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Abstract—We address a lifetime maximization problem for
a single-hop wireless sensor system (also known as a Gaussian
sensor network) where multiple sensors encode and communicate
their measurements of a Gaussian random source to a fusion
center (FC). The FC is required to reconstruct the source within
a prescribed distortion threshold. The lifetime optimization
problem is formulated as a joint power, rate, and timeslot [for
time-division multiple access (TDMA)] allocation problem under
the constraints of the well-known rate distortion constraints
for the Gaussian CEO problem, the capacity constraints of the
wireless links, the energy constraints of the sensor nodes and the
strict delay constraint within which the encoded sensor data must
arrive at the FC. We study the performances of TDMA and an
interference limited nonorthogonal multiple access (NOMA) (with
single-user decoding)-based protocols and compare them against
recently reported simple uncoded amplify and forward schemes
under a nonorthogonal multiple access channel with complete
phase synchronization. Since computing the exact capacity region
for correlated sources in a multiaccess channel is difficult, we
simply consider the Gaussian multiaccess capacity constraints
pretending that the sensor data are independent (although they
are clearly not). We show that the optimal lifetime achieved under
these capacity constraints provides an upper bound on the optimal
lifetime achieved by the TDMA and NOMA protocols. While the
constrained nonlinear optimization problems for the TDMA and
the Gaussian multiaccess cases are convex, the NOMA case results
in a nonlinear nonconvex difference of convex functions (D.C.)
programming problem. We provide a simple successive convex
approximation based algorithm for the NOMA case that converges
fast to a suboptimal lifetime performance that compares favorably
against the upper bound provided by the Gaussian multiaccess
case. Extensive numerical studies are presented for both static
and slow fading wireless environments with full channel state
information at the fusion center.

Index Terms—Convex optimization, fading channels, power con-
trol, rate distortion theory, sensor networks.
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I. INTRODUCTION

WIRELESS SENSOR NETWORKS (WSNs) have be-
come a key technology for the 21st century due to its

widespread applications in security, health, disaster response,
defense, telecommunications, structural health monitoring,
etc. Due to limited energy resources and a distinct lack of
centralized coordination (compared to cellular networks), the
usefulness of these networks can become limited unless special
care is taken to optimize energy consumption in communica-
tion and computation. Optimizing the lifetime of a WSN is
thus an important problem. In many typical wireless sensor
network applications, a set of nodes or agents measure or
collect data from a source or phenomenon of interest (e.g.,
temperature in a bushfire prone area or surveillance pictures
of human movements, etc.) and then transmit them (possibly
over a multihop relay network) to a sink or a base station
where all data are collected and decisions or final estimates are
made. In such a network, energy consumption is affected by
such diverse parameters as choice of routes, MAC protocols,
transmission scheduling, data rates, transmit power, wireless
channel quality and fading, etc. Thus, to optimize the lifetime
of a WSN, one really has to consider a cross-layer design.
This often leads to very complicated mixed-integer nonlinear
optimization problems. Some such cross-layer issues with joint
power and rate control have been studied in [1] and [2]. In
particular, [2] studied a joint power and rate control problem
for lifetime optimization in a multihop wireless sensor network
with constraints on outage induced by channel fading. In both
[1] and [2], nonconvex nonlinear optimization problems were
transformed into approximate convex optimization problems
and solved using sophisticated convex optimization tools.
Lifetime optimization with joint rate and power control in
interference limited ad hoc networks has also been considered
in [3], whereas some earlier work has focused on specific key
issues such as maximum lifetime routing algorithms, such as
[4] and [5].

However, the nature of data being communicated via the
WSNs considered in the above literature as well as in many
other works (that cannot be mentioned here due to space limi-
tations) were considered to be generic, and the only constraints
(if any) on the rates of data transmission were dictated by
flow conservation laws and the maximum link capacities. No
particular attention was paid to the nature of the source of the
data and the specific task performed by the WSN. Recently,
however, a lifetime maximization problem was considered with
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rate distortion constraints in [6]. In this paper, the specific task
for the WSN is considered to be reconstruction of a remote
random source. It is well known from rate distortion theory that
higher data rates may allow high quality data reconstruction
(e.g., in surveillance camera applications), it may also result in
large amount of energy expenditure in a WSN due to multihop
transmission. This inherent tradeoff between transmission rates
(to achieve a certain prespecified distortion threshold) and
lifetime of the WSN was studied in [6] for an interference-free
WSN where transmission power was kept fixed and the only
optimization variables were the data rates in the various links
of the WSN. The rate distortion constraints were given by the
data rate constraints derived in [7] for sensors with unequal
noise variances for the well known Gaussian CEO problem. In
order to make their nonlinear optimization problem tractable,
the authors of [6] made some judicious linear approximations
and obtained upper and lower bounds on the optimal network
lifetime using linear programming methods. It was shown in
[8], however, that this nonlinear optimization problem can
be transformed into a convex problem by a clever variable
substitution and can be solved exactly by using standard convex
optimization tools such as interior point methods.

Another key constraint in data communication over wireless
sensor networks is the delay incurred in receiving the data,
which may be critical in many applications such as video
surveillance, disaster response scenarios, or networked control
applications where actuators have to take timely decisions or
actions to stabilize a remotely observed system via a WSN.
Delay constrained communication over wireless fading chan-
nels and associated transmission or packet scheduling problems
for energy constrained wireless networks has been the focus of
many recent works such as [9]–[13]. Of particular relevance
to our work is [13], where the authors considered an energy
optimal time scheduling problem with a strict delay constraint
where a nonuniform time-division multiple access scheme
(TDMA) is used for downloading fixed amounts of data from
various sensors into a fusion center (FC) within a strict time
duration. Another related work is [14] where a type-based
estimation scheme is presented for decentralized estimation
over a multiple access channel. In our paper, we consider a
similar single-hop sensor network (also known as a Gaussian
sensor network) where multiple sensors (agents) encode and
transmit noisy measurements of a remote Gaussian source to
an FC. The encoding rates for the various sensors can be dif-
ferent and are adjustable to suit the channel conditions and the
delay constraint. The sensors or agents transmit their encoded
data at rates which may or may not be equal to the encoding
rates, depending on the multiple access scheme and the delay
constraint. Each sensor is equipped with a finite amount of
initial energy. The wireless channel between each sensor and
the FC is taken to be static over the duration of the strict delay
constraint. This delay duration is assumed to be long enough so
that the maximum achievable data rate can be expressed as the
Shannon capacity for that channel realization, but not too long
so that the delay constraint loses its physical significance (see
[13] for a similar assumption). The channels while being static
during one time slot duration equal to the delay, can change
randomly from one time slot to the next. In this paper, we

assume that the FC has perfect channel state information (CSI)
within a specific delay duration time slot, since the channel
fading is assumed to be slow.

We consider a lifetime maximization problem for this sensor
network with respect to transmit power and encoding rates (or
transmission rates since they are related), subject to the data
transmission rates satisfying the channel capacity constraints
and the encoding rates satisfying the rate distortion constraints.
The network lifetime is assumed to be long enough such that
the sensor network is responsible for collecting measurements
from the random source and transmitting them to the FC within
the delay constraint a large number of times. This assumption
essentially justifies the use of information theoretic capacity
and rate distortion constraints in the formulation of the lifetime
optimization problem. We consider both orthogonal TDMA
(where an individual sensor transmits only for a fraction of
the delay duration) and nonorthogonal interference limited
multiple access (where all sensors transmit for the entire time
slot but can create interference for each other) as the possible
multiple access schemes. It is well known that computing
the exact capacity region for correlated sources over a mul-
tiaccess channel is a difficult problem [15], [16]. Instead, we
consider the Gaussian multiaccess channel capacity constraints
assuming that the sensor data are independent (although clearly
they are not since they observe the same source) and show that
the optimal lifetime obtained with these constraints provides
an upper bound on the achievable lifetime via TDMA and the
nonorthogonal multiple access protocols. The corresponding
optimization problems can be convex (Gaussian multiaccess
and TDMA) or a nonconvex D.C. (difference of two convex
functions) programming problem (interference limited case).
We provide centralized solutions to the optimal power, rate
and transmission duration (in the case of TDMA) allocation
problems. The lifetime maximization problem for the Gaussian
multiaccess (GMAC) case and the TDMA case can be solved
globally using well known convex optimization tools. In order
to solve the nonconvex optimization problem for the interfer-
ence limited case, we use clever (similar to [17]) successive
convex approximations of the original nonconvex optimization
problem. In contrast to complex algorithms based on outer ap-
proximations or branch and bound methods [18] that take a long
time to converge, we present practical algorithms that converge
fast to suboptimal power and rate solutions for the interference
limited case. Essentially, we argue that these algorithms can
be run at the FC and the optimal (or suboptimal) variables can
be fed back to the sensors. Energy consumption is restricted
to transmission only although this framework can be readily
extended to include other forms of energy consumption such
as due to sensing, reception, compression and computation
etc. Also, the FC is assumed to have access to replenishable
energy and therefore the energy consumption in feedback is
not considered. Finally, we comment that we only focus on
centralized (i.e., not distributed) optimization algorithms as the
number of sensing agents we can consider in such networks
is small in the context of our problem. This is mainly due to
the fact that the number of rate distortion constraints increases
exponentially with the number of sensing nodes. Having said
that, small-to-moderate-size sensor networks are currently
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operational in many radar and sonar applications. Also, our
Gaussian sensor network can be seen as a small part of a larger
hierarchical sensor network, e.g., where the network considered
in this paper forms a cluster in a large sensor network consisting
of many such clusters [19]. The results derived in this paper are
useful in this context.

It has been recently shown in [20] and a number of subse-
quent papers that separate source and channel coding for min-
imizing distortion in a homogeneous Gaussian sensor network
may not be always be a good idea. In particular, it was shown
that a simple uncoded (where the sensors simply amplify and
forward their noisy observations to the FC) scheme under per-
fect phase synchronization via a nonorthogonal multiple access
scheme achieves a better scaling law than a separate source and
channel coding scheme when the number of sensors grows and
the total available power for the sensors grows linearly with the
number of sensors. Under orthogonal multiple access, however,
it has been shown that uncoded schemes perform strictly subop-
timally for the Gaussian sensor network compared to separate
source and channel coding schemes [21]. Hence, we compare
our optimal lifetime performances achieved by the TDMA, the
interference limited scheme and the GMAC (with the indepen-
dent sensor data approximation) capacity achieving protocols
with optimal lifetimes achieved by such uncoded schemes (for
nonorthogonal multiple access).

In summary, the novelty of this paper lies in 1) formulation
of a lifetime maximization problem for a Gaussian sensor net-
work under the rate distortion constraints of the CEO problem
and appropriate capacity constraints of the wireless multiac-
cess scheme (TDMA, nonorthogonal multiple access scheme
(NOMA), and GMAC); 2) providing centralized algorithms for
solving these optimization problems (optimal for TDMA and
Gaussian multiaccess and suboptimal but fast convergent for
NOMA); 3) showing that the Gaussian multiaccess capacity
constraints (assuming independence between sensor data) ac-
tually provides an upper bound on the lifetime achieved by the
TDMA and NOMA scheme; and 4) comparing the performance
of these schemes against a simple uncoded amplify and for-
ward scheme under nonorthogonal multiple access with com-
plete phase synchronization via extensive simulation studies.

In the next section, we mathematically state the lifetime
optimization problems with rate distortion constraints for the
TDMA, the nonorthogonal interference limited case and the
idealized (with independent sources) Gaussian multiaccess
channel capacity constraints. We also briefly state the lifetime
optimization problem using an uncoded amplify and forward
scheme for the nonorthogonal multiple access case with full
phase synchronization. In Section III, we provide a succes-
sive convex approximation based algorithm for solving the
nonconvex optimization problem arising in the interference
limited case, which is provably convergent. We also comment
on the optimality issues associated with this sequential convex
approximation method in relation to the original nonconvex
problem. Section IV presents extensive simulation results
comparing the lifetime performance of the various protocols for
different rate distortion threshold requirements under static and
slow fading wireless environments. Section V presents some
concluding remarks and directions for future work.

Fig. 1. Sensor network measuring a random source.

II. PROBLEM FORMULATION

The single-hop wireless sensor network considered in this
paper (also known as a Gaussian sensor network) is presented
in Fig. 1 where multiple sensor nodes or agents send their
information to a FC via wireless links. The set of sensor
nodes is denoted by . The sensor nodes
observe a discrete-time independent and identically distributed
(i.i.d.) sequence of a Gaussian stochastic
process where . The noisy measurement (at
a discrete-time instant ) at the sensor is represented by

where is also a sequence of i.i.d. random
variables and . We also assume that the noise
processes , are mutually independent for ,

, . In general, the noise variances at the
different sensor nodes are unequal, representing an inhomoge-
neous set of sensors. Agent encodes information at a rate

and sends it to the FC at a transmission rate of . The
transmission rate and the encoding rate may or may not be the
same depending on the multiple access protocol. The FC has to
reconstruct the source after receiving encoded measurements
from all sensors. We use to denote the natural logarithm
throughout the paper.

It is well known that the encoding rates from various sensors
need to satisfy a set of rate distortion constraints to achieve
a maximum distortion threshold. For the multisensor case,
these results were obtained as the solution to the Gaussian
CEO problem for the inhomogeneous sensor case in [7]. These
constraints were rewritten in a slightly different form in [8]
in the context of a lifetime optimization problem for a mul-
tihop sensor network. Below we quote these rate distortion
constraints from [8], which can be easily shown to be convex:

(1)

where is the maximum allowed distortion threshold after
reconstruction at the FC and and are auxil-
iary variables. The set contains all the nonempty subsets

of . Here,
where denotes the transpose operation. Clearly, to achieve
a distortion less than or equal to at the FC the amount
of information FC fetches from the various agents needs to



LI et al.: MAXIMAL LIFETIME POWER AND RATE ALLOCATION FOR WIRELESS SENSOR SYSTEMS 2079

be great than or equal to in b/s/Hz. The
rate distortion region is called achievable when the
inequalities (1) hold for the pair and .

Remark 1: It should be obvious from (1) that the number of
rate distortion constraints grows exponentially with the number
of sensing agents. This fact certainly limits the size of the sensor
network that we can consider in this paper. However, as dis-
cussed before, many examples of small to moderate size sensor
networks exist in currently operational radar and sonar applica-
tions. Also, our Gaussian sensor network can be seen as a small
part of a larger hierarchical sensor network, e.g., where the net-
work considered in this paper forms a cluster in a large sensor
network consisting of many such clusters. It is quite conceivable
that many large sensor networks of the future will have such a
hierarchical structure [19]. The results derived in this paper are
useful in this context.

We assume that the sensors are sensing data at constant rates
and the FC has to download all data encoded by each sensor
within a strict time schedule . This delay constraint essentially
implies that all data encoded by sensor within a time dura-
tion have to be received at the FC within the same time du-
ration for all . Note that if the sensors are transmitting all the
time, such as in an interference limited scheme, then this delay
constraint is equivalent to having the transmission rate equal
to the encoding rate. However, if a TDMA scheme is chosen
for transmission, where transmits only for a duration ,
where , and , then the transmission rate

, which is clearly greater than the encoding rate.
The channels between the sensor nodes and the FC are assumed
to suffer distance based attenuation in the first instance and later
we assume that the channels additionally undergo independent
identically distributed Rayleigh fading. In the case of fading,
the channel dynamics are assumed to be slow enough so that
the maximum achievable rate of transmission for each channel
is given by the Shannon capacity for that particular channel real-
ization, which is assumed to be static within the delay duration

for all sensors. Consequently, we consider perfect CSI at the
FC for the fading scenario as well.

Assuming that the th sensor is equipped with an initial en-
ergy , we define the lifetime of the network as

(2)

where is the average power consumed in data transmis-
sion. This definition of lifetime denotes the minimum time be-
fore the first node runs out of energy. This definition was origi-
nally used in [4] and since then been used by many other au-
thors. Note however, that there are many other definitions of
the lifetime of a sensor network such as the time until a certain
fraction of nodes survive in the network [22], or the time to the
first loss of coverage etc. For a survey of these definitions, see
[23]. A generalized notion of lifetime based on residual energy
in sensors and channel state information is given in [24] and [25]
where the network lifetime is defined as the number of data col-
lections after which the number of active sensors in the network
fall below a certain threshold. In line with this, one can simi-
larly consider an alternative lifetime maximization problem for
a Gaussian sensor network where the lifetime is defined as the
time after which the network can no longer achieve a distortion
lower than the specified threshold at the FC. Solving maximal

lifetime rate and power allocation problems with data distortion
constraints with these other definitions of network lifetime is
however, beyond the scope of our current paper, as these for-
mulations often result in either checking a combinatorially pro-
hibitive number of possible sensor network configurations that
can achieve the required distortion threshold at the FC, or al-
ternatively, may result in multiobjective optimization problems
that are difficult to solve.

Remark 2: We remark however, that for the various multi-
access schemes that we consider, the definition of lifetime that
is considered in this paper (the minimum of all the individual
sensor lifetimes), is not actually restrictive. It can be shown an-
alytically (we do not include the proofs for space limitations)
that according to the optimal strategy, all the sensors run out of
energy at the same time for the TDMA and the uncoded am-
plify and forward case, and the same phenomenon is observed
for the NOMA (excluding the sensors that are shut off) and the
GMAC case throughout the simulations, although we do not
have a proof. Finally, we add that if there was such a situation
where a particular sensor ran out of energy before other sensors,
then a simple suboptimal scheme to extend the network life-
time would be to apply our optimization technique successively
(to the surviving sensors) until the distortion threshold can no
longer be met at the FC, i.e., the optimization problem becomes
infeasible. Thus, in such a case, the network operational lifetime
would be given by the sum of the lifetimes achieved by the in-
dividual optimization problems.

Note also that we do not consider any other form of energy
expenditure such as sensing, computation, etc., and also the en-
ergy expenditure at the FC is not taken into account since the
FC is assumed to have access to a substantial energy reserve. In
this paper, we seek to maximize this network lifetime (as given
in (2)) subject to the rate distortion constraints, the delay con-
straint and the channel capacity constraints mentioned above,
by optimally allocating transmit power, encoding rates and (in
the case of TDMA) transmission time duration at the various
sensors. These optimization algorithms are performed at the FC
and the optimal variables are fed back to the sensors with neg-
ligible communication delay.

Remark 3: It is assumed here that the channel gains and noise
variances at each sensor (which remain invariant for the period
of data collection from the sensors) are known at the FC be-
fore it attempts to solve the optimization problem. This can be
achieved via communicating training sequences (or pilot sym-
bols) between the sensors and the FC and is a standard procedure
in cellular wireless communications. See also [26] for a similar
comment.

We consider the two usual multiple access schemes: an
orthogonal TDMA and a nonorthogonal interference limited
case. Since it is difficult to exactly compute the multiaccess
channel capacity region with correlated sources (the sensors
in our problem observe the same source and hence transmit
correlated measurements), we consider the capacity region
for an idealized Gaussian multiaccess channel assuming the
sensors are independent. We show that the optimal lifetimes
achieved by the TDMA and the nonorthogonal interference
limited case are upper bounded by the lifetime achieved under
(idealized) the Gaussian multiaccess capacity constraints. We
also compare the optimal lifetime performance for the three
cases above (which essentially employ separate source and
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channel coding) with the performance of a corresponding
optimal lifetime solution for a simple uncoded (amplify and
forward) system under nonorthogonal multiple access [20].
In the next section, we present the nonlinear optimization
problems for the above four schemes.

A. TDMA System

A recent study [27] has shown that a pulsed operation of
each sensor battery can increase the yield of a battery, as it af-
fects how energy is being drained from the battery. This implies
that a TDMA based scheme may be more energy efficient than
other protocols [22]. In a TDMA based transmission scheduling
scheme, we allow the sensor node/agent to transmit during
a fraction of the available time slot (which is also taken to
be equal to the delay duration within which all data have to be
downloaded into the FC). Clearly, we have . As al-
luded to earlier, the transmission rate of node is decided by the
encoding rate in (1) and allocated timeslot , and is given
by . In addition, the rate of transmission is upper bounded
by the discrete-time Shannon capacity (assuming full CSI at the
FC) in nats per channel use such that

(3)

where is the transmission power for the th sensor node,
denotes the propagation gain of the wireless channel between
node and the FC, and is the average power of the back-
ground noise at the FC receiver.

Combining all the constraints (rate distortion, delay and ca-
pacity constraints) and the objective function (2), we have the
following optimization problem for the TDMA scheme:

(1) holds for distortion threshold

(4)

It can be easily shown to be a nonlinear nonconvex optimization
problem. However, one can transform this nonconvex problem
to a convex optimization problem by defining the following vari-
ables: , . One can then rewrite the
energy and capacity constraints and transform the above non-
convex optimization problem into the following convex formu-
lation, which can be solved by well established convex opti-
mization tools based on interior point methods.

(1) holds for distortion threshold

(5)

B. Interference Limited System

In the interference limited scheme, all sensors transmit
throughout the entire delay duration, and hence there always
exists interference from other sensors which degrade the quality
of reception at the FC. The capacity constraint on the transmis-
sion rate is then given by (note that here transmission rate is the
same as the encoding rate)

(6)

Note that in this formulation, each sensor sees the interference
created by other sensors as noise and hence this scheme is
nonorthogonal as opposed to the TDMA scheme. We assume
the FC uses single-user decoding rather than the more complex
joint multiuser decoding. We call this simple multiple access
scheme (6) NOMA in the rest of the paper.

Clearly, one can obtain better channel capacity and conse-
quently, better network lifetime by considering multiple access
schemes such as CDMA with multiuser detection such as linear
minimum mean square error (LMMSE) receivers [28] or other
more complex nonlinear receivers such as successive interfer-
ence cancellation (SIC). Lifetime optimization problems for
CDMA with complex multiuser detection schemes is beyond
the scope of the current work and will be studied in a separate
paper. We emphasize, however, that the optimization technique
developed in this paper for the interference limited case can be
easily extended to cope with such problems.

Note that the energy requirements in the NOMA system are
different to the ones in TDMA, since all sensor nodes are trans-
mitting throughout the entire time the network is alive. There-
fore, for all , we have .

In summary, the lifetime maximization problem in the
NOMA case is given by

holds for distortion threshold

(7)

This optimization problem is nonlinear and nonconvex. In
Section III, we will propose a successive convex approximation
based methodology to solve the optimization problem given by
(7).

C. Upper Bound on the Network Lifetimes of TDMA and
Noma Schemes

It is obvious that in the problem we consider, the sensor
nodes communicate to the FC via a Gaussian multiaccess
channel. Note however though that the various sensors observe
the same source and thus their observations are highly corre-
lated. It is well known that obtaining the exact capacity region
for a multiaccess channel with correlated sources is a difficult
task [15], [16]. Although it is expected that the multiaccess
capacity region for correlated sources will be larger than that
with independent sources, we still consider the capacity region
of the Gaussian multiaccess channel (pretending the sensors to
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be transmitting independent data) and show that the network
lifetime achieved within these capacity constraints provides
an upper bound on the optimal network lifetimes achieved by
the TDMA and NOMA schemes described before. The ca-
pacity region for the Gaussian multiaccess channel (assuming
independent sources) is given by (with normalized bandwidth

) [29]

where

(8)

Henceforth, we call this the idealized Gaussian multiple ac-
cess channel (GMAC). Accordingly, the lifetime optimization
problem for the idealized GMAC case can be described as

(1) holds for distortion threshold

(9)

The nonlinear optimization problem (9) can be converted to
a convex minimization problem simply after a single-variable
substitution :

(1) holds for distortion threshold

(10)

Therefore, the rate and power allocation problems for the
idealized GMAC with rate distortion constraints can be solved
using standard convex optimization tools. It can be shown in
a fairly straightforward manner that the optimal lifetime solu-
tion of (10) provides an upper bound for the optimal solutions
achieved by the TDMA and NOMA schemes, as the following
result states. The proof can be found in the Appendix for the
TDMA and the NOMA cases. For a simple intuitive explana-
tion of this result, see [30, Ch. 6, pp. 232–233].

Proposition 1: The optimal lifetime solution to the convex
optimization problem for the idealized GMAC capacity region
given by (10) provides an upper bound to the optimal lifetime
solutions for nonconvex optimization problems for the TDMA
and the NOMA cases given by (4) and (7), respectively.

Remark 4: It should be noted that the exact capacity region
for the Gaussian sensor network considered in this paper is diffi-
cult to compute, and thus the optimal achievable lifetime perfor-
mance under these exact capacity constraints is also unknown.
However, the bound derived above (using an idealized Gaussian
MAC channel assuming independent sources) is still useful for
various reasons. Instead of computing the performance with
TDMA and NOMA schemes separately, one could simply use

this bound to overestimate the TDMA and NOMA performance.
And since the NOMA problem is nonconvex, and the global op-
timum cannot be found, the suboptimal solution presented in the
paper (Section III) can be compared against this upper bound.
We also believe that Proposition 1 is an interesting result in its
own right.

D. Simple Uncoded Amplify and Forward Scheme

It has been shown recently that for a Gaussian sensor net-
work under a nonorthogonal multiple access scheme, it is better
for the sensors to simply amplify and forward their noisy data
to the FC [20]. With identical sensor noise variance and total
power in all sensors increasing linearly with the number of sen-
sors, [20] shows that this simple analog amplify and forward
scheme outperforms (minimum distortion achieved decreases as

rather than where is the number of sensors)
any scheme based on separate source and channel coding and is
asymptotically optimal (i.e., when ). See also [31] for
some generalizations of these results. This technique has been
further investigated in the context of minimizing total power
consumption in [26] and energy efficient joint estimation in [32]
for Gaussian sensor networks. Note, however, that under an or-
thogonal multiple access scheme, separate source and channel
coding scheme is optimal for a Gaussian sensor network and
the above mentioned uncoded amplify and forward scheme per-
forms strictly suboptimally [21].

It is implicitly assumed in the above papers however, that
there is complete phase synchronization amongst the sensors
such that the received data from all the sensors add up coher-
ently at the FC. This point has been commented on in [26] and
also further qualified in [33]. In the case of fading channels, in
the absence of perfect phase synchronization, this simple am-
plify and forward scheme can only perform near-optimally if
the fading distributions satisfy a nonzero mean condition [34]
or enough number of sensors enjoy fading channels with such a
nonzero mean condition [33].

We stress, however, that complete phase synchronization
amongst sensors (which is equivalent to distributed transmit
beamforming if the channels are modelled as complex entities)
is extremely difficult to achieve in practice. For example,
complete phase synchronization is almost impossible in un-
derwater acoustic sensor networks [35]. See [36] and [37] for
discussions on complexity of incorporating distributed transmit
beamforming in wireless networks and effect of random phase
errors on the network performance. It is important to keep in
mind therefore that large performance gains as promised by
such simple uncoded schemes may not be feasible in practical
sensor networks.

For comparison purposes, we provide an equivalent lifetime
optimization problem formulation for the uncoded amplify and
forward case under the nonorthogonal multiple access scheme
in this section. In this scheme, the th sensor amplifies its own
noisy data by a scaling factor . The mean
square distortion at the FC is then given by where

(11)
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The equivalent lifetime optimization problem can therefore be
stated as

(12)

where is given by (11) above and denotes the inverse of
the network lifetime.

We use a MATLAB-based optimization routine (“fmincon”)
to solve this problem. In Section IV, we provide a comparative
study amongst the optimal lifetime achieved by this scheme and
the separate source and channel coding based TDMA, NOMA
and the idealized GMAC schemes via simulation studies.

III. SUCCESSIVE CONVEX APPROXIMATIONS FOR THE

NONCONVEX NOMA PROBLEM

In Section II, we formulated the lifetime optimization
problem with the rate distortion constraints for the NOMA
environment which resulted in a nonlinear nonconvex opti-
mization problem. In fact, by suitable variable transformations,
one can pose this nonconvex problem as a D.C. (representing
difference of convex functions) programming problem which
can be converted to a corresponding canonical D.C. program-
ming problem. Canonical D.C. problems can be solved by
outer approximation and branch and bound methods [18].
However, the complexity of D.C. programming is NP hard and
convergence time is quite long [38]. In our work, we adopt
a simpler strategy and approximate the original nonconvex
problem (7) with a sequence of convex approximations. For
a similar sequential convex optimization algorithm for power
and rate allocation in an interference limited MANET, see
[17]. Starting at a suitably chosen initial point, we solve an
approximate convex problem and then use the results of this
optimization procedure to obtain a new convex approximation
of the original nonconvex problem. Thus, this method leads to a
sequence of convex problems which can be shown to converge
(under certain conditions) to a suboptimal solution. Below, we
describe this successive convex approximation algorithm in
detail for the NOMA case.

It was shown in [8] that the rate distortion constraints are
convex in , , and . We now consider the energy and capacity
constraints for the nonconvex NOMA problem (7).

Suppose we make the following variable transformations:

(13)

Accordingly, the energy constraints in (7) can be represented
in , and as follows (after taking logarithm of both sides)

, which is obviously
convex.

Now define an auxiliary variable , such that
the capacity constraint can be rewritten as

Taking log on both sides of the inequalities, we can rewrite the
above set of constraints as

Here, the second set of constraints are convex as they are in
the standard log-sum-exponential form. It is the first set of
constraints that are not convex. It is easy to demonstrate that

is a concave function in . However,
note that is not convex, in fact, it is concave. Note that
each of these nonconvex capacity constraints can be written
as a difference of two convex functions and hence the original
nonconvex problem can be converted to a canonical D.C.
problem. Our strategy, however, is to approximate by
a convex expression (as in [2]). Consider the tangent line that
touches the concave curve at the point . The
equation representing this tangent line is obviously given by

where refers to the axis. Consider
another point nearby and the corresponding point
on the tangent line with an ordinate value of ,
where and .

Clearly, since the tangent lies above the con-
cave curve. It is now easily seen that if one satisfies the
constraint

(14)
with an appropriately chosen , then the original NOMA
capacity constraint is also satisfied. Thus, in general, a subop-
timal solution to the original nonconvex lifetime maximization
with rate distortion constraints in the NOMA case can be found
by solving the following convex optimization problem:

(1) holds for distortion threshold

(15)

A. Successive Convex Approximation Algorithm Based on
Updating of Tangent Points

In the previous section, we illustrated how the nonconvex
NOMA optimization problem can be converted to an approxi-
mate convex optimization problem by suitably choosing an ini-
tial point around which a tangent approximation is made, such
that the resulting convex problem is feasible. Once this convex
(approximate) problem is solved, the resulting rate can then
be used as a new point of approximation to form a new approxi-
mate convex problem. Thus, one can form a sequence of convex
approximations where the solution from the previous stage be-
comes the point of tangent approximation for the next stage.
Below, we show that this sequence of convex approximations
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results in a sequence of optimal solutions that asymptotically
converge to unique steady-state values, provided that the initial
convex approximate problem is feasible. In practice, one can
stop this successive convex approximation method once a cer-
tain accuracy is reached in the optimal solution values.

Theorem 1: Suppose after solving the approximate convex
problem (15) successive times, the logarithm of the inverse of
the optimal lifetime value is given by , i.e., ,
where is the logarithm of the achieved optimal lifetime
value after solving successive convex approximations. If the
initial convex approximation is feasible resulting in an optimal
inverse lifetime , then the sequence converges to a
(not necessarily unique) steady-state value .

Proof: Suppose the feasible region for the th convex ap-
proximate optimization problem is . As above, the super-
script means ’after updates’. We will show that sequence

is nonincreasing and lower bounded, and consequently
it converges.

• Monotonicity: Suppose is the
optimal allocation scheme to the th convex approxi-
mation. Therefore, the parameters for the tangent ap-
proximation in the next round will be ,

, where . We now
show that is within the feasible
region for the next iteration.

The last inequality follows from the fact that
by virtue of the tangent approximation after

the st iteration of the successive convex approxima-
tion scheme. Combining this with the fact that all the other
constraints hold for the solution ,
we can conclude that

Since is the logarithm of the inverse optimal lifetime
after updates, we have .

• Boundedness: Note that once the network is activated, we
can easily find for at least one activated sensor node

, where . This implies that the lifetime of the
network has a finite upper bound, since the initial node
energy values are finite. It then follows that is lower
bounded by a finite lower bound.

In summary, as a nonincreasing lower-bounded sequence (with
a finite lower bound) converges (asymptotically) to a
steady-state value which implies that also converges to
a steady-state value and by uniqueness of the solution to each
of the approximate convex problems, all other variables of opti-
mization converge to their respective steady-state values. Note
that the choice of the first convex approximation may dictate the
final steady-state values, hence uniqueness of the steady-state
solutions cannot be guaranteed in general.

Fig. 2. Convex approximation for logR .

Fig. 3. Convergence of lifetime for the NOMA based WSN:D = �1 dB.

Although it is difficult to provide analytical results regarding
the speed of convergence, we illustrate via simulations below
that the successive convex approximation algorithm converges
quite rapidly. These simulation results are for a six sensor net-
work the details of which can be found in Section IV. Fig. 3
illustrates the convergence for the NOMA case, where it is seen
that after only four or five updates, the successive convex ap-
proximation based algorithm yields solutions within a reason-
able accuracy. Recall that convergence is guaranteed as long
as the problem is feasible at the initial iteration. These simula-
tion results were achieved both by the MATLAB-based fmincon
program and well known Barrier Method based interior point
techniques [39].

B. Local Optimality of the Successive Convex Approximation
Algorithm

In Section III-A, we proved the convergence of our sequen-
tial convex optimization method, i.e., as long as the first convex
(approximate) optimization problem is feasible, the algorithm



2084 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 5, MAY 2008

will converge to a (in general) suboptimal solution. In this sec-
tion, we show that when the successive convex approximation
algorithm converges to a steady-state solution, this solution is
actually satisfies the Karush–Kuhn–Tucker (KKT) conditions
for the original nonconvex optimization problem (7). Below, we
provide a sketch of the proof of this result.

The full-version of the (approximate) convex optimization
problem for NOMA system is given by

(16)

We denote the steady-state solution to this optimization
problem (i.e., when the sequence of convex approximations has
converged) as . Note also that after
convergence, and . The strong
feasibility of this convex problem and the convexity of the
objective function and constraints imply that Slater’s condition
holds. Therefore, there exists at least one set of Language
multipliers corresponding to the
energy, the two capacity, and the three rate distortion constraints
respectively, associated with the Lagrangian function for the
final convex approximate optimization problem. As Langrange
multipliers, they are equal to zero when the corresponding
constraints are not active, and nonnegative otherwise.

Note that the only difference between the convex approx-
imation (16) above and the original nonconvex problem (7)
lies in the (tangent) approximated second constraint above.
All other constraints and the objective function are identical.
Since after convergence, and , it
is trivial to show that the aforementioned steady-state solution

and the associated Lagrange multi-
pliers satisfy the KKT necessary optimality conditions for the
original nonconvex optimization problem (7). Note that this
does not necessarily guarantee that the steady-state solution

is a local optimum for the original nonconvex
optimization problem (7). However, one can check numerically
whether this steady-state solution satisfies further sufficient
second order optimality conditions and some constraint quali-
fication criteria (see [40, Proposition 3.3.2, p. 314]). If it does,
then the solution is a local optimal point for the nonconvex
NOMA problem (7). However, it is difficult to prove analyt-
ically that this steady-state solution will always be a locally
optimal solution of the nonconvex NOMA problem. Instead,
we compare the lifetime performance of this successive convex
approximation scheme against the upper bound provided by

Fig. 4. Wireless detection system with six sensors (Unit: meters).

TABLE I
SIMULATION PARAMETERS.

the lifetime performance of the Gaussian MAC optimization
problem (10) via extensive simulation studies reported in
Section IV.

IV. SIMULATION STUDIES

In this section, we carry out extensive simulation studies
mainly focusing on a six-sensor single-hop network where
each sensor is connected via a wireless link to the FC. The
geometric configuration of this network is given in Fig. 4,
where the variance of the measurement is based on the distance
between the source (representing the random phenomenon)
and the sensor itself, [6]. The propagation gain
for the wireless channel between the sensors and the FC is
proportional to the line-of-sight (LOS) distance with loss factor

. The distance parameters for the simulation studies with
the six-sensor network can be derived from Fig. 4, where the
coordinates of the source, the sensors and the FC are given. All
other relevant parameters are provided in Table I below.

A. Static Propagation Gain

In this subsection, we assume that the link propagation gains
between the sensors and the FC are deterministic and depend
only on the distances between the sensors and the FC with a
loss factor of .

In Fig. 5, we first illustrate the network lifetime achieved
as the results of the three optimization problems (5), (10),
and (15) for the six-sensor situation. We also compare these
results against the network lifetime achieved by the uncoded
amplify and forward scheme stated as the optimization problem
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Fig. 5. Lifetime for the network with 6 sensors.

(12). The uncoded amplify and forward scheme (denoted by
MMSE in Fig. 5) performs better than the TDMA/NOMA
schemes and the upper bound provided by the idealized GMAC
scheme as well. Increasing channel noise or decreasing SNR
at the sensors, etc., was seen to decrease the lifetime for all
schemes, while keeping the order of the achieved optimal
lifetimes intact for the various schemes. This may give the
impression that one must therefore favour uncoded amplify and
forward transmission under nonorthogonal multiple access to
TDMA/NOMA based schemes in these circumstances. How-
ever, the uncoded amplify and forward scheme is not as simple
to implement as it is made out to be. One of the major difficul-
ties of achieving the performance as depicted in Fig. 5 by the
uncoded scheme is maintaining full phase synchronization at
the sensor transmitters (which is equivalent to implementing
fully distributed beamforming for complex channels), specially
for time-varying fading channels.

Below we present a study where the uncoded amplify and
forward lifetime maximization scheme is tested under random
phase errors in the received signals from the sensors. We assume
that the phase error in each of the received signals at the FC fol-
lows an identical and mutually independent Gaussian distribu-
tion with variance and zero mean. The uncoded amplify and
forward optimal power allocation scheme is implemented as-
suming no phase error, simply using the real channel gain. The
random phase errors for the received signal from each sensor
are generated 100 000 times, and the resulting mean square error
(MSE) distortion is obtained averaging over these 100 000 trials.
Figs. 6 and 7 illustrate how the mean square error distortion
achieved by the uncoded amplify and forward scheme increases
quickly as increases, starting from a base distortion threshold
of 12.3 dB and 10 dB, respectively. It is seen that when
exceeds , the MSE distortion achieved by the uncoded am-
plify and forward scheme exceeds its counterpart achieved by
the GMAC case (which is close to the performance achieved by
the TDMA scheme). This fact tells us that the phase error should
be considerably small in order to guarantee that the uncoded am-
plify and forward schemes will outperform the GMAC, TDMA,
and NOMA schemes.

Fig. 6. MMSE distortion with phase error for the uncoded amplify and forward
scheme.

Fig. 7. MMSE Distortion with phase error for the uncoded amplify and forward
scheme.

In addition, another study [27] has shown that a pulsed opera-
tion of each sensor battery can increase the yield of a battery, as
it affects the battery’s energy drainage pattern. This implies that
a TDMA based scheme may be more energy efficient than other
protocols (including an uncoded scheme under nonorthogonal
multiple access) [22]. Therefore, while the uncoded scheme of-
fers a promising (but perhaps impractical) performance gain to
aspire to, the separate source and channel coding based schemes
such as TDMA and NOMA provide useful simple alternatives
which are easier to implement.

As also expected, the network lifetimes for TDMA (optimal)
and NOMA (suboptimal) are upper-bounded by the solutions
achieved by the constraints defined by the idealized GMAC ca-
pacity region. The suboptimal solutions obtained by the sequen-
tial convex approximations for the NOMA case performs rea-
sonably well, as compared to this upper bound provided the
globally optimal solution to the idealized Gaussian MAC case.
In these simulations, although TDMA seems to perform better
than the suboptimal solutions to NOMA, note that this does
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Fig. 8. Advantage of optimal TDMA over uniform TDMA.

not necessarily indicate that TDMA will always perform better
than NOMA, since the globally optimal solution to NOMA is
unknown. Increasing channel noise or decreasing SNR at the
sensors, etc., was seen to decrease the lifetime for all schemes,
while keeping the order of the achieved optimal lifetimes intact
for the various schemes.

Fig. 8 demonstrates the normalized improvement the network
can achieve through an optimal TDMA scheme as opposed to
a uniform TDMA scheme, where each sensor transmits for an
equal 1/6th portion of the time. The axis is the normalized
distortion threshold given by . In the uniform
TDMA case, the length of the activated time is the same for
each sensor, hence the lifetime depends on the most power-con-
suming agent. On the other hand, optimal scheduling improves
the performance by adaptively tuning the length of the indi-
vidual sensor timeslots. Clearly, since uniform TDMA is a spe-
cial case of a nonuniform TDMA, the optimal scheduling al-
ways performs better than uniform TDMA. However, when the
distortion constraint is stricter, the improvement achieved by the
optimal scheduling is more evident—since a lower distortion
threshold requires higher transmission rate, the optimal assign-
ment of timeslot fractions gives more flexibility to the network
to improve its lifetime. performance of the network. Clearly, the
normalized value of the optimal lifetime over that achieved by
the uniform TDMA scheme decreases as the distortion threshold
is relaxed.

We also study how the optimal time-slot assignment changes
(in the optimal TDMA case) as a sensor moves from a posi-
tion close to the source to a position that is close to the FC.
Figs. 11 and 12 illustrate the results for the four-sensor (I, II, III,
IV) case in the TDMA scenario when Sensor I moves horizon-
tally from (0, 10) to (75, 10), all the other sensors being fixed.
When Sensor I moves closer and closer to the FC and away
from the source, the sensor noise increases with increasing dis-
tance from the source whereas the corresponding propagation
gain and consequently the channel quality to the FC increases.
As these two factors have a conflicting effect on the network
lifetime, it is clearly seen in Fig. 11 that the network lifetime

Fig. 9. Lifetime for the TDMA-based wireless sensor network.

Fig. 10. Lifetime for the NOMA-based wireless sensor network.

reaches an optimal point when it is still close to the phenom-
enon, and decreases dramatically after that. Fig. 12 illustrates
that the amount of the time fraction allocated to Sensor I dis-
plays a similar behavior, as the sensor measurements become
more and more noisy, Sensor I is allocated less and less time for
transmission despite its enhanced channel quality to the FC. In
this case, Sensor II is allocated increased time for transmission
as the measurements of Sensor I become poorer. Sensors III and
IV enjoy a modest increase in their allocated time fraction since
their positions are neither close to the phenomenon nor the fu-
sion center.

Figs. 9 and 10 illustrate the relationship between the network
lifetime and the number of sensor nodes (agents) in the system
for the TDMA and the NOMA case respectively, where the net-
work consists of 1({II}), 2 ({I, II}), 4({I, II, III, IV}), and 6({I,
II, III, IV, V, VI}) sensors along with the FC. In general, the
network lifetime increases as the rate distortion requirement is
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Fig. 11. Lifetime for the (4 sensor) TDMA based wireless sensor network with
mobile sensor 1.

Fig. 12. Normalized sensor transmission timeslots for the (four-sensor)
TDMA-based wireless sensor network with mobile sensor 1.

relaxed. Also, in general, increasing the number of sensors in
the TDMA case helps to extend the network lifetime due to the
diversity available to the network. However, note that this is not
always the case in the NOMA scheme, e.g., in the normalized
distortion threshold domain of ( 5 dB, 2.5 dB) in the NOMA
system, increasing the number of sensors from two to four does
not give any advantage in lifetime performance, as shown in
Fig. 10. The reason is simple: nodes III and IV are too far from
the phenomenon and hence it is not wise to use those two sen-
sors when the distortion threshold is strict. Therefore, the op-
timal solution for the four-sensor case is to shut down node III
and IV in order to eliminate the interference to the receiver. On
the other hand, when the distortion threshold is less strict, the
performance of the four-sensor system will be better than that
of the two-sensor one.

B. Slow Fading Environment

In this subsection, we assume that the wireless link gains be-
tween the sensors and the FC are not only path loss dependent,

Fig. 13. Lifetime performance in Rayleigh fading – idealized GMAC and un-
coded amplify and forward (MMSE ).

but also randomly varying due to slow Rayleigh fading. Under
this assumption, the fading is slow enough so that even though
the channel is random, it can be accurately estimated at the FC
and used to compute the optimal power, rate, etc., which are fed
back to the sensors. We assume that the propagation gain be-
tween the th node and the FC is effected by Rayleigh fading
parameters , where has an exponential distribution with
unity mean (without loss of generality), and (as before) rep-
resents the path loss dependent part. As a result, one can rewrite
the channel capacity constraints for the TDMA, NOMA and the
Gaussian multiaccess problems by replacing with for
the th sensor. The same can be said for the channel gains in the
uncoded amplify and forward case.

Fig. 13 shows the optimal network lifetime obtained by the
idealized Gaussian MAC capacity-limited case and the uncoded
amplify and forward scheme. Since the idealized GMAC ca-
pacity constrained region provides a network lifetime that acts
as an upper bound (for a given channel realization), we only
show the results for the idealized GMAC and the uncoded case
in this graph in order to save on computation time. These simula-
tion studies are carried out for the six-sensor configuration under
slow Rayleigh fading (as described above) where the results are
averaged over 1000 fading realizations. In order to make a fair
comparison between the fading and no fading cases, the simula-
tion results in Fig. 5 (no fading) for idealized GMAC and the un-
coded case are repeated here. In Fig. 13, all the lifetime curves
in dotted lines represent the numerical results for the original
nonfading cases, while those with solid curves represent the life-
times achieved under a slow Rayleigh fading environment. It is
clear that the lifetime performance is comparable between the
ones with and without such effects. Although fading shortens
the network lifetime as a result of increasing transmission power
to combat fading, the diversity available by using multiple sen-
sors helps the network allocate resources to the sensors with
better channel conditions and hence offset the power loss and
extend the network lifetime.
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V. CONCLUSION

In this paper, we studied the lifetime performance of a
single-hop sensor network with a small number sensors and
a centrally coordinating FC, where the task of the network is
to reconstruct a remotely observed random Gaussian source.
We provided a centralized joint power and rate optimization
algorithm under the energy, wireless link capacity, delay
and rate distortion constraints. The various multiple access
protocols studied were TDMA, a nonorthogonal interference
limited protocol NOMA and the ideal Gaussian MAC capacity
achieving protocol. Convex optimization methods were used
to find the optimal lifetime solutions for the TDMA and the
Gaussian MAC case, whereas for the NOMA case, the original
nonconvex optimization problem was approximated by a series
of sequential convex approximations which were proved to
converge to a steady-state solution, a KKT point of the orig-
inal problem. Extensive simulation studies were performed
to compare the performance of these various protocols. We
also compared the network lifetime performance of these
separate source and channel coding based schemes against
the performance of a recently proposed uncoded amplify and
forward scheme. While this uncoded scheme is seen to per-
form better, difficulties related to its implementation render
the TDMA/NOMA based schemes as attractive alternatives
which are easier to implement. This fact is illustrated through
evaluating (via simulations) the performance of the uncoded
amplify and forward scheme in the presence of random phase
noise, where the performance is seen to deteriorate quickly as
the phase noise variance increases.

Future work includes a study of the lifetime performance of
the CDMA protocol with appropriate multiuser detectors, ex-
tension of centralized algorithms to distributed ones (specially
in the case of a network with large number of sensors), and to
the case of fast fading channels with partial channel information
at the FC (or the sensors).

APPENDIX

Proof of Proposition 1 – TDMA Case: Consider the TDMA
optimization problem given by (4) and the Gaussian MAC op-
timization problem given by (10) and note that it is the capacity
constraints that set them apart.

Suppose the TDMA optimization problem has been op-
timized with respect to , only and the
resulting optimal solutions are given by ,
Consider any nonempty subset of . Note that fea-
sibility of the solutions , implies that

(in fact it can be shown that ).
This implies that summing over the TDMA capacity con-
straints: for , we get

(17)

where and the second last inequality follows as a
special case of Jensen’s inequality.

Using the transformation one can now rewrite the
energy constraints in the TDMA problem as ,

, where . Denote .
Therefore the new transformed TDMA problem (after opti-

mizing over ) can be written as

(1) holds for distortion threshold

(18)

Clearly, the capacity constraints in the above problem imply
(due to inequality (17)) the capacity constraints in the Gaussian
MAC problem. Hence, an optimal solution of the TDMA
problem (4) belongs to the feasible set of the Gaussian MAC
problem (10). Therefore, the optimal lifetime obtained from the
Gaussian MAC problem is equal or greater than that obtained
by an optimal solution of the TDMA problem.

Proof of Proposition 1 – NOMA Case: Consider the ca-
pacity constraints in the NOMA problem (7) and the Gaussian
MAC optimization problem given by (10).

Summing over the NOMA capacity constraints over ,
(for a given ), we get

(19)

where , .
Now, denote by , where denotes the number

of elements in the set . Note that the sum on the left-hand side
of the last equality of (19) can be written as

. The rest of the proof just shows that the

above sum is less than or equal to
when , . This fol-

lows by induction.
For , it is easy to show that

Now assume that for ,
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This implies

Obviously, it follows by induction that

This result implies that any , that satisfy
the NOMA capacity constraint, also satisfies the corresponding
Gaussian MAC capacity constraint. Since this result is true for
all , and all the other constraints are the
same for both the NOMA and the Gaussian MAC problems, any
feasible solution to the NOMA problem is included within the
feasible set of the Gaussian MAC problem. Clearly, the optimal
lifetime solution provided by the Gaussian MAC formulation is
better or equal to that provided by the NOMA formulation.
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