
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2009 Society for Industrial and Applied Mathematics
Vol. 48, No. 1, pp. 134–161

COORDINATION AND CONSENSUS OF NETWORKED AGENTS
WITH NOISY MEASUREMENTS: STOCHASTIC ALGORITHMS

AND ASYMPTOTIC BEHAVIOR∗
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Abstract. This paper considers the coordination and consensus of networked agents where each
agent has noisy measurements of its neighbors’ states. For consensus seeking, we propose stochastic
approximation-type algorithms with a decreasing step size, and introduce the notions of mean square
and strong consensus. Although the decreasing step size reduces the detrimental effect of the noise,
it also reduces the ability of the algorithm to drive the individual states towards each other. The key
technique is to ensure a trade-off for the decreasing rate of the step size. By following this strategy,
we first develop a stochastic double array analysis in a two-agent model, which leads to both mean
square and strong consensus, and extend the analysis to a class of well-studied symmetric models.
Subsequently, we consider a general network topology, and introduce stochastic Lyapunov functions
together with the so-called direction of invariance to establish mean square consensus. Finally, we
apply the stochastic Lyapunov analysis to a leader following scenario.
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1. Introduction. The recent years have witnessed an enormous growth of re-
search on the coordination and control of distributed multiagent systems, and specific
topics appear in different forms such as swarming of honeybees, flocking of birds,
migration of animals, synchronization of coupled oscillators, and formation of au-
tonomous vehicles; see [48, 14, 17, 29, 43, 33] and the references therein. A common
feature of these systems, which take diverse forms, is that the constituent agents need
to maintain a certain coordination so as to cooperatively achieve a group objective,
wherein the decision of individual agents is made with various constraints due to the
distributed nature of the underlying system. The study of these multiagent models is
crucial for understanding many complex phenomena related to animal behavior, and
for designing distributed control systems.

For multiagent coordination, it is usually important to propagate shared infor-
mation within the system by communication rules which may be supported by the
specific interconnection structure between the agents. This is particularly important
in cooperative control systems since they often operate in a dynamic environment,
and the involved agents need to collectively acquire key information at the overall
system level [38, 3]. In this context, of fundamental importance is the so-called con-
sensus or agreement problem, where consensus means a condition where all the agents
individually adjust their own value for an underlying quantity (e.g., a location as the
destination of a robot team) so as to converge to a common value. For many prac-
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tical situations, the chief objective is to agree on the same state; the actual state
is of secondary importance. In view of primarily being required to converge, one
might suggest to simply set the agents’ states to any fixed state. In reality, however,
such a consensus protocol is trivial and less interesting; its more serious limitation
is that this protocol is overly sensitive to small relative errors when the individual
states initially have been very close to each other. For these reasons, in the literature,
almost all consensus algorithms are constructed based on averaging rules, and this
leads to good dynamic properties (such as good transient behavior and convergence)
[23, 50, 6]. We mention that there has been a long history of research on consensus
problems due to the broad connections of this subject with a wide range of disciplines
including statistical decision theory, management science, distributed computing, ad
hoc networks, biology [49, 20, 10, 18, 28, 26, 48], and the quickly developing area
of multiagent control systems [3, 14, 17, 29, 33, 34, 43]. A comprehensive survey on
consensus problems in multiagent coordination can be found in [38].

In the context of coordinating spatially distributed agents, a basic consensus
model consists of a time-invariant network in which each agent updates its state by
forming a convex combination of the states of its neighbors and itself [23, 6, 50], such
that the iterates of all individual states converge to a common value. Starting from
this formulation, many generalizations are possible. A variety of consensus algorithms
has been developed to deal with delayed measurements [5, 31, 34], dynamic topologies
[34], or unreliable (on/off) communication links (see the survey [38]). For convergence
analysis, stochastic matrix analysis is an important tool [23], and in models with time-
dependent communications, set-valued Lyapunov theory is useful [32].

In this paper, we are interested in consensus seeking in an uncertain environment
where each agent can obtain only noisy measurements of the states of its neighbors;
see Figure 1 for illustration. Such modeling reflects many practical properties in
distributed networks. For instance, the interagent information exchange may involve
the use of sensors, quantization [36, 37], and wireless fading channels, which makes
it unlikely to have exact state exchange. We note that most previous research has
used noise-free state iteration by assuming exact data exchange between the agents,
with only a few exceptions (see, e.g., [51, 39, 9]). A least mean square optimization
method was used in [51] to choose the constant coefficients in the averaging rule with
additive noises so that the long term consensus error is minimized. In a continuous
time consensus model [15], deterministic disturbances were included in the dynamics.
In [9], multiplicative noises were introduced to model logarithmic quantization error.
In [21, 42], convergence results were obtained for random graph based consensus
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problems, and [21] used an approach of stochastic stability. In earlier work [7, 46,
47], convergence of consensus problems was studied in a stochastic setting, but the
interagent exchange of random messages was assumed to be error-free. In particular,
Tsitsiklis, Bertsekas, and Athans [47] obtained consensus results via asynchronous
stochastic gradient based algorithms for a group of agents minimizing their common
cost function.

In models with noisy measurements, one may still construct an averaging rule
with a constant coefficient matrix. However, the resulting evolution of the state
vector dramatically differs from the noise-free case, leading to divergence. The reason
is that the noise causes a steady drift of the agents’ states during the iterates, which
in turn prevents generating a stable group behavior.

To deal with the measurement noise, we propose a stochastic approximation-type
algorithm with the key feature of a decreasing step size. The algorithm has a gradient
descent interpretation. Our formulation differs from [47] since in the averaging rule of
the latter, the exogenous term, which may be interpreted as a local noisy gradient of
the agents’ common cost, is assigned a controlled step size while the weights for the
exact messages received from other agents are maintained to be above a constant level;
such a separability structure enables the authors in [47] to obtain consensus with a
sufficiently small constant step size for the gradient term, or with only an upper bound
for the deceasing rate of the step size. In contrast, in our model the signal received
from other agents is corrupted by additive noise (see Figure 1), and consequently in
selecting the step size, it is critical to maintain a trade-off in attenuating the noise to
prevent long term fluctuations and meanwhile ensuring a suitable stabilizing capability
of the recursion so as to drive the individual states towards each other. To achieve
this objective, the step size must be decreased neither too slowly, nor too quickly.
It turns out, for proving mean square consensus via stochastic Lyapunov functions,
that we may simply use the standard step size condition in traditional stochastic
approximation algorithms. But in the stochastic double array analysis, some mild
lower and upper bound conditions will be imposed on the step size.

We begin by analyzing a two-agent model. As it turns out, this simple model
provides a rich structure for developing convergence analysis and motivates the so-
lution to more general models. In this setup, the key technique is the stochastic
double array analysis [45, 12]. Next, we extend the analysis to a class of symmetric
models. In fact, many symmetric models have arisen in practical applications includ-
ing platoons of vehicles, robot teams, unicycle pursuit models [30, 29], cooperative
sensor network deployment for tracking [1] or sampling [25], and consensus problems
[9]. Subsequently, to deal with a general network topology, we develop a stochastic
Lyapunov analysis, and convergence is established under a connectivity condition for
the associated undirected graph.

The paper is organized as follows. In section 2 we formulate the consensus problem
in the setting of directed graphs and propose the consensus algorithm. Section 3
establishes convergence results in a two-agent model, and the analysis is extended
to models with circulant symmetry in section 4. We develop stochastic Lyapunov
analysis in section 5 and apply it to leader following in section 6. Section 7 presents
numerical simulations, and section 8 concludes the paper.

2. Formulation of the stochastic consensus problem. We begin by con-
sidering directed graphs for modeling the spatial distribution of n agents. A directed
graph (or digraph) G = (N , E) consists of a set of nodes N = {1, 2, . . . , n} and a
set of edges E ⊂ N × N . An edge in G is denoted as an ordered pair (i, j), where
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i �= j (so there is no edge between a node and itself) and i, j are called the initial
and terminal node, respectively. A path (from i1 to il) in G consists of a sequence of
nodes i1, i2, . . . , il, l ≥ 2, such that (ik, ik+1) ∈ E for all 1 ≤ k ≤ l − 1. The digraph
G is said to be strongly connected if for any two distinct nodes i and j, there exist a
path from i to j and also a path from j to i.

For convenience of exposition, we often refer to node i as agent Ai. The two
names, agent and node, will be used interchangeably. Agent Ak (resp., node k) is a
neighbor of Ai (resp., node i) if (k, i) ∈ E , where k �= i. Denote the neighbors of node
i by Ni ⊂ N . Note that any undirected graph1 can be converted into a directed graph
simply by splitting each edge in the former into two edges, one in each direction.

For agent Ai, let xi
t ∈ R be its state at time t ∈ Z

+ = {0, 1, 2, . . .}. Denote the
state vector xt = [x1

t , . . . , x
n
t ]T . For each i ∈ N , agent Ai receives noisy measurements

of the states of its neighbors. Denote the resulting measurement by Ai of Ak’s state
by

yik
t = xk

t + wik
t , t ∈ Z

+, k ∈ Ni,(1)

where wik
t ∈ R is the additive noise; see Figure 1. The underlying probability space

is denoted by (Ω,F , P ). We shall call yik
t the observation of the state of Ak ob-

tained by Ai, and we assume each Ai knows its own state xi
t exactly. The additive

noise wik
t in (1) reflects unreliable information exchange during interagent sensing and

communication; see, e.g., [39, 2, 41] for related modeling.
(A1) The noises {wik

t , t ∈ Z
+, i ∈ N , k ∈ Ni} are independent and identically

distributed (i.i.d.) with respect to the indices i, k, t and each wik
t has zero mean and

variance Q ≥ 0. The noises are independent of the initial state vector x0 and E|x0|2 <
∞.

Condition (A1) means that the noises are i.i.d. with respect to both space (asso-
ciated with neighboring agents) and time. We will begin with our analysis based on
the above assumption for simplicity.

The state of each agent is updated by

xi
t+1 = (1 − at)xi

t +
at

|Ni|
∑

k∈Ni

yik
t , t ∈ Z

+,(2)

where i ∈ N and at ∈ [0, 1] is the step size. This gives a weighted averaging rule
in that the right-hand side is a convex combination of the agent’s state and its |Ni|
observations, where |S| denotes the cardinality of a set S. The objective for the
consensus problem is to select the sequence {at, t ≥ 0} so that the n individual states
xi

t, i ∈ N , converge to a common limit in a certain sense.
To get some insight into algorithm (2), we rewrite it in the form

xi
t+1 = xi

t + at(mi
t − xi

t),(3)

where mi
t = (1/|Ni|)

∑
k∈Ni

yik
t . The structure of (3) is very similar to the recur-

sion used in classical stochastic approximation algorithms in that mi
t − xi

t provides
a correction term controlled by the step size at. Indeed, by introducing a suitable
local potential function, mi

t − xi
t may be interpreted as the noisy measurement of a

scaled negative gradient of the local potential along the direction xi
t. A more detailed

discussion will be presented in section 5 when developing the stochastic Lyapunov

1The edge in an undirected graph is denoted as an unordered pair.
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Fig. 2. (a) The three nodes. (b) In the noise-free case, the states of the nodes quickly converge
to the same constant level ≈ 2.143. Under Gaussian measurement noises with variance σ2 = 0.01,
the three state trajectories have large fluctuations.

analysis. Due to the noise contained in {mi
t, t ≥ 0}, each state xi

t will fluctuate ran-
domly. These fluctuations will not die off if at does not converge to 0. For illustration,
we introduce an example as follows.

Example 1. Consider a strongly connected digraph with N = {1, 2, 3}, as in
Figure 2(a), where N1 = {2}, N2 = {1, 3}, and N3 = {2}. We follow the measurement
model (1), and the states are updated by x1

t+1 = (x1
t +y12

t )/2, x2
t+1 = (x2

t +y21
t +y23

t )/3,
and x3

t+1 = (x3
2 + y32

t )/2, t ≥ 0. The i.i.d. Gaussian noises wik
t satisfy (A1) with

variance σ2 = 0.01.
The simulation for Example 1 takes the initial condition [x1

0, x
2
0, x

3
0] = [4, 1, 2].

For the noise-free case, we change the state update rule in Example 1 by replacing
each yik

t by xk
t , which results in a standard rule in the literature; see, e.g., [23].

Figure 2(b) shows that measurement noises cause a dramatic loss of convergence.
In fact, by recasting to the form (2), the algorithm in Example 1 essentially takes
the step size a(i) = |Ni|/(|Ni| + 1) for node i to give equal weights 1/(|Ni| + 1) to
|Ni| + 1 nodes; for instance, we may rewrite x2

t+1 = (x2
t + y21

t + y23
t )/3 as x2

t+1 =
x2

t + a(2)[(y21
t + y23

t )/2 − x2
t ], where a(2) = 2/3.

With the aim of obtaining a stable behavior for the agents, we make the following
assumption.

(A2) (i) The sequence {at, t ≥ 0} satisfies at ∈ [0, 1], and (ii) there exists T0 ≥ 1
such that

αt−γ ≤ at ≤ βt−γ(4)

for all t ≥ T0, where γ ∈ (0.5, 1] and 0 < α ≤ β < ∞.
By requiring at > αt−γ for t ≥ T0 with a suitable T0, we may take large values

for α while still ensuring at ∈ [0, 1], t ≥ T0. This offers more flexibility in selecting
the step size sequence. Here {at, t < T0} may be chosen freely as long as at ∈ [0, 1];
this resulting algorithm gives a convex combination at all times in the averaging rule
as in conventional consensus algorithms. The parameters T0, α, β, γ will be treated
as fixed constants associated with {at, t ≥ 0}. Note that (A2) implies the following
weaker condition.
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(A2′) (i) The sequence {at, t ≥ 0} satisfies at ∈ [0, 1], and (ii)
∑∞

t=0 at = ∞,∑∞
t=0 a2

t < ∞.
Notice that (A2′)(ii) is a typical condition used in classical stochastic approxi-

mation theory [11, 24]. In the subsequent sections, the double array analysis will be
developed based on the slightly stronger assumption (A2) while (A2′) will be used for
the stochastic Lyapunov analysis.

The vanishing rate of {at, t ≥ 0} is crucial for consensus. When at → 0 in (2),
the signal xk

t (contained in yik
t ), as the state of Ak, is attenuated together with the

noise. Hence, at cannot decrease too fast since, otherwise, the agents may prematurely
converge to different individual limits.

Since the averaging rule (2) can be considered a stochastic approximation algo-
rithm [27, 4], we may apply the standard method of analysis to it; namely, we can
average out the noise component in (2) to derive an associated ordinary differential
equation (ODE) system

dxi(s)
ds

= (1/|Ni|)
∑

k∈Ni

xk(s) − xi(s), s ≥ 0, i ∈ N .(5)

The important feature of the ODE system (5) is that it has an equilibrium set as a
linear subspace of R

n, instead of a singleton. This indicates more uncertain asymptotic
behavior in the state evolution of the stochastic consensus algorithm due to the lack
of a single equilibrium point generating the attracting effect, and is in contrast to
typical stochastic approximation algorithms where the associated ODE usually has a
single equilibrium, at least locally.

We introduce some definitions to characterize the asymptotic behavior of the
agents.

Definition 2 (weak consensus). The agents are said to reach weak consensus if
E|xi

t|2 < ∞, t ≥ 0, i ∈ N , and limt→∞ E|xi
t − xj

t |2 = 0 for all distinct i, j ∈ N .
Definition 3 (mean square consensus). The agents are said to reach mean

square consensus if E|xi
t|2 < ∞, t ≥ 0, i ∈ N , and there exists a random variable x∗

such that limt→∞ E|xi
t − x∗|2 = 0 for all i ∈ N .

Definition 4 (strong consensus). The agents are said to reach strong consensus
if there exists a random variable x∗ such that with probability 1 (w.p.1) and for all
i ∈ N , limt→∞ xi

t = x∗.
It is obvious that mean square consensus implies weak consensus. If a sequence

converges w.p.1, we also say it converges almost surely (a.s.). Note that for both
mean square and strong consensus, the states xi

t, i ∈ N , must converge to a common
limit, which may depend on the initial states, the noise sequence, and the consensus
algorithm itself.

2.1. The generalization to vector states. It is straightforward to generalize
the results of this paper to the case of vector individual states xk

t ∈ R
d, where d > 1,

and (1)–(2) may be extended to the vector case by taking a vector noise term. For
the vector version of (2), we see that the d components in xk

t are decoupled during
iteration and may be treated separately. Throughout this paper, we consider only
scalar individual states.

3. Convergence in a two-agent model. We begin by analyzing a two-agent
model, which will provide interesting insight into understanding consensus seeking
in a noisy environment. The techniques developed for such a system will provide
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motivation for analyzing more general models. The rich structure associated with
this seemingly simple model well justifies a careful investigation.

3.1. Mean square consensus. Let (1)–(2) be applied by the two agents where
N = {1, 2}. In the subsequent analysis, a key step is to examine the evolution of the
difference ξt = x1

t − x2
t between the two states. We notice the relation

ξt+1 = (1 − 2at)ξt + atvt, t ≥ 0,(6)

where vt = w12
t − w21

t . By inequality (4), we may find an integer T1 > T0 such that

1 − 2αt−γ ≥ 1 − 2at > 0 for all t ≥ T1.(7)

In the estimate below, we start with T1 as the initial time. It follows from (6) that

ξt+1 =
t∏

i=T1

(1 − āi)ξT1 +
t∑

k=T1

[
t∏

i=k+1

(1 − āi)

]
akvk, t ≥ T1,(8)

where āt = 2at. Define

Πl,k =
l∏

i=k+1

(1 − āi)ak,(9)

where l > k ≥ T1. By convention, Πk,k = ak.
Lemma 5. Let Πl,k be defined by (9) with k ≤ l and assume (A2).
(i) If γ = 1, we have

Πl,k ≤ exp

{
−2α

l∑
t=k+1

t−1

}
β

k
≤ β(k + 1)2α

k(l + 1)2α
.(10)

(ii) If 1/2 < γ < 1, we have

Πl,k ≤ exp
{ −2α

1 − γ
[(l + 1)1−γ − (k + 1)1−γ ]

}
β

kγ
.(11)

Proof. First, for the case k < l, it is obvious that

Πl,k ≤
(

1 − 2α

lγ

)
· · ·

(
1 − 2α

(k + 1)γ

)
β

kγ
.(12)

By the fact ln(1 − x) < −x for all x ∈ (0, 1), it follows that

(
1 − 2α

lγ

)
· · ·

(
1 − 2α

(k + 1)γ

)
≤ exp

{
−2α

l∑
t=k+1

t−γ

}
.(13)

By (12)–(13), we get (i) and (ii) for k < l. Clearly, (i) and (ii) hold for k = l.
Let {c(t), t ≥ t0} and {h(t), t ≥ t0} be two sequences of real numbers indexed

by integers t ≥ t0, and h(t) > 0 for all t ≥ t0. Denote c(t) = O(h(t)) (resp.,
c(t) = o(h(t))) if limt→∞ |c(t)|/h(t) ≤ Cd < ∞ (resp., limt→∞ |c(t)|/h(t) = 0). Here
Cd is called a dominance constant in the relation c(t) = O(h(t)). In practice, it is
desirable to take a value for Cd as small as possible.
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Lemma 6. Under (A2), we have the upper bound estimate (i) if γ = 1,

t∑
k=T1

Π2
t,k =

⎧⎨
⎩

O(t−4α) if 0 < α < 1/4,
O(t−1 ln t) if α = 1/4,
O(t−1) if α > 1/4,

(14)

where T1 is specified in (7), and (ii) if 1/2 < γ < 1,

t∑
k=T1

Π2
t,k = O(t−γ).(15)

Proof. See the appendix.
Remark. We give some discussions on estimating the dominance constant Cd for

Lemma 6. For (14), when α �= 1/4 but is close to 1/4 from the left (resp., right), our
estimation method shows that we need to take a large Cd associated with O(t−4α)
(resp., t−1). For the case α = 1/4 in (14), we may take Cd = β2. For (15), we take
Cd = 4α, regardless of the value of γ ∈ (1/2, 1).

Corollary 7. Let {ãt, t ≥ 1} be a sequence such that (i) ãt ∈ [0, 1] and (ii)
there exists γ0 ∈ (0, 1/2) such that α̃t−γ0 ≤ ãt ≤ β̃t−γ0 , where α̃ > 0. Denote Π̃l,k =∏l

i=k+1(1 − ãi)ãk, l ≥ k ≥ 1. Then for any fixed T̃1 ≥ 1,
∑t

k=T̃1
Π̃2

t,k = O(t−γ0).
Proof. First, (11) is still valid after replacing γ (resp., Πl,k) by γ0 (resp., Π̃l,k).

The argument in proving (15) can be repeated when γ is replaced by γ0, which leads
to the corollary.

Theorem 8. Suppose (A1)–(A2) hold for the system of two agents, and x1
t , x2

t

are updated according to algorithm (2). Then there exists a random variable x∗ such
that limt→∞ E|xi

t − x∗|2 = 0 for i = 1, 2, which implies mean square consensus.
Proof. First, denote zt = (x1

t +x2
t )/2 and w̃t = (w12

t +w21
t )/2 for t ≥ 0. It is easy

to check that

zt+1 = zt + atw̃t, t ≥ 0,(16)

which leads to zt+1 = z0 +
∑t

k=0 akw̃k. Since
∑∞

t=0 a2
t < ∞, there exists a random

variable z∗ such that limt→∞ E|zt − z∗|2 = 0.
Now we estimate ξt = x1

t − x2
t . We see that

Eξ2
t+1 ≤ 2

(
Eξ2

T1

t∏
k=T1

|1 − 2ak|2 + sup
k≥T1

Ev2
k ×

t∑
k=T1

Π2
t,k

)
.

By Lemma 6, limt→∞ Eξ2
t+1 = 0. Then mean square consensus follows easily.

The i.i.d. noise assumption in Theorem 8 may be relaxed to independent noises
with zero mean and uniformly bounded variances.

We use this two-agent model to illustrate the importance of a trade-off in the
decreasing rate of at. To avoid triviality, assume the noise variance Q > 0 in (A1).

First, let γ0 ∈ (0, 1/2) and a0 = 0, at = t−γ0 for t ≥ 1, which decreases more
slowly than in (4). By (16), it follows that limt→∞ E|zt|2 = ∞. Let ξt be given by
(6). By Corollary 7, we can show limt→∞ ξ2

t = 0. So we conclude that this too-slowly-
decreasing step size causes divergence of x1

t and x2
t due to inadequately attenuated

noise, although they reach weak consensus since limt→∞ ξ2
t = 0.

Next, we take γ1 > 1 and a0 = 0, at = t−γ1 for t ≥ 1, which decreases faster than
in (4). Then there exists a random variable z∗ such that limt→∞ E|zt − z∗|2 = 0.
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Furthermore, by the fact
∏∞

i=2(1 − 2āi) > 0, we obtain from (8) that there exists a
random variable ξ∗ such that limt→∞ E|ξt − ξ∗|2 = 0 and E|ξ∗|2 > 0. So x1

t and
x2

t both converge in mean square. But the state gap ξt cannot be asymptotically
eliminated due to the excessive loss of the stabilizing capability, associated with the
homogenous part of (6), when at decreases too quickly.

3.2. Strong consensus. So far we have shown that the two states converge in
mean square to the same limit. It is well known that in classical stochastic approxi-
mation theory [11, 24], similarly structured algorithms have sample path convergence
properties under reasonable conditions. It is tempting to analyze sample path behav-
ior in this consensus context. The analysis below moves towards this objective. The
following lemma is instrumental.

Lemma 9 (see [45]). Let {w, wt, t ≥ 1} be i.i.d. real-valued random variables with
zero mean, and {aki, 1 ≤ i ≤ lk ↑ ∞, k ≥ 1} a double array of constants. Assume
(i) max1≤i≤lk |aki| = O((l1/p

k log k)−1), 0 < p ≤ 2, and log lk = o(log2 k), and (ii)
E|w|p < ∞. Then limk→∞

∑lk
i=1 akiwi = 0 a.s.

This lemma is an immediate consequence of Theorem 4 and Corollary 3 in [45,
pp. 331 and 340], which deal with the sum of random variables with weights in a
double array.

Now we need to estimate the magnitude of the individual terms Πt,k. Note that
for each t > T1, Πt,k is defined for k starting from T1 up to t. Hereafter, for notational
brevity, we make a convention about notation by setting Πt,k ≡ 0 for 1 ≤ k < T1

when t ≥ T1, and Πt,k ≡ 0 for 1 ≤ k ≤ t when 1 ≤ t < T1. After this extension, all
the entries Πt,k constitute a triangular array.

Lemma 10. For case (i) with γ = 1, under (A2) we have

sup
1≤k≤t

Πt,k =
{

O(t−2α) if 0 < α < 1/2,
O(t−1) if α ≥ 1/2,

(17)

and for case (ii) with 1/2 < γ < 1, we have sup1≤k≤t Πt,k = O(t−γ).
Proof. By use of (10), it is easy to obtain the bound for case (i). Now we give

the proof for case (ii). By Lemma 5(ii), it follows that

Πt,k ≤ e−δ(t+1)1−γ

eδ(k+1)1−γ β

kγ
≤ e−δ(t+1)1−γ

max
1≤k≤t

eδ(k+1)1−γ β

kγ
,

where δ = 2α/(1 − γ). Denote the function f(s) = eδ(s+1)1−γ

(β/sγ), where the real
number s ∈ [1,∞). By calculating the derivative f ′(s), it can be shown that for all
s ≥ s0 = [1 + γ

δ(1−γ) ]
1/(1−γ), f ′(s) > 0. Hence there exists c0 > 0 independent of t

such that

max
1≤k≤t

eδ(k+1)1−γ β

kγ
≤ max

s∈[1,t]
f(s) ≤ c0 ∨

(
eδ(t+1)1−γ β

tγ

)
,

which implies that sup1≤k≤t Πt,k = O(t−γ). This completes the proof.
Theorem 11. Assume all conditions in Theorem 8 hold and, in addition, α > 1/4

in the case γ = 1. Then we have (a) zt converges a.s., (b) limt→∞ ξt = 0 a.s., and (c)
the two sequences {x1

t , t ≥ 0} and {x2
t , t ≥ 0} converge to the same limit a.s., which

implies strong consensus.
Proof. Recall that zt+1 = z0 +

∑t
k=0 akw̃k for t ≥ 0, where w̃t = (w12

t + w21
t )/2.

Since {w̃k, k ≥ 0} is a sequence of independent random variables with zero mean
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Fig. 3. A symmetric ring network where each agent has two neighbors.

and satisfies
∑∞

k=0 E|akw̃k|2 ≤ supk E|w̃k|2(
∑∞

k=0 a2
k) < ∞, by the Khintchine–

Kolmogorov convergence theorem [13],
∑∞

k=0 akw̃k converges a.s. Hence assertion
(a) holds.

Now we prove (b). By Lemma 10 we have

sup
1≤k≤t

Πt,k = O((t1/2 log t)−1),(18)

whenever α > 0 (resp., α > 1/4) in the case 1/2 < γ < 1 (resp., γ = 1). To
apply Lemma 9, we take lk = k and p = 2, which combined with (18) yields
limt→∞

∑t
k=1 Πt,kvk = 0, a.s. Hence limt→∞ ξt = 0 a.s. by (8), and (b) follows.

Assertion (c) immediately follows from (a) and (b).
The requirement α > 1/4, associated with γ = 1, is a mild condition, and from

an algorithmic point of view, it is not an essential restriction since in applications
{at, t ≥ 0} is a sequence to be designed. In fact, by a slightly more complicated
procedure, the restriction α > 1/4 can be removed; see the more recent work [22].

4. Models with symmetric structures. We continue to consider models where
the neighboring relation for the n agents displays a certain symmetry. A simple ex-
ample is shown in Figure 3 with ring-coupled agents each having two neighbors.

We specify the associated digraph as follows. First, the n nodes are listed by the
order 1, 2, . . . , n. The ith node has a neighbor set Ni listed as (αi

1, . . . , α
i
K) as a subset

of {1, . . . , n}. The constant K ≥ 1 denotes the number of neighbors, which is the same
for all agents. Then the (i+1)th node’s neighbors are given by (αi

1+1, . . . , αi
K +1). In

other words, by incrementing each αi
k (associated with Ai) by one, where 1 ≤ k ≤ K,

we obtain the neighbor set for node i + 1, and after a total of n steps, we retrieve node
i and its neighbors Ni. In fact, the underlying digraph may be realized by arranging
the n nodes sequentially on a ring and adding the edges accordingly. For this reason,
we term the fulfillment of the above incrementing rule as the circulant invariance
property of the digraph. In this section, if an index (e.g., αi

k + 1) for a node or agent
exceeds n, we identify it as an integer between 1 and n by taking mod(n).

Notice that the above symmetry assumption does not ensure the strong con-
nectivity of the digraph. For illustration, consider a digraph with the set of nodes
N = S1∪S2, where S1 = {1, 3, 5} and S2 = {2, 4, 6}. All nodes inside each Si, i = 1, 2,
are neighbors to each other, but there exists no edge between two nodes with one in
S1 and the other in S2. This digraph has the circulant invariance property without
connectivity. Throughout this section, we make the following assumption.

(A3) The digraph G = (N , E) has the circulant invariance property and strong
connectivity.
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Define the centroid of the state configuration (x1
t , . . . , x

n
t ) as zt = (1/n)

∑n
i=1 xi

t.
Under (A3), it is easy to show that zt satisfies

zt+1 = zt + (at/(nK))
∑
i∈N

∑
k∈Ni

wik
t , t ≥ 0.(19)

Lemma 12. Under (A1)–(A3), the sequence {zt, t ≥ 0} converges in mean square
and a.s.

Proof. The lemma may be proved by the same method as in analyzing {zt, t ≥ 0}
in Theorems 8 and 11 for the two-agent model, and the details are omitted.

We further denote the difference between xi+1
t and xi

t by

ξi
t = xi+1

t − xi
t, 1 ≤ i ≤ n.(20)

Note that i and i+1 are two consecutively labelled agents, unnecessarily being neigh-
bors to each other. By our convention, xn+1

t is identified as x1
t . Thus ξn

t = x1
t − xn

t .
The variables ξi

t, 1 ≤ i ≤ n, are not linearly independent. Recall that |Ni| = K for
all i ∈ N . Specializing algorithm (2) to the model of this section, we have

xi
t+1 = (1 − at)xi

t + (at/K)
∑

k∈Ni

(xk
t + wik

t )(21)

for each i ∈ N , and

xi+1
t+1 = (1 − at)xi+1

t + (at/K)
∑

k∈Ni+1

(xk
t + wi+1,k

t )

= (1 − at)xi+1
t + (at/K)

∑
k∈Ni

(xk+1
t + wi+1,k+1

t ),(22)

where we obtain (22) by use of the circulant invariance of the neighboring relation.
By subtracting both sides of (22) by (21), we get the dynamics

ξi
t+1 = (1 − at)ξi

t + (at/K)
∑

k∈Ni

ξk
t + (at/K)w̃i

t, i ∈ N ,(23)

where

w̃i
t =

∑
k∈Ni

w̃i,k
t , w̃i,k

t = wi+1,k+1
t − wi,k

t(24)

with k ∈ Ni for w̃i,k
t .

Lemma 13. Let ξi
t and w̃i

t be defined by (20) and (24), respectively. Under (A3)
we have the zero-sum property:

∑
i∈N ξi

t = 0 and
∑

i∈N w̃i
t = 0 for all t ≥ 0.

Proof. The first equality holds by the definition of ξi
t, 1 ≤ i ≤ n. We now prove

the second equality: ∑
i∈N

w̃i
t =

∑
i∈N

∑
k∈Ni

wi+1,k+1
t −

∑
i∈N

∑
k∈Ni

wi,k
t

=
∑
i∈N

∑
k∈Ni

wi,k
t −

∑
i∈N

∑
k∈Ni

wi,k
t(25)

= 0,
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where we get (25) by the circulant invariance property.
Before further analysis, we introduce the n × n stochastic matrix

M(a) = I + aM c, a ∈ [0, 1].(26)

The circulant matrix M c is given in the form

M c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 c1 c2 · · · cn−1

cn−1 −1 c1
. . .

...

cn−2 cn−1 −1
. . . c2

...
. . . . . . . . . c1

c1 · · · cn−2 cn−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where M c
ii = −1 for 1 ≤ i ≤ n, and for 2 ≤ k ≤ n,

M c
1k = ck−1 =

{
1/K if k ∈ N1,
0 otherwise.

Since M c is a circulant matrix [16], it is well defined after the first row is determined.
In fact, both M c and M(a) are circulant matrices.

Proposition 14. Under (A3), M(a) is doubly stochastic for any a ∈ [0, 1]; i.e.,
both M(a) and [M(a)]T are stochastic matrices, and M(a) is irreducible for a ∈ (0, 1].

Proof. All row and column sums in M(a) are equal to one. Hence M(a) is doubly
stochastic. Since G is strongly connected, M(a) is irreducible for a > 0.

Define ξt = [ξ1
t , . . . , ξn

t ]T and w̃t = [w̃1
t , . . . , w̃n

t ]T . We can check that ξt satisfies

ξt+1 = M(at)ξt + (at/K)w̃t, t ≥ 0.(27)

The following lemma plays an essential role for the stability analysis of (27).
Lemma 15. Assume (A2)–(A3) hold, and the real vector θ = [θ1, . . . , θn]T has a

zero column sum, i.e.,
∑n

i=1 θi = 0. Then for all t ≥ k ≥ 0, we have
(i) The column sum of M(at) . . . M(ak)θ is zero, i.e.,

∑n
i=1 Mθ

t,k(i) = 0, where
we denote Mθ

t,k = [Mθ
t,k(1), . . . , Mθ

t,k(n)]T = M(at) . . .M(ak)θ.
(ii) There exist constants δ∗ ∈ (0, 1) and T2 > 0, both independent of θ, such that

|M(at) . . . M(ak)θ| ≤ |(1 − δ∗at) . . . (1 − δ∗ak)θ|

for all t ≥ k ≥ T2, where T2 is chosen such that at ≤ 1/2 for all t ≥ T2.
Proof. The matrix M(ak), k ≥ 0, is doubly stochastic by Proposition 14. Then

θ having a zero column sum implies M(ak)θ has a zero column sum. Repeating this
argument, we obtain part (i).

We now prove (ii). First, let ωn = e2πi/n, where i =
√−1 is the imaginary unit,

and denote

Fn =
1√
n

⎛
⎜⎜⎜⎝

1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

...
...

...
...

...
1 ωn−1

n ω
2(n−1)
n · · · ω

(n−1)(n−1)
n

⎞
⎟⎟⎟⎠ ,
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which is the so-called Fourier matrix of order n and satisfies F ∗
nFn = I, where F ∗

n is
the conjugate transpose of Fn. For a ∈ [0, 1], we introduce the polynomial

ϕ(a, z) = (1 − a) + a(c1z + c2z
2 + · · · + cn−1z

n).

By well-known results for circulant matrices [16, 8], the n eigenvalues {λ1,t, . . . , λn,t}
of M(at) are given by λk,t = ϕ(at, ω

k−1
n ) for 1 ≤ k ≤ n. Obviously, λ1,t = 1. Further-

more, M(at) may be diagonalized in the form M(at) = F ∗
n ×diag(λ1,t, . . . , λn,t)×Fn.

It is easy to verify that

M(at) . . . M(ak) = F ∗
n × Πt

j=k diag(λ1,j , . . . , λn,j) × Fn

= F ∗
n × Πt

j=k diag(0, λ2,j , . . . , λn,j) × Fn + (1/n)1n1T
n .

Since 1n1T
nθ = 0 for any θ with a zero column sum, we have

M(at) . . . M(ak)θ = F ∗
n × Πt

j=k diag(0, λ2,j , . . . , λn,j) × Fnθ.(28)

Notice that we may write ϕ(a, wk−1
n ) = 1 + ck,1a + ick,2a for 2 ≤ k ≤ n, where

ck,1 and ck,2 are constants independent of a. For 0 < a < 1, the matrix M(a)
is irreducible and aperiodic,2 and hence for 2 ≤ k ≤ n, |ϕ(a, wk−1

n )| < λ1,t = 1;
the reader is referred to [40] for additional details on spectral theory of stochastic
matrices. Then we necessarily have ck,1 < 0, and in addition, for 0 < a < 1,

|ϕ(a, ωk−1
n )|2 = (1 + ck,1a)2 + c2

k,2a
2 < 1, 2 ≤ k ≤ n.(29)

By taking a ↑ 1 in (29), we get −2 ≤ ck,1 < 0, |ck,2| ≤ 1, and c2
k,1 + c2

k,2 ≤ −2ck,1 for
2 ≤ k ≤ n. Hence it follows that, for 2 ≤ k ≤ n,

|λk,t|2 = (1 + ck,1at)2 + c2
k,2a

2
t

≤ 1 + 2ck,1at − 2ck,1a
2
t

= (1 + ck,1at/2)2 + ck,1at − c2
k,1a

2
t /4 − 2ck,1a

2
t .

Since −2 ≤ ck,1 < 0, we have ck,1at−c2
k,1a

2
t /4−2ck,1a

2
t = |ck,1|at(ck,1at/4+2at−1) ≤ 0

for all at ≤ 1/2. Hence for all t ≥ T2 such that at ≤ 1/2, we have

|λk,t| = |ϕ(at, ω
k−1
n )| ≤ 1 + ck,1at/2,(30)

where 2 ≤ k ≤ n. Denote δ∗ = inf2≤k≤n(1/2)|ck,1| > 0. Then it follows that

Πt
j=l|λk,j | < Πt

j=l(1 − δ∗aj)(31)

for 2 ≤ k ≤ n, where t ≥ l ≥ T2. Hence we obtain

|M(at) . . . M(ak)θ|2 = θT F ∗
n [Πt

j=k diag(0, λ2,j , . . . , λn,j)]∗FnF ∗
n

× [Πt
j=k diag(0, λ2,j , . . . , λn,j)]Fnθ

≤ Πt
j=k(1 − δ∗aj)2|θ|2.

This completes the proof.

2When a < 1, the n diagonal entries of M(a) are all positive, which ensures aperiodicity of M(a).
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Corollary 16. Let θ, T2 and δ∗ be given as in Lemma 15 and denote M(t, k) =
M(at) . . . M(ak) for t > k ≥ T2. Then Mo(t, k) = F ∗

n [Πt
j=k diag(0, λ2,j , . . . , λn,j)]Fn

is a real matrix satisfying

M(t, k)θ = Mo(t, k)θ.(32)

Moreover, |Mo(t, k)|∞ ≤ CΠt
j=k(1 − δ∗aj) for some C > 0 independent of t, k. The

infinity norm | · |∞ denotes the largest absolute value of the elements in the matrix.
Proof. Obviously Mo(t, k) is a real matrix since Mo(t, k) = M(at) . . . M(ak) −

(1/n)1n1T
n , and (32) follows from (28). The estimate for |Mo(t, k)|∞ follows from

(31).
Theorem 17. Assume (A1)–(A3). Then algorithm (2) achieves (i) mean square

consensus, and (ii) strong consensus for (a) γ ∈ (1/2, 1) associated with any α > 0 in
(A2), and (b) γ = 1 provided that α > 1/(2δ∗).

Proof. The theorem is proved using the same procedure as in the two-agent case.
For {ξt, t ≥ 0}, we first write the recursion of ξt by (27) with the initial time t = T1∨T2

and show its mean square convergence by Lemma 13 and Lemma 15(ii). For proving
almost sure convergence of ξt, we use Lemma 13, Corollary 16, and Lemma 9 to carry
out the double array analysis, where we need to take α > 1/(2δ∗) for the case γ = 1.

These combined with Lemma 12 lead to the mean square and almost sure con-
vergence of the n sequences {xi

t, t ≥ 0}, i ∈ N , to the same limit.
For deterministic models, if the coefficient matrix in the consensus algorithm is

doubly stochastic, the sum of the individual states remains a constant during the
iterates. Moreover, if the algorithms achieve consensus, the state of each agent con-
verges to the initial state average, giving the so-called average-consensus [34, 51]. In
our model, due to the noise, the limit is a random variable differing from the initial
state average although M(at) is a doubly stochastic matrix. We have the following
performance estimate which illustrates the effect of the noise.

Proposition 18. Under (A1)–(A3), the state iterates in (2) satisfy

E| lim
t→∞ xi

t − ave(x0)| = lim
t→∞E|xi

t − ave(x0)|2 = O(Q) for all i ∈ N ,(33)

where ave(x0) = (1/n)
∑n

k=1 xk
0 is the initial state average and Q is the variance of

the i.i.d. noises.
Proof. This follows from the mean square consensus result in Theorem 17 and

the relation (19).
As the noise variance tends to zero, (33) indicates that the mean square error

between limt→∞ xi
t and ave(x0) converges to zero. This is consistent with the corre-

sponding average-consensus results in deterministic models.

5. Consensus seeking on connected undirected graphs. In this section we
consider more general network topologies but require that all links are bidirectional;
i.e., we restrict our attention to undirected graphs.

Let the location of the n agents be associated with an undirected graph (to be
simply called a graph) G = (N , E) consisting of a set of nodes N = {1, 2, . . . , n} and
a set of edges E ⊂ N × N . We denote each edge as an unordered pair (i, j), where
i �= j. A path in G consists of a sequence of nodes i1, i2, . . . , il, l ≥ 2, such that
(ik, ik+1) ∈ E for all 1 ≤ k ≤ l−1. The graph G is said to be connected if there exists
a path between any two distinct nodes. The agent Ak (resp., node k) is a neighbor
of Ai (resp., node i) if (k, i) ∈ E , where k �= i. Denote the neighbors of node i by
Ni ⊂ N . We make the following assumption.

(A4) The undirected graph G is connected.
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5.1. The measurement model and stochastic approximation. The for-
mulation in section 2 is adapted to the undirected graph G = (N , E) as follows. For
each i ∈ N , we denote the measurement by agent Ai of agent Ak’s state by

yik
t = xk

t + wik
t , t ∈ Z

+, k ∈ Ni,(34)

where wik
t is the additive noise. Write the state vector xt = [x1

t , . . . , x
n
t ]T . We

introduce the following assumption which is slightly weaker for the noise condition
than (A1).

(A1′) The noises {wik
t , t ∈ Z

+, i ∈ N , k ∈ Ni} are independent with respect to the
indices i, k, t and also independent of x0, and each wik

t has zero mean and variance
Qi,k

t . In addition, E|x0|2 < ∞ and supt≥0,i∈N supk∈Ni
Qik

t < ∞.
We use the state updating rule

xi
t+1 = (1 − at)xi

t +
at

|Ni|
∑

k∈Ni

yik
t , t ∈ Z

+,(35)

where i ∈ N and at ∈ [0, 1], and we have the relation

xi
t+1 = xi

t + at(mi
t − xi

t),(36)

where mi
t = (1/|Ni|)

∑
k∈Ni

yik
t .

5.2. Stochastic Lyapunov functions. The specification of the stochastic Lya-
punov function makes use of the relative positions of the agents. For agent Ai, we
define its local potential as

Pi(t) = (1/2)
∑
j∈Ni

|xi
t − xj

t |2, t ≥ 0.

Accordingly, the total potential and total mean potential are given by

PN (t) =
∑
i∈N

Pi(t), V (t) = E
∑
i∈N

Pi(t), t ≥ 0.

It is easy to show that mi
t − xi

t in (36) may be decomposed into the form

mi
t − xi

t = − 1
|Ni|

∂Pi(t)
∂xi

t

+
1

|Ni|
∑
j∈Ni

wij
t .(37)

This means the state of each agent is updated along the descent direction of the
local potential subject to an additive noise, and justifies a stochastic approximation
interpretation of algorithm (35). This interpretation is also applicable to digraphs.

Under (A4), it is easy to show that PN (t) = 0 if and only if x1
t = · · · = xn

t . For
our convergence analysis, we will use PN (t) as a stochastic Lyapunov function. We
introduce the graph Laplacian for G as a symmetric matrix L = (aij)1≤i,j≤n, where

aij =

⎧⎨
⎩

di if j = i,
−1 if j ∈ Ni,
0 otherwise,

(38)

and di = |Ni| is the degree (i.e., the number of neighbors) of node i. Denote 1n =
[1, 1, . . . , 1]T ∈ R

n. Since G is connected, rank(L) = n − 1 and the null space of L
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is span{1n} [19, 35]. We have the following relation in terms of the graph Laplacian
[19]:

PN (t) = (1/2)
∑
i∈N

∑
j∈Ni

|xi
t − xj

t |2 = xT
t Lxt, t ≥ 0.

By (35), we have the state updating rule

xi
t+1 = (1 − at)xi

t + (at/|Ni|)
∑
j∈Ni

xj
t + (at/|Ni|)

∑
j∈Ni

wij
t .(39)

Denote

w̃i
t = (1/|Ni|)

∑
j∈Ni

wij
t , w̃t = [w̃1

t , . . . , w̃n
t ]T .(40)

With di = |Ni|, we further introduce the matrix L̂ = (âij)1≤i,j≤n, where

âij =

⎧⎨
⎩

1 if j = i,
−d−1

i if j ∈ Ni,
0 otherwise.

(41)

Define the diagonal matrix DN = diag(d−1
1 , . . . , d−1

n ). Note that L̂ = DNL.
Lemma 19. For t ≥ 0 and {xt, t ≥ 0} generated by (34)–(35), we have

PN (t + 1) = PN (t) − 2atx
T
t LDNLxt + a2

t x
T
t LDNLDNLxt

+ 2atx
T
t Lw̃t − 2a2

t x
T
t LDNLw̃t + a2

t w̃
T
t Lw̃t.(42)

Proof. By (39), we get the vector equation

xt+1 = xt − atL̂xt + atw̃t, t ≥ 0,(43)

which leads to the recursion of the total potential as follows:

PN (t + 1) = xT
t+1Lxt+1

= xT
t Lxt − 2atx

T
t LDNLxt + a2

t x
T
t LDNLDNLxt

+ 2atx
T
t Lw̃t − 2a2

t x
T
t LDNLw̃t + a2

t w̃
T
t Lw̃t,

and the lemma follows.
In the subsequent proofs, we use A ⇒ B as the abbreviation for “A implies B,”

and A ⇔ B for “A is equivalent to B.”
Lemma 20. Under (A4), we have the following assertions:
(i) The null spaces of L, LDNL, and LDNLDNL are each given by span{1n}.
(ii) There exist c1 > 0 and c2 > 0 such that LDNL ≥ c1L and LDNLDNL ≤ c2L.
(iii) In addition, we assume (A1′)–(A2′) and let Tc be such that 1−2atc1+a2

t c2 ≥ 0
for all t ≥ Tc. Then for all t ≥ Tc, we have

V (t + 1) ≤ (1 − 2atc1 + a2
t c2)V (t) + O(a2

t ).(44)

Proof. See the appendix.
Theorem 21. Under (A1′)–(A2′) and (A4), algorithm (35) achieves weak con-

sensus.
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Proof. For Tc given in Lemma 20(iii), we select T̂c ≥ Tc to ensure at ≤ c1c
−1
2 .

Hence 1 − c1at ≥ 1 − 2c1at + c2a
2
t ≥ 0 for all t ≥ T̂c, and we find a fixed constant

C > 0 such that

V (t + 1) ≤ (1 − c1at)V (t) + Ca2
t

for all t ≥ T̂c; this leads to

V (t + 1) ≤ V (T̂c)
t∏

j=T̂c

(1 − c1aj) + C
t∑

k=T̂c

t∏
j=k+1

(1 − c1aj)a2
k,(45)

where
∏t

j=t+1(1 − c1aj) � 1. Under (A2′), elementary estimates using (45) yield

lim
t→∞V (t) = 0.(46)

It immediately follows that

lim
t→∞E|xi

t − xk
t |2 = 0, i ∈ N , k ∈ Ni.(47)

Since G is connected, there exists a path between any pair of distinct nodes i and k.
By repeatedly applying (47) to all pairs of neighboring nodes along that path, we can
show that limt→∞ E|xi

t − xk
t |2 = 0 for any i, k ∈ N .

Corollary 22. In Theorem 21, we assume all other assumptions but replace
(A2′)(ii) by the condition (H): There exists T0 > 0 such that for t ≥ T0, α0t

−γ0 ≤
at ≤ β0t

−γ0 holds for some 0 < α0 < β0 < ∞ and γ0 ∈ (0, 1/2]. Then algorithm (35)
still achieves weak consensus.

Proof. For (45), we have
∏t

j=k+1(1 − c1aj)a2
k ≤ ∏t

j=k+1(1 − c1aj/2)2a2
k. We

apply Corollary 7 to show that (46) still holds. This completes the proof.
Remark. Notice that under (H),

∑∞
t=0 a2

t = ∞. The conditions of Corollary 22 in
general do not ensure mean square consensus.

5.3. The direction of invariance. Theorem 21 shows the difference between
the states of any two agents converges to zero in mean square. However, this alone does
not mean that they will converge to a common limit. The asymptotic vanishing of the
stochastic Lyapunov function indicates only that the state vector xt will approach the
subspace span{1n}. To obtain mean square consensus results, we need some additional
estimation. The strategy is to show that the oscillation of the sequence {xt, t ≥ 0}
along the direction 1n will gradually die off. This is achieved by proving the existence
of a vector η which is not orthogonal to 1n and such that the linear combination ηT xt

of the components in xt converges. For convenience, η will be chosen to satisfy the
additional requirement that ηT xt+1 depends not on the whole of xt but only on ηT xt;
this will greatly facilitate the associated calculation.

Definition 23. Let xt = [x1
t , . . . , x

n
t ]T be generated by (35). If η = [η1, . . . , ηn]T

is a real-valued vector of unit length, i.e., |η|2 =
∑n

i=1 η2
i = 1, and satisfies

ηT xt+1 = ηT xt + atη
T w̃t, t ≥ 0,(48)

for any initial condition x0 and any step size sequence at ∈ [0, 1], where w̃t is given
in (40), then η is called a direction of invariance associated with (35).

The directions of invariance associated with the consensus algorithm (35) are
easily characterized in terms of the degrees of the nodes of the underlying graph.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSENSUS OF AGENTS WITH NOISY MEASUREMENTS 151

Theorem 24. We have the following assertions:
(i) There exists a real-valued vector η = (η1, . . . , ηn)T of unit length satisfying

ηT L̂ = 0, where L̂ is defined by (41).
(ii) If |η| = 1, then η is a direction of invariance for (35) if and only if ηT L̂ = 0.
(iii) Under (A4), the direction of invariance for (35) has the representation η =

c[d1, . . . , dn]T , where c = ±(
∑n

i=1 d2
i )

1/2 and di = |Ni| is the degree of node i.
Proof. It is easy to prove (i) since L̂ does not have full rank, and η is in fact the

left eigenvector of L̂ associated with the eigenvalue 0.
We now show (ii). The condition ηT L̂ = 0 combined with (43) implies

ηT xt+1 = ηT xt + atη
T w̃t.

The sufficiency part of (ii) follows easily. Conversely, if the unit length vector η
satisfies (48) for all initial states xi

0 and the step size at as specified in Definition 23,
then we necessarily have ηT L̂ = 0. So the necessity part of (ii) holds.

We continue to prove (iii) under (A4). By (ii) and the definition of L̂, η with
|η| = 1 is a direction of invariance if and only if ηT DNL = 0, which in turn is
equivalent to LDN η = 0. By (A4) and Lemma 20, we have DN η = c1n, where c �= 0
is a constant to be determined. This gives η = c[d1, . . . , dn]T , where c is determined
by the condition |η| = 1. The direction of invariance is unique up to sign.

If η is a direction of invariance, then Theorem 24 shows under (A4) that all
elements of η have the same sign. Therefore, η is not orthogonal to 1n, and the
requirement stated at the beginning of this section is met. Geometrically, the notion of
the direction of invariance means under (35) and zero noise conditions, the projection
(i.e., (ηT xt)η) of xt in R

n along the direction η would remain a constant vector
regardless of the value of at ∈ [0, 1] used in the iterates.

5.4. Mean square consensus. Now we are in a position to establish mean
square consensus.

Lemma 25. Assume (A1′)–(A2′) and (A4), and let {xt, t ≥ 0} be given by (35),
η0 = [d1, . . . , dn]T , where di = |Ni|. Then there exists a random variable y∗ such that
limt→∞ E|η0xt − y∗|2 = 0.

Proof. By Theorem 24, η0/|η0| is a direction of invariance. Hence, we have

ηT
0 xt+1 = ηT

0 x0 + a0η
T
0 w̃0 + · · · + atη

T
0 w̃t.

By (A1′) and (A2′), it follows that ηT
0 xt converges in mean square.

The weak consensus result combined with the convergence of ηT
0 xt ensures that

xt itself converges.
Theorem 26. Under (A1′)–(A2′) and (A4), algorithm (35) achieves mean square

consensus.
Proof. By Theorem 21, we have weak consensus, i.e.,

lim
t→∞ E|xi

t − xk
t |2 = 0 for all i, k ∈ N .(49)

On the other hand, by Lemma 25, as t → ∞,

ηT
0 xt = ηT

0 [x1
t − x1

t , . . . , x
n
t − x1

t ]
T + ηT

0 [x1
t , . . . , x

1
t ]

T

converges in mean square, which combined with (49) implies x1
t converges in mean

square. By (49) again, the mean square consensus result follows.
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6. Leader following and convergence. Now we apply the stochastic Lya-
punov function approach to the scenario of leader following [23, 44]. Suppose there
are n agents located in the digraph Gd = (N , E), and without loss of generality, de-
note the leader by agent A1. We denote by NF = N\{1} the set of follower agents.
For i ∈ N , denote the individual states by xi

t, t ∈ Z
+. The leader A1 does not re-

ceive measurements from other agents; to capture this feature in Gd, there is no edge
reaching A1 from other agents. The initial state of A1 is chosen randomly, after which
the state remains constant. That is, x1

t ≡ ϑ, where ϑ is a random variable, which is
unknown to any other agent Ai, i ∈ NF .

For node i ∈ NF , its measurement is given as

yi,k
t = xk

t + wi,k
t , t ∈ Z

+, k ∈ Ni,

where wi,k
t is the additive noise. For i ∈ NF , the state is updated by

xi
t+1 = (1 − at)xi

t +
at

|Ni|
∑
j∈Ni

yij
t .(50)

We adapt (A1′) to the graph Gd = (N , E) in an obvious manner. But it should be
kept in mind that in this leader following model the noise term wik

t is defined only
for i ∈ NF since the leader has no neighbor. Also, x1

0 ≡ ϑ since A1 is the leader, and
under (A1′), we have E|ϑ|2 < ∞.

To make the problem nontrivial, we use the following underlying assumption.
(A5) In Gd = (N , E), node 1 is the neighbor of at least one node in NF .
Now, based on the digraph Gd = (N , E), we set each (i, j) ∈ E as an unordered

pair and this procedure induces an undirected graph Gu = (N , Eu) with its associated
graph Laplacian Lu. We decompose Lu into the form

Lu =
[

Lu
1

Lu
n−1

]
,

where Lu
1 is the first row in Lu.

In order to develop the stochastic Lyapunov analysis, we need some restrictions
on the set of nodes NF and the associated edges. Let (NF , EF ) denote the directed
subgraph of (N , E) obtained by removing node 1 and all edges containing 1 as the
initial node. We introduce the following assumption.

(A6) An ordered pair (i, j) ∈ EF implies the ordered pair (j, i) is also in EF .
Remark. (A5)–(A6) imply that at least one follower can receive information from

the leader while the information exchange among the followers is bidirectional.
In analogy to the construction of Gu, we induce from the digraph (NF , EF ) an

undirected graph, denoted by GFu = (NF , Eu
F ). We introduce the following assump-

tion.
(A7) The undirected graph GFu = (NF , Eu

F ) is connected.
Proposition 27. Under (A5)–(A7), the undirected graph Gu = (N , Eu) is con-

nected and rank(Lu) = rank(Lu
n−1) = n − 1.

Proof. It is obvious that Gu is connected. Hence rank(Lu) = n − 1. Since
1T

nLu = 0, it follows that Lu
1 is a linear combination of the rows in Lu

n−1, which
implies rank(Lu

n−1) = n − 1.
Denote xϑ,t = [ϑ, x2

t , . . . , x
n
t ]T , w̃i = (1/|Ni|)

∑
k∈Ni

wi,k
t for i ≥ 2, and w̃t =

[0, w̃2
t , . . . , w̃

n
t ]T . Write D0 = diag(0, d−1

2 , d−1
n ). By writing (50) in the vector form,

we get the following lemma.
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Lemma 28. We have the recursion for the state vector

xϑ,t+1 = xϑ,t − atD0L
uxϑ,t + atw̃t, t ≥ 0,

where xϑ,t is generated by algorithm (50).
Theorem 29. Under (A1′)–(A2′), (A5)–(A7), and algorithm (50), we have

lim
t→∞ E|xi

t − ϑ|2 = 0(51)

for all i ∈ NF , where ϑ is the fixed random variable as the state for the leader.
Proof. Step 1. Define the stochastic Lyapunov function Pϑ,N (t) = xT

ϑ,tL
uxϑ,t,

where Lu ≥ 0, and denote V (t) = EPϑ,N (t), t ≥ 0. By Lemma 28, it is easy to show

V (t + 1) = V (t) − 2atE[xT
ϑ,tL

uD0L
uxϑ,t]

+ a2
t E[xT

ϑ,tL
uD0L

uD0L
uxϑ,t] + O(a2

t ).(52)

Let yθ = [θ, y2, . . . , yn]T , where θ denotes a fixed real number. First, by rank(Lu) =
n−1, we can show that Luyθ = 0 ⇔ yθ = θ1T

n . Obviously Luyθ = 0 ⇒ LuD0L
uyθ = 0

⇒ LuD0L
uD0L

uyθ = 0. On the other hand, letting Lu = [(Lu)1/2]2, where (Lu)1/2 ≥
0, we have LuD0L

uD0L
uyθ = 0 ⇒ (Lu)1/2D0L

uyθ = 0 ⇒ LuD0L
uyθ = 0 ⇒

diag(0, d
−1/2
2 , . . . , d

−1/2
n )Luyθ = 0 ⇔ diag(d−1/2

2 , . . . , d
−1/2
n )Lu

n−1yθ = 0 ⇔ Lu
n−1yθ =

0 ⇔ Luyθ = 0 since rank(Lu
n−1) = rank(Lu) = n − 1 by Proposition 27. Now

we conclude that θ1n is the unique point where each of yT
θ Luyθ, yT

θ LuD0L
uyθ, and

yT
θ LuD0L

uD0L
uyθ attains its minimum 0.

Step 2. Letting y(n−1) = [y2, . . . , yn]T , we introduce three positive semidefinite
quadratic forms in terms of y(n−1): Q1(y(n−1)) = yT

θ Luyθ, Q2(y(n−1)) = yT
θ LuD0L

uyθ,
and Q3(y(n−1)) = yT

θ LuD0L
uD0L

uyθ. Let z = y(n−1) − θ1n−1, and we may write

0 ≤ Q1(y(n−1)) = zT M1z + vT z + c,

where M1 is an (n − 1) × (n − 1) symmetric matrix, v ∈ R
n−1, and c ∈ R. Clearly

zT M1z + vT z + c = 0 ⇔ z = 0 since Q1(y(n−1)) = 0 ⇔ yθ = θ1n by Step 1; by
elementary linear algebra and a contradictory argument we can show c = 0, vT = 0,
and M1 > 0. Hence, Q1(y(n−1)) = zT M1z. Since M1 is constructed based on the
second order coefficient of y(n−1) in yT

θ Luyθ, we see that M1 is independent of θ.
Similarly, we can find matrices M2 > 0 and M3 > 0, both independent of θ, such that

Q2(y(n−1)) = zT M2z, Q3(y(n−1)) = zT M3z,

where z = y(n−1) − θ1n−1. We denote the smallest and largest eigenvalue of Mi,
respectively, by λi,min > 0 and λi,max > 0 for i = 1, 2, 3. Now we have

Q2(y(n−1)) = zT M2z ≥ λ2,minλ
−1
1,maxz

T M1z = λ2,minλ−1
1,maxQ1(y(n−1)),(53)

Q3(y(n−1)) = zT M3z ≤ λ3,maxλ
−1
1,minz

T M1z = λ3,maxλ
−1
1,minQ1(y(n−1)).(54)

Step 3. Now it follows from (52) and (53)–(54) that

V (t + 1) ≤ (1 − 2τ1at + τ2a
2
t )V (t) + O(a2

t ),(55)

where τ1 = λ2,minλ
−1
1,max and τ2 = λ3,maxλ

−1
1,min. Consequently, by use of product

estimates as in (45), we can show limt→∞ V (t) = 0. Since the first entry in xϑ,t
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1

2 3

Fig. 4. A digraph with 3 nodes.

is ϑ and the associated undirected graph Gu = (N , Eu) is connected, by the same
argument as in proving weak consensus in Theorem 21, we can obtain (51).

Remark. In Theorem 29, if (A2′)(ii) is replaced by the condition (H): α0t
−γ0 ≤

at ≤ β0t
−γ0 for t ≥ T0, where α0 > 0 and γ0 ∈ (0, 1/2] (see Corollary 22), then

Theorem 29 still holds. This may be proved by combining the proving argument for
Corollary 22 with (55) to get limt→∞ V (t) = 0.

7. Numerical studies.

7.1. Simulations with a symmetric digraph. The digraph is shown in Figure
4, where N1 = {2}, N2 = {3}, and N3 = {1}. The initial condition for xt = [x1

t , x
2
t , x

3
t ]

is [4, 3, 1] at t = 0, and the i.i.d. Gaussian measurement noises have variance σ2 = 0.01.
Figure 5 shows the simulation with equal weights to an agent’s neighbors and itself
(as in Example 1) in the averaging rule (x1

t+1 = (x1
t + y12

t )/2, etc.), without obtaining
consensus. Figure 6 shows the convergence of algorithm (2) with the step size sequence
{at = (t + 5)−0.85, t ≥ 0}.

0 500 1000 1500 2000 2500 3000
1

1.5

2

2.5

3

3.5

4

iterates

x t

Fig. 5. Equal weights are used for each agent’s state and observation.

7.2. Simulations with an undirected graph. The undirected graph is shown
in Figure 7 with N = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (2, 4)}. The initial condition
is xt|t=0 = [5, 1, 3, 2]T , and the i.i.d. Gaussian noises have variance σ2 = 0.01. The
simulation of the averaging rule with equal weights is given in Figure 8; hence we have
x1

t+1 = (x1
t +y12

t )/2 and x2
t+1 = x2

t /4+(y21
t +y23

t +y24
t )/4, etc., where t ≥ 0. It is seen

that the 4 state trajectories in Figure 8 move towards each other rather quickly at the
beginning, but they maintain long term fluctuations as the state iteration continues.
The stochastic algorithm (35) is used in Figure 9, where at = (t + 5)−0.85, t ≥ 0.
Figure 9 shows the 4 trajectories all converge to the same constant level.
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0 500 1000 1500 2000 2500 3000
1

1.5

2

2.5

3

3.5

4

iterates

x t

Fig. 6. The 3-agent example using decreasing step size at = (t + 5)−0.85.

12

3

4

Fig. 7. The undirected graph with 4 nodes.

7.3. The leader following model. We adapt the undirected graph in Figure
7 to the leader following situation as follows. We set node 1 as the leader (without a
neighbor) and N2 = {1, 3, 4}, N3 = {2}, N4 = {2}. We take x1

0 ≡ 4 and the initial
condition is given as xt|t=0 = [4, 2, 1, 3]T . Figure 10 shows the simulation with equal
weights for each follower agent and its neighbors. We see that all three states of the
follower agents move into a neighborhood of the constant level 4 and oscillate around
that value. Compared with Figure 8, the trajectories of the followers in Figure 10
have a far smaller fluctuation. The reason is that in the leader following case, the
total potential attains its minimum only at the leader’s state rather than at all points
in span{1n}, which results in more regular behavior for the agents. In Figure 11 we
show the simulation of algorithm (50) with at = (t + 5)−0.65, t ≥ 0, which exhibits a
satisfactory convergent behavior.

8. Concluding remarks. We consider consensus problems for networked agents
with noisy measurements. First, the double array analysis is developed to analyze
mean square and almost sure convergence. Next, stochastic Lyapunov functions are
introduced to prove mean square consensus with the aid of the so-called direction of
invariance, and this approach is further applied to leader following. We note that the
methods developed in this paper may be extended to deal with general digraphs, and
the second order moment condition for the noise may be relaxed when applying the
stochastic double array analysis; see the recent work [22] for details. For future work,
it is of interest to develop stochastic algorithms in models with dynamic topologies
and asynchronous state updates, and in particular, extend the double array analysis
to networks with switching topologies.
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Fig. 8. The 4-agent example using equal weights for each agent’s state and observations.
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Fig. 9. The 4-agent example using a decreasing step size at = (t + 5)−0.85.
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Fig. 10. Leader following using equal weights for each follower agent’s state and observations.
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Fig. 11. Leader following using a decreasing step size at = (t + 5)−0.65.

Appendix.
Proof of Lemma 6. For case (i), by (10) we have

t∑
k=T1

Π2
t,k ≤

t∑
k=T1

β2(k + 1)4α

k2(t + 1)4α
.

The desired upper bound is obtained from elementary estimates by considering three
scenarios for α as in (14).

We continue with the estimate for case (ii). Let δ = 2α/(1 − γ) > 0 and define

St =
t∑

k=1

k−2γe2δ(k+1)1−γ

, Ht = t−γe2δ(t+1)1−γ

, t ≥ 1.

Clearly there exists a sufficiently large t0 > 0 such that Ht is strictly increasing for
t ≥ t0. In addition, both St and Ht diverge to infinity. If we can show that for t > t0,

0 < Rt =
St − St−1

Ht − Ht−1
→ R∗, as t → ∞,(A.1)

for some R∗ > 0, then it is straightforward to show that St = O(Ht). To show the
existence of a limit in (A.1), we write

Rt =
t−2γe2δ(t+1)1−γ

t−γe2δ(t+1)1−γ − (t − 1)−γe2δt1−γ .(A.2)

We have

t−γe2δ(t+1)1−γ − (t − 1)−γe2δt1−γ

= t−γe2δ(t+1)1−γ − t−γe2δ[(t+1)1−γ+t1−γ−(t+1)1−γ ](1 − t−1)−γ

= t−γe2δ(t+1)1−γ

[1 − e2δ[t1−γ−(t+1)1−γ ](1 − t−1)−γ ]

= t−γe2δ(t+1)1−γ [
1 − e−2δ[(1−γ)t−γ+o(t−γ)]

]
[1 + γt−1 + o(t−1)]

= t−γe2δ(t+1)1−γ

[2δ(1 − γ)t−γ + o(t−γ)][1 + γt−1 + o(t−1)]

= 2δ(1 − γ)t−2γe2δ(t+1)1−γ

[1 + o(1)]

= 4αt−2γe2δ(t+1)1−γ

[1 + o(1)].(A.3)
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By combining (A.2) and (A.3), it follows that limt→∞ Rt = 4α > 0, and hence
St = O(Ht). Subsequently, we have

t∑
k=T1

Π2
t,k = O

(
e−2δ(t+1)1−γ

t∑
k=1

k−2γe2δ(k+1)1−γ

)

= O(e−2δ(t+1)1−γ

Ht)

= O(t−γ),

which completes the proof for case (ii), and the lemma follows.
Proof of Lemma 20. (i) First, it is a well-known fact [19, 35] that when G is

connected, the null space of L is span{1n}. Since L ≥ 0, there exists a positive
semidefinite matrix, denoted as L1/2 such that L = (L1/2)2. We also write D

1/2
N =

diag(d−1/2
1 , . . . , d

−1/2
n ) which gives DN = (D1/2

N )2. For x ∈ R
n, we have Lx = 0 ⇒

LDNLx = 0 ⇒ LDNLDNLx = 0.
On the other hand, we have

LDNLDNLx = 0 ⇒ xT LDNLDNLx = 0

⇔ |L1/2DNLx|2 = 0 ⇔ L1/2DNLx = 0

⇒ LDNLx = 0 ⇒ xT LDNLx = 0

⇔ D
1/2
N Lx = 0 ⇔ Lx = 0.

Hence, it follows that Lx = 0 ⇔ LDNLx = 0 ⇔ LDNLDNLx = 0, and assertion (i)
follows. Hence the matrices L, LDNL, and LDNLDNL each have a rank of n − 1.

(ii) We begin by proving the first part. Let 0 = λ1, 0 < λ2 ≤ λ3 ≤ · · · ≤ λn

and 0 = λ̂1, 0 < λ̂2 ≤ λ̂3 ≤ · · · ≤ λ̂n, respectively, denote the eigenvalues of L and
LDNL. Let Φ = (α1, . . . , αn) and Φ̂ = (α̂1, . . . , α̂n) be two orthogonal matrices (i.e.,
ΦT Φ = I, and Φ̂T Φ̂ = I) such that

LΦ = Φ diag(λ1, . . . , λn), LDNLΦ̂ = Φ̂ diag(λ̂1, . . . , λ̂n).

In view of λ1 = λ̂1 = 0, we get Lα1 = LDNLα̂1 = 0. By (i), we necessarily have either
α1 = α̂1 or α1 = −α̂1. In fact, we may take α1 = α̂1 = ±(1/

√
n) · 1n. Consequently,

it is easy to show that span{α2, . . . , αn} = span{α̂2, . . . , α̂n}, which is the orthogonal
complement of span{1n} in R

n.
Take any x ∈ R

n. We may write x =
∑n

i=1 yiαi, x =
∑n

i=1 ŷiα̂i, where
y = (y1, . . . , yn), ŷ = (ŷ1, . . . , ŷn) are uniquely determined and satisfy

∑n
i=1 y2

i =∑n
i=1 ŷ2

i = |x|2. Recalling that we have taken α1 = α̂1 �= 0, it necessarily follows that
y1 = ŷ1 since, otherwise, (y1 − ŷ1)α1 ∈ span{α2, . . . , αn} with y1 − ŷ1 �= 0, which is
impossible. Hence we get

n∑
i=2

y2
i =

n∑
i=2

ŷ2
i .(A.4)

For x ∈ R
n, since λ1 = λ̂1 = 0 we have the estimate

xT LDNLx = ŷT Φ̂T LDNLΦ̂ŷ =
n∑

i=2

λ̂iŷ
2
i ≥ λ̂2

n∑
i=2

ŷ2
i .
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On the other hand, we have xT Lx ≤ λn

∑n
i=2 y2

i = λn

∑n
i=2 ŷ2

i , where the equality
follows from (A.4). Hence it follows that xT LDNLx ≥ λ̂2λ

−1
n xT Lx, and therefore,

the first part of (ii) is proved by taking c1 = λ̂2λ
−1
n > 0.

We denote the eigenvalues of LDNLDNL by 0 = λ̃1, 0 < λ̃2 ≤ λ̃3 ≤ · · · ≤ λ̃n.
Following a very similar argument, we can show that for any x ∈ R

n,

xT LDNLDNLx ≤ λ̃nλ−1
2 xT Lx,

which implies the second part with c2 = λ̃nλ−1
2 > 0.

(iii) We obtain (44) by taking expectation on both sides of (42) and using (ii).
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