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Binary Power Allocation in Symmetric
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Abstract—The Wyner interference network is a popular model
used in research on cellular networks due to its simplicity and
analytical tractability. In this paper, the optimal power allocation
strategies in symmetric one- and two-sided Wyner models are
investigated. We determine a sufficient condition for binary power
control (BPC) to be optimal that can be applied to the one-sided
symmetric model. We consider binary power schemes for the
symmetric two-sided Wyner network. Using a method of group-
ing links and performing a piecewise comparison of the group
rates, we are able to determine the optimal power policy that
maximizes the network sum rate. The result of the optimization
can be expressed as follows for both types of networks: When the
interfering channel gain

√
ε is small, it is optimal (in the class of

binary schemes) to have all links on; otherwise, alternate links are
switched off to remove interference. We characterize the critical
values of ε where the transitions occur.

Index Terms—Wireless networks, multiple-access interference,
power control.

I. INTRODUCTION

IN the past two decades or so, the interest in cellular and
wireless networks has grown, as traffic shifts from voice-

centric to data-centric. To this end, two broad approaches have
been taken by researchers in this area. The first is to examine
models that incorporate effects like path loss, fading and user
locations in as realistic a manner as possible. However, such
an approach tends to rely heavily on numerical experiments
and simulations, where results can be very case-specific and
from which general conclusions are not easy to draw. The other
approach is to investigate simplified models, which may pro-
vide analytical insights into optimal network behavior, although
further investigation is then needed to test these insights against
more realistic models.

Manuscript received December 10, 2013; revised May 2, 2014; accepted
July 18, 2014 Date of publication July 29, 2014; date of current version
December 8, 2014. This work was supported in part by the Australian Research
Council under Grant DP0984862 and in part by the CSIRO Macquarie Uni-
versity Chair in Wireless Communications through the Science and Industry
Endowment Fund. This paper was presented in part at the IEEE International
Conference on Communications, Cape Town, South Africa, May 2010. The
associate editor coordinating the review of this paper and approving it for
publication was L. K. Rasmussen.

N. Badruddin is with the Department of Electrical and Electronic Engi-
neering, Universiti Teknologi PETRONAS, 31750 Perak, Malaysia (e-mail:
nasreen.b@petronas.com.my).

J. Evans is with the Department of Electrical and Computer Systems En-
gineering, Monash University, Clayton, Vic. 3800, Australia (e-mail: jamie.
evans@monash.edu).

S. V. Hanly is with the Department of Engineering, Macquarie University,
Sydney, N.S.W. 2109, Australia (e-mail: stephen.hanly@mq.edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2014.2343619

Fig. 1. N -link symmetric Wyner interference networks, with direct channel
power gains normalized to 1 and interfering channel power gains represented
by ε. (a) One-sided Wyner model. (b) Two-sided Wyner model.

One problem that is particularly difficult to handle analyti-
cally is rate maximization in interference networks where each
transmitter has a power constraint. This problem is non-convex,
so recent attempts have been made to study simplified models
with additional structure to render them amenable to optimiza-
tion. Recently, analytical sum-rate maximization was achieved
for a symmetric network of interfering links, in which all links
interfere equally with each other, and the power constraints on
each transmitter are identical [1].

In the present paper, we consider simplified symmetric mod-
els, but this time we only allow local interference coupling
between the links. This local coupling reflects the reality that in
real-world networks the main interference comes from nearby
links, not from links that are far away. We consider two different
symmetric models of linear array type: In the first, the interfer-
ence only comes from one other link (say, from the left side), in
the second model the interference is two-sided. The link gains
for symmetric one-sided and two-sided networks are depicted
in Fig. 1(a) and (b), respectively. For both models, we assume
that all transmitters have the same power budget.

One question that we would like to answer is whether or not
so-called binary power control is optimal for these symmetric
networks. Binary power control refers to the restriction that
each link can only use one of two available power levels: either
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the link is completely switched off, or the link is allowed to be
on, but only at full power. It was shown in [2] that for arbitrary
two link interfering networks, with arbitrary power constraints,
the optimal power control is binary, but they also showed that
this is no longer the case in general for an arbitrary number of
links. In [1] we showed that binary power control is optimal
for an arbitrary number of links in the very restricted class of
a symmetric network of interfering links. In fact, it is optimal
for either all links to be on (full re-use) or just one link to be on
(a scheduled link) in such a network. Clearly, such a result will
not hold for the one-sided and two-sided models investigated
in the present paper, since these models allow re-use: In both
models it is clearly better to have every even-numbered link on,
with odd-numbered links off (or vice versa) than to have just
one link on.

In the present paper, we wish to ascertain whether or not the
optimal power control is binary, and, furthermore, we want to
find the optimal power control analytically. Unfortunately, even
for these simple networks, proving optimality is not straight-
forward, and we have only had partial success: We do prove
the optimality of binary power control for the one-sided model.
For the two-sided model, all the numerical evidence we have
accumulated points to the optimality of binary power control,
but we have no mathematical proof of this result. Given the one-
sided result, and the favorable numerical evidence for the two-
sided case, we restrict attention to finding the optimal binary
power controls for these networks. Note that the assumption
of binary power control makes the problem combinatorial, but
not necessarily simple: in a network with N links there are
2N potentially optimal combinations of on–off allocations to
consider.1 Under the assumption of binary power control, we
solve the rate maximization problems for both the one-sided
and two-sided symmetric networks.

In this paper, we use the term “Wyner networks” to denote
one-sided and two-sided linear array interference models. This
is in respect to Wyner’s seminal work on the Shannon-capacity
of cellular networks [4], and it is by now established practice to
describe such simplified networks as “Wyner models”: Many
authors have since worked on problems related to Wyner-type
interference networks. It is important to emphasize here that in
the present paper we are not considering the Shannon-theoretic
capacity under base station cooperation of such models a la
Wyner, but instead we treat the interference from adjacent links
as Gaussian noise. Also, we do not explicitly treat cellular
networks at all: If we are to think of each link as being a cell,
then it is a model for a single channel in a cellular network, with
co-channel interference from the nearby cells.

It has been shown in [5] that binary power control is optimal
in multiple access channels (when interference is treated as
noise). This is true regardless of the channel gains in the net-
work. This result does not generalize to arbitrary interference
networks [2], and nor even to non-symmetric Wyner models
[6], but in this paper we show that it is true for the symmetric
one-sided Wyner models, and we conjecture that it is true for
the symmetric two-sided model also.

1But clearly there is a trellis structure that can be exploited in numerical
optimization, see [3].

The paper is organized as follows. In Section II, we describe
the two types of Wyner models investigated, assumptions made
and the optimization problems to be solved. In Section III we
look at the specialized problem of binary power optimization
where the transmit powers come from a set of two power values:
on or off. We present the optimal binary power control policies
for the one and two-sided models in Section III. In Section IV
we investigate the question of whether binary power control is
optimal for these models, and in Section V, we consider some
possible extensions. Section VI presents our conclusions.

II. NETWORK DESCRIPTION AND PROBLEM FORMULATION

A. The Symmetric One-Sided Wyner Model

The network we first consider is an extension to the one-sided
interference channel [7] consisting of a set of N links, L =
(l1, . . . , lN ) where N ≥ 3. The links are arranged in a ring,
with each link interfering with the link immediately to the right
of it. It is assumed that interference is treated as Gaussian noise,
and each link has an individual maximum power constraint,
Pmax. The network is depicted in Fig. 1(a).

In a symmetric one-sided Wyner interference network, the
direct channel gains are assumed to be the same for all the
links, and so are the interfering channel gains (usually taken
to be smaller than the direct channel gain). Without loss of
generality, we take the direct link gain to be unity, so Pmax

is also the maximum allowable transmit power (in appropriate
units), whereas the interfering channel gain is denoted by the
parameter,

√
ε. Therefore, the received signal of li can be

expressed as

yi = xi +
√
εxi−1 + zi (1)

where xi is the signal from its own transmitter, xi−1 is the
signal from its interfering neighbor, and zi is white Gaussian
noise with unit variance. In Fig. 1(a) the direct and interfering
transmissions are shown using continuous and dashed arrows,
respectively.

Denoting the transmit power vector as P = (P1, P2, . . . ,
PN ), the problem to be investigated is finding the optimal
power scheme which maximizes the sumrate of the network,

max
P

Csum(N, ε,P)

s.t. 0 ≤ Pi ≤ Pmax, ∀i = 1, . . . , N. (2)

For the symmetric one-sided Wyner interference network, the
sumrate is defined as

Csum(N, ε,P) =
N∑
i=1

C

(
Pi

1 + εP−
i

)
, (3)

where Pi is the power of li, while P−
i represents the power

of link (i− 1) mod N . Throughout this paper, we also use the
notation: C(x) = log(1 + x).
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B. The Symmetric Two-Sided Wyner Model

The other network studied in this paper is the symmetric
two-sided Wyner interference network, shown in Fig. 1(b).
Unlike the one-sided Wyner model, each link in the two-sided
version causes interference to and receives interference from
two neighboring links. We make the same assumptions as those
made in the one-sided Wyner model.

The received signal at li has an additional term to that in (1)
to account for the additional interfering signal from li+1:

yi = xi +
√
ε (xi−1 + xi+1) + zi. (4)

The power allocation problem is also (2), but with the sum-
rate function for the two-sided Wyner network defined as

Csum(N, ε,P) =

N∑
i=1

C

(
Pi

1 + ε
(
P−
i + P+

i

)
)
. (5)

Notice that the SINR term in (5) has an additional interference
term in the SINR, where P+

i stands for the power from link
(i+ 1) mod N .

III. BINARY POWER CONTROL (BPC)

The problem defined in (2) is to maximize the sumrate over
all continuous values of power in the range [0, Pmax]. In this
section we define a more specialized optimization problem
where we restrict the allowed power to come from the binary
set {0, Pmax}. We use the term binary power control (BPC) to
refer to this kind of power control and a power scheme which
only uses these two values (on and off) is called a binary power
scheme [2]. If we restrict to consider only BPC schemes, the
optimization problem of (2) reduces to:

max
P

Csum(N, ε,P)

s.t. Pi ∈ {0, Pmax}, ∀i = 1, . . . , N (6)

which is a combinatorial optimization problem. When a link is
switched on, its rate depends only on the number of interfering
neighbors which are simultaneously switched on. Therefore,
the link rate can be expressed as

rk(ε, Pmax) = C

(
Pmax

1 + kεPmax

)
, (7)

where k represents the number of active interfering links. In
the case of the one-sided Wyner network, k ∈ {0, 1} as each
link can be subjected to interference from at most one other
link, whereas for the two-sided model, k ∈ {0, 1, 2}. Note that
r0(ε, Pmax) = r0(Pmax) is constant with respect to ε.

The optimality of the different power schemes will depend on
the values of ε and N . Since ε affects which power scheme is
optimal, it is useful to define some critical values, about which
the nature of the optimal solutions will be seen to change. We
consider the solutions in ε to the following two equations:

2r1(ε, Pmax)− r0(Pmax) = 0, (8)

2r2(ε, Pmax)− r0(Pmax) = 0. (9)

Both r1(ε, Pmax) and r2(ε, Pmax) are monotonically de-
creasing functions of ε with 2r1(0, Pmax) > r0(Pmax) and
2r2(0, Pmax) > r0(Pmax). Hence, the solutions of (8) and (9)
are unique and can be explicitly computed. We denote the
solution to (8) by ε�(Pmax), which is given by

ε�(Pmax) =

√
1 + Pmax

Pmax
. (10)

The solution to (9) can be computed to be

ε =
1

2
ε�(Pmax). (11)

These two values will be shown to be critical values of ε
for the one-sided and two-sided network models, respectively.
Clearly, ε�(Pmax) is the critical value of ε when the alternating
“on–off” pattern of link activation exactly equals the all-links-
on activation, in the case of N even. The critical value of ε in
the two-sided model is exactly half this value.

A. Factoring Schemes Into Groups

In an N -link network, even with just two power choices per
link, there are still 2N possible power vectors, which makes
exhaustive search computationally intractable. Instead, we look
for structure in the problem to reduce the search space down to
a small number of choices that can readily be compared.

We will represent possible power allocation vectors by
strings of length N taken from the binary alphabet {0,1},
where “0” represents the corresponding link being “off” and
“1” represents it being “on” and operating at full power. We
will also consider strings of smaller length that represent power
allocations to subsets of links. For a string X of 1s and 0s, Xn

is a string of n X’s in a row, where n ≥ 0. So X0 is the null
string, X1 is the string X , X2 is the concatenation of two X’s
in a row, etc.

Amongst all the possible strings of length N , we will single
out three particular strings that we will see later contain all the
potentially optimal schemes. Power Scheme 1 is the string 1N

which represents all links being on. Power Scheme 2 has two
representations depending on whether N is even or odd. When
N is even, Power Scheme 2 is the string (10)N/2; when N is
odd (N ≥ 3) it is the string (10)(N−3)/2110. Power Scheme 3
is the string (10)(N−3)/2100 which is defined when N is odd,
N ≥ 3. Both Schemes 2 and 3 can be factored into substrings
of the form 10, 110, and 100. Note that re-arranging these
substrings in different orders does not affect the sum rate, and
we will consider all such re-arrangements as being equivalent
to each other. Thus, Power Schemes 2 and 3 are unique (re-
spectively) modulo any such rearrangement of substrings 10,
110, and 100. It is clear that Power Scheme 1 corresponds to
“full reuse” and Power Scheme 2 represents “half reuse” when
N is even, and Power Schemes 2 and 3 represent two different
versions of “half reuse” when N is odd.

A way to show that a particular power allocation is subop-
timal is to construct a similar power allocation, using a small
change to the first one, that improves the sum-rate. This enables
us to obtain necessary conditions for optimality, which we
enumerate below.
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1) Necessary Conditions for Optimality: All these condi-
tions are valid for both the one-sided and two-sided interference
models.

1) No long substring of consecutive 0s: A scheme with more
than two consecutive zeros (more than two adjacent links
switched off) cannot be optimal. The substring 000 can
be replaced by 010 improving the overall sum-rate.

2) No 00 and 11 in the same optimal scheme: Consider
a power allocation that contains two substrings, namely
00 and 11. We can construct a new power allocation
from this one, by removing one of the links that are 0
(switched off) and adding a link, also 0 (switched off)
placed between the two previously adjacent links that
were both 1 (switched on). Thus, the new network has
a substring 0, and another substring 101. In this case, the
sum-rate has clearly increased, because the interference
between the two 1s has been removed.

3) No duplicate of substring 100: Consider a string with
two substrings, both 100. If they are located adjacent to
each other, then there is a substring 100100, which cannot
be part of an optimal allocation, since we can replace it
with 101010, for a higher sum-rate. On the other hand,
assume that there are two substrings, both 100, but not
adjacent, in an optimum power allocation. Then by the
necessary condition 2), both substrings must be preceded
by a 0. The second substring 100 can therefore be moved
to immediately follow the first, without affecting the sum-
rate of the network. So without loss of generality, there is
a substring 100100. But, as shown above, this cannot be
part of an optimal allocation, which is a contradiction to
the optimality of the original scheme.

These conditions do not rule out arbitrarily long substrings
of consecutive 1s in an optimal allocation. For example, Power
Scheme 1 satisfies these conditions. However, a substring of
consecutive 1s, of length 2 or more, can only be followed by at
most a single 0. A single 1 can be followed by a 00, forming
a substring 100, but there can be no repetition of this substring
anywhere else in the optimal scheme.

2) Reducing the Set of Potentially Optimal Schemes: These
conditions actually tell us quite a lot about optimal power
allocations. Apart from the possibility that Power Scheme 1 is
optimal, all other potentially optimal schemes can be factored
into substrings of the form 100 or of the form 11n0 for n ≥ 0.
The factor 100 can appear at most once in an optimal scheme.
We use the term “factor” to denote these substrings because
they can be re-arranged without affecting the sum-rate. This is
because the zero at the end of each factor protects it, and the
following factor, from “inter-factor” interference. We view all
schemes with the same factors as equivalent, modulo such re-
arrangements.

We denote power allocation schemes that can be factored in
this way as “composite” schemes, precisely because they can be
so factored. An important feature of a composite scheme is that
its sum-rate can be calculated by adding up the sum-rates of the
component factors. Power Schemes 2 and 3 are both composite
schemes. The following lemma expresses what we have shown
thus far.

Lemma 3.1: An optimal power allocation is either Power
Scheme 1 or it is a composite scheme.

To reduce the set of potentially optimal schemes further, we
note that a simple way to show the sub-optimality of a particular
composite scheme is to take one of its factors and replace it with
another substring of the same length, also ending in zero, with
a higher sum-rate than the factor it is replacing. It turns out we
can also replace the factor with a group of all 1s (corresponding
to Power Scheme 1), as we show in the Proof of Lemma 3.3.
Using such comparisons, we can prove the following three
lemmas:

Lemma 3.2:
(i) One-sided model: An optimal composite scheme cannot

contain the factor 100. For ε �= ε�(Pmax), an optimal
composite scheme can have at most one factor 110.

(ii) Two-sided model: An optimal composite scheme can
have at most one of the factors 100 and 110 and cannot
have both 100 and 110 factors.

Proof: See Appendix A.
Lemma 3.3:
(i) One-sided model: For ε �= ε�(Pmax), an optimal compos-

ite scheme has no factor of the form 1n0 for n ≥ 3.
(ii) Two-sided model: An optimal composite scheme has no

factor of the form 1n0 for n ≥ 3.
Proof: See Appendix A.

Lemma 3.4:
(i) One-sided model: For ε �= ε�(Pmax), the optimal scheme

is either Power Scheme 1 or Power Scheme 2.
(ii) Two-sided model: The optimal scheme is either Power

Scheme 1, Power Scheme 2, or Power Scheme 3.
Proof: In either interference model, Lemma 3.1 shows

that an optimal scheme is either Power Scheme 1 or it is
composite. By Lemma 3.3 an optimal composite scheme can
have only factors 10, 110 or 100. In the one-sided model,
Lemma 3.2 shows that it cannot have factor 100, and 110
can appear at most once (when ε �= ε�(Pmax)). Thus, if N is
even, the only possibility is (10)N/2. If N is odd, the only
possibility is (10)(N−3)/2110. In both cases,2 these are Power
Scheme 2. In the two-sided model, Lemma 3.2 shows that it
can have at most one of 100 or 110. Thus, if N is even, the only
possibility is (10)N/2, which is Power Scheme 2. If N is odd,
the only possibilities are (10)(N−3)/2110 (Power Scheme 2) or
(10)(N−3)/2100 (Power Scheme 3). �

B. Optimal Binary Schemes

The results of Section III-A reduce the problem down to a
comparison of Schemes 1 and 2 in the case of the one-sided
network. The one-sided network case is particularly simple
because in this model there is a critical value of ε, namely
ε�(Pmax), independent of N , which governs which of Power
Scheme 1 or 2 is better. The symmetric two-sided network case
has been reduced to a comparison of Schemes 1, 2, and 3, when
N is odd, and a comparison of Schemes 1 and 2, when N is
even. The even N case is equally simple: there is again a critical

2In the one-sided case, we are assuming that ε �= ε�(Pmax).
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value of ε, namely (1/2)ε�(Pmax), independent of N , which
governs which of Power Scheme 1 or 2 is better. These results
are summarized in the theorem below which follows almost
immediately from Lemma 3.4. The slight technicality is for the
one-sided model when ε = ε�(Pmax) it is possible that schemes
other than Power Scheme 1 or Power Scheme 2 are optimal
(schemes containing two 110 factors for example). However
given the continuity of the objective function with respect to
ε, it is clear than Power Schemes 1 and 2 must be optimal at
this critical value of ε, even if they are not the only two possible
optimal schemes.

Theorem 3.1:

1) In the one-sided model, the optimal binary scheme de-
pends on the value ε in the following way:
a) For ε < ε�(Pmax) the unique optimal scheme is Power

Scheme 1.
b) For ε > ε�(Pmax) the unique optimal scheme is Power

Scheme 2.
c) For ε = ε�(Pmax) both Power Scheme 1 and Power

Scheme 2 achieve the maximum sum rate.
2) In the two-sided model, for the case N even, the optimal

binary scheme depends on the value ε in the following
way:
a) For ε < (1/2)ε�(Pmax) the unique optimal scheme is

Power Scheme 1.
b) For ε > (1/2)ε�(Pmax) the unique optimal scheme is

Power Scheme 2.
c) For ε = (1/2)ε�(Pmax) both Power Scheme 1 and

Power Scheme 2 achieve the maximum sum rate.

The two sided, odd N case is more complicated, and we elab-
orate on this case now. We compare Power Schemes 1–3. Each
scheme provides a sum-rate that is decreasing in ε. Therefore,
we can easily find the cross-over values of ε for each of the
schemes. To this end, define εS1,S2(N,Pmax) to be the unique
solution in ε to

Nr2(ε, Pmax) =
1

2
(N − 3)r0(Pmax) + 2r1(ε, Pmax)

and define εS1,S3(N,Pmax) to be the unique solution in ε to

Nr2(ε, Pmax) =
1

2
(N − 1)r0(Pmax).

We can also consider the cross-over ε for Schemes 2 and 3,
εS2,S3(N,Pmax), by solving

1

2
(N − 3)r0(Pmax) + 2r1(ε, Pmax) =

1

2
(N − 1)r0(Pmax).

(12)
However (12) reduces to (8), so εS2,S3(N,Pmax) = ε�(Pmax).

Note that ε�(Pmax) is independent of N , but
εS1,S2(N,Pmax) and εS1,S3(N,Pmax) do depend on N .
The cross-over values are such that for i = 1, 2, j = 2, 3, i < j,
if ε < εSi,Sj(N,Pmax) then Scheme i beats Scheme j, but if
ε > εSi,Sj(N,Pmax) then Scheme j beats Scheme i.

Now define the function

x̃(Pmax)=
log

√
1+Pmax

log
√
1+Pmax−log

(
1+ Pmax

1+2
√
1+Pmax

) . (13)

The following lemma characterizes the ordering relationship
between εS1,S2(N,Pmax) and εS1,S3(N,Pmax).

Lemma 3.5: If N is odd and N < x̃(Pmax) then

ε�(Pmax) < εS1,S3(N,Pmax) < εS1,S2(N,Pmax). (14)

If N is odd and N > x̃(Pmax) then

1

2
ε�(Pmax) <εS1,S2(N,Pmax)

<εS1,S3(N,Pmax)

<ε�(Pmax). (15)

Proof: See Appendix B. �
A consequence of Lemma 3.5 is the following theorem:
Theorem 3.2: For the two-sided network, N odd: If

N < x̃(Pmax) then
1) for ε < εS1,S3(N,Pmax), Power Scheme 1 is optimal
2) for ε > εS1,S3(N,Pmax), Power Scheme 3 is optimal
If instead N > x̃(Pmax) then
1) for ε < εS1,S2(N,Pmax), Power Scheme 1 is optimal
2) for εS1,S2(N,Pmax) < ε < ε�(Pmax), Power Scheme 2

is optimal
3) for ε > ε�(Pmax), Power Scheme 3 is optimal

Proof: If N is odd, and N < x̃(Pmax), we have from
(14) that

εS2,S3(N,Pmax) <εS1,S3(N,Pmax)

<εS1,S2(N,Pmax)

so if ε < εS1,S3(N,Pmax) then Scheme 1 beats both Schemes 2
and 3, and if ε > εS1,S3(N,Pmax) then Scheme 3 beats both
Schemes 1 and 2.

If N is odd, and N > x̃(Pmax), we have from (15) that

εS1,S2(N,Pmax) <εS1,S3(N,Pmax)

<εS2,S3(N,Pmax),

so if ε < εS1,S2(N,Pmax) then Scheme 1 beats both Schemes 2
and 3; if εS1,S2 < ε < εS2,S3(N,Pmax) then Scheme 2 beats
both Schemes 1 and 3; and if ε > εS2,S3(N,Pmax) then
Scheme 3 beats both Schemes 1 and 2. �

The two different types of behavior, depending on whether
N is smaller or larger, are illustrated in Fig. 2(a) and (b). For
example, if Pmax = 100, then ε� = 0.1005, and x̃ = 4.1191.
When N = 3 < x̃, then εS1,S3 = 0.1317 > ε� and the optimal
power scheme goes from Power Scheme 1 to Power Scheme 3
as ε is increased above εS1,S3. On the other hand, if we
look at the case of N = 5 > x̃, εS1,S2 = 0.0887 < ε�, and the
transition of the optimal power scheme as ε is increased, is
Power Scheme 1 to Power Scheme 2 (at ε = εS1,S2) to Power
Scheme 3 at ε = ε�.

C. Discussion of the Odd Links Case for the
Two-Sided Network Model

Recall that in the even-N two-sided model, there is a single
switch from Power Scheme 1 (full re-use) to Power Scheme 2
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Fig. 2. Sumrate of different power schemes when Pmax = 100. In (a), N =
3, εS1,S3 = 0.1317 > ε� and the optimal power scheme transitions from
Power Scheme 1 to Power Scheme 3. In (b), N = 5, εS1,S2 = 0.0887 < ε�

and the optimal power scheme transitions from Power Scheme 1 to Power
Scheme 2 to Power Scheme 3.

(half reuse) at ε = (1/2)ε�(Pmax). When N is odd there are
two half re-use schemes: Power Schemes 2 and 3. We would
expect that as N grows large, there should be only weak depen-
dency on the polarity of N , and therefore that the switchover
value from full reuse to half re-use should occur at approxi-
mately the same critical value. Indeed, we have the following
lemma:

Lemma 3.6: εS1,S3(N,Pmax) → (1/2)ε�(Pmax) as N ↑ ∞.
Proof: See Appendix C. �

From (15), we obtain
Corollary 3.1: εS1,S2(N,Pmax) → (1/2)ε�(Pmax) as

N ↑ ∞.
Thus, for large N , N odd, we can say that full re-

use is optimal for ε � (1/2)ε�(Pmax) and half-reuse is op-
timal for ε � (1/2)ε�(Pmax), very similarly to the even N
case. Note, though, that for εS1,S2(N,Pmax) < ε < ε�(Pmax),
Power Scheme 2 is optimal, but for ε > ε�(Pmax) Power
Scheme 3 is optimal, so the type of half-reuse scheme has a
transition at ε = ε�(Pmax).

However, if N is fixed, and Pmax is large, the situation is
different. When Pmax is large, we have

x̃(Pmax) ∼
1

2 ln 2
ln(1 + Pmax)

which grows to infinity with Pmax. Thus, for N odd,
with Pmax large, we have Power Scheme 1 optimal for
0 < ε < εS1,S3(N,Pmax) and Power Scheme 3 optimal for
ε > εS1,S3(N,Pmax). Note that by Lemma 3.5, ε�(Pmax) <
εS1,S3(N,Pmax). If N is also quite large, then we can say
that the cross-over from full reuse to half reuse occurs at
ε ≈ ε�(Pmax) which is double the value that occurs if we just
increase or decrease N by 1, when the cross-over value to half
reuse occurs at (1/2)ε�(Pmax). Thus, there is a discontinuity
in behavior as we vary N , due to the effect of even or odd
parity of the network as a whole, when the SNR is very large.
This fact is interesting in itself, and is a pointer as to why the
general problem (when Pi is not restricted to be binary) might
be difficult to solve.

IV. THE OPTIMALITY OF BINARY POWER CONTROL

So far in this paper we have assumed that binary power
control is to be employed. But is it optimal? The answer is
firmly positive in the case of the symmetric one-sided model,
as we now show. We present a more general result: a sufficient
condition for BPC to be optimal, which clearly implies the
optimality of BPC for the one-sided model.

A. A Sufficient Condition for BPC to be Optimal and
Application to the One-Sided Model

In this section, we consider more general models than just the
one-sided or two-sided symmetric models: Consider a network
consisting of N links, and let N = {1, 2, . . . , N} be the index
set of the links in the network. Also, denote link k and its
corresponding power as lk and Pk, respectively, with k ∈ N .
We wish to optimize the power of the links in the network,
P = {P1, . . . , PN} to maximize the sumrate of the network
given that each link, has a maximum power constraint, i.e.,
0 ≤ Pk ≤ Pk,max. The optimization problem is given as

max
P

Csum(P) s.t. 0 ≤ P ≤ Pmax, (16)

where

Csum(P) =
∑
i∈N

log

(
1 +

ηiPi∑
j∈Ji

εj,iPj + σ2
i

)
. (17)

The parameters
√
ηi and σ2

i are the direct channel gain and
noise power of link i, respectively. The set Ji is an index set of
all the links interfering with link i, with

√
εj,i being the inter-

fering channel gain of link j to link i. The vector Pmax is the
maximum power vector, i.e., Pmax = {P1,max, . . . , PN,max},
where link i has maximum power level Pi,max.

Further assume that the network has a subset of links with
index set L ⊆ N , such that a link whose index is in L causes
interference to only one other link. In other words, we define a
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mapping m : L → N , with the interpretation that t = m(s) is
the index of the link that suffers interference from link s. There
are only two link-rates affected by Ps: the rate of ls and the rate
of lt. Denote the sum of the two link rates affected by Ps as

Rs(P) = log

(
1 +

ηsPs∑
i∈Js

εi,sPi + σ2
s

)

+ log

(
1 +

ηtPt

εs,tPs +
∑

j∈Jt\s εj,tPj + σ2
t

)

(18)

where Js is an index set of links interfering with ls and Jt is
the index set of links interfering with lt. Referring back to our
original objective function, we can write (17) as

Csum(P)=Rs(P)+
∑

i∈N\{s,t}
log

(
1+

ηiPi∑
j∈Ji

εj,iPj + σ2
i

)
.

(19)

Now let’s consider the following single-variable optimization
problem

Problem 4.1:

max
Ps

Csum(P) s.t. 0 ≤ Ps ≤ Ps,max (20)

where Csum(P) is given in (19).
The solution to Problem 4.1 is given in the following lemma.
Lemma 4.1: Let P �

s be the solution to Problem 4.1, then
P �
s ∈ {0, Ps,max}.

Proof: See Appendix D.
This leads to the following corollary which provides a suf-

ficient condition for binary power allocation to be optimal in
network sumrate maximization.

Corollary 4.1: If a link, ls causes interference to only one
other link and the objective is to maximize the sumrate of the
network, then the optimal value for Ps subject to 0 ≤ Ps ≤
Ps,max is either 0 or Ps,max (OFF or ON).

Proof: A direct corollary of Lemma 4.1. �
Corollary 4.2: If each and every link in a network only

causes interference to one other link in the network, then the
optimal power scheme for the whole network is binary.

Corollary 4.2 implies that binary power control is indeed
optimal for the one-sided Wyner network.

B. The Two-Sided Symmetric Model

Unfortunately, we cannot obtain the optimality of bi-
nary power control for the two-sided symmetric model from
Lemma 4.1. Nevertheless, we believe this to be the case: We
first attempted to solve the optimization problem using the KKT
conditions, similar to our previous work for the two-link inter-
ference channel in [8], since the two-link interference channel
is a special case of the two-sided Wyner network, with N = 2.
However, we were not successful in obtaining a solution using
the KKT conditions: The general case is a non-convex opti-
mization problem, and we have been unsuccessful in finding
any special structure to solve it. However, we have conducted

fairly exhaustive numerical searches to find the optimal power
vector, using finite, discretized power values for various-sized
networks.3 Numerical experiments using gradient search were
conducted to determine the existence of local maxima. From
these experiments, we found that all local maximum points
which are not one of Schemes 1–3 are still binary.

We therefore present the following conjecture.
Conjecture 4.1: The optimal power scheme which maxi-

mizes the sumrate of the symmetric two-sided Wyner network
is binary in nature.

We support this conjecture further here by proving it to be
true in the special cases of N = 3 and N = 4 links.

1) N = 3 and N = 4 Cases: The 3-link two-sided Wyner
model is exactly the same as the 3-link all interfering network
[1], since each link interferes will all other links within the
network. From that investigation it is found that for any number
of links, the optimal power scheme is either to have all links on
at maximum power or to have only one link on while all others
are switched off. Hence, we can conclude that the optimal
power scheme for a 3-link symmetric two-sided Wyner network
is binary.

For the 4-link Wyner model, we exploit the concavity of the
function h(x) = C(x/a) = log(1 + (x/a)) and the two link
results from [1], [9] to obtain the upper bound on the sumrate

Csum(4, ε,P) = 2

[
1

2

4∑
i=1

C

(
Pi

1 + ε
(
P−
i + P+

i

)
)]

≤ max

{
4C

(
Pmax

1 + 2εPmax

)
, 2C(Pmax)

}
.

(21)

When ε < (1/2)ε�(Pmax), the upper bound is 4C(Pmax/
(1 + 2εPmax)), which is achievable by having all transmitters
using power Pmax. If ε > (1/2)ε�(Pmax), the upper bound is
2C(Pmax), but this bound is achievable with the Alternate On-
Off power scheme. At ε = (1/2)ε�, the All-On and Alternate
On-Off power schemes are equally good. Hence, the optimal
power scheme for the 4-link two-sided Wyner network is also
binary. Further details can be found in [10].

2) Binary is Optimal When Interference is Strong Enough:
In the case of symmetric two-sided Wyner networks where the
number of links, N , is an even number, we can establish an
upper bound to the network sumrate using the results from the
symmetric one-sided Wyner network:

N∑
i=1

C

(
Pi

1 + ε(P−
i + P+

i )

)

≤ max

{
NC

(
Pmax

1 + εPmax

)
,
N

2
C(Pmax)

}
. (22)

When ε ≥ ε�(Pmax), the maximum sumrate for the sym-
metric one-sided Wyner network is (N/2)C(Pmax), which is
also achievable in the two-sided model using the Alternate

3It should be noted that these one and two-sided models have a certain
Trellis structure which makes them very amenable to numerical optimization
via dynamic programming [3].
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On-Off power scheme. Therefore we can conclude that for an
Even-N symmetric two-sided Wyner network, when ε ≥
ε�(Pmax), the maximum achievable sumrate is obtained with
binary power control.

V. EXTENSIONS

The models considered in this paper are very specialized,
and it is of interest to know how the results might extend to
more general networks. The underlying assumption is that the
network is symmetric in that the cross-gain is the same between
any two adjacent links.

A natural extension is to allow the cross-gains to be different.
If each cross-gain is chosen independently at random, then the
chance of getting a symmetric network is zero. What general
conclusions can be drawn from the symmetric case, if any?

One simple extension is to allow the cross-gains to deviate
slightly from the symmetric case. If we allow each cross-gain
to be different, then we can represent the network by a vector
of cross gains (εi,i−1, εi,i+1)

N
i=1. In the symmetric case, all the

parameters in the vector are the same, with common value ε.
If ε in our symmetric model is chosen at random from a

continuous distribution, then with probability 1, all 2N binary
power schemes achieve distinct sum-rates. We have character-
ized the particular binary power scheme that is optimal in this
paper, so all other 2N − 1 other binary power schemes achieve
strictly less sum-rate than the optimal binary scheme.

Now, if we continuously vary the channel gains of the N
links, the sum-rate of any of the binary power schemes will
vary continuously. For small perturbations of the channel pa-
rameters, it follows that the optimal binary power scheme in the
symmetric case will remain the optimal binary power scheme
after the small perturbation of the channel parameters.

In the one-sided model, we can make a stronger statement
since we know from Corollary 4.1 that binary power control is
optimal for this model, even when the cross-gains are distinct.
For small perturbations of the channel parameters, it follows
that the optimal power scheme in the symmetric case will
remain the optimal power scheme after the small perturbation.

These arguments show that our results are valid for scenarios
beyond the symmetric case that is the focus of this paper. There
can be positive probability of realizing such scenarios if link
gains are drawn at random from continuous distributions.

Another extension is to a fading model. For example, sup-
pose that the complex-valued, direct gain on link i, Hi,i, is
Rayleigh distributed, with |Hi,i|2 having mean 1. Suppose the
cross-gains Hi−1,i and Hi+1,i are i.i.d. Rayleigh, with |Hi−1,i|2
having mean ε. The ergodic channel capacity of link i, without
channel knowledge at the transmitter, and treating interference
as noise, is

E

[
log

(
1 +

|Hi,i|2Pi

|Hi−1,i|2Pi−1 + |Hi+1,i|2Pi+1 + σ2

)]
.

It is of interest to prove similar results for this symmetric,
fading model. Most of the arguments in this paper do not rely
on the specific form of the sum-rate function; what is more
important is the existence, uniqueness and ordering of critical

values of ε where various curves cross, and it will be of interest
to see if similar arguments can be applied in more general
settings, including the symmetric fading model mentioned here.

VI. CONCLUSION

In this paper, we have presented the results of sumrate
maximization in two symmetric Wyner network models. For
the symmetric one-sided Wyner model, using Lemma 4.1 and
Corollary 4.2, we were able to simplify the original optimiza-
tion problem by restricting the set of power levels to {0, Pmax}.
Using a method of grouping links and doing a piecewise
comparison of the rates of each group, we have characterized
completely the optimal power vectors for the one-sided model
in Theorem 3.1.

For the symmetric two-sided Wyner model, we have deter-
mined that in the case of 3- and 4-link models, the optimal
power schemes are binary. For models with N > 4, N even,
and for which ε is greater than ε∗(Pmax), then binary is optimal,
and the alternate on–off binary allocation is optimal. Numerical
evidence (not provided in this paper) suggests that binary is
always optimal for the two-sided symmetric model.

For the two-sided symmetric model we restrict our attention
to binary power allocations. If ε is less than the threshold
(1/2)ε�(Pmax), then the All-On power scheme is optimal. For ε
above this threshold, it is better to switch alternate links on and
off, respectively. This result is exact when N is even, and true in
the limit of large N , when N is odd. An exact characterization
is also obtained in the N odd case. The exact results for N odd
are more complicated, with more critical transitions, the values
of which depend on N , and whether or not the SNR is large.
The sensitivity to even or odd parity at high SNR suggests that
the general problem with continuous power levels may be quite
difficult to solve.

Although the models considered in this paper are simple and
not very realistic, they extend our understanding of power con-
trol in interfering networks, which is a difficult and generally
intractable area, yet of practical importance. Our results support
the view in [2] that binary power control schemes are generally
good for networks of interfering links, even if they are not
always optimal, although they do seem to be optimal in the
models considered in this paper. Finally, these models provide
a simple way to explain why cellular networks tend to be either
“CDMA-like”, with full re-use between cells, or “FDMA-like”,
with re-use partitioning between adjacent cells, and that the best
approach depends on the level of intercell interference between
the cells.

APPENDIX A
PROOF OF LEMMAS 3.2–3.3

In order to prove these two lemmas, we need to introduce two
additional critical values of ε, which we denote by ε̆(Pmax) and
ὲ(Pmax). These are the unique solutions to the equations:

3r2(ε, Pmax) = r0(Pmax), (23)

3r2(ε, Pmax) = 2r1(ε, Pmax) (24)
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respectively. The uniqueness of ε̆(Pmax) is immediate from
the fact that 3r2(·, Pmax) is decreasing, and its value can be
explicitly computed:

ε̆(Pmax) =
(1 + P

1
3
max)

(
(1 + Pmax)

1
3 + 1

)
2Pmax

. (25)

The uniqueness of ὲ(Pmax) follows from the following lemma,
which also characterizes the ordering of some of the critical
values of ε in this paper:

Lemma A.1:
1) ὲ(Pmax) is uniquely defined for ε > 0.
2) For ε < ὲ, 3r2(ε, Pmax) > 2r1(ε, Pmax), otherwise for

ε > ὲ, 3r2(ε, Pmax) < 2r1(ε, Pmax).
3)

ε�(Pmax) < ε̆(Pmax) < ὲ(Pmax). (26)

Proof: We show that there is only one positive solution in
ε to (24). Note that (24) is equivalent to the equation:

(1 + 2εPmax + Pmax)
3(1 + εPmax)

2

= (1 + εPmax + Pmax)
2(1 + 2ε, Pmax)

3 (27)

which can be written in polynomial form as a4ε
4+

a3ε
3 + a2ε

2 + a1ε + a0 = 0, where a4=−4P 5
max, a3=

−2P 4
max(Pmax+1), a2=P 3

max(P
2
max + 3Pmax + Pmax), a1 =

2P 2
max(Pmax + 1)(Pmax + 2) and a0 = Pmax(Pmax + 1)2.

Note that a4 and a3 are negative, while a2, a1, and a0 are
positive. Using Descartes’ Rule of Signs, since there is only
one change of sign in the polynomial coefficients, there is
exactly one positive root [11] to (27), and hence there can only
be one value of ὲ(Pmax), proving part 1). Part 2) then follows
by inspection.

To prove 3), note that

ε̆(Pmax)−ε�(Pmax) =
(1+P

1
3
max)

(
(1+Pmax)

1
3 +1

)
2Pmax

− (1+Pmax)
1
2

Pmax

=
(1+P

1
3
max)

(
(1 + Pmax)

1
6 −1

)2

2Pmax
>0.

(28)

If we fix Pmax and plot the three functions, 3r2(ε), 2r1(ε),
and r0 with respect to ε, clearly 3r2(0) > 2r1(0) > r0. Since
ε�(Pmax) < ε̆(Pmax) and ὲ(Pmax) is uniquely defined, then
ε�(Pmax) < ε̆(Pmax) < ὲ(Pmax) (See Fig. 3). This completes
the proof. �

The ordering of these critical ε values is illustrated in Fig. 3.
Proof of Lemma 3.2:

One-sided case: It is immediate that 100 cannot be a
substring in an optimal scheme, because we can replace it by
110 and increase the sum-rate.

Now suppose that an optimal scheme has 110 repeated twice.
Without loss of generality, we can move the two factors together

Fig. 3. The relationship between ε�, ε̆, and ὲ.

to form the group 110110 without changing the sum-rate. This
group achieves a sum-rate of 2r0(Pmax) + 2r1(ε, Pmax).

Suppose first that ε > ε�. Since r1(·, Pmax) is decreasing, we
have 2r1(ε, Pmax) < r0(Pmax), which implies 2r0(Pmax) +
2r1(ε, Pmax) < 3r0(Pmax). But 3r0(Pmax) can be achieved
by the group 101010, which contradicts the optimality of the
considered scheme.

Suppose instead that ε < ε� so that 2r1(ε, Pmax) >
r0(Pmax), which implies

2r0(Pmax) + 2r1(ε, Pmax) < r0(Pmax) + 4r1(ε, Pmax).

But r0(Pmax) + 4r1(ε, Pmax) can be achieved by the factor
111110 which is another contradiction.

Two-sided case: That the factor 100 cannot be repeated
more than once has been shown in Section III-A1, condition 2).

Now suppose that an optimal scheme has 110 repeated twice.
Without loss of generality, we can move the two factors together
to form the group 110110 without changing the sum-rate. This
group achieves a sum-rate of 4r1(ε, Pmax).

Suppose first that ε ≥ ε�. Since r1(·, Pmax) is decreasing, we
have 2r1(ε, Pmax) ≤ r0(Pmax), which implies 4r1(ε, Pmax) ≤
2r0(Pmax) < 3r0(Pmax). But 3r0(Pmax) can be achieved by
the group 101010, contradiction.

Suppose instead that ε < ε�. Lemma A.1 1) implies that
ε < ὲ(Pmax) and Lemma A.1 2) implies that 4r1(ε, Pmax) <
2r1(ε, Pmax)+3r2(ε, Pmax). But 2r1(ε, Pmax)+3r2(ε, Pmax)
can be achieved by the factor 111110, contradiction.

A very similar argument can be given for why 110 and 100
cannot both be in the optimal scheme. This completes the proof
of Lemma 3.2.

Proof of Lemma 3.3: Consider the factor 1m−10 m ≥ 4. We
will denote its sum-rate by ρ(m, ε, Pmax). We can compare its
sum-rate with the sum-rate of the same-sized group from both
Power Scheme 1, and Power Scheme 2.

For comparison with a group taken from Power Scheme 2,
the corresponding group is (10)m/2, when m is even, and
(10)(m−3)/2110, when m is odd. We denote the sum-rate of
this group by ρ̀(m, ε, Pmax).

For comparison with a group taken from Power Scheme 1,
we are considering the replacement of the final 0 in the factor
with a 1. However, this 1 will cause interference to the first
link in the factor that follows, which appears to complicate



6912 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 12, DECEMBER 2014

the analysis, since we lose the zero padding between factors.
However, we can compensate for this interference by replacing
it with interference added to the first 1 in the factor, and then
ignoring the interference to the following factor. To see that
this works in the one-sided case, note that the original sum-rate
of the factor is r0 + (m− 2)r1. The first link of the following
factor achieves a rate of r0. If we change the final link of the
considered factor to 1, then the new sum-rate is r0 + (m− 1)r1
and the first link of the following factor achieves r1. Thus the
total rate of all m+ 1 links is mr1 + r0 which is the same
as if there is no inter-factor interference, and the group of m
1’s (which replace the original factor) are in a circle, with
interference to link 1 from link m. The same argument applies
to the two-sided model.

Thus, the corresponding Power Scheme 1 group consists of
m 1’s, but we should think of this group as wrapped in a circle
so that each link receives interference from just one link to its
left, in the one-sided model, or from both adjacent links, in the
two-sided model. We denote the sum-rate of this circular group
by ρ̆(m, ε, Pmax) in both models, although the value will be
different in each case (see below).

One-sided model: In the one-sided model, we have

ρ(m, ε, Pmax) = r0(Pmax) + (m− 2)r1(ε, Pmax)

ρ̆(m, ε, Pmax) =mr1(ε, Pmax)

ρ̀(m, ε, Pmax) =

⎧⎨
⎩

m
2 r0(Pmax) m even
(m−1)

2 r0(Pmax)
+ r1(ε, Pmax) m odd

(29)

Note that all these functions are decreasing in ε.
To compare with Scheme 2, we compare ρ(m, ε, Pmax) with

the corresponding sumrate for a Scheme 2 group of size m, as
in (29). Whether m is even or odd, the unique ε that solves the
equation ρ̀(m, ε, Pmax) = ρ(m, ε, Pmax) is ε�(Pmax), as given
in (10). For ε > ε�(Pmax), ρ(m, ε, Pmax) < ρ̀(m, ε, Pmax).

We can also compare the factor sumrate ρ(m, ε, Pmax) with
the corresponding (circular) group rate of Scheme 1, using
the equation ρ̆(m, ε, Pmax) = ρ(m, ε, Pmax). The unique so-
lution to this equation is also ε�(Pmax). For ε < ε�(Pmax),
ρ̆(m, ε, Pmax) > ρ(m, ε, Pmax). It follows that the factor of
size m cannot be part of the optimal scheme in the one-sided
network model, unless ε = ε�(Pmax).

Two-sided case: We can use the same steps as above,
except that the corresponding sum-rates must be adjusted to
take account of two-sided interference. In this case, when
comparing the sum-rate of a factor of size m with the corre-
sponding (circular) group in Power Scheme 1, the sumrate of
the circular group is ρ̆(m) = ρ̆(m, ε, Pmax) = mr2(ε, Pmax).
When the factor size, m, is even, the corresponding Scheme-
2 group rate is ρ̀(m) = (m/2)r0(Pmax). When the factor size,
m, is odd, the corresponding Scheme-2 group rate is ρ̀(m) =
ρ̀(m, ε, Pmax) =((m− 3)/2)r0(Pmax) + 2r1(ε, Pmax). Note
that, as in the one-sided case, the functions ρ(m, ·, Pmax),
ρ̆(m, ·, Pmax), and ρ̀(m, ·, Pmax) are all decreasing functions.

In the case of m even, the equation ρ̆(m, ε, Pmax) =
ρ̀(m) = (m/2)r0(Pmax) reduces to 2r2(ε, Pmax) = r0(Pmax)
which has solution ε = (1/2)ε�(Pmax) defined in (11).

For m ≥ 4, the equation ρ(m, ε, Pmax) = ρ̆(m, ε, Pmax) re-
duces to

3r2(ε, Pmax) = 2r1(ε, Pmax), (30)

which has the unique solution ὲ(Pmax) defined in Lemma A.1.
From (9), (10) and Lemma A.1, we see that (1/2)ε� < ε� < ὲ.
It follows that for ε ≤ (1/2)ε�(Pmax), we have ε < ὲ and hence
ρ(m, ε, Pmax) < ρ̆(m, ε, Pmax). Thus, if ε ≤ (1/2)ε�(Pmax)
then a factor of size m ≥ 4 cannot be optimal.

Now consider m ≥ 4 and m even. It follows from (1/2)ε� <
ὲ that ρ̆(m, (1/2)ε�, Pmax) > ρ(m, (1/2)ε�, Pmax). But both
ρ(m, ·, Pmax) and ρ̆(m, ·, Pmax) are decreasing functions, so
when ε > (1/2)ε�,

ρ(m, ε, Pmax) <ρ(m,
1

2
ε�, Pmax)

< ρ̆(m,
1

2
ε�, Pmax)

= ρ̀(m)

=
m

2
r0(Pmax)

which shows that the factor of size m is beaten by the cor-
responding Scheme-2 group, and hence it can’t be part of an
optimal solution when ε > (1/2)ε�.

Now consider m ≥ 4 and m odd. The equation
ρ(m, ε, Pmax) = ρ̀(m, ε, Pmax) reduces to

2r2(ε, Pmax) = r0(Pmax), (31)

which has the unique solution ε = (1/2)ε�. Thus, for ε >
(1/2)ε�, this group is beaten by the corresponding Scheme-
2 group, and hence it can’t be part of an optimal solution
when ε > (1/2)ε�. We conclude that the factor of size m ≥ 4
cannot be part of the optimal scheme in the two-sided network
model.

APPENDIX B
PROOF OF LEMMA 3.5

Firstly, it is trivial to show that εS1,S3(N,Pmax) is given as

εS1,S3(N,Pmax)=
1

2Pmax

(
Pmax

(
√
1 + Pmax)(N−1)/N − 1

− 1

)
.

We begin by considering the case when N < x̃(Pmax), i.e.,

N <
log

√
1 + Pmax

log(
√
1 + Pmax)− log

(
1 + Pmax

1+2
√
1+Pmax

) .
After elementary algebra we obtain the equivalent inequality

√
1 + Pmax

Pmax
<

1

2Pmax

(
Pmax

(
√
1 + Pmax)(N−1)/N − 1

− 1

)

which implies

εS2,S3(N,Pmax) = ε�(Pmax)

<εS1,S3(N,Pmax). (32)
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Conversely, if N > x̃(Pmax), then ε�(Pmax) >
εS1,S3(N,Pmax).

Recall that the cross-over values are such that for
i = 1, 2, j = 2, 3, i < j, if ε < εSi,Sj(N,Pmax) then
Scheme i beats Scheme j, but if ε > εSi,Sj(N,Pmax)
then Scheme j beats Scheme i. It follows that if
εS2,S3(N,Pmax) < εS1,S3(N,Pmax) then εS1,S2(N,Pmax) >
εS1,S3(N,Pmax). For otherwise, we can choose ε such that
max{εS1,S2, εS2,S3} < ε < εS1,S3 which implies that for this
ε, Power Scheme 1 beats Power Scheme 3, Power Scheme
3 beats Power Scheme 2, and Power Scheme 2 beats Power
Scheme 1, which is a contradiction. Conversely, a similar
argument shows that if εS2,S3(N,Pmax) > εS1,S3(N,Pmax)
then εS1,S2(N,Pmax) < εS1,S3(N,Pmax).

Hence, if N < x̃(Pmax), then

ε�(Pmax) < εS1,S3(N,Pmax) < εS1,S2(N,Pmax),

as illustrated in Fig. 2(a). Conversely, for N > x̃(Pmax), a
similar argument shows

εS1,S2(N,Pmax) < εS1,S3(N,Pmax) < ε�(Pmax),

as illustrated in Fig. 2(b). Finally, we show that in this case,
(1/2)ε� < εS1,S2(N,Pmax). First, note that by Lemma A.1 in
Appendix A we have that (1/2)ε� < ὲ(Pmax) and hence

3r2

(
ε�

2
, Pmax

)
> 2r1

(
ε�

2
, Pmax

)
. (33)

Now, Power Scheme 2 achieves the value

1

2
(N − 3)r0(Pmax) + 2r1(ε, Pmax)

=
1

2
Nr0(Pmax)−

3

2
r0(ε, Pmax) + 2r1(ε, Pmax).

From (9), we have that

3

2
r0

(
ε�

2
, Pmax

)
=3r2

(
ε�

2
, Pmax

)
,

> 2r1

(
ε�

2
, Pmax

)
,

the last inequality following from (33). It follows that for
ε = (1/2)ε�, Power Scheme 2 achieves a sum-rate strictly
less than (1/2)Nr0(Pmax), whereas Power Scheme 1 achieves
exactly this value. Thus, for ε < (1/2)ε�, Power Scheme 1
achieves a larger sum-rate than Power Scheme 2. But Power
Scheme 1 and Power Scheme 2 achieve the same sum-rate at
ε = εS1,S2(N,Pmax). Thus, (1/2)ε� < εS1,S2(N,Pmax). This
completes the proof.

APPENDIX C
PROOF OF LEMMA 3.6

Using the definition of εS1,S3(N,Pmax) given in Appendix B
and performing a change of variables by letting x = 1/N ,

we get

lim
N↑∞

1

2Pmax

(
Pmax

(
√
1 + Pmax)(N−1)/N − 1

− 1

)

= lim
x↓0

1

2Pmax

(
(
√
1 + Pmax)

2+x − (
√
1 + Pmax)√

1 + Pmax − (
√
1 + Pmax)x

)

=
1

2Pmax

(
1 + Pmax −

√
1 + Pmax√

1 + Pmax − 1

)

=

√
1 + Pmax

2Pmax
=

1

2
ε�(Pmax). (34)

APPENDIX D
PROOF OF LEMMA 4.1

The objective function to be maximized is given in (19) and
we are only interested in optimizing one power variable, i.e.,
Ps. The following lemma provides the solution to Problem 4.1.

Lemma D.1: Consider the following optimization problem

max
x

[
log

(
1 +

x

A

)
+ log

(
1 +

C

x+B

)]
s.t. 0 ≤ x ≤ xmax. (35)

If A,B > 0, and C ≥ 0, then the above objective function is
maximized at either x = 0 or x = xmax.

Proof: Denote the objective function above as f(x), and
take the derivative:

∂f

∂x
=

1(
1 + x

A

) ( 1

A

)
+

1(
1 + C

x+B

) (
−C

(x+B)2

)

=
n(x)

d(x)
, (36)

where n(x) = x2 + 2Bx+ [B2 + C(B −A)] and d(x) =
(A+ x)(x+B + C)(x+B). Since A,B > 0, C ≥ 0, and x
can only take non-negative values up to xmax, hence d(x) > 0.
Observe that n(x) is a quadratic function, and has at most two
zero-crossing points. Also note that n′(x) > 0 and the roots
of n(x) are −B ±

√
C(A−B). For x ≥ 0, we can make the

following deductions based on the roots of n(x).

• If A < B, then both roots are complex and so n(x) does
not cross zero and is positive. The maximum of f(x) is
thus attained at x = xmax.

• If A = B, then we have a double root at x = −B, and the
function n(x) is positive. The maximum of f(x) is again
at x = xmax.

• If A > B and
√

C(A−B) ≤ B, then both roots are non-
positive and n(x) is positive. The maximum value of f(x)
is achieved at x = xmax.

• If A > B and
√

C(A−B) > B, then we have one nega-
tive and one positive root. Evaluating the second derivative
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at the positive root (denoted as x∗), we get

∂2f

∂x2

∣∣∣∣
x=x∗

=
d(x∗)n′(x∗)− n(x∗)d′(x∗)

(d(x∗))2

=
d(x∗)n′(x∗)

(d(x∗))2
=

n′(x∗)

d(x∗)
> 0

The root x∗ corresponds to a minimum point of f(x).
If 0 < x∗ < xmax, then the maximum value of f(x) is
attained at either x = 0 or x = xmax. If x∗ ≥ xmax, then
f(x) is maximum at x = 0.

Thus for all possible combinations of A, B, and C,
the maximum of f(x) is achieved at either x = 0 or at
x = xmax. �
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