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Aided Multiuser Receivers in Rayleigh
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Abstract—We consider a synchronous code-division multiple-
access system where each user undergoes independent frequency-
flat Rayleigh fading, and where pilot symbols are periodically
inserted into the data stream of each user in order to assist in
the coherent demodulation of the data symbols. The motivating
question for this work is: for any given set of system parameters,
how often should we insert pilot symbols? Along the way to an-
swering this question, we: 1) derive and analyze the performance
of the linear minimum mean-squared-error channel estimator
and 2) study the performance of a linear minimum mean-squared-
error data estimator which is coupled to the channel estimator.
We are able to obtain a very compact expression for the average
signal-to-interference ratio in terms of the key system parameters:
pilot insertion period, channel fading rate, signal-to-noise ratio,
and the ratio of the number of users to the spreading gain. The
average signal-to-interference ratio is numerically optimized and
results are presented to illustrate the optimal rate of inserting
pilot symbols for a range of system parameters.

Index Terms—CDMA, channel estimation, linear receivers, mul-
tiuser detection, pilot symbols, random spreading, Rayleigh fading.

I. INTRODUCTION

CODE-DIVISION multiple-access (CDMA) will be the
dominant multiple-access technique at the air-interface of

third-generation cellular networks [1]–[4]. While second-gen-
eration CDMA networks use coherent modulation only on the
forward link (base to mobile), next-generation systems will
employ coherent modulation on both forward and reverse links.
Coherent communication on the reverse link is aided by the use
of a pilot signal for each mobile; it is the allocation of resources
to these pilot signals that is the subject of this paper.

Some excellent work has been carried out in this area in the
case when the receiver is a single-user matched filter [5]–[7].
Third-generation standards incorporate the option of using re-
peated signature sequences so that more advanced multiuser re-
ceivers can be employed [8]. This paper tackles the problem of
performance optimization for a pilot symbol-aided multiuser re-
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Fig. 1. Overview of receiver structure.

ceiver in a Rayleigh faded CDMA channel. The CDMA system
is assumed to be synchronous, and each user’s signal under-
goes independent frequency-flat Rayleigh fading as it propa-
gates from transmitter to receiver.

The rate of fading, as measured by the normalized Doppler
spread, is assumed quite fast so that it is not reasonable to simply
assume that the channels of all users are known perfectly. We
will instead look explicitly at the channel estimation problem
and assess the impact of channel estimation errors on perfor-
mance.

A. Problem Statement

A receiver structure of central importance to this paper is il-
lustrated in Fig. 1. Variations on this basic structure have been
proposed by many authors developing multiuser receivers for
Rayleigh fading channels [9]–[12].

To aid our discussion we briefly introduce the model for the
received signal in symbol period

(1)
where is the channel of userin symbol , is the
data symbol for user in symbol , is a white Gaussian
noise vector, and is the signature sequence of user, which
we assume is repeated from symbol to symbol.

The received signal is first passed through a linear filter
which aims to suppress interference and produce an es-
timate of . We consider a linear minimum
mean-squared-error (LMMSE) receiver that requires knowl-
edge of the signature sequences of all users, the average power
of all users, and the covariance matrix of the noise. We assume
that these parameters are time invariant or slowly varying, and
that they can be easily estimated if not knowna priori.

At the output of the LMMSE receiver, we are left with the
task of untangling the product of the data and the channel,
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Fig. 2. Frame structure.

, from observations corrupted by residual inter-
ference and noise. The problem at this stage is really that of
receiver design for the single-user Rayleigh fading channel, and
our receiver uses well known pilot symbol-assisted techniques
[13], [14]. We assume that pilot symbols (symbols known to
the receiver) are periodically inserted into the stream of data
symbols of user one as illustrated in Fig. 2. These pilot symbols
are used in conjunction with the corresponding outputs from
the LMMSE receiver to obtain estimates of the channel of user
one. These estimates are then passed to a standard detector
which compensates for the effect of the channel and makes
decisions on the transmitted data.

Clearly, inserting pilot symbols more frequently will improve
the performance of the channel estimator. However, pilot sym-
bols take up valuable resources such as power and bandwidth.
In this paper, we ask the question, how can we find the best allo-
cation of resources to pilot symbols? To be more specific, how
should we choose the pilot symbol insertion rate as a function
of the key system parameters: spreading gain, number of users,
signal-to-noise ratio (SNR), and the fading rate?

Before moving on, we draw the readers’ attention to [15],
which examines similar problems when parallel pilot channels
are employed. One main difference in this work (apart from the
pilot structure) is that we explicitly consider the time-variation
of the channel through a specified autocorrelation function or
power spectral density. This allows us to include the normalized
Doppler frequency as an important system parameter.

B. Summary of Contributions

The main contributions of the paper are outlined below.
Channel Estimation:In Section III, we derive and analyze

the LMMSE channel estimator for our system in the case when
the estimate is based on the entire sequence of pilot symbols
(and received signals at the pilot points). The resultant LMMSE
estimator allows the simple implementation given in Fig. 1. We
derive expressions for the mean-squared-error (MSE) of the op-
timal estimator for finite-size systems and also for large sys-
tems. In the latter case, the MSE is independent of the realiza-
tion of the signature sequences, depending only on the number
of users, the processing gain, the rate of inserting pilot symbols,
and the channel parameters.

Data Detection: In Section IV, we first study the maximum-
likelihood (ML) detector for a data symbol under the assump-
tion that the detector has perfect knowledge of the channel of
the user in question, but of nothing else. Under this assumption,
the ML detector consists of a LMMSE front end followed by a
minimum distance detector. This motivates the receiver struc-
ture of Fig. 1 when knowledge of the channel is replaced by ac-
cess to the pilot symbols of the user of interest. An expression
for the average signal-to-interference ratio (SIR) is derived, and

by looking at a large system, we are able to get a final perfor-
mance measure which is independent of the signature sequences
and which depends only on the key system parameters.

Pilot Optimization: Finally, in Section V, we look at opti-
mizing the performance (as measured by the average SIR) over
the choice of pilot insertion period. Some surprising results are
uncovered when we examine the behavior of the optimal pilot
insertion period as the system loading is varied.

II. RAYLEIGH FADING CDMA CHANNELS

The model for the received signal after down conversion
and chip-matched filtering was given in (1). Referring to this
model, each signature sequence is a column vector of length

(the processing gain), which is assumed known at the
receiver. For performance analysis, we will assume that the
entries (chips) of are independent and identically distributed
random variables with mean zero and variance . Write

for the matrix of signature sequences,
and for the matrix with the
signature sequence of user one removed.

We further assume that

1) the channel process is a stationary, circularly
symmetric, complex Gaussian random process with

and with
;

2) the vector noise process is a stationary, circu-
larly symmetric, complex Gaussian random process with

and ;
3) the data process is a white random process with each

selected from an -ary phase-shift keying (PSK)
alphabet with and ;

4) the signature sequences, data, noise, and channel pro-
cesses are independent.

Under these assumptions and conditioned on, the received
signal is a circularly symmetric, complex random process with

Observe that is a circularly symmetric, com-
plex Gaussian random variable, but that and

are not jointly Gaussian. This means that (given)
is a complex Gaussian vector, but the process is

not a Gaussian process.
Another assumption that we have made is that the average

(received) power of each user is the same (since
for all ). This might correspond to a situation where there

is power control at the central receiver. Assume that the power
control operates on a time scale which is slow compared with
the Rayleigh fading, but fast compared to the changes in average
power due to distance-based path loss and shadowing. Having
said that, the assumption is made only for ease of exposition and
all results can be readily extended to the more general situation
of unequal average received powers. The term SNR is reserved
for the quantity .

Remark 1: The model considered in this paper is one of the
simplest models that includes the key ingredients of multiple-
access interference and fading. The advantage of this model
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is that meaningful and insightful results can be obtained in a
resonably straightforward manner. Importantly, the framework
presented in this work could be extended to an asynchronous
CDMA model and to include frequency-selective fading using
techniques from [16] and [17], respectively.

Before continuing, note that all expectations in the sequel
should be seen as expectations conditioned on the matrix of sig-
nature sequences. For example, means and
means . Throughout, we denote vectors and matrices
(random and deterministic) by boldface characters and use an
asterisk to denote the conjugate transpose operation.

III. PILOT SYMBOL-BASED LMMSE CHANNEL ESTIMATION

We consider a structure where pilot symbols are periodically
inserted into the sequence of data symbols of user one. In par-
ticular, suppose that a pilot symbol is inserted after every block
of data symbols at locations
as illustrated in Fig. 2.

Define the sampled and demodulated output sequence

(2)

where we have defined .

A. Estimation Based on One Pilot Symbol

To begin, we consider the simple case of linearly estimating
the channel of user one, , based solely on in
such a way that the MSE is minimized. To be more explicit, we
are concerned with estimates of the form

which minimize the MSE

where is an -dimensional row vector. Since we have already
removed dependence on the pilot symbols, we can assume that

is time invariant without loss of generality.
Remark 2: Before proceeding, note that the channel esti-

mates thus obtained will turn out to be a first step in obtaining
estimates based on all pilot symbols. These “one-symbol” esti-
mates should be viewed only as intermediate estimates, and not
as candidates for the channel estimates to be used by the de-
tector.

The well known LMMSE estimate of is

Making use of the Matrix Inversion Lemma, we have equiva-
lently

(3)

where

(4)

is the SIR for this estimate. The resulting MSE is given by

The performance of the channel estimator is summarized by
the MSE or the SIR, which is a function of the signature se-
quences of all users, and the average SNR of each user ().
If we now look at a large system and model the signature se-
quences as random, then the dependence on the signature se-
quences disappears. We have the following result [17]–[19]:

Result 1: Under our random spreading model, as
with held constant, the SIR given in (4) converges
(almost surely) to the nonrandom constant, which is the so-
lution to

This is a quadratic equation with desired solution

(5)

In a system with finite spreading gain, the MSE,, is a
random variable because of its dependence on the signature se-
quences of all users. This result tells us that whenis large,
almost all realizations of will lead to approximately the same
value of . All that is important is the ratio of the number of
users and the spreading gain.

The large system analysis underlying this result has been
used extensively in recent years to transform somewhat cum-
bersome expressions (for SIR, MSE, information capacity) into
very useful and compact performance measures. Examples can
be found in the papers [15]–[18], [20]–[25]. The above result is
all we require in order to develop large system versions of all
of our performance measures.

Before proceeding, we note that and are jointly
circularly symmetric, complex Gaussian random vectors when
conditioned on the pilot symbol of user one. The optimal linear
estimator derived above is thus the minimum mean-squared
error (MMSE) or conditional mean estimator of , given

, and we have the following result:
Result 2: The random variables and are jointly

circularly symmetric, complex Gaussian random variables
with parameters , ,

, and .
A further consequence of this result is that the random vari-

ables and are independent.

B. Estimation Based on All Pilot Symbols

We now wish to make use of the entire sequence of pilot sym-
bols to obtain a channel estimate for user one at any time. We
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emphasize at this point that the pilot sequence is assumed to ex-
tend indefinitely in both directions (past and future). This will
allow us to exploit classical linear smoothing results, and pro-
vides a bound on the performance of any linear channel esti-
mator.

To begin, observe that we must handle the general situation
of estimating the channel during a symbol that does not neces-
sarily coincide with a pilot point. Define the shifted and sampled
channel process for user one

and note that . We wish to estimate by lin-
early smoothing the (pilot) observation process . The op-
timal linear smoother will not depend onbut will vary with .

To begin, we define, for the sampled channel process, the
autocorrelation function

and the power spectral density

The above expressions do not depend on, so we will write
and . We will also need to

deal with the correlation function

and corresponding spectral density function

Turning to the pilot observation process, we have

(6)

Now observe that

(7)

(8)

We wish to form the estimate

where is a row vector of length . The optimal filter is
most easily expressed in terms of its transfer function

We have the following theorem which follows fromResult 3in
the Appendix and from (7) and (8).

Theorem 1: The optimal (MMSE) linear smoother is

where

(9)

and is given in (4). The corresponding MMSE is

(10)

1) Structure of Optimal Linear Smoother:We can examine
the structure of the optimal linear smoother using the inversion
formula

which tells us that

where

The optimal estimate is thus

where and is the LMMSE
estimate of based on as given in (3), and is
the one-symbol SIR of (4).

As illustrated in Fig. 3 (and also in Fig. 1), the optimal linear
smoother first obtains the LMMSE estimate of the channel
in each pilot symbol based only on the received vector corre-
sponding to that symbol, and then filters the resultant scalar
random process to take advantage of correlations over time.
The key to the decomposition is that the independence between
the data symbols of the interfering users makes the interference
white over time. The only structure in the interference is within
each received symbol, and a symbol-by-symbol multiuser
receiver is enough to fully exploit this structure. It should be
noted that the situation is very different when we assume that
the pilot symbols of all users are known, or if the data symbols
of the interfering users are not independent over time.

2) Large System Performance:If we considerTheorem 1in
conjunction withResult 1, then we arrive at the following the-
orem:

Theorem 2: Under the random spreading model with
and held fixed, the MSE in the channel estimate



1320 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 8, AUGUST 2002

Fig. 3. Structure of optimal channel estimator.

at the output of the optimal linear smoother converges (almost
surely) to the nonrandom value

(11)

where is the limiting (one-symbol) SIR defined in (5).
Proof: Follows immediately from (10) andResult 1upon

observing that in (10) is a continuous function of.
3) Spectral Density of Sampled Channel Process:The per-

formance of the optimal linear smoother as given in (10) and
(11) depends on the spectral densities, and . It
is of interest to relate these to the power spectral density of the
original channel process .

Recall that , so that the autocorrelation
function of results from decimating or down sampling
the autocorrelation function of . The resultant power
spectral density is

(12)

Similarly, we have

(13)
These expressions can be substituted into (10) and (11) to make
explicit the dependence of the MSE on the spectral density of
the channel process , the rate of insertion of pilot symbols

, and the time shift .
We can simplify things greatly by making some assumptions

about and . In particular, suppose that

and that . These conditions imply that there is no
aliasing, so that

This allows us to write

The impact of varying on the MSE is clearly isolated in this
expression. Also observe that the MSE does not depend on,
which means that the channel estimate in the middle of a frame
is just as good as an estimate at a pilot symbol.

Note that the condition for no aliasing is ,
where . Thus, the faster the fading (the bigger

), the more frequently we must insert pilot symbols (the
smaller ).

C. Summary of Results

We now summarize the results presented in this section. To
obtain the LMMSE estimate of , from
observation of the entire sequence of pilot symbols , we
first form for all

Note that the MMSE estimate of from is
, where is given in (4).

Secondly, we pass the sequence through a single-
input, single-output (SISO) linear smoother to produce

The impulse response can be calculated from

where the frequency response of the smoother is

and and are defined in (12) and (13), respec-
tively.

The resultant MSE is is given by (10).
In a large system with random spreading,as given in (4)

converges to defined in (5), and all instances ofabove can
be replaced by . The MSE and the SISO linear smoother are
thus independent of the signature sequences in a large system.

D. Special Cases and Results

In this section, we evaluate the performance of the optimal
linear smoother for two channel power spectral densities.

Consider first the case when the channel is bandlimited and
has a flat spectrum up to the normalized Doppler frequency

.
(14)

Secondly, we will look at the Jakes’ model where the power
spectral density of the channel is given by

.
(15)

Fig. 4 shows the variation of the (normalized) MSE with frame
size for two values of the time shift. The normalized MSE is
defined as . For these plots, the channel power
spectral densities are as given in (14) and (15), with

and dB. The condition for no aliasing in this case
is .

Observe that for both channel spectra, the and
plots coincide up until . After this point, the curve
approaches (the MSE resulting when the estimation is
based on a single pilot symbol), while the curve heads
quickly toward a normalized MSE of 1 (which corresponds to a
useless channel estimate).
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Fig. 4. Variation of (normalized) MSE [4 =R (0)] with frame size (L) for
estimation at pilot points (p = 0) and in the middle of a frame (p = L=2).
Parameters are! = 0:02� and� = 12 dB.

Also observe that the performance of the channel estimator is
very similar for both channel spectral densities, especially when
there is no aliasing.

IV. DETECTION OFDATA SYMBOLS

Consider our original signal model defined in (1) and repeated
here for convenience

In this section, we consider the detection of , the data
symbol of user one in symbol period.

A. An Optimal Detector

Assume initially that is known perfectly and that,
as before, are independent, circularly
symmetric, complex Gaussian random variables with zero
mean and unit variance. With these assumptions, is a
circularly symmetric, complex Gaussian random vector when
conditioned on and

This leads to the following result:
Theorem 3: The ML detector for , conditioned on

, first forms the estimate

and then chooses the data symbol from the-ary PSK alphabet
with phase closest to .

The resultant symbol error probability is given by

(16)

where is the average SIR of (4).

Proof: The conditional density of is

where the constant of proportionality does not depend on .
The ML detector thus maximizes the real part of

which leads to the detector described above after application of
the Matrix Inversion Lemma.

To determine the symbol error probability, we note that

where

and is defined in (4). Conditioned on , is a
circularly symmetric, complex Gaussian random variable
with zero mean and variance . The symbol error
probability is thus exactly the symbol error rate for-ary PSK
modulation in Rayleigh fading with average SNR(remember
that ). The required result can be found in
[26]–[28].

The ML detector thus first forms the LMMSE estimate of
and passes this estimate to the minimum distance de-

tector. The key to optimality of the LMMSE receiver is that the
data symbols of interfering users are absorbed by the unknown
channels, and thus do not influence the likelihood function.

B. Proposed Detector

Suppose now that we drop the assumption that is
known at the receiver and instead assume that the receiver is
given the entire sequence of pilot symbols and received signals
at the pilot points.

Motivated by the above “optimal” detector and from practical
considerations, we propose the following detector for ,
conditioned on the pilot information. The detector first forms

where is the LMMSE estimate of given the pilot
information. The detector then chooses the data symbol from
the -ary PSK alphabet with phase closest to .

The pilot information is used to obtain the best possible linear
estimate of as given in Section III. Because the detector
does not try to estimate the instantaneous power of the inter-
fering users ( ), the front-end LMMSE
receiver is time invariant. Note that both and re-
quire the same front-end multiuser receiver and the complete
detector estimator can be implemented with the structure shown
in Fig. 1.
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C. Performance Analysis

Let us first examine the output of the front-end LMMSE re-
ceiver in Fig. 1. Denoting this output by , we have

where

This quantity should be seen as the (scaled) LMMSE estimate of
the product . Observe that is a circularly sym-
metric, complex Gaussian random variable with

and . This residual interference plus noise
process is also white, in the sense that for

. The finite dimensional distributions of are
not jointly Gaussian, however, and hence, the process is not
Gaussian.

Suppose for the moment that the residual interference plus
noise process is, in fact, Gaussian, it will then be an independent
and identically distributed sequence of circularly symmetric,
complex Gaussian random variables, each having mean zero and
variance . In this case, we are left with nothing other than a
standard, single-user -ary PSK system in a Rayleigh fading
channel. Assuming that with , we ob-
serve the following.

1) The LMMSE estimator of , given the pilot informa-
tion , is also the MMSE
or conditional-mean estimator, and is precisely the esti-
mator presented in Section III. The MSE, , is also as
given in Section III.

2) The optimal (ML) detector for based on and
the pilot information would select the symbol from the

-ary PSK constellation with phase closest to
. This is exactly the detector proposed ear-

lier.
3) The symbol error probability would be given by (16) with

replaced with the modified average SIR

(17)

Under the Gaussian assumption, the error probability is a
monotonically decreasing function of the average SIR,, given
in (17). Even when the residual interference plus noise process
is not Gaussian, we will assume thatis a useful performance
measure. In the following section, we will look at maximizing

over the rate of inserting pilot symbols.
We conjecture that, in a large system, the residual noise

plus interference process does indeed converge to a Gaussian
process. Note that [29] studies the convergence of the distribu-
tion of the residual interference at one point in time. We need to
establish the convergence of all finite dimensional distributions
to multivariate Gaussian distributions.

Fig. 5. Impact of frame size (L) on processing gain.

V. PILOT SYMBOL OPTIMIZATION

We are now in a position to consider the optimization of the
rate of inserting pilot symbols into the data stream of user one.
We will assume that the power spectral density of the channel
process is bandlimited to , and that
pilot symbols are inserted frequently enough to avoid aliasing
( ). Recall that under these conditions, the MSE
in the channel estimate does not depend on the position of the
data symbol in the frame.

The first question to consider is, what system parameters
should be held constant as the frame size,, is varied? It makes
sense to demand that the total spread bandwidth remains fixed,
so we will assume that the chip rate is constant. We would also
like to fix the rate that each user transmits data symbols and the
transmitted energy per data symbol.

As is varied, the symbol period and transmitted energy per
symbol will need to change (see Fig. 5). Let , and
be, respectively, the spreading gain, the transmitted energy per
symbol, and the normalized Doppler frequency with frame size

. Then , and
, and , , and all decrease with . Note that

the subscript corresponds to a reference system with no pilot
symbols. We will drop the subscript for our reference system,
and write , , and .

In this modeling framework, we are able to varywhile
keeping the data rate of each user fixed along with the overall
system bandwidth. As decreases, however, the effective
spreading gain decreases, and this lessens the ability of the
receiver to mitigate interference.

Under the above assumptions, the average SIR of (17) is a
function of defined as

where

and is given in (4) with replaced by , and where the
length of the signature sequences () is .

In the large system limit, where
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Fig. 6. Variation of average SIR () with frame size (L). Parameters are
f = 0:01; � = 0:7; andp=� = 20 dB.

Fig. 7. Variation of optimal frame size with normalized Doppler (f ). For
all plots,� = 0:7.

and . In a large system, we
can thus express the average SIR of the proposed receiver as a
function of the system loading and SNR of the reference system,
the power spectral density of the channel process, and the rate
of inserting pilot symbols.

To proceed further, we assume that has the flat power
spectral density given in (14) with replaced by . In this
case, the large system average SIR takes the simple form

Fig. 6 shows how varies with for some typical pa-
rameter values. The main feature of the curve is that perfor-
mance is quite sensitive to for values smaller than the op-
timum value, and relatively insensitive for larger values. Also
shown in Fig. 6 are equivalent simulation points for finite size
systems. These points are obtained by averaging 1000 realiza-
tions of the average SIR ( ) over the random signature se-
quences. As the spreading gain increases, the mean value of

is observed to approach the asymptotic value from above
with close agreement even for moderate size systems ( ).

Fig. 7 illustrates the variation in the optimal value ofas a
function of the speed of the fading ( ) and the SNR ( ).
As one would expect, the optimal value ofdecreases (more
pilot symbols) as the fading rate increases. We also see that the

Fig. 8. Loss in average SIR from perfect knowledge case versus normalized
Doppler (f ). For all plots,� = 0:7.

Fig. 9. Variation of optimal frame size with system loading (�). For all plots,
P=� = 20 dB.

Fig. 10. Loss in average SIR from perfect knowledge case versus system
loading (�). For all plots,P=� = 20 dB.

optimal frame size increases significantly (less pilot symbols)
as the SNR is increased.

In Fig. 8 we examine the loss in average SIR for the opti-
mized pilot scheme compared to the case when the channel of
user one is known perfectly. The loss in average SIR is defined
as the ratio of (the average SIR with no estimation error and
no pilot symbols) to . The loss was found to be quite in-
sensitive to SNR, so we show the results for one value only. The
performance loss is quite significant for normalized Doppler fre-
quencies beyond 0.01.
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In Figs. 9 and 10, some rather curious behavior is evident.
Fig. 9 maps the variation in optimal as a function of the
system loading () and the normalized Doppler frequency. For
all values of , the optimal frame size first increases and then
decreases as is increased, the turning point lying near .

Increasing increases the multiaccess interference, and we
might guess that this would have the same effect as increasing
the noise level or lowering the SNR. For this is clearly
not the case. A larger system loading calls for a lower rate of
insertion of pilot symbols. Of course, the key difference between
the noise and interference is that the interference has structure,
structure that our multiuser front end tries to exploit. An increase
in corresponds to an increase in effective processing gain and
an increased ability to combat interference. The turning point
on the plot occurs when the effective system loading .
It is at this value of system loading that the single-symbol SIR,

, is most sensitive to changes in system loading.

VI. CONCLUSION

We have considered a synchronous CDMA system where
each user’s signal propagates over a Rayleigh fading channel
before reaching the receiver. In order to aid the coherent de-
modulation of the data symbols, prearranged pilot symbols are
inserted into each user’s data stream.

We assumed a receiver structure as in Fig. 1, where the
front-end LMMSE receiver depends only on the signature
sequences and average SNR of the users and is thus time
invariant. The output of the LMMSE receiver is then treated as
a single-user Rayleigh fading channel. The pilot symbols are
used to obtain an estimate of the channel of the user of interest,
and this estimate is passed to the data detector which makes
decisions on the transmitted data symbols.

We derived an expression for the average SIR at the detector
which involves the important system parameters, including the
rate of inserting pilot symbols. The average SIR was then op-
timized over the pilot insertion rate for a range of system pa-
rameters. It was observed that more pilot symbols should be in-
serted as the SNR decreases, the fading rate increases, and as
the system loading decreases (for loadings less than one).

Extension of this work to handle users with unequal average
powers and asynchronous users is straightforward. A more chal-
lenging problem is proving the conjecture mentioned at the end
of Section IV regarding the convergence of the residual noise
plus interference process to a Gaussian process. We are cur-
rently tackling this problem.

APPENDIX

OPTIMAL LINEAR SMOOTHING

In this appendix we give an important general result on op-
timal linear smoothing.

Let and be discrete time, zero mean, jointly
wide-sense stationary, complex vector random processes. With

denoting the Hermitian transpose of a matrix, define the
correlation matrices

and the corresponding spectral density matrices

We wish to estimate based on the entire observation
sequence as

The sequence of matrices is the
impulse response of a multi-input, multi-output linear time-in-
variant (LTI) system. The frequency response of the system is

We wish to select the LTI filter so as to minimize the trace of
the error covariance matrix

We have the following result [30]–[32]:

A. Result 3

The LMMSE smoothing filter is the time-invariant filter

and the corresponding error covariance matrix is
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