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Hidden Markov Model State Estimation
with Randomly Delayed Observations

Jamie S. Evans and Vikram Krishnamurtt8gnior Member, IEEE

Abstract—This paper considers state estimation for a discrete- viable option. The flexible and cost-effective alternative is
time hidden Markov model (HMM) when the observations are to use a shared resource communications network to service
delayed by a random time. The delay process is itself modeled the communication needs of all the system components. In

as a finite state Markov chain that allows an augmented state thi that tionl ket-switched
HMM to model the overall system. State estimation algorithms IS paper, we assume that a connectioniess, packet-swiiche

for the resulting HMM are then presented, and their performance  network [3] is employed.
is studied in simulations. The motivation for the model stems from Each packet that is sent from the sensor will arrive at

the situation when distributed sensors transmit measurements the processor after a random delay that is dependent on
over a connectionless packet switched communications network. the current level of congestion in the network and the path
that is taken. This means that packets may arrive out of

l. INTRODUCTION order at the processor. Normally, packets would contain a

N THIS PAPER, we consider the state estimation (filteringge¢quence number that would allow them to be reordered
I problem for a noisily observed finite state Markov chaiat the destination; however, we consider the situation when
when the observations are delayed by a random time. If tRe such information is sent with the packets. We assume
observations were always received in order, the optimal stéf@t each packet contains only one measurement that avoids
estimates would be obtained from the standard hidden MarkaQy extra delay in communicating the observations to the
model (HMM) state filter [1], [2]. However, we allow for the processing unit. We also assume that each measurement is
random delays to lead to a possible reordering of the mg&ceived without error and that the effect of transmitting a
surements. With the delays modeled as a finite-state Markivite-precision approximation to the real-valued observations
chain, we show how the problem can be reformulated agsanegligible.
standard HMM filtering problem and give a recursive update Hidden Markov Models:An HMM consists of asignal
equation for calculating the conditional state probabilities. Weodeled as a finite state Markov chain and abservation
also show that a finite-dimensional recursive filter results whemodel that relates an observed process to the underlying
the delays are modeled as continuous random variables wifarkov chain. Typically, the observation model consists of
density indexed by a finite-state Markov chain. We begin lgbserving the state of the Markov chain perturbed by additive
detailing the motivation for this paper and introducing thwhite noise. Such models have become increasingly popular
HMM paradigm. over the last decade: application areas including speech pro-

Motivation (Communication in Distributed System®ne cessing, target tracking, digital communications, biomedical
motivation for this problem stems from the increasing movengineering, and finance (see [1], [2], and references therein).
ment toward distributed sensing and processing systems. W& major reason for this is the enormous flexibility and
envisage a system with a number of remote sensors wigknerality of the model and the fact that efficient state and
limited processing capability that communicate measuremeperameter estimation algorithms exist and are well under-
back to processing units, which carry out the estimatigtood. In particular, the finite-state property means that finite-
(and control) algorithms. Ideally, dedicated communicatiodimensional state filters result even when the model is non-
resources (bandwidth) would be made available between ediokar. This makes the HMM formulation very attractive for
sensor/processor pair; however, due to the increasingly lagggproximating continuous state space nonlinear models for
number of sensors in modern systems, this may not bewich finite-dimensional filters rarely exist.
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communications network and thereby suffer a random delay.

In [4], the authors treat an extension of the standard linear Conncctionless

guadratic Gaussian (LQG) control problem, which includes s(k)y(k) Pkl\‘f‘k" 7y Al
the randomly delayed measurement and control signals. The o

delay is modeled as a continuous random variable with density Delay d(k)

mdexeq by a .flmte_State Markov chain (we employ a .Slmllq{i . 1. State estimation with communication over a packet switched net-
model in Section V). They assume that the state of this cha,;,grk_

is known to the controller and that the delays are such that the

order of measurement and control signals is not corrupted.
We note that our basic approach for dealing with dela}/

models that do not satisfy these assumptions can be applie¥§§t0r 9 = [91,92;- .-, ga]. ,

the linear-Gaussian case as well as for (finite-state) HMM’s, SENsor Observation ModelThe states are observed in

In the linear-Gaussian case, however, the resultant filteriigiS€ at @ sensor leading to the sensor observation process

algorithms would have a computational cost that grows expgl~) defined by

Pentlally_m the data _Iength. Pr_act|cal (suboptimal) algorithms (k) = goy +wik), (k= 1) (1)

or the linear-Gaussian case is an area for future work. We

are also currently looking at the related partially observegherew(k) is an independent and identically distributed (iid)

stochastic control problem for both the HMM and linearsequence, each random variable having dengity. The

Gaussian systems. sequenceu(k) is assumed independentgf:). We will denote
Summary and Contributionste are interested in explor-y (k) = {3(1),...,y(k)}.

ing the extent to which the uncertainty in the arrival order of Delay Model: As already discussed in Section I, the sensor

the observations can be overcome by taking the statisticsg¥servations are sent over a connectionless, packet-switched

the various stochastic processes into account. After stating 8t#nmunication network to a processing unit that will carry

problem more precisely in Section Il, we show in Section llut the desired estimation algorithms. The processor receives

how it can be reformulated as a standard HMM filteringbservationy(k) after some random delaj(k).

problem. Once this formulation is in place, we are able We model the delayi(k) as anN state, homogeneous

to derive the recursive filter equations for the conditionallarkov chain with state spacgl,2,...,N} and transition
state probabilities in Section IV. State estimates such as {h@bability matrix B = [bij] =, where

minimum mean squared error (MMSE) or the maximam

posteriori (MAP) estimates can be directly calculated from bi; = Pr(d(k +1) =j | d(k) =4), +4,j€{1,2,...,N}

the filtered state probabilities. In Section V, we show how the, N o

results of Section IV can be extended to more complicaté¥th >j=1 bi; = 1. We assume thati(k) is independent
delay models. In particular, we examine the situation whefé the chains(k) and the sensor observation noise process
the delay is modeled as a mixture distribution with dependentif®)- The levels of the chain are given by the vector=
governed by a finite-state Markov chain. In Section VI, we ex1, 2, -+, in], meaning that the delay suffered lpyk) is
amine the use of state aggregation to reduce the computatidialvhen d(k) = 4. o

load of the optimal filters. The resultant filters are suboptimal Rémark: At first, it may seem unrealistic to model the
but are shown to perform close to optimal in the simulatiorfi€1ay as a finite state process. However, we note that many

of Section VII. Finally, we discuss some interesting extensio§Ntinuous state processes can be approximated by a finite-
and directions for future research in Section VIII. state process. Further, the Markov model allows a fairly

general dependency structure. Given that the proposed delay
model leads to a very nice reformulation of the problem, we
[I. PROBLEM FORMULATION believe the assumption is well justified. In Section V, we

In this section, we introduce the basic stochastic model fHFat. a mare involved dglay mpdel N .Wh'.Ch the delay is a
our problem. This includes the model for the Markov chai qntmuous random var!able'vynh _<j|str|bpt|on mdexgd by a
whose state we wish to estimate, the sensor observation mo g|t,e sta.tg Markov chain. I.:!mte-dlmensmnall recursions for
the delay model, and the model for the observations recei conditional state probabilities are also derived in this case;
at the processing unit. In this section, we model the delay Iagwevgr, ;h?_'&r'\(;lblem no longer has a clean reformulation as
a finite-state Markov chain; however, the important extensi standar )

to a continuous delay distribution indexed by a Markov chain Processor Obseryatlon Modelve assume the underlying
% e between sending measurementaisinits and make the
0

th Ej\il a;; = 1, and the state levels are given by the

is treated in Section V. An overview of the various process e b T
involved is given in Fig. 1. llowing restriction on the delay values:
Signal Model: The signal of interest_ is mpdeled as \hi — hy| £1A, (1>0), i,je{l,2,....N}. (2
an M-state, homogeneous Markov chaigk) with state
space{1,2,...,M}. The transition probability matrix is Remark: This is a minor restriction that results in a sim-
A = [aijlmxnm, Where plified reformulation of the problem. It guarantees that two
observations do not arrive simultaneously at the processor and
a;; =P(s(k+1)=j|s(k)=1), ije€{l,2,...,M} thus avoids having to define a random ordering procedure.
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The observations may arrive at the processor in a different TABLE |
order than they were sent. We assume that no order information DETERMINING THE ARRIVAL ORDER OF THE PACKETS
is sent with the measurements. The measurements are read  packet k+ H ki -1 -
by the processor in the order they arrive, and no further relative departure time 204 (2H —1)A 0
arrival time information is observed by the processor. Let delay d(k+ H) dik+1 - 1) o d(k—H)
the kth measurement to arrive at the processor Aj&), relative arrival time | d(k + 1) +20A d(k+ H - 1)+ (Q2H - 1A - d(k—H)

and denote the firsk observations received by/(k) =
{z(1),2(2),...,2(k)}. Sirmilarl
Aim: The objective is to perform state estimation (filtering) ='M"arny
for the Markov chains(k) ba§§d on the opservation_s receive_d D(k) = [d(k + H),...,d(k — H)]T (k>0) )
at the processor. More specifically, we wish to obtain recursive
expressions for the conditional state probabilities which is a N2H+1) state Markov chain with state space
{1,2,..., N}2H+1) and transition probabilities

P(D(k+ 1) = (jla' . aj?H-I—l) | D(k) = (il, aiQH—l—l))
biyj, - 6(j2 —i1) -+ - 6(Jarr+1 — f2m) (8)

we define

P(s(k) =i | Z(k)), ie{l,...,M}

from which the maximuma posteriori (MAP) or minimum _
mean squared error (MMSE) state estimates can be obtained. —
The problem is made interesting by the fact that the order @y j, ... jyyi1,41,... 42541 € {1,2,...,N}. The initial
observations may be altered as a result of transmission o¥ghditions are given by
the network. While no order information is explicitly available,
information is present in the measurements received and inthe  P(D(0) = (41, ..., %2m41)) = mo(é1, ... d2m+1)  (9)
assumed statistics of the Markov chains. In the next sectign,

€ {1,2,..., N}EH+D),

we reformulate the problem as a standard HMM and then sh&% (i1 -y iop4) € {12, . .
how the optimal estimation algorithms result. Remark: While we find it convenient to work with the two

Markov chains defined in (4) and (7), the two chains could
readily be combined into a single chain on the state space
[ll. REFORMULATION AS AN HMM {1,.. "M}(QH-H) x {1,.. '7N}(2H+1)' Transition probabili-
In this section, we reformulate the model as a standatids follow immediately upon observing the independence of
HMM problem on an enlarged state space. The trick is tbhe chains.
form a new finite-state Markov chain by grouping a number
of original states together. The observations at the procesgorProcessor Observation Model

can then be expressed as a function of the new Markov chaing, .o +he maximum possible position change for any mea-
plus a white noise process resulting in the standard HMQ/I

formulation urement is equal té/ places, thekth measurement to arrive

: at the processofz(k)) corresponds to a sensor measurement
from the set{y(k + H),...,y(k — H)}. Further, z(k) can
be mapped to the appropriate measurement given the current
To begin, we let augmented delay stat®(%). Thus, we have

J @) 2(k) = F(DE)[y(k+ H),...,y(k — H)]"  (10)

where f(D(k)) = el when z(k) corresponds tg/(k + H +
which corresponds to the greatest possible change in the 4), ande; is the unit column vector iRH+1),

position of a measurement as a result of transmission overro determine the relative arrival order of the measurements

A. Enlarged State Space Markov Chains

h: — h:
H = d : J
‘?}XH A

the ngtwork. y(k + H),...,y(k),...,y(k — H) given the delay values
Define the new process d(k + H),...,d(k),...,d(k — H), we proceed as follows
(see Table I).

S(k)=[s(k+H),...,s(k—H)]" (k>0). 4 ) L .
(k) = [s( ) s( k=0 @ 1) Determine the arrival times referenced to the tige —

Then,S(k) is anM (?H+1) state Markov chain with state space H) was sent
1,2,..., M}CH+D, iti
{1,2,..., M} The transition probabilities of (k) are d(k+ H)+2HA, ..., d(k — H).

PS(k+1)=(1,.--,4 S(k) = (1,...,1
(St+1) ,(Jl’, ’J2H+,l)| ( ), (i, b241)) 2) The relative order of arrival is obtained by ordering these
= tiyjy 002 — i) 6(zr41 — t2n) (5) arrival times.
FOF Juy vy jotians ity o sismas € {1,2,..., M}, wheres(-) 3) The measurement corresponding:{&) is the(H +1)th

denotes the Kronecker delta function. The initial conditions  Sl€ment in th_e reordered sequence.
are given by We can thus deflné : {1, 2,... ,N}(2H+l) — {Cl, €2y40 0,
eapr+1}, Where fori € {1,2,...,N}andj € {1,2,...,2H+
P(S(O)I(il,...,iQH_H))Iao(il,...,i2H+1) (6) 1}

for (il,...,i2H+1) € {1,2,...,M}(2H+1). f((il,ig,...,i2H+1)) = 6?
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if First, define the joint conditional density
R , gy, .. f2m1, 01,5 J2H41)
2 senllhy —ha) = (= Da) =0 = P(S(K) = (ir, . i2m11)
D(k) = (j1,...,J2m1) | Z(K)).
where
We have from Bayes’ rule
+1, >0 . . . .
sign(z) =40, z=0 P(S(k) = (i1, yizmt1), D(k) = (Jus - Jzr4a) | Z(K))
-1, x<0. = COP(x(k) | S(k) = (i1, ... i2m41)

D(k) = (- -+ J2u41), 4(k — 1))
X P(S(k‘) = (il, e ,i2H+1)
T . .
2(k) = f(DE)) [Gshsm)s - - > Gsh—iD)] D(k) = (j1,. .. jang1) | Z(k — 1))
+ f(DED [k + H),... w(k - H)] where C' is a normalization constant. However, sinSék)
and D(k) are Markov chains

P(S(R) = (i1, ... izmen)
D(k) = (ji;...,Jomy1) | Z(k —1))
where :Z Z Z Z

(S(E), D(R)) = F(DIEN Gttty -+ oty m(laml:Z.I;E;Qn_l ml)n.z.H.+(5l(i2H+l — ma))
D(k)) = f(D(k)) - (11)

T X (bn1j1 ) 6(72 - 711) Tt 6(‘72H—|—1 - n?H))
W(E) = [w(k + H), ..., w(k — H)| PUS(—1) = (. miarat)
Note thatWW (k) is a sequence of correlated random vectors.  D(k —1) = (n1,...,napy1) | Z(k - 1)).
Generally, the fact that the observation noise is colored wo

) . ) _L&mbining the above results, we arrive at the following
lead to an exponential growth in the computational requ'rﬁieorem (also see [1] and [2])

ments of the estimation algorithms. However, in this case, ] . i
only one component of the vector is selected at each time, anJheorem 1: The recursion for the filtered state probabilities

each selected random variable is independent of the othéysd/Ven by

From [1] and [10], we thus have

which can be expressed in standard HMM form

z(k) = L(S(k), D(k)) + X(S(k), D(k))W (k)

We can thus rewrite the processor observation model as (i1, e B2 15 Sy e vy J2H A1)
2(k) = D(S(k), D(k)) + v(k) (12) = Cg(z(k) = I'((ir; - - -y i2m41), (U1, - -+ J2m41))
| ) | | DISED D IEEDD
wherew(k) is a sequence of iid random variables each having ma mamg1 M RoH 4

density ¢(-) obtained from a reordering of the original(k)
process. Likew(k), the process:(k) is independent of the e Yy _
chains S(k) and D(k). X (b 8j2 =)+ 8(jarrer —n2m))

Summary: In summary, the problem that was formulated in X 01 (M- o, M2 1, M1 -+ - N2H41) (13)
Section Il has been reformulated in terms of the augmentgg . >~ | and TR P TR0 U N S
Markov chainsS(k) and D(k) defined in (4)—(9) and the a,... M}_(QH-H) x {1,..., N}@H+D WhereF() is defined
processor observation model of (12). The model now appe 7117 The initial con7ditio7ns for the’recursion are given b
as a standard hidden Markov model with transition probabﬂk—‘s( ) g y
ities given by (5) and (8) and symbol probabilities given by (i1, 82041, 01, - - J2H+1)

(@myiy - 8(i2 —my) -+ - 8(izgg1 — man))

P(Z(k) | S(k)vD(k)) == O'()(il, N ,i2H+1)7r0(j1, e 7j2H+1)
for ii,...,iopp1 € {l,...,M} and ji,....j2m41 €
IV. STATE ESTIMATION ALGORITHM {1,...,N}.
Here, we consider the problem of calculating the condi- The marginal densities are then obtained from
tional state probabilities foS(k) and D(k) given Z(k) = o .
. . . O’k('L1,'LQ,...,'LQH+1)
{#(1),2(2),....2(k)}. That is, we want to obtain recursive . . . .
expressions for = > anlin, e bamgas gt d2mg)
J1 J2H 1
o(iv, - i2m41) = P(S(k) = (is, .. i2m41) | Z(K)) Tk (J1,J2s -+ s J2H41)
and :ZZ (81,0241, J10 - > J2H41)
21 To2H+41

Tk(1s -y Joryr) = P(DK) = (41, .- ., Jery1) | Z(k)). and similarly, we can obtain the final filtered state probabilities
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for the original Markov chains as Py (r)
P(s(k) =ty | Z(F))

= Z Z Z Z T L17L27...7i2H+1) (14)

TH ZH+2 12H+1

P(d(k) =JH+1 | Z( )) 1 (light) 2 {medium) 3 (heavy)
- Z Z Z Z m(dn g, J2m4). (19) Fig. 2. Example densities for mixture delay model.

JH JH+2 J2H1

Computatlon.A naive implementation of (13) would h hat(k) | ditionally ind d ¢
require O(M*H+2N4H+2) computations at each time Further, assume that(%) is conditionally independent o

update. However, because of the special structure of tA Other Fr_oéess?s 9'\;191(/?)- o <hown in Fia. 2 (a simil
transition probabilities (most are zero), we only require Example: Consider the situation shown in Fig. 2 (a similar

O(M?H+2 N2H+2) computations at each time. This is cIeaPIeIay model is introduced in [4]). We have a density corre-
on rewriting the recursion (13) as spor_ldlng to each ofV = 3 levels of network congestion: 1
for light load, 2 for medium load, and 3 for heavy load.

ar(it, s i2m41, 10 -+ J2r41) We will assume that for each € {1,...,N}, the delay
= COp(z(k) =T ((i1,. . i2m41), (J1s- -+ J2H+1))) density ¢,(7) is zero outside the intervalL;,U;], where
0 < L; < U; < . Define the integer
x Z Z @iziy Vg1 - U ]?
M2H+1 N2H+1 H _ H}EL}X\‘ v 4y J (17)
X ock_l(ml,... M2 41,11y, n2H+1). (16) Y]

In Section VI, we give a suboptimal algorithm based oWhich is equivalent to (3) for the finite-state delay model.

aggregation that significantly reduces the computational load.We continue to use the augmented chaiff&) and D(k)
Other Estimation ProblemsOnce the HMM formulation defined in (4) and (7), respectively, and define the new process

i§ in place, it is _stra|ghtforward to §olve numerous gst|ma- Tk = [r(k+ H),...,7(k — H)]F.

tion problems using standard techniques, e.g., fixed interval

smoothing using the forward—backward algorithm, MAP séhile it is no longer possible to write the observatigit) as

quence estimation using the Viterbi algorithm, and paramegfunction of D(k) and S(k) perturbed by white noise as in

estimation using the Baum—Welch re-estimation equations. &), we will show that it is still possible to derive a finite-

[1] and the references therein for further details. dimensional recursion of the conditional state probabilities.

We begin by again defining

V. EXTENSION TO MIXTURE DELAY MODEL B B p p
a1, .o t2H41, J1y o0 J2H41)

In previous sections, we have modeled the delay as a =P(S(k) = (i1, ... i2mg+1)
finite-state Markov chain. This allowed the problem to be D) = (j . V| Z(k)
reformulated as a standard HMM state estimation problem. Jlsee e J2H 41 :
In this section, we extend the ideas of the earlier sectionsging Bayes’ rule, we then have
the situation where the delays are continuous random variables

indexed by a finite state Markov chain. (i, ooy G2H 41 1 J2H 1)
Let the delay suffered by théth packet or observation = Cp(z(k) | S(k) = (i1, d2m+1)
bg 7(k). We mode_lf(k) as a continuous random yariable D(k) = (ji, .-, Joms1), Z(k = 1))
with c_iensny b_elonglng to_the sét/;l_, ...,¥n}. The particular x P(S(k) = (Ll’ - iome1)
density applying at timé is determined by the state of thé-
state Markov chaini(k) with state spacé1, ..., N} through D(k) = (j1,- -, o) | Z(k = 1))
where C is a normalizing constant. Using a model update
P(r(k) € Al d(k / di(r)dr i€{l,...,N}. equation, the second term can be written in the form
The density ofr(k) [not conditioned ond(k)] is thus the PIEEE DD T
mixture denSity my MoH+1 N1 N2 H+1
(@myiy - 6(iz —my) -+ 8(izm41 — man))
ZP = 1)¢i(2)- X (bnyjy - 6(j2 —n1) -+ - 6(jam41 — n2m))
_ X ag—1(M1, .o s M2 41,01, -0, N2H41)
Let d(k) have transition probability matrix3 = [b;;]nxn, _ .
where and it remains for us to express
by =Pr(d(k+1)=j|dk)=1), i,je{,2,...,N} p(z(k) | S(k) = (ir, .. - t2m41)

7 - D(E) = (j1,-. -, 7 Z(k—1
with % | b; = 1 and assume thaf(k) is independent of (k) = 1o J2men) Z(k = 1))
the chains(k) and the sensor observation noise proee§s). in terms ofz(k) only (so that the resultant filter is recursive).
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We first write should be redefined over this region; however, we simply note
) ) that this can be done and that the change would not affect our
p(a(k) [ S(k) = (i1, ... i2m41) development.
D(k) = (j1, -, Jert1), Z(k — 1)) In summary, we have the following theorem.

_ o p Theorem 2: The recursion for the conditional state proba-
- /R<2H+1>p(z(k)’T(k) | S5(k) = (in, - i2141)  jities is given by

D)= (41, Jert1), Z(k — 1)) dT(K) NIRRT SIVIS TR A

but using the independence properties of the processes, this — Chp(z(k) =T ((i1,. .. i2m41), (1, -+ Jomrs1)))

reduces to XZ Z Z Z

/ p(z(k) | T(k),S5(k) = (i1,... i2m+1)) s
REHID

Uiy " O(lp —mq) - 6(4 — Mmap)
X (LR [ DIR) = (s o)) AT(R) x ((bmjl : 6(7122 - jll) - 5(7;11 - jQIQII;))

= /R(ZHH)P(Z(’f) | T(k), S(k) = (i1, ... ,%20+1)) X Qo1 (M5 T2 1, s s P2 41) (19)

x Z/}jl(”'(k—i_‘f{))"'z/}jzwrl(’r(k_‘E[))dir(k)' for k > 1 and (ila---7i2H+17j17---7j2H+1) €
Now, suppose thal’(k) = [r(k + H),...,7(k — H)]* = _{1’ e M}(2H+l)_x L. ’N}FQHJ_FI)’ wherel'(-) is defined
(t1,...,72141). The problem of determining(z(k) | T(k) = " (1_8_), and C is a nqrmahzaﬂ_on constant. The initial
(71 Tor41), S(B) = (i1, ... iag41)) is exactly the same conditions for the recursion are given by
problem as determining

ao(iy, .., 82041, 01, - JoH41)
p(z(k) | D(k) = (j1, - jorr1), S(k) = (i1, . - i2pr41)) = 0oo(i1,- .- i2r+1)m0(J1, - - J2H+1)
when the delay was modeled as a finite-state Markov chain. @p ... visgyr € {1,...,M} and ji,...,jem41 €
the basis of the relative departure time and the delay valuegg ...,N}.

we can determine which measurement is received{@sand  Marginal distributions follow by summing over the appro-
then use the corresponding componentSgk) to determine priate indices as in Section IV.

the likelihood of observing:(k). Computation: We note that the only difference between
Mathematically, we define the function the filters of Theorem 1 (finite state delay) and Theorem 2
o RRHFD _, {ere . ) (mixture delay) is in the definition of the observation weighting
: 152 B2H AL terms (11) and (18), respectively. Since these functions can be
where calculated off-line, the (on-line) computational requirements
of both filters are identical. We also note that the lower
f((m1, - T2m41)) IGJT computational complexity algorithm of Section VI applies
i directly to the mixture delay model simply by using the
' modified weighting term of (18).
201 Before proceeding, we note that the results for the finite-
Z sign((7; —m) — (G —DA) =0. state delay model can be obtained from the results for the
=1 mixture delay model by setting the densities to Dirac delta
We then have functions. In particular, we can set
p(z(k) | T(k),S(k) = (¢1,...,t2m41)) P1(r)=68(r — he),...,¥N(T) = 6(7 — hy)
= ¢(z(k) = D(S(k), D(K))) to obtain (11) from (18) and (13) from (19).
where
T (S(k), D(k)) VI. REDUCED COMPLEXITY ALGORITHM VIA AGGREGATION
T A clear problem with the optimal filtering algorithms of
- /R(ZH+1> FAEDgotetrys - 9oe—mn)] Theorems 1 and 2 is the computational requirement for sys-

tems with more than a few states. We have seen in the
X (T(k+ H)) -ty (7(k — H))dT'(k)  (18) comments after these theorems that the algorithms require a
and we remember thatis the density of the observation noisetotal of O(M2#+2N2H+2) computations at each time. Thus,
Remark: For the finite-state delay model, (2) was requiredithn H fixed (recall thatH measures the maximum delay
to ensure that the functioii is a well-defined mapping. In spread), the computational load grows polynomially i
the continuous state case, no such condition can be givand V. With M and N fixed, the computational load grows
however, we note that the probability of two or more packeexponentially inH. Thus, we see that the real difficulty occurs
arriving simultaneously is zero so that the set on whjcts when H becomes large—growth i/ and N is not nearly
a not well defined has probability zero. Strictly speakiifig, as big a problem.
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Even for systems with a large augmented state space, all is TABLE I )
not lost. Importantly, the optimal filtering algorithms provide ENUMERATION OF STATES OF S(k) AND 5(k)
a framework for developing efficient implementations of the s(k+1) s(k) stk—1){|Sk) | S (0=1)| S, (6=0)
optimal filters or practical suboptimal algorithms based on the ) 1 ) . L )
optimal filter structure. Below, we discuss one technique for
reducing the computational load of the optimal algorithm by 1 L 2 2
aggregating the HMM to a lower dimension HMM. 1 2 1 3 2

Aggregating the HMM [see (7), (9), and (12)] requires ag- 1 9 9 4
gregation of the Markov chain and output symbol probabilities. ) | . p 3 .
We consider the these two steps in the following subsections.

2 1 2 6

A. State Aggregation of Markov Chain 2 2 1 7 4

For convenience, denote the transition matrices of the 2 2 2 8

Markov chainsS(k) and D(k) as A° and AP, respectively.
These are stochastic matrices of dimensid? +1 x p72H+1 _ - .
and N2H+1 x N2H+L respectively [see (4) and (7)]. Using Result 3, the transition probabilities of the aggregated
We will first show that bothS(k) and D(k) enjoy the chain5(k) are

property of being exactly aggregatable Markov chains. This P(S(k+ 1) = (4 . (k) = (3
means that these Markov chains can be exactly aggregated to (Sth+1) ‘(Jl’ ‘ "]0+1)‘| ( )‘ (i,
lower dimensional Markov chains. This result follows because = % * 802 = 11) - 8(Jo+1 —de).

of the way thatS(k) and D(k) were constructed from the

original Markov chainss(k) and d(k). a : _ _ ;
. S ggregation process whel = 2 and H = 1. Using the
We adopt the following definition from [5, Def. 6.3.1, P-state enumerations given in Table II, we have
124]: “A Markov chain is exactly aggregatable (in [5] the ’

o iegn))

The following example illustrates our notation and the

term ‘lumpable’ is used instead of strictly aggregatable) with a; 0 0 0 a2 O 0 O
respect to some partition of the state space, if for ewery a; 0 0 0 a2 O 0 O
priori state probability vectorr, the aggregated process is a 0 a1 0 0 O a2 0 O
Markov chain, and the transition probabilities do not depend ;s _ 0 ax 0 0 0 a2 0O O
on the choice ofr.” 0 0 a3 0 0 0 a2 O

The following theorem is proved in [5, Th. 6.3.2, p. 124]: 0 0 a O 0 0 ax O
Let X (k) denote aM state Markov chain with transition 0 0 0 ax 0 0 0 a2
probability matrix A~ . Let # < M denote a positive integer. 0 0 0 a 0 0 0 a2

Result 3: A necessary and sufficient condition fd¥f (k)
to be exactly aggregatable with respect to a partition=
(I1,...,1s) of the state space is that for every pair of skts
andl;, P(X(k+1) € I; | X(k) =1) has the same value for

Now, with reference to Table Il, we see that choosthg 1
meansS(k) = [s(k + 1), s(k)]* and leads to the aggregated
transition probability matrix

every statd in I;,i=1,...,6 foreveryj =1,...,6. These a;r 0 a2 O
common values form the transition matrix of the aggregated a;r 0 a2 O
chain. 0 asy 0 a2

Based on the above result, it is straightforward to verify that 0 axy 0 a9

A® and AP defined in (4) and (7) are exactly aggregatable. For_ _ _
example, consider the Markov chafi(k) [which is exactly With ¢ = 0, we haveS, = s(k +1) and corresponding
the same procedure can be applieditk) with M replaced 299regated transition probability matrix

by N]. _ _ air Q12
The Markov chairs (k) can be exactly aggregated in several .

possible ways. Lef denote an integer such tha 6 < 2H.

Then, for each such, we can aggregaté(k) into the M+t g Symbol Probability Aggregation

state Markov chainSy, where _ _ -
* The aim here is to aggregate the symbol probabilities

S(k) =[s(k+H),...,s(k+H—-6)]" 0<6<2H. P(z(k) | S(k),D(k)) of the HMM, i.e., computeP(z(k) |

S(k), D(k)).
Each aggregated stat§(k) = (i1,...,46+1) contains  For notational convenience, let/ = M°*! denote the
M?H~¢ states ofS(k), namely number of states of the aggregated chéiit). Similarly, let
N = Nf*! denote the number of states of the aggregated
(61,041,904, st2041) chain D(k). In addition, letl;,..., Iy (resp.Ji,...,Jx)

denote the partition of the state space %f [resp. D(k)],
where each indexisi2, is13, etc., takes on values inwhich results in theM (resp.N) state aggregated process
{1,...,M}. S(k) [resp. D(k)]. We will use the indicesn € {1,...,M}
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andn € {1,...,N} to denote the states ¢f(k) and D(k). C. Reduced-Complexity Filters and Smoothers
H 2H—6
Note that each subsgf, consists ofd/ states ofS(k). Using the aggregation procedure outlined in Sections VI-A
With m = ('Ll, . 'Lg+1) andTLi: (jl, - ,j9+1), define the and B, theM2H+1 N2H+1 gtate HMM can be agg[egqted into

aggregated symbol probabilitigsy » as a M N state HMM, which we will denote ab = (A%, AP ).
G (2(k)) = P(2(k) | S(k) = m, D(k) = 7). Reduced-Complexity FiltersThe filtered density for the
statesS (k) and D(k) of this aggregated HMM is defined as
Finally, letm = (il,...,i2H+1) andn = (jl,...,jQH_Fl) A (. i) = Ps(S(k) = m. D(E) =7 | Z(k
denote the states of (k) and D(k), respectively. ax(m, n) A(,( ) ﬂ?’ ( )' n | Z(k)
We assume that(k) andd(k) are irreducible Markov chains = ?X(S(k) = (115 lo1)
so thatS(k) and D(k) are also irreducible Markov chains. D(k) = (1, - Jey1) | Z(K)).

Thus, there are unique steady-state probability distributiofpe subscriph emphasizes that the filtered density is with
74 and 7" [which are known as the Perron Frobenius (PRbspect to the aggregated model.

eigenvectors oA® and A”, respectively] satisfying ar(7m, ) is computed similarly to Theorem 1 as
(ANT7S = 7%, x>0, ZWZS =1 a+1(P, 9)
‘ =0 > an(m,m) A% (m, A (A, @)¢p,q(2(k + 1))
whereC is a normalization constant. Note that we are implic-
Lemma 4: The (approximate) aggregated symbol probabiltly making the approximation

(APYT 7D = 7D 7D 5 0, ZWZD:L

ities are computed as P(z(k+1) | S(k+1)=p, Dk +1) = ¢ Z(k))
Fon(o(k)) = D omel, 2oncl, o P d(z(k) — ['(m,n)) = ]_D(z(k +1)|Sk+1) =p,Dk+1)=7¢q)
e 2o ime T 2anels TmTH ' = 9palz(k +1))

(20) which is the reason the above expression is not exact.
Finally, the filtered state probabilities for the original

Proof. Markov chainss(k + H — 6) and d(k + H — 6) can be
P(z(k) | S(k) = I, D(k) = Jz) computed as
= P(z(k) | S(k) € In,, D(k) € I;) Pi(s(k+H=0)=ipp | Z(k))=>_--->_ > an(m,n)
_ P(x(k), S(k) € In, D(k) € I;) ie 7
= P(S(k) € I, D(k) € I,). Pi(d(k+H=0) = joya | Z(k)=>_> - > ax(m,n).

The numerator is equal to ) ] ) )
The computational complexity of this reduced-complexity

> > P(S(k) =m)P(D(k) =n) filter is O(M?2N?) or O(M?*+2N?%+2) at each time instant.
mely nel, Reduced-Complexity Smootherst order to compute
x P(z(k) | S(k) = m,D(k) =n) Ps(s(k) | Z(k)) and P5(d(k) | Z(k)), it is necessary to
) use a fixed-lag smoother as follows.
and the denominator equals For a fixed lag (whereG is a positive integer), define the
Z Z P(S(k) = m)P(D(k) = n). fixed-lag smoothed density of the aggregated HMMs
mCly nCly Yertc(m,n) = Ps(S(k) = m, D(k) =n | Z(k + G))
The last expression above converges with probability 1 to (2@here Yurt+c is easily computed in terms of the filtered
sinceS(k) and D(k) are assumed irreducible. O density az as

We note that (20) is exact only when the distributions of
S(k) and D(k) have converged to their stationary distribu-
tions. The aggregated symbol probabilities could be calculated
exactly using model update equations f8(k) and D(k) Here
(instead of the limiting distribution); however, this would ~ o
require O(M?2H+2 N2H=2) computations at each step, thus Prigrc(m, i) = Px(z(k + ?)’ 2(k + G__ 1,
eliminating any possible computational savings. 2(k+1)| S(k) =m,D(k) =n)

The aggregated symbol probabilities(-) of (20) are
weighted sums of the unaggregated symbol probabilities )
The weighting coefficients are the components of the PF By yiic(m,n) = > > Biyrpiprr(p A (m, p)
eigenvectorst® and 7. Since A° and AP are known,7* poa
and 7P can be computed off-line. I4° and AP have very x AP (71, s o (2(k + 1))
large dimensions, then the computationzof and=” can be 7 "

I . . . . t=G-1,G-2,...,0
simplified by using numerical algorithms such as stochastic ’ L
complementation [6]. beginning fromBk+G|k+G( m,7)) = 1 for all m andn.

a(m, 1) By (m, i)
m Zﬁ Oy (ﬁl, ﬁ)Bklk-l-G(mv ﬁ) '

Y+ (M, n) = D

is computed via the backward recursion
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Computing Sy w1+ iNvolves O(GM?+2N29+2) computa- - , : . . ,
tions. Hence, the cost involved in computing the fixed lag -
estimatey, 1 (including computingy;, andj3;) at each time
instantk is O(GM?*9+2N26+2),

Note thatP(s(k) | Z(k)) is computed using the above fixed
lag smoother with a lagf = H — 6. Thus, if we choosé = 0,
say, the overall computational load of the reduced-complexity ¢
filter is O(HM?N?).

Remark: For details on computationally efficient smoothers ,,!
for HMM's including saw-tooth lag smoothers, see [7].

0.2

VIl. NUMERICAL STUDIES

In this section, we study the performance of the optimal state ,
estimation (filtering) algorithm and the reduced computational , ‘ ‘ , ,
complexity algorithm for the finite-state delay model through Time

some numerical examp_les. . . . Fig. 3. Sample path of optimal and suboptimal filtered state probabilities.
The system we consider has an underlying sampling timgy noise [optimal (solid), suboptimal (dash-dot), true (dashed)].

of A = 1 unit. With reference to the parameters defined in
Section Il, we have

08 0.1 005 0.05 1.0
01 08 005 0.05 2.0
M=4, A=15005 005 08 01| 9= |30
005 005 01 08 4.0

for the Markov chain we wish to estimaték), and

05 03 02 0.25
N=3, B=1025 05 025|, h=|075
02 03 05 1.5

for the delay modeld(k). The three delay states model a
simple situation where we have light, medium, and heavy ,
levels of network congestion. While finite-state delay models

1 L

with more states or the mixture delay model could also readily s 10 15 20 2 30 s 20

Time

be treated, the three-state model has the advantage of low

computation time as well as allowing the pertinent featur&dd- 4. Sample path of optimal and suboptimal filtered state probabilities.
. . . . Medium noise [optimal (solid), suboptimal (dash-dot), true (dashed)].

of the filtering algorithms to be clearly illustrated. Larger

systems are readily handled using the reduced computational

complexity algorithms of Section VI.

For this example, we havél — 1, and thus, We consider situations with low noise,, = 0.1), medium

noise (s, = 0.4), and high nois€s,, = 1.0).
_ Figs. 3-5 show 40 points of sample paths of the true
S(k) = [s(k +1),s(k), s(k = D]*
(k) = [s(k +1), s(k), o ) state and optimal and suboptimal estimates for each of the
observation noise levels.

is a 64-state Markov chain, and " . i
We calculate and plot conditional probability estimates

D(k) = [d(k + 1), d(k), d(k — 1)]” based on the processor observations. The optimal filtered state
estimatesP(s(k) = ¢ | Z(k)) are calculated as in Section IV.
is a 27-state Markov chain. We also show the state estimate calculated using the reduced-

The transition probability matrices fo¥(%) and D(k) are Ccomplexity algorithm of Section VI-C witt# = 0.
formed in terms of the the transition probabilities @fc) ~ The plots show the exact or approximate conditional prob-
following the procedure of Section VI-A. When looking at thebility thats(k) = 2 along with the indicator function for this
reduced complexity algorithm of Section VI, we use- 0 so €event (the curve labeled true in the plots). The conditional
thatS(k) = s(k+1) andD(k) = d(k+1) (see Section VI-A). probabilities ofs(k) = i, i # 2 show similar behavior.
The sensor observation noigék) is assumed to be Gauss- We observe that the suboptimal filter performs well for all
ian with zero mean and variane&, so that levels of observation noise. In all cases, the bandwidth of the
suboptimal filter is smaller than the optimal filter in the sense
Pp(w) = (2m) ™20 L exp (- w?/202). that suboptimal filter responds less quickly to the observations.

ur ur
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- - - i T - i those for hybrid Markov systems such as Markov jump linear
1t _ . 1 systems [8], [9]. There is interest is in developing efficient
: suboptimal filtering algorithms for this case.

08 B
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