
the proof.

It is clear from the lemma above that we greatly reduce

the complexity of P2. Now, we only need to compare L sum
rates per antenna, R̆(m),∞

sum . It is also easy to see that Lemma
2 also holds when β1,max ≥ β2,max ≥ · · · ≥ βL,max. For a
more general setup, we can relax the last constraint of P2 so
that 0 ≤ βj ≤ βj,max. This will be addressed in the following
section.

B. Fractional Group Loading

In this section, we consider a fractional group loading
scheme where βj can take values in [0, βj,max]. This allows
the BS to transmit not to all the users in the groups but some
of them. In this case, P2 becomes

P3 : max.
p̄�0,βββ,ρ,β≥0

R∞
sum

s.t.
1

β
βββT p̄ ≤ 1

1

β
βββT1 = 1

0 � βββ � βββmax.

To find the solution for P3, we start by writing the Lagrangian
of P3 as follows:

L =

L∑
j=1

βj log(1 + p̄jfj(β, ρ)) − λ

(
1

β
βββT p̄− 1

)
+ ξξξT p̄

+ μ

(
1

β
βββT1− 1

)
+ νννTβββ − ηηηT (βββ − βββmax) + κρ+ ηβ,

where λ, κ, μ, η, ξξξ,ννν,ηηη are the Lagrange multipliers for the
constraints of P3. Let p̄�,βββ�, ρ�, β� be the (candidate) solu-
tions for P3. The KKT necessary optimality conditions are

∂L
∂ρ

=

L∑
j=1

β�
j p̄

�
j

1 + p̄�jfj(β
�, ρ�)

∂fj(β
�, ρ�)

∂ρ
+ κ = 0 (19)

∂L
∂p̄j

= β�
j

(
fj(β

�, ρ�)

1 + p̄�jfj(β
�, ρ�)

− λ

)
+ ξj = 0 (20)

∂L
∂βj

= log(1 + p̄�jfj(β
�, ρ�)) − λ(p̄�j − 1)

+ νj − ηj + μ = 0 (21)

∂L
∂β

=

L∑
j=1

β�
j p̄

�
j

1 + p̄�jfj(β
�, ρ�)

∂fj(β
�, ρ�)

∂β
− μ+ η = 0 (22)

with primary constraints:

1

β�
βββ�T p̄� − 1 ≤ 0,

1

β�
βββ�T1− 1 = 0,

0 � βββ� � βββmax, p̄
� � 0, β� ≥ 0, ρ� ≥ 0,

dual constraints:

[λ κ η]T � 0, ξξξ � 0, ννν � 0, ηηη � 0,

and slackness:

λ

(
1

β�
βββ�T p̄� − 1

)
= 0, ηj(β

�
j − βj,max) = 0,

ξj p̄
�
j = 0, νjβ

�
j = 0, ηβ� = 0, κρ� = 0,

for all j = 1, . . . , L.
Let us consider the stationarity condition (19). In solving

P1, we have shown that fj(β, ρ) is increasing in ρ up to
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ρ = β/γj and then decreasing. Thus, the optimal ρ can not
be zero (κ = 0) and at the optimum,

L∑
j=1

β�
j p̄

�
j

1 + p̄�jfj(β
�, ρ�)

∂fj(β
�, ρ�)

∂ρ
= 0. (23)

Looking at (20), one can see that when p̄j > 0 (ξj = 0), it
satisfies

p̄�j =

[
1

λ
− 1

fj(β�, ρ�)

]
+

which has a similar form to the solution for P1. Since a1 ≥
. . . ≥ aL, then p̄�1 ≥ · · · ≥ p̄�L. At the optimum, the following
holds

L∑
j=1

β�
j

([
1

λ
− 1

fj(β�, ρ�)

]
+

− 1

)
= 0

and it can be used to determine λ.
Exploring the stationary condition (21) will lead us to the

following result.

Lemma 3. The optimal {βj} allocation is such that

(i) the first M groups, for some M ≤ L, will be allocated
non-zero power,

(ii) β�
1 , β

�
2 , . . . , β

�
M−1 are all at the maximum possible val-

ues,
(iii) 0 ≤ β�

M ≤ βM,max,
(iv) the remaining groups are allocated zero power.

Proof: See Appendix C.
We should note that in the lemma above, we do not know

the optimal value of M maximizing the sum rate per antenna
since there are several values of M that satisfy the lemma.
Let R(i),∞

sum be the achieved sum rate per antenna with M = i.
Let M = {1, 2, . . . , L} be the set of possible values for M .
Then, the optimal M is given by

M� = argmax
i∈M

R(i),∞
sum . (24)

We should note that in evaluating R
(i),∞
sum , we use {β�

j }
allocation scheme in Lemma 3, β� =

∑i
j=1 β

�
j and also the

stationary conditions in (19) and (20) to determine ρ� and p̄�

respectively. The value for β�
M must satisfy (21) with νM = 0

and ηM = 0, i.e.,

log(1 + p̄�MfM (β�, ρ�))− λ(p̄�M − 1) + μ = 0, (25)

where μ is given by (40). Thus, solving (24) correspondingly
solves P3. The steps in solving it are presented in Algorithm
1.

We have L iterations where in a particular iteration, say
iteration j, the first j groups are considered. Assuming those
groups each have their group loading at its maximum value,
the corresponding optimal power allocation (i.e., solving P1)
is computed. Then, the value of M ≤ j for that iteration can
be determined by using the fact that p̄�M+1 = 0. We should
note that different js may give the same M and hence, we
need only to consider one of them. After obtaining M , we can
set β�

M+1 = · · · = β�
j = 0. To determine the optimal value

for β�
M , we need to compute ηM . If ηM > 0, β�

M = βM,max

(we already set this in the first step). Otherwise, 0 ≤ β�
M ≤

βM,max. In the latter case, we need to solve P1 and (25)
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Fig. 4. The maximum sum rate per antenna obtained from the grid search
(×) and Algorithm 1 (◦).

simultaneously. Then, we can update the value for {β�
j }Mj=1

and β�, and also compute the corresponding sum rate per
antenna. In the final steps, we compare the sum rates (per
antenna) for different M and the maximum is the solution of
P3.

Figure 3 illustrates the implementation results of algorithm
1 for the case: L = 5, a2j = 1/j2, j = 1, . . . , L, βββmax =
[0.1 0.7 0.1 0.05 0.05]T where the j-th element corresponds
to βj,max and Pd/σ

2 = 10 dB. From the (upper-left) plot, we
can see that we only have three possible values for M , i.e.,
M = {1, 2, 3}. For M = 1, we have a positive ηM while for
M = 2 and M = 3, ηM is negative. We should note that for
M = 3, η2 is slightly above zero (0.0028). Executing step 14
in Algorithm 1 yields6 β�

2 ≈ 0.64 and β�
3 = 0 for M = 2 and

M = 3, respectively. Even though M = 2 and M = 3 have
the same two groups with positive group loading, they have
different total group loadings, i.e., 0.74 and 0.8, respectively
and consequently different sum rates (per antenna). The last
plot in the bottom-right shows that the maximum sum rate per
antenna is achieve when M = 2. To validate the result from
Algorithm 1, we perform a grid search where β takes values
between 0 and 1 with 0.001 increment. For each value of β, the
corresponding sum rate per antenna is computed. The results
are plotted in Figure 4. The plot shows that the maximum
sum rates (per antenna) and the optimal β obtained from the
grid search and Algorithm 1 are identical. This confirms our
theoretical analysis and the proposed algorithm. We should
note that even though the line around the optimal β looks flat,
closer inspection of the numerical values of the sum rates per
antenna in that region reveals that the sum rate per antenna
is actually increasing until reaching the optimal β and then
decreasing.

We can also observe from the results of Algorithm 1 in
Figure 3 that we can stop the iterations once an iteration for
which ηM < 0 (and β�

M ∈ [0, βM,max]) is reached. Intuitively,
if this occurs, only part of the last group receives non-zero

6In a real system we would then use an integer either side of β�
jN to

determine how many users should be active.
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Algorithm 1 Algorithm for Solving P3

1: M = {} 
 Contain possible values for M
2: for j = 1 to L do
3: β�

i = βi,max, ∀ i = 1, . . . , j 
 Assume that β�
j = βj,max

4: λ, ρ�, [p̄�1 . . . p̄�j ]
T ← Solving P1 with β� =

∑j
i β

�
i

5: Determine M s.t. p̄�M > 0 and p̄�M+1 = · · · = p̄�j = 0 
 M ≥ 1
6: if M ∈ M then
7: continue 
 Skip the remaining steps and go to the next iteration (Step 2)
8: end if
9: M←M

10: β�
M+1 = · · · = β�

j = 0
11: Compute μ according to (40)
12: ηM = log(1 + p̄�MfM (β�, ρ�))− λ(p̄�M − 1) + μ
13: if ηM < 0 then
14: β�

M ∈ [0, βM,max]← Solving P1 and (25) with β� =
∑M−1

i βi,max + β�
M

15: end if
16: Compute R

(M),∞
sum with the updated β and {βj}

17: end for
18: M� ← Solving (24)
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1

2

3

iteration j

M
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Fig. 3. Algorithm 1 implementation for L = 5, βββmax = [0.1 0.7 0.1 0.05 0.05]T , a2j = 1/j2 and Pd/σ
2 = 10 dB.

power, i.e. is served and it seems unlikely that adding groups
with even weaker channels will change that and lead to an
increase in the sum rate. This can be justified by realizing that
the sum rate per antenna obtained by increasing β�

M by, say βδ,
will be greater or equal to that obtained by adding one more
group with group loading βδ . Moreover, increasing β�

M still
gives a negative ηM which does not satisfy the KKT necessary
condition (ηM ≥ 0). Thus, we can modify Algorithm 1 by

adding a ’break’ instruction after line 14. That will stop the
iteration and jump directly to line 18. This will reduce the
number of iterations and computations.

The applicability of the optimal user loading obtained from
Algorithm 1 to a finite-size system is described in Figure 5.
The simulation setup considers N = 10 and K = 8 users
which are divided into two groups with a21 = 1, a22 = 0.24,
β1,max = 0.1, β2,max = 0.7. The simulation is run by generat-
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Fig. 5. The comparison of the average sum rates obtained by using the
optimal number of users from Algorithm 1 and the exhaustive search.

ing 104 channel realizations and uses ρ = ρ�, p̄ = p̄� obtained
from P1. From Algorithm 1, we obtain β�

j , j = 1, 2 and the
corresponding optimal number of users is K�,∞

j = [Nβ�
j ],

where [x] rounds x to the nearest integer. The average sum
rate by employing K�,∞

j is depicted by the solid line (–). As
a comparison, we also plot the average sum rates (�) by using
the optimal number of users obtained from exhaustive search
(denoted by K�

j ). As a reference, we also add the equivalent
average sum-rate (•) by using R∞

sum from Algorithm 1. From
Figure 5, we can see that those plots almost coincide and this
indicates the applicability of Algorithm 1 to finite-size system
designs.

V. CONCLUSION

In this paper, we have investigated problems related to deter-
mining the optimal power allocation, regularization parameter
and group loadings of a finite number of groups of users so
as to maximize the sum rate (per antenna) of MISO broadcast
channels with RCI precoder. Even though the analysis was
performed in the large system limit, our numerical simulations
show its validity for finite-size system designs. Considering
the power allocation problem only, we show that the optimal
strategy follows the water-filling scheme. For some cases
considered in this paper we show that it is optimal for the
BS to communicate to some groups having best channels
(highest path gains). We also provide the KKT necessary
conditions and propose an algorithm for the optimal group-
loading allocation when the BS is allowed to transmit to only
subsets of the users in the groups.

APPENDIX A
PROOF OF THEOREM 1

Here, we present the proof briefly since we repeat the
same techniques as we have used in deriving the results
in [1], [22] that are based on some well-known results in
large random matrix theory (see e.g., [21], [24]). An alter-
native method can be found in [19, App. II]. Let Ak =
1
N hk

(
1
NHH

k Hk + ρIN
)−1

hH
k = 1

NhkMkh
H
k , where ρ =

α/N , Mk =
(

1
NHH

k Hk + ρIN
)−1

and Hk is H with the k-th
row removed. Then, by employing the matrix inversion lemma
(MIL), hk(H

HH+αIN )−1hH
k in the numerator of (3) can be

written as Ak

1+Ak
. By using the results [25, Lemma 1] or [26,

Lemma 5.1], it follows that Ak− 1
N Tr (Mk)

a.s−→ 0. By using
the rank-1 perturbation lemma (R1PL), see e.g. [21, Theorem
3.9, Lemma 14.3], 1

N Tr (Mk) converges almost surely to
1
N Tr (M) with M = (HHH+αIN )−1. We can also show that
1
N Tr (M)

a.s−→ g(β, ρ) (see the results in e.g. [25, Theorem 7])

where g(β, ρ) is the solution of g(β, ρ) =
(
ρ+ β

1+g(β,ρ)

)−1

.

Thus, Ak − g(β, ρ)
a.s−→ 0. Now considering the denominator,

we can write |hk(H
HH+ αIN )−1hH

j |2 as
1
N

(1+Ak)2
Ij where

Ij =
1
N hkMkh

H
j hjMkh

H
k . By [26, Lemma 5.1], we have

max
j≤K

∣∣∣∣Ij − 1

N
Tr
(
Mkh

H
j hjMk

)∣∣∣∣ a.s−→ 0.

The matrix inside the trace has rank one. Thus, the second
term on the RHS becomes

1

N
hjM

2
kh

H
j =

1

(1 +Aj,kj)2
1

N
hjM

2
kjh

H
j ,

where the RHS is obtained by the MIL, Mkj =
( 1
NHH

kjHkj + ρIN )−1, Aj,kj = 1
N hjMkjh

H
j ,

Hkj is Hk with row j removed. Then, it follows

maxj≤K

∣∣∣ 1N hjM
2
kjh

H
j − 1

N Tr
(
M2

kj

)∣∣∣ a.s−→ 0. We can show

that the second term on the LHS is equal to − ∂
∂ρ

1
N Tr (Mkj).

We also have that maxj≤K |Aj,kj − 1
N Tr (Mkj) | a.s−→ 0 . By

applying R1PL twice, 1
N Tr (Mkj)

a.s−→ g(β, ρ). Suppose that
P = limK→∞ 1

K

∑K
j=1 pj exists and is bounded. Note that it

can be interpreted as the empirical mean of the users’ power
or just average power. Thus, by combining the large system
results, we obtain

∑
j �=k

pj |hk(H
HH+ αIN )−1hH

j |2 + βP
∂g(β,ρ)

∂ρ

(1 + g(β, ρ))4
a.s−→ 0.

(26)
By following the same steps as in obtaining (26), we can
establish that

c2 +
Pd(1 + g(β, ρ))2

βP ∂
∂ρg(β, ρ)

a.s−→ 0.

Hence, by using this last result, we can conclude
that the signal and interference energy converges almost

surely to −Pdpka
2
kg

2(β, ρ)
(
βP ∂

∂ρg(β, ρ)
)−1

and Pda
2
k(1 +

g(β, ρ))−2, respectively. Recalling the definitions of γk and
p̄k in the statement of Theorem 1, and using the fact that

∂

∂ρ
g(β, ρ) = −g(β, ρ)(1 + g(β, ρ))2

β + ρ(1 + g(β, ρ))2
, (27)

(4) follows immediately. This concludes the proof.
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APPENDIX B
PROOF OF THEOREM 3

Related to the KKT (stationary) conditions (19), for a given
p̄, we have

∂R∞
sum

∂ρ
=

L∑
j=1

βj p̄j
1 + p̄jfj(β, ρ)

∂fj(β, ρ)

∂ρ
,

where

∂fj(β, ρ)

∂ρ
=

γ2
j

[γj + (1 + g)2]2
2g(1 + g)

(
ρ

β
− 1

γj

)
∂g

∂ρ

= f2
j (β, ρ)

2
(

1
g + 1

)
[1 + ρ

β (1 + g)2]2

(
ρ

β
− 1

γj

)
∂g

∂ρ
,

and g represents g(β, ρ). Thus,

∂R∞
sum

∂ρ
=

2
(

1
g + 1

)
[1 + ρ

β (1 + g)2]2

L∑
j=1

βj p̄jf
2
j (β, ρ)

1 + p̄jfj(β, ρ)

(
ρ

β
− 1

γj

)
∂g

∂ρ
.

Recall that ∂g
∂ρ < 0 (see (27)). Let qj = ρ

β − 1
γj

. It is also

obvious that qj is decreasing in j. Thus, for qL > 0, ∂R∞
sum

∂ρ is

negative. This implies that ∂R∞
sum

∂ρ can not be zero for ρ > β
γL

.

For q1 < 0, ∂R∞
sum

∂ρ is positive and consequently, can not be zero

for ρ < β
γ1

. Therefore, the optimal ρ must be in the interval
of

β

γ1
≤ ρ� ≤ β

γL
.

as in (15). When we only have one group then ρ∗ is the same
as the one obtained in [22], [27]. We can also remove the
boundary point ρ = 0 < β

γ1
(related to the case κ > 0, that is,

the constraint ρ ≥ 0 is inactive) since as previously discussed,
∂R∞

sum
∂ρ > 0 at that point. Thus, from (9) with κ = 0 or by

evaluating ∂R∞
sum

∂ρ = 0, ρ� must satisfy (14) at p̄ = p̄�.

APPENDIX C
PROOF OF LEMMA 3

In the first part, we will prove part (i) - (iii) of the lemma.
We show those by considering any two groups l and j such that
l < j, such that the current allocation has βj > 0 and p̄j > 0
and proving that we can improve performance by having βl

at its maximum possible value. Let us assume an assignment
(βl, p̄l) and (βj , p̄j) such that βl ≤ βl,max and βj ≤ βj,max. In
that case, the combined group loading is βl + βj . Now, let xl

be the new group loading allocation for group l and yl be the
corresponding assigned power. In the following we will show
that the optimal xl maximizing the sum rate of of users in
group j and l is βl,max by solving the following optimization
problem

max.
xl,yl,yj

xl log(1 + ylfl(β, ρ))

+(βl + βj − xl) log(1 + yjfj(β, ρ))
s.t. max(0, βl + βj − βj,max) ≤ xl,

min(βl + βj , βl,max) ≥ xl,
ylxl + yj(βl + βj − xl) ≤ βlp̄l + βj p̄j ,
yl ≥ 0, yj ≥ 0.

The Lagrangian is given by

L = xl log(1 + ylfl(β, ρ)) + (βl + βj − xl) log(1 + yjfj(β, ρ))

+ μxl
(xl −max(0, βl + βj − βj,max))

+ νxl
(min(βl + βj , βl,max)− xl)

+ λ (βlp̄l + βj p̄j − ylxl − yj(βl + βj − xl))

+ μyl
yl + μyjyj,

where μxl
, νxl

, μyl
, μyj , λ are the Lagrange multipliers associ-

ated to the constraints on xl, yl, yj and the second constraint,
respectively. The stationary conditions for the solution candi-
dates are then given by7

∂L
∂xl

= log(1 + ylfl(β, ρ)) − log(1 + yjfj(β, ρ))

+ μxl
− νxl

− λ(yl − yj) = 0, (28)

∂L
∂yl

=
xlfl(β, ρ)

1 + ylfl(β, ρ)
+ μyl

− λxl = 0, (29)

∂L
∂yj

= (βl + βj − xl)
fj(β, ρ)

1 + yjfj(β, ρ)

+ μyj − λ(βl + βj − xl) = 0. (30)

From (29) and (30), it follows that

yl =

[
1

λ
− 1

fl(β, ρ)

]
+

, (31)

yj =

[
1

λ
− 1

fj(β, ρ)

]
+

. (32)

One can check that yl = 0 will never be the optimal solution.
For yl > 0, two cases arise depending on whether yj is strictly
positive or not.

• Case yj = 0. To satisfy the KKT conditions, the second
constraint is met with equality, for λ > 0. Thus, we have
yl =

βlp̄l+βj p̄j

xl
. From (31), we can express

1

λ
=

βlp̄l + βj p̄j
xl

− 1

fl(β, ρ)
.

When yj = 0, it also holds 1/λ − 1/fj(β, ρ) ≤ 0.
Consequently, from the equation above, we can write

βlp̄l + βj p̄j
1

fj(β,ρ)
− 1

fl(β,ρ)

≤ xl .

From (28), we can obtain

log

(
1 +

(
βlp̄l + βj p̄j

xl

)
fl(β, ρ)

)

− 1

1 + xl

βlp̄l+βj p̄j

1
fl(β,ρ)

= νxl
− μxl

. (33)

The LHS of (33) is a function of the form f(x) =
log(1+x)− x

1+x , which can be easily shown to be strictly
increasing in x. Moreover, at x = 0, f(x) = 0. So, the
LHS of (33) is positive. Thus, ignoring the constraint
on xl, the objective function is strictly increasing for

βlp̄l + βj p̄j
1

fj(β,ρ)
− 1

fl(β,ρ)

≤ xl.

7Here, we do not use superscript � for the solution candidates
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• Case yj > 0. For γ > 0, the average power constraint is
met with equality and we have

yj =
βlp̄l + βj p̄j − (yl − yj)xl

βl + βj

=
βlp̄l + βj p̄j −

(
1

fj(β,ρ)
− 1

fl(β,ρ)

)
xl

βl + βj
.

Then, we can express

1

λ
=

1

fj(β, ρ)
+

βlp̄l + βj p̄j −
(

1
fj(β,ρ)

− 1
fl(β,ρ)

)
xl

βl + βj
.

Since for yj > 0, 1
λ > 1

fj(β,ρ)
, then we obtain

βlp̄l + βj p̄j
1

fj(β,ρ)
− 1

fl(β,ρ)

> xl . (34)

Using the expression for 1/λ, we can rewrite (28) as

νxl
− μxl

= log

(
fl(β, ρ)

fj(β, ρ)

)

−
1

fj(β,ρ)
− 1

fl(β,ρ)

1
fj(β,ρ)

+
βlp̄l+βj p̄j−

(
1

fj(β,ρ)
− 1

fl(β,ρ)

)
xl

βl+βj

. (35)

It is clear that the LHS of (35) is decreasing in xl.
Moreover, for xl → ∞, its value is log

(
fl(β,ρ)
fj(β,ρ)

)
> 0.

Therefore, without the constraints on xl, the objective
function is also strictly increasing in xl when the condi-
tion (34) holds.

Combining the two cases, the optimal xl is equal to its
maximum allowable value. By using this fact repeatedly,
starting from group 1, we establish (i)-(iii).

Now, it remains to show that if no power is allocated to a
group, it must be that the corresponding βj = 0 (see (iv)). Let
us consider the stationary conditions for βj and β which are
given by (21) and (22), respectively. We can rewrite them as

log(1 + p̄jfj)− λ(p̄j − 1) + νj + μ = ηj (36)

and
L∑

j=1

βj p̄j
1 + p̄jfj(β, ρ)

∂fj(β, ρ)

∂β
= μ, (37)

respectively. In obtaining (37), we use the fact that β must be
positive, i.e., η = 0. The first derivative of fj(β, ρ) over β in
(37) can be shown to take the form

∂fj(β, ρ)

∂β
= −fj(β, ρ)

β

[
1 +

g

1 + ρ
β (1 + g)2

+
2g(1 + g)2( ρβ γj − 1)

[γj + (1 + g)2][1 + ρ
β (1 + g)2]2

]
, (38)

where for brevity we denote g = g(β, ρ). The derivative of
fj(β, ρ) w.r.t. ρ in (19) can be written as follows

∂fj(β, ρ)

∂ρ
= −fj(β, ρ)

β

2g(1 + g)3( ρβγj − 1)

[γj + (1 + g)2][1 + ρ
β (1 + g)2]2

.

So we can rewrite (38) in terms of ∂fj(β,ρ)
∂ρ as

∂fj(β, ρ)

∂β
= −fj(β, ρ)

β

[
1 +

g

1 + ρ
β (1 + g)2

]

+
1

1 + g

∂fj(β, ρ)

∂ρ
. (39)

Recall that 1+pjfj(β, ρ) = fj(β, ρ)/λ. Substituting (39) into
(37) yields

μ = −λ

β

[
1 +

g

1 + ρ
β (1 + g)2

]
L∑

j=1

βj p̄j

+
1

1 + g

L∑
j=1

βj p̄j
1 + p̄jfj(β, ρ)

∂fj(β, ρ)

∂ρ

(a)
= −λ

[
1 +

g

1 + ρ
β (1 + g)2

]
(40)

where in (a) we use the fact that
∑L

j=1 βj p̄j = β and the
second term of the RHS is zero due to (19). Moreover, (a)
gives the expression for μ at the optimal operating points.
Plugging (a) into (36) with pj = 0, we obtain

−λ g

1 + ρ
β (1 + g)2

+ νj = ηj .

As a result, νj must be strictly positive. This implies that
βj = 0 and the proof is completed.
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