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The Convex Geometry of Subchannel Attenuation
Coefficients in Linearly Precoded OFDM Systems

Jonathan H. Manton, Member, IEEE

Abstract—Channels with spectral nulls are sometimes dubbed bad
channels because they can cause poor performance in communication
systems. This correspondence investigates the validity of this intuition
by studying the geometry of an orthogonal frequency-division multiplex
(OFDM) system. It is shown that the subchannel attenuation coefficients
form a natural coordinate system for describing finite-impulse response
(FIR) channels in an OFDM framework. It is also shown that channels
with spectral nulls are geometrically significant; they form the faces
of the convex set of all subchannel attenuation coefficients. This novel
perspective makes it immediately clear why the worst performance of a
linearly precoded OFDM system is achieved over a channel having the
greatest number of spectral nulls. The practical implications of these
results are discussed in the correspondence.

Index Terms—Channel zeros, convex analysis, linear precoder, orthog-
onal frequency-division multiplex (OFDM), spectral nulls, worst case per-
formance.

I. INTRODUCTION

The European digital audio broadcasting (DAB) standard is based on
an orthogonal frequency-division multiplex (OFDM) framework [1],
[6], [7], [11]. An OFDM framework is the first line of defense against
distortions caused by wireless communication channels because it con-
verts frequency-selective fading channels [5], [13] into a series of in-
dependent, frequency flat-fading subchannels. This limits the instan-
taneous data loss to only those symbols transmitted over subchannels
currently experiencing deep fades. Since, in a broadcast environment,
the frequencies at which these deep fades occur cannot be known by the
transmitter, it is necessary to code each symbol over a number of sub-
channels. One way of doing this is to use a linear precoder [4], [15],
and indeed, it is proved in [10] that a large class of linear precoders
spread the spectrum of the source symbols in a well-defined manner.

The role of the linear precoder is to reduce the effects of fading. One
way of measuring its effectiveness is now described. At any instant in
time, the communication channel can be modeled by a finite impulse
response (FIR) channelhhh [5], [13]. The performance of a linearly pre-
coded OFDM system will, in general, depend on the channelhhh. (A spe-
cific measure of performance is given later.) Ifhhh is such that a number
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of subchannels heavily attenuate the transmitted symbols then it may
be expected that the performance is poor. (In fact, one aim of this cor-
respondence is to investigate the validity of this intuition.) Similarly,
it may be expected that there exists a favorable channelhhh resulting in
exceptionally good performance. Thus, the effectiveness of a precoder
can be measured by the ratio of its best-to-worst performances, where
best and worst are taken over some feasible set of channels. Alterna-
tively, the robustness of a precoder can be measured by its worst per-
formance.

Therefore, in order to design or compare linear precoders, it is useful
to understand the characteristics of channels over which linearly pre-
coded OFDM systems achieve their best and worst performances. This
correspondence presents a number of fundamental results contributing
to this understanding. In doing so, the natural geometry of OFDM sys-
tems is also uncovered.

To facilitate further discussion, consider the following OFDM
system [3], [14], [17], [6] which uses frames of lengthn and a cyclic
prefix of lengthL � 1, whereL is the length of the FIR channel
hhh 2 L over which the OFDM system operates. Due to the cyclic
prefix, it is necessary forn � L � 1. In the frequency domain, the
received symbolsYYY 2 n are related to the transmitted symbols
XXX 2 n by the equations

YYY k = HHHkXXXk; k = 0; . . . ; n� 1 (1)

whereHHHk is the attenuation in thekth subchannel, and is given by

HHHk =

L�1

i=0

hhhie
�|2�

: (2)

All vectors are indexed from zero. In a linearly precoded OFDM
system, the transmitted symbols are a linear function of thep source
symbolssss 2 p, that is,

XXX = Psss (3)

for some precoder matrixP 2 n�p with n � p.
If the received symbolsYYY are corrupted by additive white Gaussian

noise with unit variance then the mean-square error (MSE) of esti-
mating the source symbolssss using the maximum-likelihood estimator,
under the simplifying assumption that the receiver knows the channel
perfectly, is given by

tr (PH�(hhh)P )�1 (4)

wheretrf�g is the trace operator,H denotes Hermitian transpose, and
�(hhh) is a diagonal matrix withkth diagonal element, indexed from
zero, equal to

�kk(hhh) = jHHHkj
2
: (5)

The maximum-likelihood estimate ofsss has the smallest MSE (4)
of any unbiased estimator. Thus, the MSE (4) is a sensible indication
of the performance of a linearly precoded OFDM system. This corre-
spondence proves that the worst performance of any given precoderP ,
defined to be

sup
hhh2
khhhk =1

tr (PH�(hhh)P )�1 (6)

occurs when the channelhhh hasL� 1 spectral nulls (defined in Section
II). Here, the constraintkhhhk2 = hhh

H
hhh = 1 is a power constraint;

without it, the worst performance occurs whenhhh = [0; . . . ; 0]T . This
result is derived by studying the geometry of the subchannel attenuation
coefficients�(hhh). It is proved that the set of all�(hhh) with khhhk2 = 1
is convex, and moreover, its extreme points [16] are a subset of the
set of all�(hhh) with the channelhhh havingL � 1 spectral nulls. It is
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also proved that the MSE (4) is convex in�. The simplicity of this
geometry suggests that the subchannel attenuation coefficients�, and
not the channel coefficientshhh, form a natural coordinate system (from a
mathematical perspective1) in which to study certain aspects of OFDM
systems.

The practical significance of these results is that they imply that glob-
ally convergent convex optimization techniques [16] can be used to de-
termine the worst MSE (6) and the best MSE ((6) withinf replacing
sup) of any linear precoder. This enables the performance of any two
precoders to be compared theoretically as opposed to via simulation.
Moreover, it is hoped that the discovered geometry of the subchannel
attenuation coefficients�(hhh) will aid in the design of linear precoders
as well as in developing novel channel identification algorithms.

It is believed that the results of this correspondence hold, at least
qualitatively, for quite general communication systems. This is because
the linear precoder can undo the inverse discrete Fourier transform op-
eration performed by an OFDM system, implying that the only restric-
tion in studying an OFDM system is the compulsory cyclic prefix.
However, it is proved in [9] that a cyclic prefix is the most efficient
way of ensuring that channels with unstable inverses can be inverted
accurately, a consequence of the fact that a cyclic prefix ensures that
the Cramer–Rao bound on the MSE of the estimate of the source sym-
bols depends only on the magnitude� of the channel spectrum and not
on its phase. In other words, it is highly desirable for the performance
of a communication system to be a function of� only, in which case,
the results of this correspondence hold. Viewed from this perspective,
this correspondence gives a straightforward and general answer to the
question, “Is it true that channel spectral nulls cause poor performance
in communication systems, and if so, why?”

II. THE GEOMETRY OF THESUBCHANNEL ATTENUATION

COEFFICIENTS

This section studies the geometry [12] of the set

C = � 2 n�n: � = �(hhh); hhh 2 L; khhhk2 = 1 (7)

where�(hhh) is defined in (5). It is proved thatC is convex, and more-
over, its extreme points belong to the set of all�(hhh) with the channel
hhh havingL� 1 spectral nulls (defined later in Definition 3).

The power spectrum�(!) of a channelhhh is

�(!) =

L�1

k=0

hhhke
�|!k

2

: (8)

It is expedient to study first the geometry of the set

S = �(!): �(!) =

L�1

k=0

hhhke
�|!k

2

; hhh 2 L; khhhk2 = 1 : (9)

StudyingS is equivalent to studyingC asn!1 because�kk(hhh) =
�(2�k=n). (Later, in (16) and (17), a stronger connection betweenS
andC is made.)

Lemma 1: A function�(!) is the power spectrum of an FIR channel
of length at mostL if and only if it is an element of the real vector space
span f1; cos!; cos 2!; . . . ; cos(L�1)!; sin!; . . . ; sin(L�1)!g
and is everywhere nonnegative (8!; �(!) � 0).

Proof: This is a standard result [2]; one direction follows imme-
diately by expanding (8) and the other is a consequence of the spectral
representation theorem.

Theorem 2: The setS, defined in (9), is a compact convex set whose
convex dimension is2L � 2.

1There is nothing novel about subchannel attenuation coefficients themselves
since they are an inherent part of OFDM systems [3], [14].

Proof: Let �1; �2 2 S and define� = ��1 + (1 � �)�2 for
some0 < � < 1. Lemma 1 implies that� is the power spectrum of an
FIR channel of length at mostL. Parseval’s theorem, which states that

1

2�

2�

0

�(!)d! = khhhk2 (10)

implies that� has unit power. Thus,� 2 S, proving thatS is convex.
Its dimension also follows from Lemma 1 and (10); the affine hull of
elements ofS is the set of trigonometric polynomials of degreeL� 1
with constant term equal to1, which has dimension2(L � 1). Com-
pactness follows from the readily verifiable fact thatS, when viewed
as a subset of the real vector space in Lemma 1, is closed and bounded.

A faceF of a convex setS is a convex subset ofS satisfying the
property that if�1; �2 2 S and��1 + (1 � �)�2 2 F for some
0 < � < 1, then both�1 and�2 are inF . The geometry ofS is
studied below by determining the smallest face about any point inS.

A key result of this section is that power spectra inS which have
spectral nulls are geometrically significant. The concept of a spectral
null is now made precise. It is based on the factorized form

�(!) = c

L�1

i=1

1� rie
|! e�|!

2

(11)

of (8), wherec � 0 and, for alli, ri � 0 and0 � !i < 2�.

Definition 3: The power spectrum�(!) is said to have spectral nulls
or zeros at!1; !2; . . . ; !k if it can be written in the form (11) with
r1 = � � � = rk = 1. This is denoted

zeros � � (!1; . . . ; !k): (12)

The number of zeros of� is defined to be the largest value ofk for
which (12) can be made to hold.

Remark: Definition 3 accounts for multiple zeros because it does
not require the!i to be distinct.

Lemma 4: For any!1; . . . ; !L�1, define the sets

Fk(!1; . . . ; !k) = f� 2 S: zeros � � (!1; . . . ; !k)g;

k = 0; . . . ; L� 1 (13)

whereF0 = S. Then theFk are faces,F0 F1 � � � FL�1, and
the dimension ofFk is 2(L� 1 � k). In particular,FL�1 consists of
a single point.

Proof: The proof is a straightforward generalization of the proof
of Theorem 2 based on the factorization

�(!) = c

k

i=1

1� e|! e�|!
2 L�k�1

i=1

1� rie
|! e�|!

2

(14)

of any� 2 Fk. (Expand the second term of (14) to obtain a trigono-
metric polynomial as in Lemma 1. Then follow the steps in the proof
of Theorem 2.)

Remark: The reason whyFk has dimension2(L � 1 � k) is that
each zero removes two degrees of freedom, namely, anri and an!i,
from the choice of power spectrum (11).

Theorem 5: Let � 2 S be a point in S, defined in (9).
Let !1; . . . ; !k be all the zeros of� (see Definition 3). Then
Fk(!1; . . . ; !k), defined in (13), is the smallest face ofS con-
taining�.

Proof: It must be shown that� belongs to the relative interior
of Fk [16, Prop. 1.19]. That is to say, it must be shown that for any
affine combination� = �1�1 + � � � + �m�m with �i 2 Fk and
�1+� � �+�m = 1, there exists an� > 0 such that�+� �� � 2 Fk.
Lemma 1 implies that it suffices to show9� > 0 such that

8!; �(!) + � �(!)� �(!) � 0: (15)
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For ! away from the zeros!1; . . . ; !k, it is straightforward to find
such an�. (LetK � [0; 2�] be any compact set excluding the zeros
and choose

� = [min
!2K

�(!)]=[max
!2K

j�(!)� �(!)j]

if the denominator is nonzero and� = 1 otherwise.) Around a zero, it
follows2 from Lemma 1 and (11) that

�(!) = �(! � !i)
2d +O((!� !i)

2d +1)

for some� > 0, wheredi is the multiplicity of!i (that is,di equals
the number of!j equaling!i for j = 1; . . . ; k). Similarly,

�(!) = �(! � !i)
2d +O((!� !i)

2d +1)

for some� > 0 anddi � di. Thus, around each zero, it is possible to
find an� sufficiently small to ensure (15) holds.

An important corollary is that the extreme points ofS, defined to be
the faces consisting of a single point, correspond to power spectrums
havingL � 1 spectral nulls.

Corollary 6: A point� 2 S is an extreme point ofS if and only if
� hasL � 1 spectral nulls.

Proof: Lemma 4 and Theorem 5 together imply that
the only faces ofS consisting of a single point are the faces
FL�1(!1; . . . ; !L�1) for arbitrary!1; . . . ; !L�1.

The geometry ofC is deduced from the geometry ofS by consid-
ering the projection operatorPn defined as

Pn�(!) =
�(!); if ! = 0; 2�

n
; 4�

n
; . . . ; 2�(n�1)

n

0; otherwise.
(16)

The geometry ofPnS is identical to that ofC because the map n,
defined by

 n (�(!)) = diag f�(0); �(2�=n); . . . ; �(2�(n� 1)=n)g (17)

is a vector space isomorphism from the range space ofPn to the space
of all n � n diagonal matrices.

Theorem 7: The setC in (7) is convex and compact.
Proof: SinceS in Theorem 2 is convex and compact, andPn in

(16) is a projection,PnS is convex and compact.

It is a consequence of the sampling theorem thatPn is one-to-one if
and only ifn � 2L � 1. Thus, the geometry ofC is identical to that
of S if and only if n � 2L � 1. However, it turns out that under the
milder restrictionn � L� 1, the extreme points ofPnS are a subset
of the extreme points ofS.

Lemma 8: DefineC,S,Pn, and n as above. LetF� andF� denote
the smallest faces about the points� 2 S and� 2 C, respectively.
Then� =  n(Pn�) implies n(PnF�) � F�.

Proof: This follows from standard properties of projections [16].

Theorem 9: For anyn � L� 1 andhhh 2 L, a necessary condition
for �(hhh), defined in (5), to be an extreme point ofC, defined in (7), is
for the power spectrum�(!) ofhhh, defined in (8), to haveL�1 spectral
nulls (Definition 3).

Proof: Assume to the contrary that there exists anhhh such that
�(hhh) is an extreme point ofC but that�(!) does not haveL�1 zeros.
Then, by Lemma 8,PnF� consists of a single point. From Lemma 4
and Theorem 5, there exists anFL�2 such thatFL�2 � F�. It will

2Specifically, Lemma 1 shows that�(!) is always nonnegative and has a
well-defined Taylor series about any point. Therefore, the first nonzero term
in the Taylor series expansion about a point! at which�(! ) = 0 must
be an even power of(! � ! ). Moreover, expanding (11) as a trigonometric
polynomial shows that the degree of this first term is twice the multiplicity of
the zero.

be shown thatPnFL�2 contains an element other than�, proving the
theorem by contradiction. Since� has less thanL�1 zeros, there exists
ani such that�ii is nonzero. Then�1(!) = (1� e|2�i=ne�|!)�(!),
after scaling to ensure unit power, also lies inFL�2 but is such that the
ith diagonal element of n(Pn�1) is zero. Thus, n(Pn�1) 6= �, as
required.

Remark: The proof of Theorem 9 shows that, providedn � L� 1,
a necessary and sufficient condition for� to be an extreme point ofC
is for its pre-imagef� 2 S:  n(Pn�) = �g to be an extreme point
of S.

III. T HE CONVEXITY OF THE MSE

Determining the worst performance (6) of a linearly precoded
OFDM system appears to be difficult because the MSE (4), as a
function of the channelhhh, has no nice properties. This section shows
how this difficulty is overcome by treating the MSE (4) as a function
of � instead. Indeed, it is proved that (4) is convex in�.

Theorem 10: Let C be any convex subset of the set of all positive
semidefinite diagonaln�n matrices. Then the MSE (4), when viewed
as a function of� over the domainC, is convex.

Proof: For any�1; �2 2 C, define

f(�) = tr (PH(��1 + (1� �)�2)P )
�1

:

It must be proved that

8 0 < � < 1; f(�) � �f(1) + (1� �)f(0): (18)

If either f(0) or f(1) is infinite, (18) holds by convention [16, Sec.
2.1]. Assuming for the moment that the inverse exists, defineZ =
(PH(��1+ (1��)�2)P )

�1 and note thatZ is positive definite and
Hermitian for0 � � � 1. Then (see [8] for matrix differential calculus
rules)
1

2

d2f(�)

d�2
= tr ZP

H(�1 � �2)PZP
H(�1 � �2)PZ (19)

= tr ZP
H�1PZP

H�1PZ � 2ZPH�1PZP
H�2PZ

+ZPH�2PZP
H�2PZ (20)

= tr ((A�B)Z)H((A�B)Z) (21)

� 0 (22)

whereA = Z PH�1P , B = Z PH�2P , andZ is any matrix
such that(Z )HZ = Z. This proves not only thatf(0) andf(1)
being finite implies thatZ is well-defined3 for 0 � � � 1, but that
(18) always holds.

The practical significance of Theorems 7 and 10 is that the worst
performance (6) of a linearly precoded OFDM system can be found by
standard convex optimization routines [16]. (The same holds for the
best performance.)

The theoretical significance is more profound because the resulting
elegant geometry suggests that, for an OFDM system, the natural coor-
dinate system for describing an FIR channel is based on the subchannel
attenuation coefficients (5) and not the impulse responsehhh.

IV. ON THE WORSTCHANNEL

Channel spectral nulls, defined in Definition 3, are often considered
undesirable because they can cause poor performance in communica-
tion systems. This section confirms this intuition by proving that the
worst performance of any given linearly precoded OFDM system, de-
fined in (6), is achieved by a channel havingL� 1 spectral nulls.

3The inverse used to defineZ always exists at a point� unlessf(�) =
1. Sincef(0) andf(1) are finite and (22) holds,f(�) cannot diverge on the
interval [0; 1] of interest.
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Theorem 11: For any given precoderP 2 n�p and channel length
L, wheren � L � 1, there exists a channelhhh 2 L havingL � 1
spectral nulls (Definition 3) and such that

tr (PH�(hhh)P )�1 = sup
hhh 2
khhh k =1

tr (PH�(hhh0)P )�1 :

Proof: This immediately follows from the convexity of
trf(PH�P )�1g (Theorem 10) and the fact that the extreme points of
C all haveL� 1 spectral nulls (Theorem 9).

The proof of Theorem 11 holds for any convex performance mea-
sure, and not just the specific choice (4). Thus, the undesirability of
spectral nulls may be expressed by saying that any convex measure of
performance of a linearly precoded OFDM system achieves its max-
imum for some channel having as many spectral nulls as possible. (A
length-L FIR channel can have at mostL� 1 spectral nulls.)

Remark: By generating random3� 2 precoder matrices and deter-
mining their worst performances (6) over a lengthL = 2 channel,
it was observed that the spectral null of the worst channel for any
given precoder was not necessarily located at0, 2�=3, or 4�=3 (cor-
responding to�00, �11, or �22 in (5) being zero). It was, however,
always observed to lie close to one of these three angular frequencies.

V. CONCLUSION

This correspondence explained why channels with spectral nulls are
often associated with poor performance; channels with spectral nulls
form the faces of the convex set of all subchannel attenuation coeffi-
cients. Therefore, any performance measure which is a convex func-
tion of the subchannel attenuation coefficients—such as the MSE of
the maximum-likelihood estimate of the source symbols—achieves its
maximum for some channel having the most spectral nulls.

The second main contribution of this correspondence was to describe
completely the geometry of the subchannel attenuation coefficients. It
was contended that the subchannel attenuation coefficients form a nat-
ural coordinate system in which to study certain aspects of linearly pre-
coded OFDM systems. It is therefore expected that an understanding
of the geometry of the subchannel attenuation coefficients will prove
useful in other areas of research.
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Blind Equalization of MIMO–FIR Channels Driven by
White but Higher Order Colored Source Signals

Ruey-wen Liu, Life Fellow, IEEE,and Yujiro Inouye, Member, IEEE

Abstract—The goal of the present correspondence is to find a minimal
amount of statistical information (or a much weaker condition) about
source signals for which blind equalization is possible for multiple-input
multiple-output finite-impulse response (MIMO-FIR) channels. First,
a sufficiently broad framework is set up within which such a theoret-
ical problem is well posed. Within this framework, it is shown that
second-order statistics (SOS) alone are not sufficient for blind equalization
when the source signals are white. Additional higher order statistics
(HOS) are needed. Then we show that the only additional higher order
statistical information needed is spatial fourth-order cumulants. Though
it has not yet been proved to be minimal, it is interesting to note that this
is the same as the weakest known condition on the source signals even
for an instantaneous mixture. We then show a necessary and sufficient
condition for blind equalization when the source signals are white and
spatially fourth-order uncorrelated. Based on this condition, criterion (A)
for blind equalization of MIMO-FIR channels is developed by exploiting
the temporal fourth-order statistics. Finally, based on this criterion, a new
necessary and sufficient condition in terms of cumulants for the blind
equalization of MIMO-FIR channels is obtained.

Index Terms—Blind, convolutive mixtures, deconvolution, direct equal-
ization, higher order statistics (HOS), multiple-input multiple-output
(MIMO), source separation.

I. INTRODUCTION

The subject of blind signal separation was started in 1985 by Her-
ault, Jutten, and Ans [1]. In the late 1980s and early 1990s, the efforts
have been on the case of instantaneous mixtures. See [2] and references
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