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Optimal Power Control Over Multiple Time-Scale
Fading Channels With Service Outage Constraints
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Abstract—This paper considers the power-control problem for
a fading channel in an information-theoretic framework. We de-
rive power-control schemes to optimize ergodic capacity, outage
capacity, and capacity with a service outage constraint. The nov-
elty in the paper lies in the use of a two-time-scale fading process
and its implications for the channel-state information available at
the transmitter.

Index Terms—Ergodic capacity, fading channels, outage ca-
pacity, power control, service outage.

I. INTRODUCTION

DETERMINING the information-theoretic capacity of
fading wireless channels has been an important area of

research over the past decade. Interest in this area has been
spurred on by the tremendous growth in mobile and wireless
communications networks, from cellular systems to wireless
local area networks. Importantly, many recent information-the-
oretic results are impacting the design of next-generation
wireless networks, which will include techniques such as adap-
tive modulation and coding and channel-based scheduling to
exploit multiuser diversity. While numerous problems arise in
multiuser environments such as multiple-access channels and
broadcast channels, there are still many interesting questions to
be answered about the capacity of single-user fading channels.
This paper addresses one such question.

There are various notions of capacity for single-user fading
channels, the main ones being ergodic capacity [1], delay-lim-
ited capacity [2], and capacity versus outage probability [3],
[4]. Ergodic capacity is a capacity that can be achieved by
averaging over all states of an ergodic fading channel, and thus,
is suitable for non-real-time traffic applications. Delay-limited
capacity and capacity versus outage concepts are useful for
constant-rate real-time traffic applications. An excellent survey
of various information-theoretic notions for fading channels is
given in [5].

Another important issue in studying the capacity of fading
channels is the amount of knowledge about the channel state at
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the transmitter [we will always assume that the receiver has full
channel-state information (CSI)]. If the transmitter has no CSI,
then all it can do is transmit with constant power. However, if it
had access to CSI, then the transmit power could be controlled
as a function of the channel to maximize the capacity. The paper
[1] (see also [6]) looked at the problem of maximizing ergodic
capacity subject to an average power constraint, and showed that
the optimal power-control law was waterfilling on the inverse
of the channel gain (more power is allocated when the channel
is good than when the channel is bad). Another problem that
suggests itself is to design power-allocation policies that mini-
mize outage probability on a given fading channel. This problem
(among others) was addressed in [4], where it was shown that
the best power-allocation scheme was to use no transmit power
if the channel is below a threshold, and to use channel inversion
above the threshold (more power is allocated when the channel
is bad than when the channel is good).

The power-allocation policies resulting from maximizing er-
godic capacity and from minimizing the probability of outage
are very different, and represent two ends of the spectrum. A nat-
ural question to ask is whether there is an optimization problem
that bridges the gap between these two fundamental problems
and their resulting optimal power-control schemes. This is ex-
actly the question tackled in [7]. In [7], an optimal power- and
rate-allocation problem is considered, where long-term average
capacity is optimized with respect to a deterministic power-al-
location policy, subject to a constraint on outage along with
the standard average power constraint. This additional outage
constraint was motivated by the idea that in an integrated net-
work, non-real-time applications will benefit from maximizing
the ergodic capacity, and at the same time, real-time applica-
tions (such as voice and video) will benefit from a quality of
service (QoS) guarantee on the maximum outage probability.
The optimal power allocation for this problem was shown to be
a mixture of channel inversion and waterfilling allocation. Ex-
tensions of this problem to parallel fading channels with random
power-allocation policies (to include discrete fading distribu-
tions) have been considered in [8].

In our paper, we generalize these results to a class of fading
channels that have a two-time-scale nature. The slow variation
in the fading channel is due to distance-based attenuation and
shadow fading, and the resulting slow-fading channel gain is
known at both transmitter and receiver. The fast-fading gain (re-
sulting from local mobility and multipath fading) is assumed to
be known at the receiver but unknown at the transmitter, how-
ever, the transmitter does have access to the statistics of the fast
fading. In this paper, we restrict our discussion to the case of
fast Rayleigh fading where the fast-fading gain is exponentially
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distributed. Under long codeword and sufficiently long trans-
mission-time assumptions (as in [7]), we define a block-ergodic
capacity (BEC) for each code block by averaging over the fast
fading. Then we consider an optimum power- and rate-alloca-
tion problem, where the long-term average of this BEC (aver-
aged over the slow-fading component) is maximized subject to
an average power constraint and an outage constraint on the
BEC. The transmitted power is now a function of the slow-
fading gain and the statistics of the fast-fading component. We
also provide results for the related ergodic capacity and outage
capacity problems.

We show that the optimum power-allocation policy is a com-
bination of a “soft waterfilling” policy and channel inversion.
We show that (similar to [7]) the resulting long-term average ca-
pacity achieves a nice compromise between the corresponding
ergodic capacity and outage capacity. We also provide a subop-
timal solution to the problem which has a simple power-allo-
cation policy, but achieves near-optimal performance, verified
through simulation studies. While the proof techniques are sim-
ilar to those of [7], there are a number of unique contributions
made in this paper.

• Derivation of a “soft waterfilling” power-alloca-
tion policy that maximizes ergodic capacity for a
two-time-scale fading channel with fast Rayleigh fading.

• Derivation of an optimum power-allocation policy for
the problem of maximizing ergodic capacity for a two-
time-scale fading channel with fast Rayleigh fading, sub-
ject to an average power constraint and an outage con-
straint.

• Derivation of a simple suboptimal policy that results in
near-optimal performance (demonstrated through simu-
lation studies).

• Proofs of a number of inequalities involving the “expo-
nential integral” not reported anywhere else, that are used
to derive some intermediate results of this paper.

Before proceeding, we will discuss some related literature
dealing with two-time-scale fading, and also the connection
of our work to the problem of designing transmission-control
schemes based on partial CSI.

The separation of the fading channel into the product of
two processes evolving independently at different time scales
is standard in wireless channel modeling [9]. The design of
power-allocation policies based on knowledge of the slow
fading has been considered by many authors (see, for example,
[10]–[14] and references therein). Most of these papers deal
with cellular systems and consider problems related to meeting
average signal-to-interference ratio (SIR) or bit-error rate
(BER) constraints, or constraints on the outage probability
(which, in this case, means the probability that the SIR drops
below a threshold, or equivalently, the BER rises above a
threshold).

The problem of two-time-scale fading where the transmitter
has access to the slow-fading component only is an example
of partial CSI at the transmitter. Many authors have consid-
ered problems where the transmitter has partial CSI (see, for
example, [15]–[20]). This partial CSI could take the form of
a noisy estimate of the channel, a quantized version of the

channel, or channel mean and covariance information in a mul-
tiple-antenna setting, to name a few. In our case, the slow-fading
gain is the short-term average power of the fast-fading process,
and the transmitter thus has knowledge of the local statistics
of the fast fading, rather than the fast-fading gain itself. In our
case, the local statistics are themselves modeled as a random
process, and we look at capacities averaged over this variation.

The rest of the paper is organized as follows. Section II de-
scribes the two-time-scale fading-channel model that we use
in this paper. Various capacity notions for this fading-channel
model are also introduced. We also provide the problem state-
ments for the various different optimal power-allocation tasks
we are interested in. Section III presents solutions to these opti-
mization problems. Section IV presents some simulation studies
to compare the various capacity results achieved by these power-
allocation algorithms. Section V presents some concluding re-
marks. In order to maintain readability, proofs of our results are
relegated to the Appendices or excluded by alluding to similar
analyses in [7].

II. CHANNEL MODEL AND VARIOUS CAPACITY NOTIONS

In this paper, we work with a two-time-scale version of the
block flat-fading additive white Gaussian noise (BF-AWGN)
channel [3] where the channel gain between the transmitter
and the receiver is expressed as , . The gain

represents the slow variation of the wireless radio channel,
and remains constant over a block of symbols (one block
is spanned by one codeword and is assumed to be large),
but varies from block to block. The gain represents
the fast variation of the channel and varies at a much faster
rate than the rate of codeword blocks, which implies that the
block length is much bigger than the coherence time of the
channel. We assume that has a continuous distribution func-
tion , is ergodic over the time scale of the application con-
cerned, and is independent of the fast-fading process . The
fast-fading process is assumed to be exponentially distributed
(assuming Rayleigh fading) with . It is reasonable to
assume that both transmitters and receivers have perfect knowl-
edge of the slow-fading gain , but the transmitter does not have
the knowledge of . The transmitter power is assumed to be a de-
terministic function of , and is denoted by . Thus, it makes
sense to define the following conditional maximum achievable
rate over each block, termed the BEC

(1)

where is the variance of the background white noise, and the
conditional expectation denotes the expectation over the dis-
tribution of the fast-fading process , given . In the following,
“log” will denote natural logarithm.

Lemma 2.1: The BEC is given as

(2)

where and
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Remark 1: Notice that the BEC is an increasing
function of , as one would intuitively expect.

The various capacity notions that are used in the paper are
presented below.

• Ergodic capacity: The ergodic capacity is defined as the
expected value of the BEC, the expectation being taken
over the probability density function (pdf) of the
slow-fading gain . In other words, ergodic capacity

(3)

• Outage capacity: The outage capacity is defined as the
maximum achievable BEC over any slow-fading block,
denoted by , where

(4)

subject to the constraints ,
, and .

• The outage probability for a given BEC is defined as

(5)

In what follows, we shall solve the following optimization
problems.

P1) Maximize with respect to subject to
, .

P2) Maximize with respect to subject to
, , and for a given

basic BEC .
P3) Maximize with respect to subject to

, , , or
alternatively,

P3a) Minimize the outage probability
with respect to given a BEC , subject to

, .

III. OPTIMUM RATE AND POWER ALLOCATION

In this section, we present the optimum power- and rate-allo-
cation solutions to the problems stated above. We first provide
the reader with a “roadmap” of the following Sections III-A,
III-B, and III-D that are individually devoted to solving Prob-
lems P1, P2, and P3, respectively. A suboptimal solution to
Problem P2 is also provided in Section III-C. It should be noted
that the solution to P1 is needed in order to solve Problem P2,
therefore, the first subsection presents the solution to Problem
P1, followed by Section III-B that presents the solution to
Problem P2. Problem P3 (or P3a) can be solved independently
of P1 or P2. However, in the single-channel case, the solution
to P3 is rather straightforward, and is given briefly in the last
subsection. Recall that P1 finds the optimal power-control
solution to maximize ergodic capacity subject to an average
power constraint, P2 finds the optimal power-control solution
to maximize ergodic capacity subject to an average power and a
service outage constraint, and P3 finds the optimal power-con-
trol solution to maximize outage capacity (given a specified
level of service outage) subject to an average power constraint.
Section III-C presents a suboptimal solution to Problem P2
that is easier to implement than the optimal solution in Sec-

tion III-B. Later, all these different capacity results achieved by
the power-control solutions presented in the various subsections
are compared via extensive numerical and simulation studies.
Below, each individual subsection carries an introductory
paragraph on an overview of the rationale behind the solution
methodologies used and the relevance of the technical results
derived in that subsection.

A. Problem P1

In this section, we provide a solution to the optimal
power-control problem P1 using Lagrange-multiplier-based
constraint-optimization techniques. Recall that in the absence
of fast fading, it is obvious that the solution to P1 is the
well-known waterfilling solution [21]. In order to apply the
usual Lagrangian-based constrained-optimization theory, we
first show (in Lemma 3.1) that the objective function in Problem
P1 is a concave function of (note: it is easy to see that
the constraint functions are linear in ). It is then verified
that the optimal power-control solution to P1 is obtained as a
unique fixed-point solution (as a deterministic function of the
slow-fading gain , when is above a certain threshold) to
an implicit equation, and can be computed numerically using
an iterative algorithm with guaranteed convergence. It is also
seen that when the slow-fading gain falls below this threshold
(which is determined by the average power available), the op-
timal strategy is to turn off transmission. Some key properties
of this power-control policy are then presented, as they will
be useful in subsequent mathematical analyses. Noticing the
similarity between this solution and the well-known water-
filling power-control policy for the slow-fading channel case,
we call the optimal power-control solution to Problem P1 soft
waterfilling. We conclude this subsection with a few comments
on the differences between these two policies.

As discussed above, we need the following result in order to
proceed (see Appendix III-A for a proof).

Lemma 3.1: The BEC is a concave function of
.

Remark 2: One can, of course, deduce the above result
simply by appealing to the fact that is a
concave function of , and the expectation of this function
taken over the distribution of (under the Rayleigh fading
assumption) will retain the concavity, a result that follows by
the Dominated Convergence Theorem.

Lemma 3.1 indicates clearly that is also a concave func-
tion of , again by appealing to the Dominated Convergence
Theorem, under some mild conditions satisfied by the distribu-
tion of the slow fading gain .

Recalling that the constraints of P1 are linear in , one can
now apply the usual Lagrangian-based constrained-optimiza-
tion method to form the Lagrangian

where is the pdf of and .
Lemma 3.2: The fixed-point equation

(6)
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Fig. 1. Plot of soft waterfilling allocation versus the slow-fading gain.

has a unique positive fixed-point solution for every .
Remark 3: The unique fixed-point solution to (6) (for a given

value of ) can be computed numerically via an iterative algo-
rithm that is convergent. The details of this algorithm should be
obvious from the proof of Lemma 3.2 (see Appendix II), and are
excluded.

Definition 3.1: Suppose for any given ,
is the unique fixed point of (6). Define for

.
It can be easily verified that satisfies the

Kuhn–Tucker conditions for optimality (see [22, p. 74] for
details). Hence, the solution to the optimization problem P1
is given by , as defined above. The multiplier is
evaluated by solving . Some key properties
of are summarized below.

Lemma 3.3: The optimal power-allocation solution to
Problem P1 [ ] satisfies the following proper-
ties: 1) is a strictly increasing function of for

; and 2) as from above, and
as .

Now we discuss some properties of this optimal solu-
tion , in comparison with the waterfilling solution one
would obtain in the absence of fast fading. Recall that the water-
filling solution is given by ,
where is the Lagrange multiplier that solves

and . Both and are
zero for values of below a threshold. In addition, they are both
increasing functions of above this threshold, and approach
a limit as . We have observed that tends
to increase to the limit more gradually than the waterfilling
solution, so, for want of a better name, we call the solution to
Problem P1 “soft” waterfilling.

Fig. 1 shows a plot of versus the slow fading gain
for with .

B. Problem P2

In this section, we derive the optimum power-allocation
policy for Problem P2. This problem, as correctly pointed

out in [7], is difficult because of the probabilistic constraint
involving the outage probability. One way to circumvent this
problem is to consider a probabilistic power-allocation policy,
as in [4]. In this paper, however, we focus on a deterministic
power-allocation policy. As in [7], we proceed by first deriving
a solution to a similar problem (Problem P2a), but with a
deterministic constraint on the BEC . This constraint
requires that the BEC is greater than the minimum required rate

over an arbitrary set of the slow-fading gain . This problem
can be solved using standard Lagrangian-multiplier-based
techniques for convex optimization, as the BEC is a concave
function of . The solution to Problem P2a not only provides
us with a feasibility condition for Problem P2, but also provides
us with important insight into how to obtain an optimal solution
to P2. It is seen that the optimal power-allocation policy for
P2 is analogous to the solution to P2a, except that this solution
guarantees that over a particular set of the
slow-fading gain determined by the maximum service outage
probability . Theorem 1 summarizes the solution to P2a,
while Theorem 2 provides an intermediate result. These two
theorems (see Appendices for proofs) together lead to the main
result of this paper, namely, the optimal solution to Problem
P2, following a similar analysis in [7]. This result is stated
in Theorem 3, which shows that the optimal power-allocation
policy for P2 is a combination of channel inversion and the
optimal power-allocation solution to Problem P1, namely, the
soft waterfilling policy. The rest of the subsection provides the
required mathematical analysis. Proofs are either relegated to
the Appendices or excluded by alluding to a similar analysis in
[7].

In order to proceed, we need the definition of a service set and
an outage set, as in [7].

Definition 3.2: Given a basic rate and a power policy ,
the service set is defined as

Correspondingly, the outage set is defined as

It will be seen that our solution to Problem P2 will result in a
power-allocation policy having a particular form of a service set
(mirroring a similar result in [7]). In order to derive this result,
we first solve the following problem, where it is required that
the service set contains an arbitrary set .

Problem P2a: Find subject to

It is obvious (by noting that is a monotonically de-
creasing function of ) that a feasible solution to Problem
P2a has to satisfy
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where . This implies that for Problem P2a
to be feasible, a necessary condition is
where

(7)

Let us denote an optimal solution to Problem P2a by .
Following the usual Lagrange-multiplier-based convex-opti-
mization theory, one obtains the following solution to Problem
P2a (see Appendix IV for a proof).

Theorem 1: Suppose . Then the optimal
power-allocation solution to Problem P2a is given by

otherwise.
(8)

If , then the optimal power-allocation so-
lution to Problem P2a is given by

otherwise
(9)

where , and is the solution to
.

The interpretation of the result above is that the optimal
power allocation is a combination of channel inversion over the
slow-fading component and the optimal power allocation for
obtaining maximum average block-ergodic rate given by the
solution to Problem P1, namely, the soft waterfilling solution.
Within the service set, the allocated power is no less than that
achieved by inverting the slow-fading component to maintain
the basic block-ergodic rate . For slow-fading gains larger
than a threshold , the allocated power is larger, given by
the soft waterfilling solution to achieve the maximum average
block-ergodic rate.

As in [7], we now define the set of good channels and bad
channels according to the value of the slow-varying channel gain

. Defining , the set of good channels is defined as
, and the set of bad channels is defined as

. We will show that the solution to Problem
P2a with , i.e, , is an optimum solution to
Problem P2.

Define the partial ordering of two sets, as in [7], that is,
if , and . Then one can prove the

following theorem.
Theorem 2: Problem P2 has an optimum solution

with the outage set and service
set , such that .

Proof: The proof is based on a complex two-stage con-
struction process, and is relegated to Appendix V.

This theorem basically mirrors the corresponding result in [7,
Th. 2] in that it implies that the block-ergodic rate falls below the
basic rate when the slowly varying channel gain falls below
a particular threshold.

Now using the fact that , one can
easily show that Problem P2 has an optimum solution

, such that . A similar analysis to [7]
now leads to the main result of this paper.

Theorem 3: Problem P2 has a solution if and only if
satisfies . When

, the optimum power allocation is given by

otherwise.
(10)

When , an optimum power allocation is
given by

otherwise
(11)

where , and is the solution to
.

Note that computing involves computing ,
which has to be computed numerically (for a given value of )
as the unique fixed-point solution to an implicit equation, as
given by (6). In order to avoid this computational complexity,
one may be motivated to look at a suboptimal solution to
Problem P2. This is the topic of the following subsection.

C. A Suboptimal Solution to Problem P2

In this section, we present a simple suboptimal solution to
Problem P2 by noticing that

by Jensen’s inequality, remembering that . Now one
can pose the following optimization task.

Problem P2b: Maximize with re-
spect to , subject to and and

.
Notice that this problem can be treated in a similar way to that

of [7] by observing that the constraint
can be rewritten as .

An optimal solution to Problem P2b can now be obtained in
exactly the same fashion as in [7] (hence, we do not provide the
analysis), and we call this solution . The next theorem
states this result.

Theorem 4: A suboptimal solution to Problem P2, given
as an optimum solution to P2b, is given by [if

]

otherwise.
(12)

Otherwise, if

otherwise
(13)

where and is the solution to
.

Later, we will compare the capacity results achieved by the
optimal and suboptimal solutions to P2 via simulation studies.

D. Problem P3

In this section, we provide the optimal solution to Problems
P3a and P3. Note that the proof is intuitively straightfor-
ward in the case of a single communication channel, with the
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two-time-scale fading properties satisfying the assumptions in
Section II, and the power-allocation policy being deterministic.
Because of this, we only provide a brief sketch of a proof
of Theorem 5. In addition, by noting that the service outage
probability can also be written as (where

), it can be easily seen that the solution to
Problem P3 can be obtained as a special case of the outage-ca-
pacity maximization problem for multiple parallel channels
considered in [4], where the number of channels is one. The
corresponding optimal power-allocation problem for outage
capacity maximization, in the case of multiple parallel commu-
nication channels with two-time-scale fading properties (where
we can also allow the slow-fading gain to be a discrete random
process and the power-allocation policy to be probabilistic), is
complex and is beyond the scope of this paper. This problem
will be treated rigorously in a subsequent paper.

Theorem 5: The outage probability is minimized by the op-
timal power-allocation solution to Problem P3a

otherwise
(14)

where . Similarly, the outage ca-
pacity is given by , such that and is
given by .

Proof: It is easy to show that the BEC within the service
set should be exactly , since if it is greater than for some
subset of the service set, the service set could be expanded by
redistributing power [since the BEC is an increasing function
of ], such that the average power constraint is satisfied,
thus reducing outage probability. Similarly, the optimal power-
allocation solution must also satisfy the average power
constraint with equality, otherwise additional power could be
invested in enlarging the service set. The particular form of the
solution , as given above by Theorem 5, thus follows
easily.

IV. SIMULATION RESULTS

In this section, we present some simulation studies conducted
with a single-user channel. The slow-fading gain is distributed
with a lognormal distribution (standard for shadow fading), such
that is distributed with mean 0 and variance .
The fast-fading gain is exponentially distributed with mean 1
(Rayleigh fading). The minimum basic rate is taken to be

b/s/Hz. The maximum outage probability is constrained to be
is varied between 11 and 14 dB.

Fig. 2 shows how the various capacity measures increase with
increasing signal-to-noise ratio (SNR). The SNR is computed
as . As it can be seen, capacity with outage
achieves a compromise between ergodic capacity and outage
capacity, the gap between ergodic capacity and capacity with
outage decreasing with increasing average transmission power.
What is interesting is to observe that the suboptimal power-al-
location solution results in nearly optimal performance.
Thus, one can use the easily computable solution (as op-
posed to ) in order to achieve good capacity performance
with the same outage constraint.

Fig. 2. Various capacity plots against P =� .

V. CONCLUSION

In this paper, we have studied the power-control problem for
wireless channels from an information-theoretic perspective.
Integral to the developments was the use of a two-time-scale
fading model which incorporated slow fading due to distance and
shadowing effects, and fast fading due to multipath propagation.
We assumed that the transmitter had knowledge of the slow-
fading gain and the statistic of the fast fading, but did not
know the instantaneous value of the fast-fading component.
Power-control schemes were thus designed to exploit knowledge
of the slow fading. We considered various notions of capacity,
including ergodic capacity, outage capacity, and capacity subject
to a service outage constraint, developing optimal power-
allocation strategies in each case.

Extensions of this work are currently being considered for
parallel channels, as well as to the case of multiaccess channels
with applications to opportunistic scheduling.

APPENDIX I
PROOF OF LEMMA 3.1

In this proof, to keep notations simple, we use instead of
. It is easy to work out that [with ]

Using the fact that , and the two standard inequalities
, for , it

follows that . Thus is a concave
function of .

APPENDIX II
PROOF OF LEMMA 3.2

Notice that (6) can be written as
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Define . First, one can easily check
that for , . Notice that

Using the continued fraction expansion of (see [23]),
one can write for

which implies that , for . Therefore,
is a strictly monotonically increasing function

for . Also, it is straightforward to show that for
and as . Therefore, for every given
, (6) has a unique fixed-point solution .

APPENDIX III
PROOF OF LEMMA 3.3

1)We need the following proposition involving the exponen-
tial integral function .

Proposition 1: For

is an increasing function of . As

It also follows that

for .
Proof: In this proof, we assume . Let us denote

By evaluating one gets that a necessary condition for
is

which implies [noting that ]

The inequality of the left-hand side (LHS) is trivial to prove,
since . The right-hand side (RHS) inequality
is rather tricky to prove. One proof based on a continued fraction
expansion of [24] is as follows:

(15)

It is then straightforward to show (working upwards from the
lowest level shown) that

where the first inequality follows from the continued fraction
expansion, and the second inequality follows after some tedious
algebraic manipulation. This implies that

is an increasing function of for .
Notice also trivially that

for . Using the asymptotic expansion for [23],
one can show that

as . This also implies that

for .
From Lemma 3.2, satisfies the following equation

for :

(16)

This implies that for

Rearranging, one can write

Since , it is easy to see that the RHS of
the above equation is positive. We now show that

By rearranging (16), one can easily show that the LHS of the
previous inequality is identical to
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It can be shown that

for (see Proposition 1). Thus, for
and 1) is proved.

2) As increases, decreases [from part 1)], hence
as . Therefore, .

Similarly, as from above, decreases strictly
monotonically. As , as .

APPENDIX IV
PROOF OF THEOREM 1

When , solution (8) is obvious. When
, the problem can be translated to the fol-

lowing problem.
Maximize with respect to subject to

and , .
Notice that from Lemma 3.1, is a concave func-

tion of . Therefore, Problem P2a has a concave objective
function and linear or concave constraints. Then is
the optimal solution iff it satisfies the Kuhn–Tucker conditions
[25].

Using a Lagrange multiplier , we define the La-
grangian

Define to be the union of the sets
and . It is then straightfor-

ward to show that when

and

when . Since is unique and positive
(Lemma 3.2), and for , the Kuhn–Tucker
conditions are satisfied. Therefore, is the optimum
solution to Problem P2a.

APPENDIX V
PROOF OF THEOREM 2

The proof of this theorem is based on a two-stage construc-
tion process provided in [7]. To avoid repetition, we summa-
rize most of the proof. However, there are certain intermediate
results needed, which are not straightforward to prove. More
details are provided for these results.

Suppose there is an arbitrary feasible power policy for
Problem P2 given by with service set and long-term
average rate , with and . Then,

another policy can be constructed by letting in
Problem P2a, such that [for ]

otherwise
(17)

where and is the solution to
. For

otherwise.
(18)

is obviously feasible and achieves a higher long-term av-
erage rate than , since achieves the highest average rate
among all policies whose service sets contain .

Now define the following power policies over the entire space
of the slow-fading gain :

(19)

Also define the set (over which )
and . Notice that can also be

written as

(20)

where is the indicator function taking value 1 when is true,
and 0 otherwise. Now construct another power-allocation policy

(21)

where and

(22)

Denote the average rates achieved by and as and
, respectively. Then, we have the following lemma.
Lemma 5.1: The power-allocation policy has the fol-

lowing properties:

1) ;
2) ;
3) ;
4) .

Proof: Proofs of 1) and 2) are trivial (see [7]) for details.
Proofs of 3) and 4) require Proposition 2 and Proposition 4. The
proof of Proposition 2 is algebraically rather complex and is
provided in sufficient detail, whereas Proposition 4 is directly
quoted from [7].

Proposition 2: The power-efficiency function given by

(23)

is an increasing function of .
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Proof: Using the fact that satisfies (6), one can
(after some algebraic manipulation) rewrite as

where is a generic constant. For , as at
, . Now we need to show that is an

increasing function of for where . Denoting
and

, notice that at . Note also that
both and are positive for . It is obvious that

is an increasing function of for . The same can
be said about , by observing that

, which is positive from
Proposition 1 and the fact .

Now it is straightforward to derive that

Clearly, from Proposition 1

We also know from Proposition 1 that

is an increasing function of for . Hence, we just need to
show that

is an increasing function of for , which is the following
proposition.

Proposition 3: For

is an increasing function of .
Proof: The proof of this is similar to that of Proposition

1. Writing

one can (after some algebra) show that
implies

This implies

Noting again that

one needs to now show that

for . The proof of this is again based on the continued
fraction expansion (15), which leads to

This completes the proof.
Therefore, we have shown that is a

positive increasing function of for , and the proof is
complete.

Proposition 4: For two disjoint sets , , let be
an arbitrary function, such that ,

. For any nonnegative function satisfying
, we have

Now we continue our proofs of parts 3) and 4) of Lemma 5.1.
Proof of 3): Define such that

and are two disjoint sets. The average
rate of can be expressed as

Using the definition of the power-efficiency function (23), one
can write

where . From a similar expres-
sion for , we finally get

Since (see [7]), by Proposition 2, Proposition 4, and
(22), we get .

Proof of 4): By repeating the analysis in [7], it can be
shown that ,
which is equal to

Note that when or .
Since from Lemma 3.3, is an increasing function of , it
is obvious that is a decreasing function of , and hence,

is an increasing function of . Proposition 4 now
implies that .
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Thus, starting from any arbitrary feasible power allocation
, one can construct a better power-allocation policy ,

such that . This proves Theorem 2.
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