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[10] —, “On identifying codes,” inCodes and Association Schemes, Proof subchannels heavily attenuate the transmitted symbols then it may
ceedings of the DIMACS Workshop on Codes and Association Schenigsexpected that the performance is poor. (In fact, one aim of this cor-

ser. DIMACS Series in Discrete Mathematics and Theoretical Compu ; ; ; P P i —_
Science, A. Barg and S. Litsyn, Eds., Nov. 1999, vol. 56, pp. 97_109Espondence is to investigate the validity of this intuition.) Similarly,

[11] T.W.Haynes, S. T. Hedetniemi, and P. J. Sl#fendamentals of Dom- it may be expected that there exists a favorable chalmesulting in

ination in Graphs New York: Marcel Dekker, 1998. exceptionally good performance. Thus, the effectiveness of a precoder
[12] G. Cohen, I. Honkala, S. Litsyn, and A. LobsteiGovering can be measured by the ratio of its best-to-worst performances, where
Codes Amsterdam, The Netherlands: Elsevier, 1997. best and worst are taken over some feasible set of channels. Alterna-
tively, the robustness of a precoder can be measured by its worst per-

formance.

Therefore, in order to design or compare linear precoders, it is useful
to understand the characteristics of channels over which linearly pre-
. coded OFDM systems achieve their best and worst performances. This
The Convex Geometry of Subchannel Attenuation correspondence presents a number of fundamental results contributing
Coefficients in Linearly Precoded OFDM Systems to this understanding. In doing so, the natural geometry of OFDM sys-
tems is also uncovered.
To facilitate further discussion, consider the following OFDM
system [3], [14], [17], [6] which uses frames of lengthand a cyclic

Abstract—Channels with spectral nulls are sometimes dubbed bad prefix of length L — 1, whereL is the length of the FIR channel

channels because they can cause poor performance in communication® € C" over which the OFDM system operates. Due to the cyclic
systems. This correspondence investigates the validity of this intuition prefix, it is necessary fon > L — 1. In the frequency domain, the
by studying the geometry of an orthogonal frequency-division multiplex  received symbold € C" are related to the transmitted symbols
(OFDM) system. It is shown that the subchannel attenuation coefficients X € C" by the equations

form a natural coordinate system for describing finite-impulse response
(FIR) channels in an OFDM framework. It is also shown that channels Y.=H,X,, k=0,....n—1 1)
with spectral nulls are geometrically significant; they form the faces whereH . is the attenuation in thth subchannel, and is given by
of the convex set of all subchannel attenuation coefficients. This novel 1 '
perspective makes it immediately clear why the worst performance of a —j2nik
linearly precoded OFDM system is achieved over a channel having the Hy = Z hie " (2)
greatest number of spectral nulls. The practical implications of these . i=0 )

results are discussed in the correspondence. All vectors are indexed from zero. In a linearly precoded OFDM
system, the transmitted symbols are a linear function ofiteeurce

symbolss € CP?, that is,

Jonathan H. MantgriMember, IEEE

Index Terms—Channel zeros, convex analysis, linear precoder, orthog-
onal frequency-division multiplex (OFDM), spectral nulls, worst case per-

formance.
X =Ps 3)

|. INTRODUCTION for some precoder matrik € C"*? with n > p.
. ) ] ) If the received symbol¥" are corrupted by additive white Gaussian
The European digital audio broadcasting (DAB) standard is basedgfise with unit variance then the mean-square error (MSE) of esti-
an orthogonal frequency-division multiplex (OFDM) framework [1]mating the source symbassusing the maximum-likelihood estimator,

[6], [7], [11]. An OFDM framework is the first line of defense againsi,nger the simplifying assumption that the receiver knows the channel
distortions caused by wireless communication channels because it Gfytectly, is given by

verts frequency-selective fading channels [5], [13] into a series of in- H .

dependent, frequency flat-fading subchannels. This limits the instan- tr {(P A(R)P) } (4)
taneous data loss to only those symbols transmitted over subchanmdisretr{-} is the trace operatof denotes Hermitian transpose, and
currently experiencing deep fades. Since, in a broadcast environmexith) is a diagonal matrix withkth diagonal element, indexed from
the frequencies at which these deep fades occur cannot be known byzére, equal to

transmitter, it is necessary to code each symbol over a number of sub- )

channels. One way of doing this is to use a linear precoder [4], [15], Ape(h) = [H|" (®)

and indeed, it is proved in [10] that a large class of linear precoders.rhe maximum-likelihood estimate af has the smallest MSE (4)

spread the spectrgm of the source symbols in a well-defined mannes any unbiased estimator. Thus, the MSE (4) is a sensible indication
The role of the linear precoder is to reduce the effects of fading. OnF . . i
wav of m fina its effectiven is now described. At anv inst nt(?nthe performance of a linearly precoded OFDM system. This corre
vay 0l measuring Its etlectiveness IS now described. At any INStantdg, o ncq proves that the worst performance of any given preEoder
time, the communication channel can be modeled by a finite |mpulaefined to be

response (FIR) channal[5], [13]. The performance of a linearly pre-

coded OFDM system will, in general, depend on the chaln@ spe- sup  tr {(pHA(h)p)—l } (6)
cific measure of performance is given later.hlfs such that a number "€°2:L ‘
[IR]I"=1

Manuscript received June 21, 2001; revised November 7, 2001. This w@&curs when the channklhasZ — 1 spectral nulls (defined in Section
was performed while the author was a Tan Chin Tuan Exchange FellowlBt Here, the constrainfh||* = h”h = 1 is a power constraint;
Nanyang Technological University, Singapore. without it, the worst performance occurs whiee= [0, ..., 0]7. This
for-rn:‘;t%‘r‘]tacgtﬁc‘)"r’g tgz F’f‘ﬁi‘?ﬂiﬁf{f}[ﬂ Egﬁ?ﬁ?ﬂ%gg&:g;i‘é'g";‘};;giﬂ?\g”g lf'?efsult is derived by studying the geometry of the subchannel attenuation
UniversityofMelbou’rne,VIC 3010, Australia (e—mail:j.manton@ee.mu.oz’.au .OeffICIentsA(h). Itis prove_d that the set c_)f all (k) with ||h||2 =1
Communicated by G. Caire, Associate Editor for Communications. is convex, and moreover, its extreme points [16] are a subset of the
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also proved that the MSE (4) is convex An The simplicity of this Proof: LetIy, I'; € S and definel’ = al'y + (1 — )T, for
geometry suggests that the subchannel attenuation coeffidiearsd some0d < « < 1. Lemma 1 implies thal is the power spectrum of an
not the channel coefficients form a natural coordinate system (from aFIR channel of length at modt. Parseval's theorem, which states that
mathematical perspecti¥gin which to study certain aspects of OFDM 1 f2m )
systems. [(w)dw = [[A]" (10)
The practical significance of these results is that they imply that glob-

Co - implies thatl" has unit power. Thud; € S, proving thatS is convex.
ally convergent convex optimization techniques [16] can be used to & dimension also follows from Lemma 1 and (10): the affine hull of
termine the worst MSE (6) and the best MSE ((6) wiilfi replacing '

sup) of any linear precoder. This enables the performance of an tv%ements ofs is the set of trigonometric polynomials of degige- 1
sup Y P ’ P y with constant term equal tb, which has dimensiog(L — 1). Com-

precoders to be compared theoretically as opposed to via smulaﬂonFmeSS follows from the readily verifiable fact titwhen viewed

. . a
Moreovgr, itis hqped that thg dlgcgvered ge_ometry_ of the subchanﬁg a subset of the real vector space in Lemma 1, is closed and bounded.
attenuation coefficienta (k) will aid in the design of linear precoders

as well as in developing novel channel identification algorithms. face F of a convex sef is a convex subset o satisfyin tEe
It is believed that the results of this correspondence hold, at Ieasfa‘ . 9
- - L L roperty that ifl’y, I's € S andal'y 4+ (1 — «)'; € F for some
qualitatively, for quite general communication systems. This is beca

. . . A a < 1, then bothl'y andI'; are in F. The geometry ofS is
the linear precoder can undo the inverse discrete Fourier transform ORidi . s
studied below by determining the smallest face about any poifit in

eration performed by an OFDM system, implying that the only restric- A key result of this section is that power spectrasinwhich have

tion in studying an OFDM system is the compulsory cyclic preflXSpectraI nulls are geometrically significant. The concept of a spectral

However, it is proved in [9] that a cyclic prefix is the most efficient = . . )
. . ; . uél is now made precise. It is based on the factorized form
way of ensuring that channels with unstable inverses can be mverpe

accurately, a consequence of the fact that a cyclic prefix ensures that s —
the Cramer—Rao bound on the MSE of the estimate of the source sym- Tw)=c H (L= rie™e™™) (11)
bols depends only on the magnitutief the channel spectrum and not =

on its phase. In other words, it is highly desirable for the performan8£(8)' wherec > 0 and, for alli, r; > 0 and0 < w; < 2.

of a communication system to be a functionfobnly, in which case,  Definition 3: The power spectrui(«) is said to have spectral nulls
the results of this correspondence hold. Viewed from this perspectiv@,zeros atu1, wo, ..., wy if it can be written in the form (11) with
this correspondence gives a straightforward and general answer to;the- ... = 5, = 1. This is denoted

question, “Is it true that channel spectral nulls cause poor performance 7eros T O (Wi, - wi). (12)

in communication systems, and if so, why?”
The number of zeros df is defined to be the largest value bffor
which (12) can be made to hold.

27 Jo

rL—1 2

Il. THE GEOMETRY OF THE SUBCHANNEL ATTENUATION

COEFFICIENTS Remark: Definition 3 accounts for multiple zeros because it does
This section studies the geometry [12] of the set not require thev; to be distinct.
C — {j\ c Rn)(n: j\ — L’\(h). h c CL./ ||h||2 — 1} (7) Lemma 4 FOI’ anyU.U, ceey, W1, deﬁne the sets
whereA (k) is defined in (5). Itis proved that is convex, and more- ©+(<1 -+ @k} = {I" € Stzeros '3 (wn, - wi) s
over, its extreme points belong to the set ofalk) with the channel k=0,....L-1 (13)
h having L — 1 spectral nulls (defined later in Definition 3). whereF, = S. Then theF} are facesFo 2 Fi 2 --- 2 Fi_1, and
The power spectrurfi(w) of a channeh is the dimension of} is 2(L — 1 — k). In particular,F,_; consists of

2 a single point.

(8) Proof: The proof is a straightforward generalization of the proof

of Theorem 2 based on the factorization
k 2 0rn—k—1 ,
Jwi —Iw . S T
. B E(l—e e ) ,1} (1—7,6 e )
Z hie™ of anyl’ € F.. (Expand the second term of (14) to obtain a trigono-
k=0 metric polynomial as in Lemma 1. Then follow the steps in the proof

Studying$ is equivalent to studying’ asn — oc becauseé\xr(h) = of Theorem 2.) O
['(2xk/n). (Later, in (16) and (17), a stronger connection betwgen
andC is made.)

IN(w) =

L—1
> e
k=0

It is expedient to study first the geometry of the set
2

chec |BP=1. (9)

2

T(w)=c¢c (14)

S=<TN(w):w)=

Remark: The reason why, has dimensio2(L — 1 — k) is that
each zero removes two degrees of freedom, namely; and anw;,
Lemma 1: AfunctionT'(w) is the power spectrum of an FIR channefrom the choice of power spectrum (11).
of length at mosL if and only if it is an element of the real vector space

span {1, cosw, cos 2w, ..., cos(L—1)w, sinw, ..., sin(L—1)w o
pan { ( ) ( ) Let wy, ..., w, be all the zeros ofl’ (see Definition 3). Then

and is everywhere nonnegativéy, T'(w) > 0). ‘ ; )
Proof: This is a standard result [2]; one direction follows imme-F‘j(”“ ---» wi), defined in (13), is the smallest face 6f con-

diately by expanding (8) and the other is a consequence of the spectf?gling L. L
representation theorem. Proof: It must be shown thaf' belongs to the relative interior

of Fy [16, Prop. 1.19]. That is to say, it must be shown that for any
Theorem 2: The setS, defined in (9), is a compact convex set whosaffine combinationl’ = ATy + --- + A\w[y, With T; € F, and
convex dimension i2L — 2. A+ -+A, = 1, thereexistsan> O suchthal +¢ (I — T') € Fy.

. . . - Lemma 1 implies that it suffices to sha#¢ > 0 such that
IThere is nothing novel about subchannel attenuation coefficients themselves

since they are an inherent part of OFDM systems [3], [14]. Vw, T(w)+e(T(w)—T(w))>0. (15)

Theorem 5:Let I' € S be a point inS, defined in (9).
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For w away from the zerosn, ..., wy, it is straightforward to find be shown thaP,, F7,_., contains an element other than proving the
such are. (Let K C [0, 27] be any compact set excluding the zerosheorem by contradiction. Sin&ehas less thaifi — 1 zeros, there exists
and choose ani such that\,; is nonzero. Thel’; (w) = (1 — /*7/" e ™7\ T(w),
¢ = [min T(w)]/[max |T(«) — T()|] gfter.scaling to ensure uniF power, also Iiesﬂszlbut is such that the
wEK wEK ith diagonal element of., (P, T'1) is zero. Thusy,, (P.T1) # A, as
if the denominator is nonzero ard= 1 otherwise.) Around a zero, it required. O

follows? f L 1 and (11) that
ollows? from Lemma 1 and (11) tha Remark: The proof of Theorem 9 shows that, provided L — 1,

D(w) = Blw — wi)> + O((w — w;)*"*) a necessary and sufficient condition forto be an extreme point &
for somes > 0, whered; is the multiplicity ofw; (that is,d; equals IS for its pre-image{l" € S: v (P.I') = A} to be an extreme point
the number of.; equalingw; for j = 1, ..., k). Similarly, of 5.

T(w) = Blw — w)> + O((w — w;) %t lll. THE CONVEXITY OF THE MSE

for some3 > 0 andd; > d,. Thus, around each zero, it is possible to Determining the worst performance (6) of a linearly precoded
find ane sufficiently small to ensure (15) holds. [0 OFDM system appears to be difficult because the MSE (4), as a
. ) . i function of the channek, has no nice properties. This section shows

An |mportant_ cqrollary |s_that the_extreme pointssfdefined tobe 1 thig difficulty is overcome by treating the MSE (4) as a function

the faces consisting of a single point, correspond to power SPECHIUMS, instead. Indeed, it is proved that (4) is convexin

having L — 1 spectral nulls.

. . . . , Theorem 10: Let C' be any convex subset of the set of all positive

Corollary 6: A pointT € S'is an extreme point of if and only if o migefinite diagonal x n matrices. Then the MSE (4), when viewed

I'hasL — 1 spectral nulls. . as a function of\ over the domair{”, is convex.
Proof: Lemma 4 and Theorem 5 together imply that Proof: ForanyA,, A, € C, define

the only faces ofS consisting of a single point are the faces o .
Fr_i(wi, ..., wr_y) forarbitraryw:, ..., wr_1. O flo) = tf{(P (@A + (1 - a)A2)P) }

The geometry of” is deduced from the geometry §fby consid- It must be proved that

ering the projection operatd?, defined as Vo<a<l,  fla) <af(l)+(1—a)f(0). (18)
{p(w)_ if w=0, 2%, 4= 25(n-l) If either £(0) or f(1) is infinite, (18) holds by convention [16, Sec.
Pul(w) = ' o - (16) 2.1]. Assuming for the moment that the inverse exists, define=
0, otherwise. (P (A + (1= a)A5)P)~" and note thaf is positive definite and
The geometry of?,, S is identical to that ofC’ because the map., Hermitian for) < « < 1. Then (see [8] for matrix differential calculus
defined by rules)
¥y (D(w)) = diag {T(0), T(27/n), ... T(2n(n —1)/n)} (17) 1 de(j) =tr {ZP”(A1 — A)PZP (A, — AQ)PZ} (19)
is a vector space isomorphism from the range spaé&,db the space 2 da
of all n x n diagonal matrices. =tr {ZPHA1 PZPY"A\PZ —22P" A\ PZP"\,PZ
Theorem 7: The set”' in (7) is convex and compact. +ZP"A,PZP" A, PZ} (20)
Proof: SinceS in Theorem 2 is convex and compact, aagin o
(16) is a projectionP,, S is convex and compact. O =ftr {((A - B)Z)"((A - B)Z>} (21)

Itis a consequence of the sampling theorem thats one-to-one if z 01 (22)

and only ifn. > 2L — 1. Thus, the geometry of is identical to that whered = 1ZEP’iJhP, B = ZzPA,P, andZ? is any matrix
of S ifand only ifn > 2L — 1. However, it turns out that under thesuch that zz)” Zz = Z. This proves not only thaf(0) and f(1)
milder restriction: > L — 1, the extreme points dP,, S are a subset being finite implies thatZ is well-defined for 0 < o < 1, but that
of the extreme points of. (18) always holds. O

Lemma8: DefineC, S, P,., andy,, as above. LeF}- andFx denote The practical significance of Theorems 7 and 10 is that the worst
the smallest faces about the poifitsc S andA € C, respectively. performance (6) of a linearly precoded OFDM system can be found by

ThenA = ¢, (P.T) impliest,, (P, Fr) C Fa. standard convex optimization routines [16]. (The same holds for the
Proof: This follows from standard properties of projections [16]best performance.)
O The theoretical significance is more profound because the resulting

Theorem 9: Foranyn > L —1 andh € cl a necessary condition elegant geometry suggests that, for an OFDM system, the natural coor-
for A(h), defined in (5), to be an extreme point@f defined in (7), is dinate system for describing an FIR channel is based on the subchannel
for the power spectrufi(w) of b, defined in (8), to havé — 1 spectral attenuation coefficients (5) and not the impulse respénse
nulls (Definition 3).

Proof: Assume to the contrary that there existshasuch that IV. ON THE WORST CHANNEL
A(h) is an extreme point af' but thatl'(w) does not havé — 1 zeros.

Then, by Lemma 8P, Fi- consists of a single point. From Lemma 4 Channel spectral nulls, defined in Definition 3, are often considered
LT . . . .

' . . undesirable because they can cause poor performance in communica-

and Theorem 5, there exists & _-» such thatF,_> C Fp-. It will y P P

tion systems. This section confirms this intuition by proving that the

2Specifically, Lemma 1 shows th@li(w) is always nonnegative and has aworst performance of any given linearly precoded OFDM system, de-
well-defined Taylor series about any point. Therefore, the first nonzero tefimed in (6), is achieved by a channel havihg- 1 spectral nulls.
in the Taylor series expansion about a paint at whichI'(ws) = 0 must
be an even power dfv — wq). Moreover, expanding (11) as a trigonometric 3The inverse used to defing always exists at a point unlessf(a) =
polynomial shows that the degree of this first term is twice the multiplicity ofo. Sincef(0) and f(1) are finite and (22) holdsf(«) cannot diverge on the
the zero. interval [0, 1] of interest.
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Theorem 11: For any given precodd? € C"*? and channellength [11] F. Mueller-Roemer, “Directions in audio broadcasting, Audio Eng.

L, wheren > L — 1, there exists a channgl € C" havingL — 1 Soc, vol. 41, no. 3, pp. 158-173, Mar. 1993. _ _
spectral nulls (Definition 3) and such that [12] sée‘IS'.SRlogcggfellar,Convex Analysis Princeton, NJ: Princeton Univ.
tr {(PHA(h)P)*l} = sup tr {(PHA(h')P)’l} . [13] W.D.Rummler, R. P. Coutts, and M. Liniger, “Multipath fading channel
rect models for microwave digital radioJEEE Commun. Magvol. 24, pp.
IR/ 117=1 30-42, Nov. 1986.

Proof: This immediately follows from the convexity of [14] B. R. Saltzberg, “Performance of an efficient parallel data transmission

trl(PHAP) ! ; system,”lEEE Trans. Communvol. COM-15, pp. 805-811, Dec. 1967.
CS{eEII haveL) _ igli?rr:lrﬂjg (e_lrrllqdegi;a(gzt)that the extreme pogts O]([15] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Redundant fil-

terbank precoders and equalizers—Part |: Unification and optimal

The proof of Theorem 11 holds for any convex performance mea- ggzlggns, IEEE Trans. Signal Processingol. 47, pp. 1988-2006, July

sure, and not just the specific choice (4). Thus, the undesirability of16] H. Tuy, Convex Analysis and Global OptimizationNorwell, MA:
spectral nulls may be expressed by saying that any convex measure of Kluwer, 1998.

performance of a linearly precoded OFDM system achieves its max17] S. B. WeiIHStIein and P. M-hEbdert, “Data transmissi?n by frequency di-
; ; ; vision multiplexing using the discrete Fourier transfordEEE Trans.
imum for some channel having as many spectral nulls as possible. (A Commun,vol. COM-19, pp. 628634, Oct. 1971.

lengthZ FIR channel can have at mast— 1 spectral nulls.)

Remark: By generating random® x 2 precoder matrices and deter-
mining their worst performances (6) over a lendth= 2 channel,
it was observed that the spectral null of the worst channel for any
given precoder was not necessarily located,&r /3, or 47 /3 (cor-
responding ta\go, A1, Or Ass in (5) being zero). It was, however, Blind Equalization of MIMO-FIR Channels Driven by

always observed to lie close to one of these three angular frequencies. White but Higher Order Colored Source Signals

V. CONCLUSION Ruey-wen Liy Life Fellow, IEEE and Yujiro Inouye Member, IEEE

This correspondence explained why channels with spectral nulls are
often associated with poor performance; channels with spectral nullsAbstract—The goal of the present correspondence is to find a minimal
form the faces of the convex set of all subchannel attenuation coeffinount of statistical information (or a much weaker condition) about

cients. Therefore, any performance measure which is a convex fufigdrce signals for which blind equalization is possible for multiple-input
. . L. multiple-output finite-impulse response (MIMO-FIR) channels. First,
tion of the SUb(_:ha_nnel attenuat'on coefficients—such as the _MSEé) ufficiently broad framework is set up within which such a theoret-
the maximum-likelihood estimate of the source symbols—achievesigsi problem is well posed. Within this framework, it is shown that
maximum for some channel having the most spectral nulls. second-order statistics (SOS) alone are not sufficient for blind equalization
The second main contribution of this correspondence was to descyfien the source signals are white. Additional higher order statistics

- - (HOS) are needed. Then we show that the only additional higher order
completely the geometry of the subchannel attenuation CoemCIemss? tistical information needed is spatial fourth-order cumulants. Though

was conte.nded that the.subc.hannel attenuatign coefficient§ form a Rafas not yet been proved to be minimal, it is interesting to note that this
ural coordinate system in which to study certain aspects of linearly piethe same as the weakest known condition on the source signals even
coded OFDM systems. It is therefore expected that an understandi@igan instantaneous mixture. We then show a necessary and sufficient

of the geometry of the subchannel attenuation coefficients will prog@ndition for blind equalization when the source signals are white and
- spatially fourth-order uncorrelated. Based on this condition, criterion (A)
useful in other areas of research.

for blind equalization of MIMO-FIR channels is developed by exploiting
the temporal fourth-order statistics. Finally, based on this criterion, a new
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