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Hidden Markov Model State Estimation
with Randomly Delayed Observations

Jamie S. Evans and Vikram Krishnamurthy,Senior Member, IEEE

Abstract—This paper considers state estimation for a discrete-
time hidden Markov model (HMM) when the observations are
delayed by a random time. The delay process is itself modeled
as a finite state Markov chain that allows an augmented state
HMM to model the overall system. State estimation algorithms
for the resulting HMM are then presented, and their performance
is studied in simulations. The motivation for the model stems from
the situation when distributed sensors transmit measurements
over a connectionless packet switched communications network.

I. INTRODUCTION

I N THIS PAPER, we consider the state estimation (filtering)
problem for a noisily observed finite state Markov chain

when the observations are delayed by a random time. If the
observations were always received in order, the optimal state
estimates would be obtained from the standard hidden Markov
model (HMM) state filter [1], [2]. However, we allow for the
random delays to lead to a possible reordering of the mea-
surements. With the delays modeled as a finite-state Markov
chain, we show how the problem can be reformulated as a
standard HMM filtering problem and give a recursive update
equation for calculating the conditional state probabilities. We
also show that a finite-dimensional recursive filter results when
the delays are modeled as continuous random variables with
density indexed by a finite-state Markov chain. We begin by
detailing the motivation for this paper and introducing the
HMM paradigm.

Motivation (Communication in Distributed Systems):One
motivation for this problem stems from the increasing move-
ment toward distributed sensing and processing systems. We
envisage a system with a number of remote sensors with
limited processing capability that communicate measurements
back to processing units, which carry out the estimation
(and control) algorithms. Ideally, dedicated communication
resources (bandwidth) would be made available between each
sensor/processor pair; however, due to the increasingly large
number of sensors in modern systems, this may not be a
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viable option. The flexible and cost-effective alternative is
to use a shared resource communications network to service
the communication needs of all the system components. In
this paper, we assume that a connectionless, packet-switched
network [3] is employed.

Each packet that is sent from the sensor will arrive at
the processor after a random delay that is dependent on
the current level of congestion in the network and the path
that is taken. This means that packets may arrive out of
order at the processor. Normally, packets would contain a
sequence number that would allow them to be reordered
at the destination; however, we consider the situation when
no such information is sent with the packets. We assume
that each packet contains only one measurement that avoids
any extra delay in communicating the observations to the
processing unit. We also assume that each measurement is
received without error and that the effect of transmitting a
finite-precision approximation to the real-valued observations
is negligible.

Hidden Markov Models:An HMM consists of a signal
modeled as a finite state Markov chain and anobservation
model that relates an observed process to the underlying
Markov chain. Typically, the observation model consists of
observing the state of the Markov chain perturbed by additive
white noise. Such models have become increasingly popular
over the last decade: application areas including speech pro-
cessing, target tracking, digital communications, biomedical
engineering, and finance (see [1], [2], and references therein).

A major reason for this is the enormous flexibility and
generality of the model and the fact that efficient state and
parameter estimation algorithms exist and are well under-
stood. In particular, the finite-state property means that finite-
dimensional state filters result even when the model is non-
linear. This makes the HMM formulation very attractive for
approximating continuous state space nonlinear models for
which finite-dimensional filters rarely exist.

In this paper, the HMM observation model includes the
possibility of the noisy observations being reordered as a result
of the random time delay introduced during communication
of the observation from the sensor to the processing unit.
We will show that, provided dependency between the delays
is governed by another finite-state Markov chain, a finite-
dimensional recursion for the conditional state probabilities
results.

Related Work:Before proceeding, we note that in [4],
Nilsson and Bernhardsson also consider an environment
where measurements (and control signals) are sent over a

1053–587X/99$10.00 1999 IEEE



2158 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 8, AUGUST 1999

communications network and thereby suffer a random delay.
In [4], the authors treat an extension of the standard linear
quadratic Gaussian (LQG) control problem, which includes
the randomly delayed measurement and control signals. The
delay is modeled as a continuous random variable with density
indexed by a finite-state Markov chain (we employ a similar
model in Section V). They assume that the state of this chain
is known to the controller and that the delays are such that the
order of measurement and control signals is not corrupted.

We note that our basic approach for dealing with delay
models that do not satisfy these assumptions can be applied in
the linear-Gaussian case as well as for (finite-state) HMM’s.
In the linear-Gaussian case, however, the resultant filtering
algorithms would have a computational cost that grows expo-
nentially in the data length. Practical (suboptimal) algorithms
for the linear-Gaussian case is an area for future work. We
are also currently looking at the related partially observed
stochastic control problem for both the HMM and linear-
Gaussian systems.

Summary and Contributions:We are interested in explor-
ing the extent to which the uncertainty in the arrival order of
the observations can be overcome by taking the statistics of
the various stochastic processes into account. After stating the
problem more precisely in Section II, we show in Section III
how it can be reformulated as a standard HMM filtering
problem. Once this formulation is in place, we are able
to derive the recursive filter equations for the conditional
state probabilities in Section IV. State estimates such as the
minimum mean squared error (MMSE) or the maximuma
posteriori (MAP) estimates can be directly calculated from
the filtered state probabilities. In Section V, we show how the
results of Section IV can be extended to more complicated
delay models. In particular, we examine the situation where
the delay is modeled as a mixture distribution with dependency
governed by a finite-state Markov chain. In Section VI, we ex-
amine the use of state aggregation to reduce the computational
load of the optimal filters. The resultant filters are suboptimal
but are shown to perform close to optimal in the simulations
of Section VII. Finally, we discuss some interesting extensions
and directions for future research in Section VIII.

II. PROBLEM FORMULATION

In this section, we introduce the basic stochastic model for
our problem. This includes the model for the Markov chain
whose state we wish to estimate, the sensor observation model,
the delay model, and the model for the observations received
at the processing unit. In this section, we model the delay as
a finite-state Markov chain; however, the important extension
to a continuous delay distribution indexed by a Markov chain
is treated in Section V. An overview of the various processes
involved is given in Fig. 1.

Signal Model: The signal of interest is modeled as
an -state, homogeneous Markov chain with state
space . The transition probability matrix is

, where

Fig. 1. State estimation with communication over a packet switched net-
work.

with , and the state levels are given by the
vector .

Sensor Observation Model:The states are observed in
noise at a sensor leading to the sensor observation process

defined by

(1)

where is an independent and identically distributed (iid)
sequence, each random variable having density. The
sequence is assumed independent of . We will denote

.
Delay Model: As already discussed in Section I, the sensor

observations are sent over a connectionless, packet-switched
communication network to a processing unit that will carry
out the desired estimation algorithms. The processor receives
observation after some random delay .

We model the delay as an state, homogeneous
Markov chain with state space and transition
probability matrix , where

with . We assume that is independent
of the chain and the sensor observation noise process

. The levels of the chain are given by the vector
, meaning that the delay suffered by is

when .
Remark: At first, it may seem unrealistic to model the

delay as a finite state process. However, we note that many
continuous state processes can be approximated by a finite-
state process. Further, the Markov model allows a fairly
general dependency structure. Given that the proposed delay
model leads to a very nice reformulation of the problem, we
believe the assumption is well justified. In Section V, we
treat a more involved delay model in which the delay is a
continuous random variable with distribution indexed by a
finite state Markov chain. Finite-dimensional recursions for
the conditional state probabilities are also derived in this case;
however, the problem no longer has a clean reformulation as
a standard HMM.

Processor Observation Model:We assume the underlying
time between sending measurements isunits and make the
following restriction on the delay values:

(2)

Remark: This is a minor restriction that results in a sim-
plified reformulation of the problem. It guarantees that two
observations do not arrive simultaneously at the processor and
thus avoids having to define a random ordering procedure.
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The observations may arrive at the processor in a different
order than they were sent. We assume that no order information
is sent with the measurements. The measurements are read
by the processor in the order they arrive, and no further
arrival time information is observed by the processor. Let
the th measurement to arrive at the processor be ,
and denote the first observations received by

.
Aim: The objective is to perform state estimation (filtering)

for the Markov chain based on the observations received
at the processor. More specifically, we wish to obtain recursive
expressions for the conditional state probabilities

from which the maximuma posteriori (MAP) or minimum
mean squared error (MMSE) state estimates can be obtained.
The problem is made interesting by the fact that the order of
observations may be altered as a result of transmission over
the network. While no order information is explicitly available,
information is present in the measurements received and in the
assumed statistics of the Markov chains. In the next section,
we reformulate the problem as a standard HMM and then show
how the optimal estimation algorithms result.

III. REFORMULATION AS AN HMM

In this section, we reformulate the model as a standard
HMM problem on an enlarged state space. The trick is to
form a new finite-state Markov chain by grouping a number
of original states together. The observations at the processor
can then be expressed as a function of the new Markov chain
plus a white noise process resulting in the standard HMM
formulation.

A. Enlarged State Space Markov Chains

To begin, we let

(3)

which corresponds to the greatest possible change in the
position of a measurement as a result of transmission over
the network.

Define the new process

(4)

Then, is an state Markov chain with state space
. The transition probabilities of are

(5)

for , where
denotes the Kronecker delta function. The initial conditions
are given by

(6)

for .

TABLE I
DETERMINING THE ARRIVAL ORDER OF THE PACKETS

Similarly, we define

(7)

which is a state Markov chain with state space
and transition probabilities

(8)

for . The initial
conditions are given by

(9)

for .
Remark: While we find it convenient to work with the two

Markov chains defined in (4) and (7), the two chains could
readily be combined into a single chain on the state space

. Transition probabili-
ties follow immediately upon observing the independence of
the chains.

B. Processor Observation Model

Since the maximum possible position change for any mea-
surement is equal to places, the th measurement to arrive
at the processor corresponds to a sensor measurement
from the set . Further, can
be mapped to the appropriate measurement given the current
augmented delay state . Thus, we have

(10)

where when corresponds to
, and is the unit column vector in .

To determine the relative arrival order of the measurements
given the delay values

, we proceed as follows
(see Table I).

1) Determine the arrival times referenced to the time
was sent

2) The relative order of arrival is obtained by ordering these
arrival times.

3) The measurement corresponding to is the th
element in the reordered sequence.

We can thus define
, where for and
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if

where

From [1] and [10], we thus have

which can be expressed in standard HMM form

where

(11)

Note that is a sequence of correlated random vectors.
Generally, the fact that the observation noise is colored would
lead to an exponential growth in the computational require-
ments of the estimation algorithms. However, in this case,
only one component of the vector is selected at each time, and
each selected random variable is independent of the others.
We can thus rewrite the processor observation model as

(12)

where is a sequence of iid random variables each having
density obtained from a reordering of the original
process. Like , the process is independent of the
chains and .

Summary: In summary, the problem that was formulated in
Section II has been reformulated in terms of the augmented
Markov chains and defined in (4)–(9) and the
processor observation model of (12). The model now appears
as a standard hidden Markov model with transition probabil-
ities given by (5) and (8) and symbol probabilities given by

.

IV. STATE ESTIMATION ALGORITHM

Here, we consider the problem of calculating the condi-
tional state probabilities for and given

. That is, we want to obtain recursive
expressions for

and

First, define the joint conditional density

We have from Bayes’ rule

where is a normalization constant. However, since
and are Markov chains

Combining the above results, we arrive at the following
theorem (also see [1] and [2]).

Theorem 1: The recursion for the filtered state probabilities
is given by

(13)

for and
, where is defined

in (11). The initial conditions for the recursion are given by

for and
.

The marginal densities are then obtained from

and similarly, we can obtain the final filtered state probabilities
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for the original Markov chains as

(14)

(15)

Computation: A naive implementation of (13) would
require computations at each time
update. However, because of the special structure of the
transition probabilities (most are zero), we only require

computations at each time. This is clear
on rewriting the recursion (13) as

(16)

In Section VI, we give a suboptimal algorithm based on
aggregation that significantly reduces the computational load.

Other Estimation Problems:Once the HMM formulation
is in place, it is straightforward to solve numerous estima-
tion problems using standard techniques, e.g., fixed interval
smoothing using the forward–backward algorithm, MAP se-
quence estimation using the Viterbi algorithm, and parameter
estimation using the Baum–Welch re-estimation equations. See
[1] and the references therein for further details.

V. EXTENSION TO MIXTURE DELAY MODEL

In previous sections, we have modeled the delay as a
finite-state Markov chain. This allowed the problem to be
reformulated as a standard HMM state estimation problem.
In this section, we extend the ideas of the earlier sections to
the situation where the delays are continuous random variables
indexed by a finite state Markov chain.

Let the delay suffered by theth packet or observation
be . We model as a continuous random variable
with density belonging to the set . The particular
density applying at time is determined by the state of the-
state Markov chain with state space through

The density of [not conditioned on ] is thus the
mixture density

Let have transition probability matrix ,
where

with and assume that is independent of
the chain and the sensor observation noise process .

Fig. 2. Example densities for mixture delay model.

Further, assume that is conditionally independent of
all other processes given .

Example: Consider the situation shown in Fig. 2 (a similar
delay model is introduced in [4]). We have a density corre-
sponding to each of levels of network congestion: 1
for light load, 2 for medium load, and 3 for heavy load.

We will assume that for each , the delay
density is zero outside the interval , where

. Define the integer

(17)

which is equivalent to (3) for the finite-state delay model.
We continue to use the augmented chains and

defined in (4) and (7), respectively, and define the new process

While it is no longer possible to write the observation as
a function of and perturbed by white noise as in
(12), we will show that it is still possible to derive a finite-
dimensional recursion of the conditional state probabilities.

We begin by again defining

Using Bayes’ rule, we then have

where is a normalizing constant. Using a model update
equation, the second term can be written in the form

and it remains for us to express

in terms of only (so that the resultant filter is recursive).
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We first write

but using the independence properties of the processes, this
reduces to

Now, suppose that
. The problem of determining

is exactly the same
problem as determining

when the delay was modeled as a finite-state Markov chain. On
the basis of the relative departure time and the delay values,
we can determine which measurement is received asand
then use the corresponding component of to determine
the likelihood of observing .

Mathematically, we define the function

where

if

We then have

where

(18)

and we remember thatis the density of the observation noise.
Remark: For the finite-state delay model, (2) was required

to ensure that the function is a well-defined mapping. In
the continuous state case, no such condition can be given;
however, we note that the probability of two or more packets
arriving simultaneously is zero so that the set on whichis
a not well defined has probability zero. Strictly speaking,

should be redefined over this region; however, we simply note
that this can be done and that the change would not affect our
development.

In summary, we have the following theorem.
Theorem 2: The recursion for the conditional state proba-

bilities is given by

(19)

for and
, where is defined

in (18), and is a normalization constant. The initial
conditions for the recursion are given by

for and
.

Marginal distributions follow by summing over the appro-
priate indices as in Section IV.

Computation: We note that the only difference between
the filters of Theorem 1 (finite state delay) and Theorem 2
(mixture delay) is in the definition of the observation weighting
terms (11) and (18), respectively. Since these functions can be
calculated off-line, the (on-line) computational requirements
of both filters are identical. We also note that the lower
computational complexity algorithm of Section VI applies
directly to the mixture delay model simply by using the
modified weighting term of (18).

Before proceeding, we note that the results for the finite-
state delay model can be obtained from the results for the
mixture delay model by setting the densities to Dirac delta
functions. In particular, we can set

to obtain (11) from (18) and (13) from (19).

VI. REDUCED COMPLEXITY ALGORITHM VIA AGGREGATION

A clear problem with the optimal filtering algorithms of
Theorems 1 and 2 is the computational requirement for sys-
tems with more than a few states. We have seen in the
comments after these theorems that the algorithms require a
total of computations at each time. Thus,
with fixed (recall that measures the maximum delay
spread), the computational load grows polynomially in
and . With and fixed, the computational load grows
exponentially in . Thus, we see that the real difficulty occurs
when becomes large—growth in and is not nearly
as big a problem.
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Even for systems with a large augmented state space, all is
not lost. Importantly, the optimal filtering algorithms provide
a framework for developing efficient implementations of the
optimal filters or practical suboptimal algorithms based on the
optimal filter structure. Below, we discuss one technique for
reducing the computational load of the optimal algorithm by
aggregating the HMM to a lower dimension HMM.

Aggregating the HMM [see (7), (9), and (12)] requires ag-
gregation of the Markov chain and output symbol probabilities.
We consider the these two steps in the following subsections.

A. State Aggregation of Markov Chain

For convenience, denote the transition matrices of the
Markov chains and as and , respectively.
These are stochastic matrices of dimension
and , respectively [see (4) and (7)].

We will first show that both and enjoy the
property of being exactly aggregatable Markov chains. This
means that these Markov chains can be exactly aggregated to
lower dimensional Markov chains. This result follows because
of the way that and were constructed from the
original Markov chains and .

We adopt the following definition from [5, Def. 6.3.1, p.
124]: “A Markov chain is exactly aggregatable (in [5] the
term ‘lumpable’ is used instead of strictly aggregatable) with
respect to some partition of the state space, if for everya
priori state probability vector , the aggregated process is a
Markov chain, and the transition probabilities do not depend
on the choice of .”

The following theorem is proved in [5, Th. 6.3.2, p. 124]:
Let denote a state Markov chain with transition
probability matrix . Let denote a positive integer.

Result 3: A necessary and sufficient condition for
to be exactly aggregatable with respect to a partition

of the state space is that for every pair of sets
and , has the same value for
every state in for every . These
common values form the transition matrix of the aggregated
chain.

Based on the above result, it is straightforward to verify that
and defined in (4) and (7) are exactly aggregatable. For

example, consider the Markov chain [which is exactly
the same procedure can be applied to with replaced
by ].

The Markov chain can be exactly aggregated in several
possible ways. Let denote an integer such that .
Then, for each such, we can aggregate into the
state Markov chain , where

Each aggregated state contains
states of , namely

where each index , etc., takes on values in
.

TABLE II
ENUMERATION OF STATES OF S(k) AND �S(k)

Using Result 3, the transition probabilities of the aggregated
chain are

The following example illustrates our notation and the
aggregation process when and . Using the
state enumerations given in Table II, we have

Now, with reference to Table II, we see that choosing
means and leads to the aggregated
transition probability matrix

With , we have and corresponding
aggregated transition probability matrix

B. Symbol Probability Aggregation

The aim here is to aggregate the symbol probabilities
of the HMM, i.e., compute

.
For notational convenience, let denote the

number of states of the aggregated chain . Similarly, let
denote the number of states of the aggregated

chain . In addition, let (resp. )
denote the partition of the state space of [resp. ],
which results in the (resp. ) state aggregated process

[resp. ]. We will use the indices
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and to denote the states of and .
Note that each subset consists of states of .

With and , define the
aggregated symbol probabilities as

Finally, let and
denote the states of and , respectively.

We assume that and are irreducible Markov chains
so that and are also irreducible Markov chains.
Thus, there are unique steady-state probability distributions

and [which are known as the Perron Frobenius (PF)
eigenvectors of and , respectively] satisfying

Lemma 4: The (approximate) aggregated symbol probabil-
ities are computed as

(20)

Proof:

The numerator is equal to

and the denominator equals

The last expression above converges with probability 1 to (20)
since and are assumed irreducible.

We note that (20) is exact only when the distributions of
and have converged to their stationary distribu-

tions. The aggregated symbol probabilities could be calculated
exactly using model update equations for and
(instead of the limiting distribution); however, this would
require computations at each step, thus
eliminating any possible computational savings.

The aggregated symbol probabilities of (20) are
weighted sums of the unaggregated symbol probabilities.
The weighting coefficients are the components of the PF
eigenvectors and . Since and are known,
and can be computed off-line. If and have very
large dimensions, then the computation of and can be
simplified by using numerical algorithms such as stochastic
complementation [6].

C. Reduced-Complexity Filters and Smoothers

Using the aggregation procedure outlined in Sections VI-A
and B, the state HMM can be aggregated into
a state HMM, which we will denote as .

Reduced-Complexity Filters:The filtered density for the
states and of this aggregated HMM is defined as

The subscript emphasizes that the filtered density is with
respect to the aggregated model.

is computed similarly to Theorem 1 as

where is a normalization constant. Note that we are implic-
itly making the approximation

which is the reason the above expression is not exact.
Finally, the filtered state probabilities for the original

Markov chains and can be
computed as

The computational complexity of this reduced-complexity
filter is or at each time instant.

Reduced-Complexity Smoothers:In order to compute
and , it is necessary to

use a fixed-lag smoother as follows.
For a fixed lag (where is a positive integer), define the

fixed-lag smoothed density of the aggregated HMMas

where is easily computed in terms of the filtered
density as

Here

is computed via the backward recursion

beginning from for all and .
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Computing involves computa-
tions. Hence, the cost involved in computing the fixed lag
estimate (including computing and ) at each time
instant is .

Note that is computed using the above fixed
lag smoother with a lag . Thus, if we choose ,
say, the overall computational load of the reduced-complexity
filter is .

Remark: For details on computationally efficient smoothers
for HMM’s including saw-tooth lag smoothers, see [7].

VII. N UMERICAL STUDIES

In this section, we study the performance of the optimal state
estimation (filtering) algorithm and the reduced computational
complexity algorithm for the finite-state delay model through
some numerical examples.

The system we consider has an underlying sampling time
of unit. With reference to the parameters defined in
Section II, we have

for the Markov chain we wish to estimate , and

for the delay model . The three delay states model a
simple situation where we have light, medium, and heavy
levels of network congestion. While finite-state delay models
with more states or the mixture delay model could also readily
be treated, the three-state model has the advantage of low
computation time as well as allowing the pertinent features
of the filtering algorithms to be clearly illustrated. Larger
systems are readily handled using the reduced computational
complexity algorithms of Section VI.

For this example, we have , and thus,

is a 64-state Markov chain, and

is a 27-state Markov chain.
The transition probability matrices for and are

formed in terms of the the transition probabilities of
following the procedure of Section VI-A. When looking at the
reduced complexity algorithm of Section VI, we use so
that and (see Section VI-A).

The sensor observation noise is assumed to be Gauss-
ian with zero mean and variance so that

Fig. 3. Sample path of optimal and suboptimal filtered state probabilities.
Low noise [optimal (solid), suboptimal (dash-dot), true (dashed)].

Fig. 4. Sample path of optimal and suboptimal filtered state probabilities.
Medium noise [optimal (solid), suboptimal (dash-dot), true (dashed)].

We consider situations with low noise , medium
noise , and high noise .

Figs. 3–5 show 40 points of sample paths of the true
state and optimal and suboptimal estimates for each of the
observation noise levels.

We calculate and plot conditional probability estimates
based on the processor observations. The optimal filtered state
estimates are calculated as in Section IV.
We also show the state estimate calculated using the reduced-
complexity algorithm of Section VI-C with .

The plots show the exact or approximate conditional prob-
ability that along with the indicator function for this
event (the curve labeled true in the plots). The conditional
probabilities of show similar behavior.

We observe that the suboptimal filter performs well for all
levels of observation noise. In all cases, the bandwidth of the
suboptimal filter is smaller than the optimal filter in the sense
that suboptimal filter responds less quickly to the observations.
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Fig. 5. Sample path of optimal and suboptimal filtered state probabilities.
High noise [optimal (solid), suboptimal (dash-dot), true (dashed)].

This gives the filtered probability sample path a smoother
appearance than the optimal filter response.

VIII. C ONCLUSION

This paper has addressed the HMM state estimation problem
in an environment where state measurements are sent from
the sensor to the processing element over a connectionless,
packet-switched network. The random delay introduced by the
network is modeled as both a finite-state Markov chain and
as a continuous-valued process with density indexed by the
state of a finite-state Markov chain. In both cases, we derive a
finite-dimensional recursion for the conditional (filtered) state
probabilities based on a reformulation of the problem in terms
of augmented state Markov chains.

Future work will examine the analagous filtering problem
for linear-Gaussian systems and the extension of the filtering
results to the partially observed stochastic control framework.
We remark briefly here that while the linear-Gaussian case
can be formulated using the state augmentation techniques
used in this paper, the resultant state filter requires a cost in
computation and memory that grows exponentially with the
length of the data. The resultant filter has a similar structure to

those for hybrid Markov systems such as Markov jump linear
systems [8], [9]. There is interest is in developing efficient
suboptimal filtering algorithms for this case.
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