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Abstract

This paper proposes a Monte Carlo approach for the evaluation of integrals
of smooth functions defined on compact Lie groups. The approach is based
on the ergodic property of Brownian processes in compact Lie groups. The
paper provides an elementary proof of this property and obtains the following
results. It gives the rate of almost sure convergence of time averages along with
a “large deviations” type upper bound and a central limit theorem. It derives
probability of error bounds for uniform approximation of the paths of Brownian
processes using two numerical schemes. Finally, it describes generalisation to
compact Riemannian manifolds.
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1. Introduction

1.1. Exact and approximate algorithms

The problem treated in the present paper is to evaluate efficiently the integral,
with respect to the Haar measure, of a smooth function f defined on a given compact
Lie group G. Integrals of this kind arise in the study of random matrices, harmonic
analysis and Bayesian statistics. Clearly, these lead to a wide variety of applications
in engineering and physics.

It is well known the Haar measure µ of the group G is a probability measure on G
which is invariant under all group operations [1, 2]. Let Y be a random variable with
values in G. When the distribution of Y is given by µ, it is usual to say that Y is
uniformly distributed in G. In fact, for all g ∈ G, the random variables Y , gY and Y g
all have the same distribution. A first example is when G = S1, the unit circle group
of complex numbers z with modulus |z| = 1. In this case, it is enough to let Y = eiθ

where θ is uniformly distributed in (0, π).

In general, the statement that Y is uniformly distributed can also be given a geomet-
ric sense [3]. A compact Lie group G can always be equipped with a Riemannian metric
invariant under group operations. To this metric, there corresponds a Riemannian
volume form which is also invariant under group operations. The resulting volume
measure, when normalised so that the total volume of G is equal to 1, is the same as µ.
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Thus, Y has a uniform, i.e. constant, probability density with respect to Riemannian
volume.

With some knowledge of compact Lie groups, it is clear from the above that µ
should have a tractable local expression whenever the structure of G is sufficiently well
known. However, analytic calculation or direct numerical evaluation based on such an
expression is bound to run into two kinds of difficulties. First, the variety of functions
for which analytic calculation is possible is restricted. Second, numerical evaluation
suffers from the curse of dimensionality.

The current problem is closely related to the problem of generating independent
samples with values in G and distributed according to µ. Indeed, if it possible to
obtain such samples, then the integral of f with respect to µ can be evaluated using
the strong law of large numbers. The latter problem has an interesting history and has
generated exciting results [4].

A compact Lie group typically encountered in applications is the special orthogonal
group SO(n). This is the group of real orthogonal n×n matrices with unit determinant.
The discussion of this group exemplifies similar results obtained for other classical
compact Lie groups. Methods for generating independent samples from the Haar
measure of SO(n) can be divided into exact and approximate methods. Exact methods
are based on the following observation [4]. Let M be a real n × n matrix whose
elements are independent and have a standard Gaussian distribution. Let M = QR
be the Gram-Schmidt decompositions of M , where Q is the orthogonal factor. After
a “change of sign” to ensure that Q has unit determinant, it can be shown that Q
has its values in SO(n) and is distributed according to the Haar measure. Now, Q
can be computed using Householder transforms or Givens rotations and this leads to
streamlined algorithms.

Approximate methods have relied on random walks taking place on SO(n) [5, 6].
Given i.i.d random variables (Zn)n≥1 with values in SO(n), a random walk process is
defined by Sn = Sn−1Zn where Z0 has a fixed value in SO(n). Everything hinges on the
distribution of the Zn. This should allow easy generation of individual steps Z1, Z2, . . .
and also guarantee a mixing property so that the distribution of Sn quickly approaches
a uniform distribution. To obtain independent samples from the Haar measure, it is
then possible to start with independent samples from a well chosen initial distribution
and have these samples follow (independent) random walks.

Drawbacks of the methods just discussed consist in that they may require generating
a significantly large amount of random numbers and in the complexity of carrying
out consecutive matrix products. Unfortunately, a detailed count of operations and
a comparison to the approach proposed in the current paper are too complex to be
attempted in the following.

For the evaluation of the integral with respect to µ of a smooth function f defined
on G, generation of independent samples is an overkill. It is clear that a Monte Carlo
approach can be based on some ergodic process W with values in G such that time
averages taken along individual paths of W converge almost surely to the required
integral. Of course, any Markov process W which has a unique invariant probability µ
and which is, in a general sense, irreducible realises this ergodic property [7]. Here, the
process W will be chosen as a Brownian process in G. This has two advantages. First,
convergence of time averages to integrals can be treated rather directly and proven to
satisfy explicit bounds. Second, although they are continuous time processes, Brownian
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processes are easy to approximate using numerical schemes with known probability of
error bounds. As a result, it becomes possible to design a Monte Carlo simulation
which yields the integral of f to within any chosen precision. For the two aspects
just mentioned, see Sections 3 and 4. The fact of generating only one instead of a
set of independent paths is seen as a motivation for the approach based on Brownian
processes.

Given the interpretation of the Haar measure µ on a compact group G as a Rie-
mannian volume measure, it may be asked whether the current approach based on
Brownian processes may be generalised to arbitrary compact Riemannian manifolds.
The answer is positive and this generalisation is described in Section 5. Basically, the
ergodic property of Brownian processes only depends on their local behavior, so that
the global group structure can be ignored.

Usually, Monte Carlo methods are introduced to avoid high dimensional integrals
which suffer from curse of dimensionality. Functions defined on a compact Lie group G
with high dimension may have specific symmetries which allow an analytic or numerical
approach. For instance, functions which are central, i.e. conjugate invariant, can be
integrated using Weyl’s integration formula [3, 8]. Concretely, a central function f
defined on SO(n) is a function which “only depends on eigenvalues” of its argument.
The dimension of SO(n) is n(n − 1)/2 but Weyl’s integral formula transforms the
integral of a continuous central function to a Riemann integral in n variables. An-
other simplification holds for functions f on a classical (matrix) compact Lie group
which are polynomials in the matrix elements of their argument [9]. The integrals of
these functions can be computed analytically, by decomposing corresponding tensor
representations of G into irreducible representations.

The current approach is essentially the same as that of [13]. Indeed, both propose
to use time averages, taken along approximate paths of Brownian processes, in order
to evaluate integrals. Note that [13] focuses on convergence in square mean while the
following studies explicit bounds for almost sure convergence. Also, the approximation
of (theoretical) paths of Brownian processes using numerical schemes is here considered
in the stronger sense of local uniform approximation in probability. In either case,
results can be given a full expression in terms of almost sure weak convergence of
empirical measures, see [21].

1.2. Brownian processes in compact Lie groups

The current paragraph gives some basic facts concerning Brownian processes and
discusses conditions under which these processes are ergodic. A more complete in-
troduction may be found in [12]. The use of irreducible representations and of the
Peter-Weyl theorem follows [10].

First, some notation needs to be specified. Let G be a compact connected Lie group
of dimension d with identity e, Lie algebra g and normalised Haar measure µ. Let
Irr(G) denote the set of equivalence classes of irreducible representations of G. With
δ0 denoting the unit representation, let Irr+(G) = Irr(G) − {δ0}. For δ ∈ Irr(G)
let dδ be its dimension and Uδ : G → SU(dδ) be a smooth unitary representative.
The normalised matrix elements

√
dδU

δ
ab, for δ ∈ Irr(G) and 1 ≤ a, b ≤ dδ, form a

complete orthonormal system in L2(µ,C). Moreover, recall the Peter-Weyl theorem.
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For continuous f : G→ C, this states the uniform convergence

f(g) = f̄ +
∑

δ∈Irr+(G)

dδ tr[f(δ)U δ(g)] (1)

where f̄ =
∫
G
fdµ. The following inversion formula holds

f(δ) =

∫
G

fUδ
†
dµ (2)

where integration of a matrix function is carried out elementwise and † indicates the
Hermitian transpose. For a probability measure ν on G, its characteristic function φν
is the sequence of matrices

φν(δ) =

∫
G

Uδdν δ ∈ Irr(G) (3)

Clearly, φν(δ0) = 1. A probability measure on G is uniquely determined by its
characteristic function. In particular, φµ(δ) = 0 for δ ∈ Irr+(G).

In the following, a Brownian process W in G is the solution of a left invariant
stochastic differential equation, driven by a Brownian motion in g. To write this
down, let X1, . . . , Xq ∈ g where q ≤ d. Let B be a Brownian motion in Rq with
covariance matrix C = (Cij , 1 ≤ i, j ≤ q). The components of B will be denoted Bi

for 1 ≤ i ≤ q. The stochastic differential equation satisfied by W is the following
Stratonovich equation

dWt =

q∑
i=1

XL
i (Wt) ◦ dBit W0 = g (4)

The initial condition is deterministic, g ∈ G. By changing to Itô form, it follows for all
smooth (in fact C2) function h on G,

dh(Wt) =

q∑
i=1

[XL
i h](Wt)dB

i
t + [Dh](Wt)dt (5)

The differential operator D is the generator of the process W .

Dh =
1

2

q∑
i,j=1

CijX
L
i X

L
j h (6)

The Brownian process W will be called ergodic if, for any initial condition g,

1

T

∫ T

0

f(Wt)dt
a.s.−→ f̄ (7)

where the notation f̄ is as in (1).
It will be shown below, see Proposition 1, that µ is an invariant probability of W .

It is known, from the theory of Harris processes [7], that the following condition (E1)
implies (7).
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(E1)Let Pt(g, .) be the probability distribution of Wt under initial condition g. For
t > 0, Pt(g, .) has density pt(g, .) with respect to µ and pt(g, k) is strictly positive and
continuous in (t, g, k).

In the following, an equivalent but more specific condition is considered, which also
implies that W is ergodic. Condition (E2) below is a local Hörmander condition
equivalent to condition (E1), see [10, 11].

(E2) C is strictly positive definite and Lie{X1, . . . , Xq} = g. Here Lie{. . .} denotes
the generated Lie algebra.

This condition will be discussed in relation to Proposition 1. For now, consider another
important fact for the following.

Let f be a smooth function on G, consider the potential equation

Dh = f − f̄ (8)

If condition (E2) is verified, then this has a smooth solution h, for all smooth f . In
fact, if (E2) holds then D is elliptic self adjoint. In particular, if f is smooth and h
is a solution of (8) then h is smooth. The construction of a solution h can be carried
out using a spectral representation of D. At least formally, this can be deduced from
the general construction in [7]. The function h is said to be a recurrent potential of f .
Under the assumption h̄ = 0, which is made throughout the following, it is the unique
smooth solution of (8).

Proposition 1 gives a first taste of the relation between conditions (E1) and (E2).
Recall a probability measure ν on G is called an invariant probability of W if for all
smooth function h on G ∫

G

[Dh]dν = 0 (9)

For δ ∈ Irr+(G), let Dδ = [DUδ](e).

Proposition 1. Condition (E2) is equivalent to either of the following (i) Dδ is
(Hermitian) strictly negative definite, for δ ∈ Irr+(G) and (ii) µ is the unique invariant
probability of W .

A formal proof would be too long. Rather, a few remarks are made which indicate a
standard approach. First, it is shown that (i) and (ii) are equivalent. Note, by the
Peter-Weyl theorem, that when f is smooth D can be applied to (1) term by term. A
short calculation then shows that (9) holds for all smooth h iff it holds for h = Uδab.
Recall,

DUδ = UδDδ (10)

It follows that (9) holds iff φν(δ)Dδ = 0 for δ ∈ Irr+(G). Now, (ii) is equivalent to
φν(δ) = 0 being the unique solution of this equation. This clearly follows from (i), so
that (i) implies (ii).

To see that (ii) implies (i), note that (ii) implies the statement that Dh = 0 only if h
is a constant. Indeed, if h 6= h̄ and Dh = 0 then the smooth function ph = exp(−|h|2)
can be normalised to obtain an invariant probability absolutely continuous with respect
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to µ. But then µ is not the unique invariant probability of W . Let 〈h, f〉 =
∫
G
hf∗dµ

where ∗ denotes conjugation. Using integration by parts and the fact that,
∫
G
Xfdµ =

0 for smooth f , it can be shown

〈h,Dh〉 = −1

2

q∑
i,j=1

Cij〈XL
i h,X

L
j h〉 (11)

Replacing h by an arbitrary linear combination of U δab, it follows that (ii) implies Dδ

is Hermitian strictly negative definite. Incidentally, even without assuming (ii), the
equality (11) implies Dδ is Hermitian negative definite.

To complete the proof, it is enough to show condition (E2) is equivalent to (i). For
this, the key observation is that (E2) is equivalent to the same statement, Dh = 0
only if h is a constant. Assume (E2) holds and h verifies Dh = 0. Then, (11) implies
XL
i h = 0 for 1 ≤ i ≤ q, so that h is a constant. Conversely, if condition (E2) does not

hold, then working in normal coordinates near the identity e, it is possibe to construct
a smooth function h 6= h̄ and Dh = 0 — compare to Page 11 of [10]. The fact that
(E2) implies (i) now follows by a repetition of the above arguments showing that (ii)
implies (i). On the other hand, since the U δab form a complete orthonormal system in
L2(µ,C) it is straightforward to use (11) in order to show

〈h,Dh〉 =
∑

δ∈Irr+(G)

dδ tr[h(δ)†Dδh(δ)] (12)

Now, if (i) holds then this is strictly negative unless h = h̄, so that Dh = 0 implies
h = h̄.

2. The ergodic property

The ergodic property of Brownian processes can be stated from general results.
However, it is interesting to note a direct and elementary proof is possible. This is
mainly based on the spectral properties of Brownian processes. Proposition 2 shows
(7) holds when f is a matrix element Uδab. The desired statement is then Proposition
3, which follows from the Peter-Weyl theorem.

Things are greatly simplified by the Lévy property of Brownian processes. A
Brownian process W as in (4) is a left Lévy process. Precisely, the following two
properties hold.

(L1) For 0 ≤ s ≤ t the left increment W−1
t Ws is independent of past values Wu

of W , where u ≤ s.
(L2)The distribution of left increments is stationary, W−1

t Ws
d
= Wt−s; here,

d
=

denotes equality in distribution.

In preparation for Proposition 2 note that W has the following covariance structure.
Recall (10); by applying (5) to each U δab and taking expectations, it is found

Eg[Uδ(Wt)] = Uδ(g) exp[tDδ]

where Eg indicates the initial condition g and exp is the matrix exponential. Now using
property (L1) and the fact that Uδ has unitary values

Eg tr[U δ(Ws)U
δ(Wt)

†] = tr {exp[|t− s|Dδ]} (13)
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The right hand side will be denoted as the value Rδ(|t−s|) of the convariance function
Rδ. This is independent of the initial condition g, but of course depends on δ ∈ Irr+(G).

Proposition 2. If condition (E2) is verified, then for δ ∈ Irr+(G) and any initial
condition g in (4)

1

T

∫ T

0

U δ(Wt)dt
a.s.−→ 0 (14)

Proof. Trivially, (14) holds for δ0; assume δ ∈ Irr+(G), arbitrarily chosen. For
T ≥ 0, let Û δT be the time average, on the left hand side of (14). Let | · | denote the
Euclidean matrix norm. By Fubini’s theorem,

Eg
∣∣∣ÛδT ∣∣∣2 =

1

T 2

∫ T

0

∫ T

0

Rδ(|t1 − t2|)dt1dt2

for any initial condition g.
If condition (E2) is verified then Dδ is strictly negative definite, by Proposition 1.

Then, if −λδ < 0 be the largest eigenvalue of Dδ, Rδ(|t1 − t2|) ≤ dδ exp[−λδ|t1 − t2|].
Carrying out the previous double integral,

Eg
∣∣∣ÛδT ∣∣∣2 ≤ 4dδ

λδT
(15)

The following is a standard argument.
Let Wn = n2. By (15), Eg|Û δWn

|2 = O(n−2). Thus, from the Borel-Cantelli lemma,

Û δWn

a.s.−→ 0 (16)

Clearly, Wn ↑ ∞. For Wn ≤ T ≤Wn+1, by a direct calculation∣∣∣ÛδT − ÛδWn

∣∣∣ ≤ Wn+1 −Wn

W 2
n

∫ Wn

0

∣∣Uδ(Wt)
∣∣ dt+

1

Wn

∫ Wn+1

Wn

∣∣Uδ(Wt)
∣∣ dt

The right hand side does not depend on T . Replacing |Uδ(Wt)| =
√
dδ, it follows by

an immediate simplification

sup
Wn≤T≤Wn+1

∣∣∣ÛδT − ÛδWn

∣∣∣ a.s.−→ 0 (17)

The proposition holds by (16) and (17).

Proposition 3. If condition (E2) is verified, then for any initial condition g in (4),
(7) holds.

Proof. The proof follows from Proposition 2 and the Peter-Weyl theorem. The
following holds for any initial condition g.

Let f be a continuous function on G. Replacing f by f − f̄ , note that the uniformly
convergent series (1) only involves δ ∈ Irr+(G).

Let Λ be a finite subset of Irr+(G) and fΛ the corresponding partial sum in (1). For
T > 0,

1

T

∫ T

0

f(Wt)dt =
1

T

∫ T

0

fΛ(Wt)dt+
1

T

∫ T

0

[f(Wt)− fΛ(Wt)]dt
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Independently of Λ, Proposition 2 implies the first term on the right hand side converges
to zero almost surely. In absolute value, the second term is less than ‖f − fΛ‖∞, the
supremum norm of f − fΛ. By choosing Λ large enough, always finite, the Peter-Weyl
theorem implies this is arbitrarily small.

3. Almost sure convergence and large deviations

3.1. Rates of almost sure convergence

In its above form, Proposition 3 gives no statement as to the rate of convergence
in (7). Here, the problem of determining these rates is studied. In view of practical
application, it is interesting te speak separately of “bounds” and “rates”. Even when
the rate of convergence in (7) is shown to be quite fast, the corresponding bound may
depend on constants which are unknown or suboptimal. It will be argued in 6 that the
bound obtained here is reasonably easy to determine and thus adapted to applications.

Here, Proposition 4 gives the rate of almost sure convergence in (7), showing that
it is faster than T−α for arbitrary 0 < α < 1/2. Proposition 5 gives an exponentially
decreasing upper bound for large deviation probabilities in (7). For a given function
f , the rate in the exponential is given in terms of the corresponding smooth potential
h of (8).

For Propositions 4 and 5, consider the Itô equation (5) where h is the smooth
potential corresponding to f . If condition (E2) is verified, it follows from (8),∫ T

0

[
f(Wt)− f̄

]
dt = h(WT )− h(g)−

q∑
i=1

∫ T

0

[XL
i h](Wt)dB

i
t (18)

where g in the initial condition in (4). Note that the sum of Itô integrals on the right
hand side is a continuous square integrable martingale; this will be denoted M .

Proposition 4. Assume condition (E2) holds. Let f̂T be the left hand side of (7).
For 0 < α < 1/2 and any initial condition g in (4),

Tα
[
f̂T − f̄

]
a.s.−→ 0 (19)

Proof. From (7) and (18), note that the left hand side of (19) is

T−β [h(Wt)− h(g)−MT ] β = 1− α > 1/2

Since h is smooth, it is bounded. So, (19) will follow if it can be shown T−βMT
a.s−→ 0.

This is done in a similar way to the proof of Proposition 2. The following reasoning
does not depend on the initial condition g.

From (18), the quadratic variation [M ] of M verifies [M ]T ≤ KT where K ≥ 0 will
be discussed later on. Let M̂T = T−βMT and Wn = nγ where γ(2β − 1) > 1. Note

Eg
∣∣∣M̂Wn

∣∣∣2 = W−2β
n Eg[M ]Wn

≤ K

nγ(2β−1)

By the Borel-Cantelli lemma

M̂Wn

a.s.−→ 0 (20)
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Note Wn ↑ ∞. Similar to the proof of Proposition 2, it is possible to write

Eg supWn≤T≤Wn+1
|M̂T − M̂Wn |2 ≤

2
(Wβ

n+1−W
β
n )2

W 4β
n

Eg|MWn
|2 + 2

W 2β
n

Eg supWn≤T≤Wn+1
|MT −MWn |2

By [M ]T ≤ KT and Doob’s martingale inequality, it then follows

Eg sup
Wn≤T≤Wn+1

|M̂T − M̂Wn
|2 ≤ 2K

(W β
n+1 −W β

n )2

W 4β−1
n

+ 8K
Wn+1 −Wn

W 2β
n

which is O(n−2). This shows the Borel-Cantelli lemma applies again. That is,

sup
Wn≤T≤Wn+1

|M̂T − M̂Wn |
a.s.−→ 0 (21)

Now, (20) and (21) imply (19).

In preparation for Proposition 5, consider again the quadratic variation [M ]. From
(18), it follows

[M ]T =

q∑
i,j=1

Cij

∫ T

0

[XL
i h](Wt)[X

L
j h](Wt)dt ≡

∫ T

0

h̃(Wt)dt (22)

It becomes clear that, as stated in the proof of Proposition 4, there exists K ≥ 0 such
that [MT ] ≤ KT . For instance, K = ‖h̃‖∞ is a possible value of K. Moreover, it is
clear K can be chosen independent of the initial condition g.

In view of the proposition, an important question concerns the optimal choice of
K ≥ 0.

Proposition 5. Assume condition (E2) holds. Let K ≥ 0 be such that [M ]T ≤ KT .
For ε > 0 and T ≥ 4‖h‖∞/ε,

Pg
(∣∣∣f̂T − f̄ ∣∣∣ > ε

)
≤ 2 exp

(
−ε2T
8K

)
(23)

where Pg is the law of W with initial condition g.

Proof. The starting point is (18). If T ≥ 4‖h‖∞/ε, then T−1|h(WT )− h(g)| ≤ ε/2.
Thus, to evaluate the left hand side of (23), it is enough to consider Pg(|MT | ≥ Tε/2).

Let λ ≥ 0 and Y be the stochastic exponential YT = exp[λMT−λ2[M ]T /2]. Because
M is a Itô integral, it can be shown that Y is a square integrable martingale. This
is not detailed here, but follows from the usual stochastic differential equation dYT =
λYT dMT .

Applying Proposition 3 to the function h̃ of (22), it follows

T−1[M ]T
a.s.−→ −〈h, f〉 (24)

which follows from (27) below. Assume f is not constant — the case of constant f is
trivial. Then, since the right hand side of (24) is strictly positive, [M ]T ↑ ∞ almost
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surely as T ↑ ∞. In particular, for A ≥ 0 the stopping time τA = inf{T ≥ 0, [M ]T ≥ A}
is almost surely finite. In particular, it holds that [M ]τA = A almost surely.

Let B be the standard Brownian motion process BA = MτA . Then,

Eg[YTA ] = Eg{exp[λBA − λ2A/2]} = 1 (25)

Recall [M ]T ≤ KT so that τA ≥ A/K. In particular, τKT ≥ T . Using the fact that
exp(MT ) is a submartingale,

exp[λMT ]Pg(MT ≥ Tε/2) ≤ Eg{exp[λMT ]} ≤ Eg{exp[λMτKT ]}

Replacing from (25) it follows,

Pg(MT ≥ Tε/2) ≤ exp

[
λ2

2
KT − λT ε

2

]
Putting λ = ε/2K and performing a similar reasoning for −MT , it follows

Pg(|MT | ≥ Tε/2) ≤ 2 exp

(
−ε2T
8K

)
(26)

so that the proposition follows.

3.2. Central limit theorem for time averages

In view of Proposition 4, the question may be asked of whether almost sure con-
vergence also holds for α = 1/2. Unsurprisingly, the answer is negative on account
of the existence of a nondegenerate limit distribution. Precisely, this is a Gaussian
distribution whose mean is zero and whose variance is −〈h, f〉. From Potential theory,
this quantity is the Dirichlet form associated to D.

The central limit theorem can be stated and proved quite directly. Again, it is
enough to consider (18). The following result will be needed. Let h̃ be as in (22).
Then, ∫

G

h̃dµ = −〈h, f〉 (27)

This is just a rewriting of (11).

Proposition 6. In the setting of Proposition 4, for any initial condition g in (4),

L
{
T

1
2

[
f̂T − f̄

]}
⇒ N (0,−〈h, f〉) (28)

where L{·} is the probability distribution of the quantity at hand and ⇒ denotes weak
convergences.

Proof. Referring to (18), the left hand side of (28) is the law of

T
−1
2 [h(WT )− h(g)−MT ]

Since h is bounded, it is enough to prove L{T −1
2 MT } converges to the required

Gaussian distribution.
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Let `T = T−1[M ]T and σ2 = −(h, f) and recall from Proposition 3,

`T
a.s.−→ σ2 (29)

For A ≥ 0 let MA be the square integrable martingale MA
T = A

−1
2 MT . This has

quadratic variation [MA]T = A−1[M ]T .
For A ≥ 0, there exists a standard Brownian motion BA such that MA = BA◦[MA].

By definition,

T
−1
2 MT = MT

T = BT`T (30)

Of course, L{BTσ2} = N (0, σ2) for all T ≥ 0. From (30), it is seen the proposition will
follow by showing

BT`T
Pg−→ BTσ2 as T ↑ ∞ (31)

Here
Pg−→ indicates convergence in probability, where the initial condition is g.

Fixing T , let τ1 = `T ∧ σ2 and τ2 = `T ∨ σ2, where ∧ and ∨ denote minimum and
maximum. It is clear form (29) that |τ2− τ1|

a.s.→ 0. Thus, it is possible to assume that
τ1, τ2 are bounded. It follows, by optional sampling,

Eg|BT`T −B
T
σ2 |2 = E|BTτ1 −B

T
τ2 |

2 = Eg[τ2 − τ1]

This converges to zero as T ↑ ∞, so that (31) follows from (29).

Further application of Proposition 6 may be based on Esseen’s inequality, see for
instance [14]. In the notation of the proof, let FT , ϕT and F,ϕ be the cumulative
distribution function and characteristic function of, respectively, BT`T and BTσ2 . Esseen’s
inequality states for u ≥ 0,

sup
x
|FT (x)− F (x)| ≤ 2

π

∫ u

0

∣∣∣∣ϕT (v)− ϕ(v)

v

∣∣∣∣ dv +
24

πu

1√
2πσ2

(32)

An elementary estimate for the integrand in the first term is

|ϕT (v)− ϕ(v)| ≤ |v|
(
Eg
∣∣BT`T −BTσ2

∣∣2) 1
2 ≤ |v|

(
Eg
∣∣`T − σ2

∣∣2) 1
4

The quantity in parentheses can be identified as,

Σ2
T ≡ Eg

∣∣∣∣∣ 1

T

∫ T

0

h̃(Wt)dt−
∫
G

h̃dµ

∣∣∣∣∣
2

An obvious choice of u finally yields

sup
x
|FT (x)− F (x)| ≤

[
2

π
+

24

π
√

2πσ2

]
Σ

1
4

T (33)

Note that, assuming σ2 is known a priori, the values of F can be found in usual
statistical tables. Thus, bounds on the deviation of f̂T away from f̄ can be evaluated
from the study of convergence in the square mean, i.e. of ΣT . This gives practical value
to inequality (33), as convergence in the square mean may be relatively straightforward
to establish — for example, as in the proof of Proposition 2.
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4. The issue of approximation

Recall the main problem of evaluating f̄ for a smooth function f defined on G.
Proposition 3 asserts this can be done using (7). Moreover, if sufficient knowledge of

f is available, Proposition 5 can be used to find T such that f̂T is within a precision
ε of f̄ , with any preassigned probability. Once such T is found, there remains the
issue of computing f̂T . The main difficulty here is in obtaining a valid approximation
of a path of W , over the interval [0, T ]. Since f̂T is given by a Riemann integral, it

is clear a uniform approximation over the required interval allows f̂ to be computed
with known precision. With this motivation, the current section concentrates on local
uniform approximation of the paths of W . Its main results are Propositions 7 and 8
which provide explicit probability of error bounds.

Concretely, it will be assumed G is a matrix Lie group. Precisely, the assumption
is that for some v ≥ 1, a Lie group isomorphism U : G → GL(v) is given and g ∈ G
is identified with U(g) ∈ GL(v). Note that the existence of an isomorphism U is
guaranteed whatever the underlying group G — see [8], Theorem 4.1 on Page 136.
A sequence of processes (Wn)n≥1 with values in GL(v) is said to converge locally
uniformly in probability to W if for all T ≥ 0 and ε ≥ 0,

P
(

sup
t≤T
|Wn

t −Wt| > ε

)
→ 0 (34)

where all processes are defined on the same probability space with probability measure
P — the corresponding expectation is denoted E. The processes Wn used to approxi-
mate W follow from numerical schemes for solving the stochastic differential equation
(4). With the current assumption that G is a matrix Lie group, this can be written in
the following Itô form

dWt = Wt[dB̃t + D̃dt] ≡WtdX̃t (35)

Here, with the notation X̃i = XiU , B̃ is the matrix process B̃t =
∑q
i=1B

i
tX̃i, D̃ is the

matrix D̃ = 1
2

∑q
i,j=1 CijX̃iX̃j and X̃ is the matrix process X̃t = B̃t + D̃t.

4.1. The first order approximation

In the current paragraph, the processes Wn are constructed from a first order Euler
scheme for equation (35). The convergence of this kind of scheme is well known, in
the general context of locally Lipschitz stochastic differential equations equations [15].
Proposition 7 below gives a direct treatment of the current matrix case. It is clear
from their construction, see equation (36), that the processes Wn do not have their
values in G. For may applications, this should present no difficulty, as the function f
is in the first place a matrix function; that is, the restriction to G of a known smooth
function F : GL(v) → R. Thus, f̂T is approximated by a similar Riemann integral,

T−1
∫ T

0
F (Wn

t )dt.

Throughout the following, let (tnk )k≥0 form a decreasing sequence of subdivisions of
R+. For n ≥ 1, the subdivision points 0 = tn0 < tnk ↑ ∞ and |tn| = supk≥1 |tnk − tnk−1| ↓
∞. The processes Wn are here given by

Wn
t =

∏
k≥1

Iv + X̃tnk∧t − X̃tnk−1∧t (36)
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where ∧ denotes the minimum, Iv is the v × v identity matrix and the product is
ordered with k increasing from left to right. Without loss of generality, it is assumed
W0 = Iv.

Proposition 7. Let W be the solution of (35) and (Wn)n≥1 be given by (36). For
T ≥ 0 and n ≥ 1

E
(

sup
t≤T
|Wn

t −Wt|2
)
≤ [2ve4ρ(T )E|X̃1|2]|tn| (37)

where ρ is the increasing function t 7→ 12v2E|X̃1|2(t + t3

3 ). In particular, (Wn)n≥1

converges locally uniformly in probability to W .

Proof. Only a sketch of the main steps is given. Let V n be the process V nt = Wtnk
for tnk ≤ t < tnk+1. It is possible to show

Wn
t = Iv +

∫ t

0

V ns−dX̃s (38)

where V ns− denotes the left limit. Comparing to (35) gives,

Wt −Wn
t =

∫ t

0

(Wn
s− − Vs−)dX̃s +

∫ t

0

(Ws− −Wn
s−)dX̃s (39)

In order to bound the first term, note Wn
t − V nt = V nt (X̃t − X̃tnk

) for tnk ≤ t < tnk+1.

Now, E|X̃t − X̃tnk
|2 = E|X̃1|2|tn|. Also, it can be shown from (38) using standard

techniques from stochastic calculus,

E|V nt |2 ≤ 2v + 2

∫ t

0

E|V ns |2dρ(s) (40)

so that it is possible to apply Gronwall’s lemma, which gives

E|V nt |2 ≤ [2ve2ρ(t)E|X̃1|2]|tn|

Now, E|Wn
t −V nt |2 can be bounded using the fact that X̃ has independent increments.

Returning to (39) and applying a similar transformation, it follows

E|Dn
t |2 ≤ [2ve2ρ(T )E|X̃1|2]|tn|+ 2

∫ T

0

E|Dn
t |2dρ(t) (41)

where Dn
t = supt≤T |Wn

t − Wt |. The proposition follows from Gronwall’s lemma
applied to (41).

4.2. The exponential approximation

In the current paragraph, the processes Wn are constructed using so called mul-
tiplicative integrals, involving the matrix exponential. This construction, unlike the
previous one in 4.1, has an intrinsic sense independent of the isomorphism U . In
particular, the processes Wn have their values in G so that it is possible to consider
directly any smooth function f defined on G. The convergence of multiplicative integral



14 Salem Said & Jonathan H. Manton

schemes is known for diffusion processes in general Riemannian manifolds [16]. The
specific case of compact Riemannian manifolds is treated in [17]. This gives to the
order of magnitude stated in Proposition 8. Explicit bounds for the current case can
be collected from the proof, which is modelled on that of [17].

Given a decreasing sequence of subdivisions (tnk )k≥0 of R+, let

bnk = (B̃tnk − B̃tnk−1
)/(tnk − tnk−1)

and consider the processes Wn given by

Wn
t =

∏
k≥1

exp
[
bnk (tnk ∧ t− tnk−1 ∧ t)

]
(42)

where the product is ordered as in (36). By construction of the matrix process B̃ and
the fact that G is a matrix Lie group, it is clear Wn has its values in G.

Proposition 8. Let W be the solution of (35) and (Wn)n≥1 be given by (42). For
T ≥ 0 and n ≥ 1

P
(

sup
t≤T
|Wn

t −Wt| > ε

)
= O(|tn|) (43)

In particular, (Wn)n≥1 converges locally uniformly in probability to W .

Proof. For simplicity, consider only regular subdivisions, tnk = k|tn|. Calculations
will be carried out with a fixed subdivision (tnk )k≥1. Accordingly, there is no confusion
in writing tk instead of tnk . Fix T ≥ 0 and let k0 = bT/|tn|c+ 1. Let W̄ and W̄n be the
processes where W̄t = Wtk and W̄n

t = Wn
tk

for tk ≤ t < tk+1. Consider the following
triangle inequaity

|Wt −Wn
t | ≤ |Wt − W̄t|+ |W̄t − W̄n

t |+ |Wn
t − W̄n

t | (44)

For the third term, it is possible to use (42) in order to obtain

sup
t≤T
|Wn

t − W̄n
t | ≤ K1maxk≤k0

∣∣∣B̃tk − B̃tk−1

∣∣∣ (45)

where K1 = supg∈G |g|. Following [17], this can be evaluated from

P
(
maxk≤k0

∣∣∣B̃tk − B̃tk−1

∣∣∣ > ε
)
≤

k0∑
k=1

P
(∣∣∣B̃tk − B̃tk−1

∣∣∣ > ε
)

where ε > 0 is arbitrary. Note moreover that,

P
(∣∣∣B̃tk − B̃tk−1

∣∣∣ > ε
)
≤ P

(
sup
s≤|tn|

∣∣∣B̃tk−1+s − B̃tk−1

∣∣∣ > ε

)

and by elementary properties of Brownian motion, this is dominated by√
2v2K2

2ε
2

π|tn|
exp

(
− K2

2ε
2

2v2|tn|

)
≡ R(ε, |tn|)
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where K2
2 = v4q2

∑q
i,j=1 Cij tr[X̃iX̃

T
j ]. Replacing in (45) shows that

P
(

sup
t≤T
|Wn

t − W̄n
t | > ε

)
≤ T

|tn|
R

(
ε

K1
, |tn|

)
(46)

which is O(|tn|).
For the first term in (44), it is possible to write from (35)

Wt − W̄t =

∫ t

tk−1

[
Ws − W̄s

]
dX̃s + W̄tk−1

[
X̃t − X̃tk−1

]
for tk−1 ≤ t < tk. This is dominated thanks to the two following bounds. First, using
the same technique as in the proof of Proposition 7

Emax
k≤k0

sup
tk−1≤t<tk

∣∣∣∣∣
∫ t∧T

tk−1

[
Ws − W̄s

]
dX̃s

∣∣∣∣∣
2

≤
∫ T

0

E|Ws − W̄s|2dρ(s) = K2
1ρ(T )ρ(|tn|)

Using the same property as for (46), it is possible to find

P

(
max
k≤k0

sup
tk−1≤t<tk

|X̃t − X̃tk−1
| > ε

)
≤ T

|tn|
R

(
ε

2K1
, |tn|

)

whenever K1|D̃||tn| ≤ ε/2. Combining the last two bounds, it follows

P
(

sup
t≤T
|Wt − W̄t| > ε

)
= O(|tn|) (47)

It remains to consider the second term in (44). Using the Taylor development of the
matrix exponential in (42), it follows for 1 ≤ k < k0,

Wn
tk
− Iv =

k∑
l=1

Wn
tl−1

[
∆lB̃ +

1

2
∆lB̃

2

]
+Ak (48)

where ∆lB̃ = B̃tl − B̃tl−1
and |Ak| ≤ K1

∑k
l=1 |∆lB̃|3.

The difference Wtk − Iv can be expressed from (35). Subtracting from (48), it is
possible to check

Wtk −Wn
tk

= Ak + Sk + Jk + Tk (49)

where

Sk =

∫ tk

0

[
W̄s −Ws

]
dX̃s Jk =

∫ tk

0

[
W̄n
s − W̄s

]
dX̃s

and, using the matrix integration by parts formula of [18],

Tk =

k∑
l=1

Wn
tl−1

[
1

2
∆lB

2 − D̃|tn|
]

=

k∑
l=1

W̄n
tl−1

∫ |tn|
0

B̃lsdB̃
l
s +

∫ |tn|
0

dB̃lsB
l
s
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where B̃l is the process B̃lt = B̃tl−1+t− B̃tl−1
. Now, it is clear that Ak can be bounded

as follows,

Emax
k<k0

|Ak|2 ≤ K1
T

|tn|

k0∑
l=1

E|∆lB̃|6 = K1T
2E|B̃1|6|tn|

For the remaining terms, note that

Emax
k<k0

|Sk|2 ≤ E sup
t≤T

∣∣∣∣∫ t

0

[
W̄s −Ws

]
dX̃s

∣∣∣∣2 ≤ K2
1ρ(T )ρ(|tn|)

Emax
k<k0

|Jk|2 ≤ E sup
t≤T

∣∣∣∣∫ t

0

[
W̄n
s − W̄s

]
dX̃s

∣∣∣∣2 ≤ ∫ T

0

E sup
s≤t

∣∣W̄n
s − W̄s

∣∣2 ρ(t)

and similarly,

Emax
k<k0

|Tk|2 ≤ 2K2
1TE|B̃1|4|tn|

By adding the bounds obtained for Ak, Sk, Jk and Tk, it follows

E sup
t≤T

∣∣W̄n
t − W̄t

∣∣2 ≤ O(|tn|) +

∫ T

0

E sup
s≤t

∣∣W̄n
s − W̄s

∣∣2 ρ(t)

This allows a final conclusion, after using Gronwall’s lemma,

P
(

sup
t≤T
|W̄n

t − W̄t| > ε

)
= O(|tn|) (50)

The proposition follows from (46), (47) and (50).

5. Generalisation to compact Riemannian manifolds

The current section discusses the generalisation of previous results to arbitrary com-
pact Riemannian manifolds. Let S be a compact connected and oriented Riemannian
manifold and denote µ its Riemannian volume measure. For a smooth function f
defined on S, the aim is to evaluate f̄ =

∫
M
fdµ. Generalising the previous approach,

consider W to be a Brownian motion process corresponding to the Riemannian struc-
ture of S. Proposition 9 below will show the same property as (7) holds for the
Brownian motion process W and is controlled by a similar bound to that of Proposition
5. Importantly, the approximation of Proposition 8 also generalises immediately to the
current Riemannian setting. Knowledge of the Riemannian structure of S, precisely
knowledge of its exponential mapping, is then sufficient to carry out practically the
evaluation of f̄ .

Brownian processes on a compact Lie group G, as introduced in 1.2, have a straight-
forward relationship to Brownian motion in G [10]. Assume given an Ad-invariant
scalar product 〈·, ·〉 on g. Such a scalar product can be constructed without knowledge
of the Haar measure of G, after decomposition of g into a direct sum of a semisimple
and Abelian ideals [8]. If X1, . . . , Xd is an orthonormal basis of g, with respect to
〈·, ·〉, then the process W given by the stochastic differential equation (4), with q = d,
is precisely a Brownian motion process corresponding to the Riemannian structure of
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G given by 〈·, ·〉. In particular, the operator D of (6) is the Laplace operator for this
Riemannian structure.

Let ∆ be the Laplace operator corresponding to the Riemannian structure of S. A
Brownian motion process W in S is a diffusion process whose generator is ∆. That
is [16], W is a pathwise continuous Markov process with values in S such that for all
smooth function h defined on S and T ≥ 0,

h(WT )− h(W0) =

∫ T

0

[∆h](Wt)dt+Mt (51)

where M is a continuous square integrable martingale depending on the function h.
For the current aim, the initial condition is taken to be deterministic, W0 = o ∈ S.
The existence of Brownian motion processes in S follows from the fact that ∆ is the
generator of the heat semigroup of S [19].

Proposition 9 will mainly be obtained from (51). This will require modifying (51)
into a form similar to (18). Note first that for all smooth function f defined on S the
Potential equation

∆h = f − f̄ (52)

has a unique smooth solution under the condition that h̄ = 0. Again, this can be
constructed as a recurrent potential following [7]. Second, an explicit expression of the
Laplace operator ∆ in the form of a “sum of squares of vector fields” as in (6) can be
obtained as follows [20].

Let O(S) be the orthonormal frame bundle of S. As a set, this has elements (s, u)
where s ∈ S and u : Rd → TsS is an isometry between the Euclidean space Rd and the
tangent space TsS of S at s. Note that O(S) has a natural manifold structure making
it locally diffeomorphic to S × O(d). Let ei, where 1 ≤ i ≤ d, be an orthonormal
basis of Rd. For (s, u) ∈ O(S), consider the orthonormal vectors uei ∈ TsS. If γi is a
differentiable curve with γi(0) = s and γ′i(0) = uei, then the horizontal lift of γi is the
curve γ̃i(t) = (γ(t), u(t)) in O(S) where for 1 ≤ j ≤ d the vector u(t)ej ∈ Tγ(t)iS is the
parallel transport of uej ∈ TsS along γi. This is well defined since parallel transport
is understood with respect to the Riemannian connection of S. The lift of the vector
uei tangent to γi at t = 0 is the vector Hi tangent to γ̃i at t = 0. This gives vector
fields H1, . . . ,Hd on O(S) which are linear independent at each point.

The Laplace operator ∆ is expressed in the following way. Let π : O(S) → S be
the projection (s, u)→ s. For a smooth function h defined on S, the following relation
holds,

∆h =

d∑
i=1

HiHi(h ◦ π) (53)

In view of (53), an explicit representation of a Brownian motion process in S can be
obtained. Let W̃ be a process in O(S) which satisfies

dW̃t =

d∑
i=1

Hi(W̃t) ◦ dBit (54)

where B = (B1, . . . Bd) is a standard Brownian motion in Rd. By changing into Itô
form and taking into account (53), it follows that W = π(W̃ ) verifies (51) so that it
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is a Brownian motion process in S. It is now possible to state and prove Proposition
9. As in previous sections, for a function f defined on S, the notation f̂T stands for

T−1
∫ T

0
f(Wt)dt. Also ‖h‖∞ denotes the supremum norm.

Proposition 9. Let h and f be as in (52). There exists K ≥ 0 such that, in the
notation of (51), [M ]T ≤ KT . Moreover, for ε > 0 and T ≥ 4‖h‖∞/ε,

P
(∣∣∣f̂T − f̄ ∣∣∣ > ε

)
≤ 2 exp

(
−ε2T
8K

)
(55)

where P is the law of W . In particular, f̂T
a.s.−→ f̄ .

Proof. The affirmation f̂T
a.s.−→ f̄ follows from (55) by an application of the Borel-

Cantelli lemma. The existence of K follows from

MT =

d∑
i=1

∫ T

0

[Hi(h ◦ π)](W̃t)dB
i
t

which implies

[M ]T =

d∑
i=1

∫ T

0

[Hi(h ◦ π)]2(W̃t)dt

Indeed, since S is compact, O(S) is compact and the integrand is a bounded.
The proof of (55) can be carried out exactly like the proof of (23) in Proposition 5.

From (51) it follows

f̂T − f̄ = T−1[h(Wt)− h(o)−MT ] (56)

Indeed, if T ≥ 4‖h‖∞/ε then T−1|h(WT ) − h(g)| ≤ ε/2. Thus, it is enough to
consider Pg(|MT | ≥ Tε/2). This can be treated exactly like (23), using exponential
submartingales.

The key step in generalising the approximation of 4.2 to the current Riemannian setting
is the replacement of the Lie group exponential by the Riemannian exponential [16].
Recall that for s ∈ S and ξ ∈ TsS there exists a unique geodesic curve cξ : R → S
with cξ(0) = s and c′ξ(0) = ξ. The exponential map exps : TsS → S associates to ξ
the point cξ(1) and more generally to tξ the point cξ(t), where the geodesic curve cξ
has been affinely parameterised.

Let (tnk )k≥0 form a decreasing sequence of subdivisions of R+. The processes Wn

given by the following construction converge locally uniformly in probability to W ;
note here, local uniform convergence uses the distance function corresponding to the
Riemannian metric. Dropping the superscript n, let bk = (Btk − Btk−1

)/(tk − tk−1).

On each interval tk−1 < t ≤ tk, let W̃n be the horizontal lift of Wn and write W̃n
t =

(Wn
t , U

n
t ). The processes Wn are given by,

Wn
t = expWn

tk−1

[
(t− tk−1)Untk−1

bk

]
tk−1 < t ≤ tk (57)

This formula has the following explanation. Fix an initial condition (o, u) ∈ O(S).
For 0 < t ≤ t1 let Wn

t be the geodesic curve c(t) = expo(tub1); here, b1 ∈ Rd and
ub1 ∈ ToS. Then, Unt is such that Unt ei is the parallel transport of uei along Wn. At
t = t1, this construction is repeated using (Wn

t1 , U
n
t1) instead of (o, u) and b2 instead of

b1, etc.
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6. Discussion

This final discussion will be concerned with the practical applicability of the results
of previous sections, as well as with some additional problems raised by these results
and which were not pursued in the above.

The practical motivation for the results of Sections 3 and 4 is their application to
the design of a Monte Carlo simulation which yields the integral f̄ of a given smooth
function f defined on G. The objective, in this case, would be to minimise the number
of required operations while respecting a preassigned precision on f̄ . For a given
simulation, the precision on f̄ is controlled by Proposition 5, while the number of
operations (or equivalently, the required step size) can be controlled by Proposition 7.

It is clear from (5) that the simulation is completely determined by the covariance
matrix C and X1, . . . , Xq ∈ g. For simplicity of argument, it is possible to assume
C = σ2Id, where Id is the d × d identity matrix, and that σ2 completely determines
the simulation. The design can be realised by adjusting σ2 to minimise a cost function
inferred from Propositions 5 and 7. In fact, increasing σ2 improves the precision in
Proposition 5 but requires a smaller step size in Proposition 7.

Application of Proposition 5 requires knowledge of the involved constant K, in (23).
In general, it is too difficult to evaluate K from K = ‖h̃‖∞ given after (22). Assume
on the other hand that f is of the elementary form,

f = < tr
[
ATUδ

]
(58)

where A is a dδ × dδ complex matrix and < denotes the real part. A direct calculation
shows it is possible to take

K = −d|A|λ−1
∗ (59)

where λ∗ < 0 is the largest nonzero eigenvalue of D, i.e. its spectral gap. This is well
defined as can be seen from the spectral representation of D.

Just like in the stationary case, where the initial distribution of W is given by µ,
it follows from (59) that there exists a uniform rate of convergence over δ ∈ Irr(G).
For a general smooth function f , formula (59) allows K to be evaluated based on the
rate of uniform convergence in (1). This can be characterised from estimates of the
derivatives of f .

It has been claimed that Proposition 5 provides a large deviations type upper bound.
This is misleading for two reasons. First, large deviations results are asymptotic while
(23) holds for finite T . Second, large deviations provides an optimal rate of convergence,
which is different from the bound in (23). This is described in [22], but it seems there
is no straightforward way of computing it.

The results obtained in the current paper indicate several interesting problems
for further study. The approximation of 4.2 is closely connected to the exponential
random walk on G. This is similar to, but more complicated than, Kac’s random
walk considered in [6] and [13]. Studying the asymptotic properties of this walk using
harmonic analysis, transportation costs, or some other method which does not use the
diffusion limit indicated by 4.2, is interesting at least from a technical point of view.

The convergence to Riemannian volume measure considered in Section 5 was only
briefly treated. A very interesting problem would be to study this convergence using
the analytic method of [13].
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[8] Bröcker, T. and Tom Dieck, T. (1985). Representations of compact Lie groups, Springer.

[9] Collins, B. and Sniady, P. (2006). Integration with respect to the Haar measure on unitary,
orthogonal and symplectic group. Commun. Math. Phys. 264, 773–795.
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